Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies

Evaluation Number 18

NASA Panel for Data Evaluation:

J. B. Burkholder
Earth System Research Laboratory
National Oceanic and Atmospheric Administration (NOAA)

S. P. Sander
Jet Propulsion Laboratory
California Institute of Technology

J. P. D. Abbatt
University of Toronto

J. R. Barker
University of Michigan

R. E. Huie
National Institute of Standards and Technology

C. E. Kolb
Aerodyne Research, Inc.

M. J. Kurylo
Goddard Earth Sciences, Technology and Research Program

V. L. Orkin
National Institute of Standards and Technology

D. M. Wilmouth
Harvard University

P. H. Wine
Georgia Institute of Technology

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

October, 2015
The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2015, California Institute of Technology. U.S. Government sponsorship acknowledged. All rights reserved.
ABSTRACT

This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation.

The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

The evaluation is available in electronic form from the following Internet URL:

http://jpldataeval.jpl.nasa.gov/

This evaluation should be cited using the following format:

TABLE OF CONTENTS

INTRODUCTION ...v

I.1 Basis of the Recommendations... viii
I.2 Scope of the Evaluation ... viii
I.3 Format of the Evaluation .. viii
I.4 Computer Access .. ix
I.5 Data Formats .. ix
I.6 Units .. ix
I.7 Noteworthy Changes in this Evaluation .. ix
 I.7.1 Bimolecular Reactions (Section 1) .. x
 I.7.2 Termolecular Reactions (Section 2) .. x
 I.7.3 Equilibrium Constants (Section 3) .. xi
 I.7.4 Photochemical Data (Section 4) .. xi
 I.7.5 Heterogeneous Chemistry (Section 5) .. xi
 I.7.6 Thermodynamic Parameters (Section 6) .. xi
 I.7.7 Bibliography – Master (Section 7) ... xi
I.8 Acknowledgements .. xii
I.9 Bibliography .. xiii

SECTION 1. BIMOLECULAR REACTIONS .. 1-1-378

SECTION 2. TERMOLECULAR REACTIONS .. 2-1-66

SECTION 3. EQUILIBRIUM CONSTANTS .. 3-1-24

SECTION 4. PHOTOCHEMICAL DATA ... 4-1-404

SECTION 5. HETEROGENEOUS CHEMISTRY ... 5-1-206

SECTION 6. THERMOCHEMICAL PARAMETERS ... 6-1-130

SECTION 7. BIBLIOGRAPHY ... 7-1-170
INTRODUCTION
This compilation of kinetic and photochemical data is the 18th evaluation prepared by the NASA Panel for Data Evaluation. The Panel was established in 1977 by the NASA Upper Atmosphere Research Program Office for the purpose of providing a critical tabulation of the latest kinetic and photochemical data for use by modelers in computer simulations of atmospheric chemistry. Table I-1 lists this publication’s editions:

Table I-1: Editions of this Publication

<table>
<thead>
<tr>
<th>Edition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NASA RP 1010, Chapter 1</td>
</tr>
<tr>
<td>2</td>
<td>JPL Publication 79-27</td>
</tr>
<tr>
<td>3</td>
<td>NASA RP 1049, Chapter 1</td>
</tr>
<tr>
<td>4</td>
<td>JPL Publication 81-3</td>
</tr>
<tr>
<td>5</td>
<td>JPL Publication 82-57</td>
</tr>
<tr>
<td>6</td>
<td>JPL Publication 83-62</td>
</tr>
<tr>
<td>7</td>
<td>JPL Publication 85-37</td>
</tr>
<tr>
<td>8</td>
<td>JPL Publication 87-41</td>
</tr>
<tr>
<td>9</td>
<td>JPL Publication 90-1</td>
</tr>
<tr>
<td>10</td>
<td>JPL Publication 92-20</td>
</tr>
<tr>
<td>11</td>
<td>JPL Publication 94-26</td>
</tr>
<tr>
<td>12</td>
<td>JPL Publication 97-4</td>
</tr>
<tr>
<td>13</td>
<td>JPL Publication 00-3</td>
</tr>
<tr>
<td>14</td>
<td>JPL Publication 02-25</td>
</tr>
<tr>
<td>15</td>
<td>JPL Publication 06-2</td>
</tr>
<tr>
<td>16</td>
<td>JPL Publication 09-31</td>
</tr>
<tr>
<td>17</td>
<td>JPL Publication 10-6</td>
</tr>
<tr>
<td>18</td>
<td>JPL Publication 15-10</td>
</tr>
</tbody>
</table>

In addition to the current edition, several previous editions are available for download from http://jpldataeval.jpl.nasa.gov/. This document is not available in printed form.

Contributions to the evaluation from past panel members are gratefully acknowledged. Past panel members and years of contribution are listed in Table I-2.

Table I-2: Past Panel Members

<table>
<thead>
<tr>
<th>Panel Member</th>
<th>Years of Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. M. Golden</td>
<td>1977–2011</td>
</tr>
<tr>
<td>W. B. DeMore</td>
<td>1977–2000</td>
</tr>
<tr>
<td>R. F. Hampson</td>
<td>1977–2000</td>
</tr>
<tr>
<td>D. Garvin</td>
<td>1977</td>
</tr>
<tr>
<td>C. J. Howard</td>
<td>1979–1997</td>
</tr>
<tr>
<td>G. K. Moortgat</td>
<td>2000–2011</td>
</tr>
<tr>
<td>B. J. Finlayson-Pitts</td>
<td>2002–2006</td>
</tr>
</tbody>
</table>
Current panel members, and their major responsibilities for the current evaluation are listed in Table I-3.

Table I-3: Panel Members and their Major Responsibilities for the Current Evaluation

<table>
<thead>
<tr>
<th>Panel Member</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. B. Burkholder, co-Chair</td>
<td>Editorial review
 O₅, O(¹D), HO₅ reactions
 Photochemistry
 References</td>
</tr>
<tr>
<td>S. P. Sander, co-Chair</td>
<td>Editorial review</td>
</tr>
<tr>
<td>J. Abbatt</td>
<td>Heterogeneous chemistry</td>
</tr>
<tr>
<td>J. R. Barker</td>
<td>Three-body reactions
 Equilibrium constants</td>
</tr>
<tr>
<td>R. E. Huie</td>
<td>Aqueous chemistry
 Henry’s Law coefficients
 Thermodynamic parameters</td>
</tr>
<tr>
<td>C. E. Kolb</td>
<td>Heterogeneous chemistry
 Na chemistry</td>
</tr>
<tr>
<td>M. J. Kurylo</td>
<td>Halocarbon reactions</td>
</tr>
<tr>
<td>V. L. Orkin</td>
<td>Halocarbon reactions</td>
</tr>
<tr>
<td>D. M. Wilmouth</td>
<td>Editorial review</td>
</tr>
<tr>
<td>P. H. Wine</td>
<td>SO₅ reactions
 Isoprene chemistry
 Chemistry of isoprene degradation products</td>
</tr>
</tbody>
</table>

As shown above, each Panel member concentrates their efforts on a given area or type of data. Nevertheless, the Panel’s final recommendations represent a consensus of the entire Panel. Each member reviews the basis for all recommendations and is cognizant of the final decision in every case.
Address communications regarding particular reactions to the appropriate panel member:

J. B. Burkholder
Chemical Sciences Division, R/CSD5
Earth System Research Laboratory
National Oceanic and Atmospheric Administration (NOAA)
325 Broadway
Boulder, CO 80305-3328
James.B.Burkholder@noaa.gov

S. P. Sander
Jet Propulsion Laboratory
California Institute of Technology
M/S 183-901
4800 Oak Grove Drive
Pasadena, CA 91109
Stanley.Sander@jpl.nasa.gov

J. P. D. Abbatt
Department of Chemistry
University of Toronto
80 St. George Street
Toronto, ON M5S 3H6 CANADA
jabbatt@chem.utoronto.ca

J. R. Barker
Department of Climate and Space Science and Engineering
(Formerly: Atmospheric, Oceanic, and Space Sciences)
1520 Space Research Building
University of Michigan
2455 Hayward Street
Ann Arbor, MI 48109-2143
jr barker@umich.edu

R. E. Huie
Chemical and Biochemical Reference Data Division
National Institute of Standards and Technology (NIST)
100 Bureau Drive, Stop 8320
Gaithersburg, MD 20899-8320
rehuie@verizon.net

C. E. Kolb
Aerodyne Research Inc.
45 Manning Rd.
Billerica, MA 01821-3976
kolb@aerodyne.com

M. J. Kurylo
Goddard Earth Sciences, Technology, and Research (GESTAR) Program
NASA Goddard Space Flight Center
Universities Space Research Association
Mail Stop 610.6
8800 Greenbelt Road
Greenbelt, MD 20771
Michael.J.Kurylo@nasa.gov

V. L. Orkin
Chemical and Biochemical Reference Data Division
National Institute of Standards and Technology (NIST)
100 Bureau Drive, Stop 8320
Gaithersburg, MD 20899-8320
Vladimir.Orkin@nist.gov

D. M. Wilmouth
Harvard University
12 Oxford Street
Link Bldg.
Cambridge, MA 02138
wilmouth@huarp.harvard.edu

P. H. Wine
School of Chemistry and Biochemistry
Georgia Institute of Technology
901 Atlantic Dr. NW
Atlanta, GA 30332-0400
paul.wine@chemistry.gatech.edu
I.1 Basis of the Recommendations

In so far as possible, all recommendations are based on laboratory measurements. In order to provide recommendations that are as up-to-date as possible, preprints and written private communications are accepted, but only when it is expected that they will appear as published journal articles. Recommendations are not adjusted to fit observations of atmospheric concentrations. The Panel considers the question of consistency of data with expectations based on the theory of reaction kinetics, and when a discrepancy appears to exist this fact is pointed out in the accompanying note. The major use of theoretical extrapolation of data is in connection with three-body reactions, in which the required pressure or temperature dependence is sometimes unavailable from laboratory measurements, and can be estimated by use of appropriate theoretical treatment. In some cases where no experimental data are available, the Panel may provide estimates of rate constant parameters based on analogy to similar reactions for which data are available.

I.2 Scope of the Evaluation

In the past (releases 1-12 of this evaluation), it was the practice of the Panel to reevaluate the entire set of reactions with individual Panel members taking responsibility for specific chemical families or processes. In recent years, the upper troposphere and lower stratosphere (UT/LS) have become the primary areas of focus for model calculations and atmospheric measurements related to studies of ozone depletion and climate change. Because the UT/LS is a region of relatively high chemical and dynamical complexity, a different approach was adopted for subsequent releases of the evaluation. Specifically, the entire reaction set of the data evaluation is no longer re-evaluated for each release. Instead, specific subsets are chosen for re-evaluation, with several Panel members working to develop recommendations for a given area. This approach makes it possible to treat each subset in greater depth, to examine the consistency of the recommended parameters within a given chemical family, and to expand the scope of the evaluation to new areas. It is the aim of the Panel to consider the entire set of kinetics, photochemical, and thermodynamic parameters every three review cycles. Each release of the evaluation will contain not only the new evaluations, but also recommendations for every process that has been considered in the past. In this way, the tables for each release constitute a complete set of recommendations.

It is recognized that important new laboratory data may be published that lie outside the specific subset chosen for re-evaluation. In order to ensure that these important data receive prompt consideration, each evaluation will also have a “special topics” category. Feedback from the atmospheric modeling community is solicited in the selection of reactions for this category.

For the current evaluation, the specific subsets include the following:
- Reactions of O(¹D)
- Reactions of OH with halocarbons
- Reactions of sulfur compounds
- Initial steps in isoprene oxidation
- Photochemistry of O₃, organic compounds and halogen oxides
- Heterogeneous processes on liquid water, water ice, alumina and solid alkali halide salts
- Gas-liquid solubility (Henry’s Law Constants)
- Thermodynamic parameters (entropy and enthalpy of formation)

I.3 Format of the Evaluation

Changes or additions to the data tables are indicated by shading. A new entry is completely shaded, whereas a changed entry is shaded only where it has changed. In some
cases, only the note has been changed, in which case the corresponding note number in the table is shaded.

The notes associated with each bimolecular reaction are an essential component of the evaluation. Thus, the reader is strongly encouraged to consult these notes as they contain important kinetic / numerical information that could not conveniently be included in the Table of recommended parameters. In several cases the note for a bimolecular reaction contains a three-parameter Arrhenius expression that better represents the accepted experimental data over a much broader temperature range than the two-parameter Arrhenius expression given in the table, whose applicability is limited to a narrower temperature range as indicated in the note. Table entries for some reactions provide rate constant recommendations for individual reaction channels. In these cases the recommendation for the total reaction rate constant is given separately in the note.

Every note in Tables 1-3 and in the photochemistry section includes a “time stamp” indicating the latest revision date for changes in the recommendation or in the note as well as the date of the most recent evaluation. In some cases, a reaction may have undergone a complete re-evaluation without changes in the recommendations (i.e., Table entries) or in the note. For such reactions, the date of the evaluation will be updated even though the re-evaluation did not result in any changes.

I.4 Computer Access

This document is available online in the form of individual chapters and as a complete document in Adobe PDF (Portable Data File) format. Files may be downloaded from http://jpldataeval.jpl.nasa.gov/. This document is not available in printed form.

The tables of recommended photochemical cross sections from this evaluation can be downloaded from the spectral atlas of the Max-Planck Institute for Chemistry at: http://satellite.mpic.de/spectral_atlas.

To receive email notification concerning releases of new publications and errata, a mailing list is available. To subscribe, send a blank message to sympa@list.jpl.nasa.gov with “subscribe jpl-dataeval” (without quotes) in the subject line.

For more information, contact Stanley Sander (Stanley.Sander@jpl.nasa.gov) or James Burkholder (James.B.Burkholder@noaa.gov).

I.5 Data Formats

In Table 1 (Rate Constants for Bimolecular Reactions) the reactions are grouped into the classes O₅, HOₓ, NOₓ, Organic Compounds, FOₓ, ClOₓ, BrOₓ, IOₓ, SOₓ, and Metal Reactions. The data in Table 2 (Rate Constants for Association Reactions) are presented in the same order as the bimolecular reactions. The presentation of photochemical cross section data follows the same sequence.

I.6 Units

Rate constants are given in units of concentration expressed as molecules per cubic centimeter and time in seconds. That is, for first-, second-, and third-order reactions, units of k are s⁻¹, cm³ molecule⁻¹ s⁻¹, and cm⁶ molecule⁻² s⁻¹, respectively. Absorption cross sections are expressed as cm² molecule⁻¹, base e.

I.7 Noteworthy Changes in this Evaluation

The layout of the evaluation has been revised to include with each note the full citations for the references cited within that note. In addition, complete section bibliographies are
1.7.1 Bimolecular Reactions (Section 1)

A comprehensive review of the O(\(^{1}\)D) reactions was included in this evaluation. The O(\(^{1}\)D) reaction entries and recommendations were expanded to include the total rate coefficient (i.e., O(\(^{1}\)D) loss) and the product branching ratios and estimated uncertainties, where experimental data were available. The basis for the branching ratio recommendations is provided in the note for each reaction. The current recommendations build on those given in the SPARC (2013) Lifetime Report\(^{13}\) for a sub-set of the molecules included in Table 1. New entries include HCN, CH\(_3\)CN, CH\(_3\)Cl, CH\(_3\)CCl\(_3\), 1,2-\(c\)-C\(_4\)Cl\(_2\)F\(_6\) (\(E\), \(Z\)), CF\(_3\)CHFCF\(_3\) (HFC-227ea), and CHF\(_2\)CH\(_2\)CF\(_3\) (HFC-245fa).

A comprehensive review of the FO\(_x\), ClO\(_x\), and BrO\(_x\) reactions in subsections E1, F1, and G1 respectively was conducted for this evaluation with particular emphasis on the reactions of OH and Cl with hydrocarbons and halocarbons (including halogenated ethers, alcohols, etc.). For several of these reactions, recommendation updates were made for consistency with the 2013 SPARC Lifetime Report.\(^{13}\) In a few cases, the SPARC recommendations themselves were updated. Many of the recommendations are based (at least in part) on relative rate investigations in which the derivation of the target rate constant was based on the rate constant for one or more reference reactions. In cases where significant revisions were made in the recommended rate parameters for reactions that were used as references in relative rate studies, the effect on other reaction recommendations was tracked and appropriate revisions were made. For all reactions, careful attention was paid to providing the most realistic values for the uncertainty parameters, \(f(298 \text{ K})\) and \(g\), given in Table 1. More details regarding the selection of these values are provided to the introduction to Section 1.

Subsection H1 on IO\(_x\) reactions was not a focus of this evaluation but one important reaction, IO + HO\(_2\), has been re-evaluated.

The section on sulfur reactions includes eleven reactions that had not been evaluated previously: five reactions related to the atmospheric oxidation of methyl ethyl sulfide (CH\(_3\)SC\(_2\)H\(_5\)), reactions of the three simplest Criegee intermediates (CH\(_2\)OO, \(syn\)-CH\(_3\)CHOO, and \(anti\)-CH\(_3\)CHOO) with SO\(_2\), the reaction of OH with methane sulfonic acid (MSA, CH\(_3\)SO\(_3\)H), and reactions of CH\(_3\)S radicals with CO and Br\(_2\). In addition, recommendations and notes for the OH + OCS and S + O\(_2\) reactions have been updated, as have notes for nine other sulfur reactions.

Evaluations for reactions of O\(_3\), OH, NO\(_3\), Cl, and Br with isoprene were included in Evaluation 17 for the first time. Recommendations for all five of these isoprene reactions are updated and reactions of the first generation isoprene oxidation products methyl vinyl ketone (MVK, CH\(_3\)C(\(O\))CH=CH\(_2\)) and methacrolein (CH\(_2\)=C(CH\(_3\))CHO) with O\(_3\), OH, NO\(_3\), Cl, and Br are evaluated for the first time. Also evaluated for the first time are reactions of the three simplest Criegee intermediates with water and water dimer. In addition, notes for reactions of OH with HCN and CH\(_3\)CN are updated to include available information about reaction mechanisms.

1.7.2 Termolecular Reactions (Section 2)

Several new reactions have been added to Table 2. These include the self-reaction of CH\(_2\)OO radicals (the simplest Criegee intermediate) and the reaction of CH\(_3\)I radicals with O\(_2\) (which produces the CH\(_2\)OO and other products). In addition, the adduct-forming reactions of OH + olefins has received special attention. The reaction of OH with ethylene has been re-
evaluated and new evaluations are reported for the reactions of OH with propene, 1-butene, iso-
butene, and cis- and trans-2-butene. New entries also appear for \(\text{CH}_3\text{S} + \text{O}_2 \), for \(\text{Hg} + \text{Br} \), and for \(\text{Br} + \text{isoprene} \) and 1,3-butadiene. Several entries have been up-dated, including \(\text{OH} + \text{NO}_2 \),
\(\text{HO}_2 + \text{NO}_2 \), \(\text{NO}_2 + \text{NO}_3 \), \(\text{ClO} + \text{ClO} \), and \(\text{BrO} + \text{NO}_2 \).

1.7.3 Equilibrium Constants (Section 3)

Several new entries have been added to Table 3. These include the equilibrium constants for formation of the water dimer; for \(\text{HO}_2 \) complexes with formaldehyde, acetaldehyde, and acetone; for complexes of \(\text{Br} \) with isoprene and 1,3-butadiene; for \(\text{CH}_3\text{S} + \text{O}_2 \); for \(\text{IO} + \text{NO}_2 \) and for \(\text{Hg} + \text{Br} \). Previous entries for \(\text{NO}_2 + \text{NO}_3 \) and for \(\text{ClO} + \text{ClO} \) have been updated.

1.7.4 Photochemical Data (Section 4)

Notes have been revised and updated as indicated in Table 4-1. The previously included table of uncertainty (absorption cross section x photolysis quantum yield) for a number of key species has been deleted. The recommended uncertainty estimates for the absorption cross sections and photolysis quantum yields are now included separately within the notes. (However, not all molecules include uncertainty estimates.) Absorption cross section uncertainty factors are primarily based on the wavelength regions most critical to atmospheric photolysis. New entries have been added in the Organic, \(\text{FO}_x \), \(\text{ClO}_x \), and \(\text{IO}_x \) Photochemistry sub-sections. On the basis of a recent study, the recommendation for the \(\text{CIOOCI} \) UV absorption cross sections, which are important for modeling polar stratospheric ozone depletion, was revised.

1.7.5 Heterogeneous Chemistry (Section 5)

In this evaluation, selected uptake processes occurring on alumina, liquid water, water ice, solid salt, and salt solutions have been added or updated. The compilation of Henry’s law parameters for pure water has been extended to include a large number of additional oxygenated organic, halo-organic, organic amine, and organic sulfide compounds. The compilation of Henry’s law parameters in sulfuric acid solutions have been added or updated for a few oxygenated organics. A new compilation of Henry's Law constants for uptake into seawater (or into \(\text{NaCl} \) solutions at about 35‰ salinity) has been added, with a particular emphasis on halogenated organics.

1.7.6 Thermodynamic Parameters (Section 6)

The Table of Thermodynamic Properties has been further expanded to almost 800 species, now including mercury compounds. The additions include mercury-halogen, mercury-halogen-oxygen, and mercury-halogen-nitrogen oxide species, which may be important for predicting which reactions can be of significance in the atmosphere. Since all of these entries are new, they have not been shaded to indicate a change or insertion. The Table has been divided into 90 groups, each linked to the notes for those species. The references for each group are at the end of the notes for that group. In addition, there is a list of groups at the beginning of the Table, with links to the individual groups.

1.7.7 Bibliography – Master (Section 7)

In addition to the bibliographies included at the end of each section, all references cited within the evaluation (≈5000) are summarized in this section. References have been updated to include full titles and doi’s for most post-2000 publications. Doi’s for older references are provided in some cases and will be updated in future evaluations.
I.8 Acknowledgements

The Panel wishes to acknowledge the technical support provided by Liz Juvera and Samantha Özyildirim. Financial support from the NASA Upper Atmosphere Research and Tropospheric Chemistry Programs is gratefully acknowledged.
I.9 Bibliography

SECTION 1. BIMOLECULAR REACTIONS

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 1. BIMOLECULAR REACTIONS</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1-3</td>
</tr>
<tr>
<td>1.2 The Evaluation Procedure</td>
<td>1-4</td>
</tr>
<tr>
<td>1.3 Uncertainty Estimates</td>
<td>1-4</td>
</tr>
<tr>
<td>Rate Constants for Bimolecular Reactions</td>
<td>1-6</td>
</tr>
<tr>
<td>1.4 O_x Reactions</td>
<td>1-6</td>
</tr>
<tr>
<td>1.4.1 Table 1A: O_x Reactions</td>
<td>1-6</td>
</tr>
<tr>
<td>1.4.2 Notes: O_x Reactions</td>
<td>1-6</td>
</tr>
<tr>
<td>1.4.3 Bibliography – O_x Reactions</td>
<td>1-6</td>
</tr>
<tr>
<td>1.5 O(1D) Reactions</td>
<td>1-7</td>
</tr>
<tr>
<td>1.5.1 Table 1A: O(1D) Reactions</td>
<td>1-7</td>
</tr>
<tr>
<td>1.5.2 Notes: O(1D) Reactions</td>
<td>1-15</td>
</tr>
<tr>
<td>1.5.3 Bibliography – O(1D) Reactions</td>
<td>1-39</td>
</tr>
<tr>
<td>1.6 Singlet O_2 Reactions</td>
<td>1-43</td>
</tr>
<tr>
<td>1.6.1 Table 1A: Singlet O_2 Reactions</td>
<td>1-43</td>
</tr>
<tr>
<td>1.6.2 Notes: Singlet O_2 Reactions</td>
<td>1-44</td>
</tr>
<tr>
<td>1.6.3 Bibliography - Singlet O_2 Reactions</td>
<td>1-51</td>
</tr>
<tr>
<td>1.7 HO_x Reactions</td>
<td>1-54</td>
</tr>
<tr>
<td>1.7.1 Table 1B: HO_x Reactions</td>
<td>1-54</td>
</tr>
<tr>
<td>1.7.2 Notes: HO_x Reactions</td>
<td>1-55</td>
</tr>
<tr>
<td>1.7.3 Bibliography – HO_x Reactions</td>
<td>1-65</td>
</tr>
<tr>
<td>1.8 NO_x Reactions</td>
<td>1-70</td>
</tr>
<tr>
<td>1.8.1 Table 1C: NO_x Reactions</td>
<td>1-70</td>
</tr>
<tr>
<td>1.8.2 Notes: NO_x Reactions</td>
<td>1-72</td>
</tr>
<tr>
<td>1.8.3 Bibliography – NO_x Reactions</td>
<td>1-85</td>
</tr>
<tr>
<td>1.9 Reactions of Organic Compounds</td>
<td>1-91</td>
</tr>
<tr>
<td>1.9.1 Table 1D: Reactions of Organic Compounds</td>
<td>1-91</td>
</tr>
<tr>
<td>1.9.2 Notes: Reactions of Organic Compounds</td>
<td>1-95</td>
</tr>
<tr>
<td>1.9.3 Bibliography – Reactions of Organic Compounds</td>
<td>1-135</td>
</tr>
<tr>
<td>1.10 FO_x Reactions</td>
<td>1-151</td>
</tr>
<tr>
<td>1.10.1 Table 1E: FO_x Reactions</td>
<td>1-151</td>
</tr>
<tr>
<td>1.10.2 Notes: FO_x Reactions</td>
<td>1-156</td>
</tr>
<tr>
<td>1.10.3 Bibliography – FO_x Chemistry</td>
<td>1-188</td>
</tr>
<tr>
<td>1.11 ClO_x Reactions</td>
<td>1-196</td>
</tr>
<tr>
<td>1.11.1 Table 1F: ClO_x Reactions</td>
<td>1-196</td>
</tr>
<tr>
<td>1.11.2 Notes: ClO_x Reactions</td>
<td>1-204</td>
</tr>
<tr>
<td>1.11.3 Bibliography – ClO_x Reactions</td>
<td>1-260</td>
</tr>
<tr>
<td>1.12 BrO_x Reactions</td>
<td>1-278</td>
</tr>
<tr>
<td>1.12.1 Table 1G: BrO_x Reactions</td>
<td>1-278</td>
</tr>
<tr>
<td>1.12.2 Notes: BrO_x Reactions</td>
<td>1-281</td>
</tr>
<tr>
<td>1.12.3 Bibliography – BrO_x Reactions</td>
<td>1-299</td>
</tr>
<tr>
<td>1.13 IO_x Reactions</td>
<td>1-304</td>
</tr>
<tr>
<td>1.13.1 Table 1H: IO_x Reactions</td>
<td>1-304</td>
</tr>
</tbody>
</table>

1-1
1.13.2 Notes: IOx Reactions.. 1-306
1.13.3 Bibliography – IOx Reactions ... 1-310
1.14 SOx Reactions ... 1-312
1.14.1 Table II: SOx Reactions .. 1-312
1.14.2 Notes: SOx Reactions ... 1-318
1.14.3 Bibliography – SOx Reactions .. 1-361
1.15 Metal Reactions ... 1-374
1.15.1 Table 1J: Metal Reactions ... 1-374
1.15.2 Notes: Metal Reactions ... 1-375
1.15.3 Bibliography – Metal Reactions .. 1-378
1.1 Introduction

In Table 1 (Rate Constants for Bimolecular Reactions) the evaluated reactions are grouped into the classes O_x, $O^{(1)D}$, $Singlet O_2$, HO, NO, Organic Compounds, FO, ClO, BrO, IO, SO, and Metals. Some of the reactions in Table 1 are actually more complex than simple two-body, bimolecular, reactions. To explain the pressure and temperature dependences occasionally measured in reactions of this type, it is necessary to consider the bimolecular class of reactions in terms of two subcategories, direct (concerted) and indirect (nonconcerted) reactions.

A direct, or concerted, bimolecular reaction is one in which the reactants A and B proceed to products C and D without the intermediate formation of an AB adduct that has appreciable bonding, i.e., there is no bound intermediate; only the transition state $[AB]^*$ lies between reactants and products.

$$A + B \rightarrow [AB]^* \rightarrow C + D$$

The reaction of OH with CH$_4$ forming H$_2$O + CH$_3$ is an example of a reaction of this class.

The rate constants for these reactions can, in general, be reasonably well represented by the Arrhenius expression

$$k(T) = A \times \exp(-E/RT)$$

over the temperature range of atmospheric interest. Very useful correlations between the expected structure of the transition state $[AB]^*$ and the Arrhenius A-factor of the reaction rate constant can be made, especially in reactions that are constrained to follow a well-defined approach of the two reactants in order to minimize energy requirements in the making and breaking of bonds. The recommended parameters, A and E/R, are given in Table 1 as discussed below and the temperature range associated with their recommended use is given in the corresponding reaction note (e.g. “below 400 K”). Rate constants for reactions of this type are not pressure dependent.

However, even for this class of reactions, deviation in the temperature dependence from the simple Arrhenius expression mentioned above may be apparent over the full range of the experimental data considered in the evaluation, and even over the more limited temperature range used to derive the Arrhenius expression recommendation. Deviation from Arrhenius behavior is typically exhibited as curvature in the Arrhenius plot - a concave upward curvature in $\ln(k(T))$ versus 1/T. There are several possible factors that may contribute to this curvature such as multiple reaction channels, the existence of reactant conformers, tunneling, and others. In cases where curvature was experimentally resolved, the reaction note emphasizes the temperature range over which the Arrhenius parameters given in Table 1 are applicable and also provides a recommended three-parameter expression

$$k(T) = A \times (T/298)^n \times \exp(-E/RT)$$

where n is a fit parameter, that better represents the overall temperature dependence.

The indirect or nonconcerted class of bimolecular reactions is characterized by a more complex reaction path involving a potential well between reactants and products, leading to a bound adduct (or reaction complex) formed between the reactants A and B:

$$A + B \leftrightarrow [AB]^* \rightarrow C + D$$

The intermediate $[AB]^*$ is different from the transition state $[AB]^*$, in that its lifetime substantially exceeds the characteristic time of intermolecular vibrations and, thus, it is considered a bound molecule. Of course, transition states are involved in all reactions, both forward and backward, but are not explicitly shown in the equation above. An example of a reaction of this class is ClO + NO, which normally produces Cl + NO$_2$. Reactions of the nonconcerted type can have more complex temperature dependences and can exhibit a pressure dependence if the lifetime of $[AB]^*$ is comparable to the rate of its collisional deactivation. This arises because the relative rate at which a complex $[AB]^*$ decomposes to products C + D or back to reactants A + B is a sensitive function of its internal energy. Thus, in reactions of this type, the distinction between the bimolecular and termolecular classification becomes less meaningful, and it is especially necessary to study such reactions under the temperature and pressure conditions in which they are to be used in model calculations, or, alternatively, to develop reliable theoretical bases for extrapolation of the experimental data. In several cases where sufficient data exist, reactions of this type are treated in Section 2 and included in the corresponding table for termolecular reactions.

As mentioned above, the recommended rate constant tabulation for bimolecular reactions (Table 1) is given in Arrhenius form, $k(T) = A \times \exp(-E/RT)$, and contains the following information:

1. Reaction stoichiometry and products (if known).
2. Arrhenius A-factor: \(\text{A} \)
3. Recommended temperature dependence ("activation temperature"): \(\frac{E}{R} \)
4. Recommended rate constant at 298 K: \(k(298 \text{ K}) \)
5. Rate constant uncertainty factor at 298 K: \(f(298 \text{ K}) \) (see below)
6. A parameter used to calculate the rate constant uncertainty at temperatures other than 298 K: \(g \) (see below)
7. Index number for a detailed note containing references to the literature, the basis of recommendation and, in several cases, alternative methods to calculate the rate constant.

For a few reactions, the recommendations for \(\text{A} \), \(\frac{E}{R} \) and \(k(298 \text{ K}) \) are italicized in blue font. These represent estimates by the Panel in cases where there are either no literature data, where the existing data are judged to be of insufficient quality to base a recommendation, or where the recommendation is based on an extrapolation of very limited experimental data.

1.2 The Evaluation Procedure

The process of evaluating chemical kinetic data does not conform to a simple set of mathematical rules. There is no "one size fits all" algorithm that can be applied and each reaction must be examined on a case-by-case basis. Consideration of uncertainties in the kinetic and photochemical parameters used in atmospheric models plays a key role in determining the reliability of and uncertainty in the model results. Quite often the cause(s) of differences in experimental results from various laboratories can't be determined with confidence and making recommendations for the uncertainties of the rate constant is often more difficult than for making recommendations of the Arrhenius parameters themselves. In many cases, investigators suggest possible qualitative reasons for disagreements among datasets. Thus, data evaluators necessarily must consider a variety of factors in assigning a recommendation, including such aspects as the chemical complexity of the system, sensitivities and shortcomings of the experimental techniques employed, similarities or trends in reactivity, and the level of agreement among studies using different techniques.

A recommendation for \(k(298 \text{ K}) \) is typically made by averaging the rate constants from those studies deemed to be of sufficiently high quality / reliability and free from chemical interferences that could have biased the results. In cases where a study provides reliable data over a range of temperatures of atmospheric interest, the value of \(k(298 \text{ K}) \) used in the averaging process is typically obtained from a weighted non-linear least-squares fit to the data from that study, \(k(T) \) versus \(T \), assuming equal relative uncertainties in the rate constants reported at the different temperatures. In deriving a recommended Arrhenius temperature dependence \((\frac{E}{R}) \), the selected data sets are examined to ascertain the temperature range over which a standard Arrhenius fit to the data provides an adequate representation. Each data set is then scaled by a constant factor so that the Arrhenius expressions describing the individual data sets give the recommended \(k(298 \text{ K}) \) and a weighted non-linear least-squares fit to all of these scaled data is then made. This typical process is helpful in avoiding biases resulting from systematic errors associated with an individual data set or from the fact that the individual data sets may have been obtained over significantly different temperature ranges. In cases where the selected data sets have been obtained over similar ranges of temperature, a fit to the combined scaled data often yields a value for \(\frac{E}{R} \) not very different from that obtained by averaging the \(\frac{E}{R} \) values from the individual studies. The recommended Arrhenius pre-exponential factor "A" is then calculated based on the recommended values for \(k(298 \text{ K}) \) and \(\frac{E}{R} \).

1.3 Uncertainty Estimates

The parameters \(f(298 \text{ K}) \) and \(g \) given in Table 1 can be used to calculate an estimated rate constant uncertainty at any given temperature, corresponding to approximately one standard deviation, from the following expression:

\[
f(T) = f(298 \text{ K}) \exp \left[g \left(\frac{1}{T} - \frac{1}{298} \right) \right]
\]

where the exponent is an absolute value.

Note that, since \(f(298 \text{ K}) \) and \(g \) have been defined to correspond to approximately one standard deviation, \(f(T) \) yields a similar uncertainty interval. The more commonly used 95% confidence limits at a given temperature can be obtained by multiplying and dividing the recommended value of the rate constant at that temperature by the factor \(f(T) \). It should be emphasized that the parameter \(g \) has been defined exclusively for use with \(f(298 \text{ K}) \) in the
above expression and should not be interpreted as the uncertainty in the Arrhenius activation temperature (E/R). Thus, g is dependent on the value selected for f(298 K). For example, reactions for which f(298 K) is rather large may require only a small value of g to represent an adequate total rate constant uncertainty at other temperatures.

The uncertainty factor f(298 K), corresponding to approximately one standard deviation in the case of normally distributed data, was assigned such that all of the data used in deriving the average are encompassed within the band derived by multiplying and dividing k(298 K) by f(298 K), i.e., two standard deviations, which is considered a 95% confidence interval for the evaluation. In some cases, a slightly higher value of f(298 K) may be recommended to encompass outlying data that were not used in the averaging but could not be entirely rejected. The uncertainty factor “g” was then selected for use in the f(T) expression described below such that f(T) encompasses all of the data used in the evaluation over the temperature range of the recommendation. Neither f(298 K) nor g is derived from a rigorous statistical treatment of the available data, which generally are too limited to permit such analyses and, more importantly, do not follow a normal statistical distribution. Rather, the uncertainty estimation is based on knowledge of the techniques, the difficulties of the experiments, and the potential for systematic errors.

This approach is based on the fact that rate constants are typically known with greater certainty at room temperature where the experimental data are more abundant and often more reliable. The overall uncertainty normally increases at other temperatures where there are fewer data. In addition, data obtained at temperatures far distant from 298 K may be less accurate than at room temperature due to various experimental difficulties or complications.

The uncertainty represented by f(T) is normally symmetric; i.e., the rate constant may be greater than or less than the recommended value, k(T), by the factor f(T). In a few cases in Table 1 asymmetric uncertainties are given in the temperature coefficient. For these cases, the factors by which a rate constant is to be multiplied or divided to obtain, respectively, the upper and lower limits are not equal, except at 298 K where the factor is simply f(298 K).

Finally, there is obviously no way to quantify “unknown” errors. The spread in results among different techniques for a given reaction may provide some basis for an uncertainty estimate, but the possibility of the same, or compensating, systematic errors in all the studies can’t be disregarded. Comparisons among rate constants recommended for similar reactions or for reactions within a homologous series of compounds can also help in the assignment of uncertainty factors. For measurements subject to large systematic errors, the true rate constant may be much further from the recommended value than would be expected and allowed for with any reasonable values of f(T) based on the data available for the evaluation. For example, there have been cases in the past where the recommended rate constants have changed by factors well outside of the uncertainties that had been assigned in the absence of quantitative knowledge of systematic errors. However, as experimental techniques improve together with improved understanding of various reactive processes and with significant expansion of the kinetic and thermodynamic database for the recommendations, exceptionally large changes are becoming less likely.
Rate Constants for Bimolecular Reactions

1.4 O₅ Reactions

1.4.1 Table 1A: O₅ Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data(K) a</th>
<th>A-Factor</th>
<th>E/R</th>
<th>k(298 K)b</th>
<th>f(298 K)c</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O + O₂ → O₅</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O + O₃ → O₂ + O₂</td>
<td>220–409</td>
<td>8.0×10⁻¹²</td>
<td>2060</td>
<td>8.0×10⁻¹⁵</td>
<td>1.10</td>
<td>200</td>
<td>A1</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6.

a Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.

b Units are cm³ molecule⁻¹ s⁻¹.

c f(298 K) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

\[f(T) = f(298 \text{ K}) \exp \left(\frac{1}{T} - \frac{1}{298} \right) \]

Note that the exponent is an absolute value.

1.4.2 Notes: O₅ Reactions

A1. O + O₅. The recommended rate expression is from Wine et al.⁵ and is a linear least-squares fit of all data (unweighted) from Davis et al.,² McCrumb and Kaufman,³ West et al.,⁴ Arnold and Comes,¹ and Wine et al.⁵ (Table: 83-62, Note: 83-62, Evaluation: 10-6) Back to Table

1.4.3 Bibliography – O₅ Reactions

1.5 O(¹D) Reactions

1.5.1 Table 1A: O(¹D) Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Branching Ratio (^a)</th>
<th>Temperature Range of Exp. Data (K) (^b)</th>
<th>Total Rate Coefficient: O(¹D) Loss (^c)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(¹D) Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(¹D) + O(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(³P) + O(_2)</td>
<td>0</td>
<td>104–424</td>
<td>3.3×10^{-11}</td>
<td>−55</td>
</tr>
<tr>
<td>→ O(³P) + O(¹Σ)</td>
<td>0.80 ± 0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(²P) + O(¹Δ)</td>
<td>0.20 (0.40-0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(¹D) + O(_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(³P) + O(_3)</td>
<td>0</td>
<td>104–424</td>
<td>2.4×10^{-10}</td>
<td>0</td>
</tr>
<tr>
<td>→ O(_2) + O(_2)</td>
<td>0.50 ± 0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(_2) + O(³P) + O(³P)</td>
<td>0.50 ± 0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(¹D) + H(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(³P) + H(_2)</td>
<td><0.01</td>
<td>204–420</td>
<td>1.2×10^{-10}</td>
<td>0</td>
</tr>
<tr>
<td>→ OH + H</td>
<td>1.0 (\text{a0.01})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(¹D) + H(_2)O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(³P) + H(_2)O</td>
<td><0.003</td>
<td>217–453</td>
<td>1.63×10^{-10}</td>
<td>−60</td>
</tr>
<tr>
<td>→ O(_2) + H(_2)O</td>
<td>0.006 ± 0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ OH + OH</td>
<td>1.0 (\text{a0.015})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(¹D) + N(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(³P) + N(_2)</td>
<td>1.0</td>
<td>104–673</td>
<td>2.15×10^{-11}</td>
<td>−110</td>
</tr>
<tr>
<td>O(¹D) + N(_2) (\text{M}→) N(_2)O</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(¹D) + N(_2)O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(³P) + N(_2)O</td>
<td><0.01</td>
<td>195–719</td>
<td>1.19×10^{-10}</td>
<td>−20</td>
</tr>
<tr>
<td>→ N(_2) + O(_2)</td>
<td>0.39 (0.36-0.42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ NO + NO</td>
<td>0.61 ± 0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(¹D) + NH(_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O(³P) + NH(_3)</td>
<td>0</td>
<td>204–354</td>
<td>2.5×10^{-10}</td>
<td>0</td>
</tr>
<tr>
<td>→ Products</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction</td>
<td>Branching Ratio a</td>
<td>Temperature Range of Exp. Data (K) b</td>
<td>Total Rate Coefficient: O(1D) Loss c</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>O(1D) + HCN</td>
<td>0.15×exp(200/T) 0.93×exp(-82/T)</td>
<td>193–430</td>
<td>A-Factor d</td>
<td>E/R</td>
</tr>
<tr>
<td>O(1D) + CH3CN</td>
<td>0.035 ±0.05 0.965 ±0.05</td>
<td>193–430</td>
<td>2.54×10⁻¹⁰</td>
<td>24</td>
</tr>
<tr>
<td>O(1D) + CO₂</td>
<td>1.0 ±0.01</td>
<td>195–370</td>
<td>7.5×10⁻¹¹</td>
<td>−115</td>
</tr>
<tr>
<td>O(1D) + CH₄</td>
<td><0.005 0.75 ±0.15 0.20 ±0.10 0.05 ±0.05</td>
<td>198–413</td>
<td>1.75×10⁻¹⁰</td>
<td>0</td>
</tr>
<tr>
<td>O(1D) + HCl</td>
<td>0.12 ±0.04 0.22 ±0.05 0.66 (0.61-0.71)</td>
<td>199–379</td>
<td>1.5×10⁻¹⁰</td>
<td>0</td>
</tr>
<tr>
<td>O(1D) + HF</td>
<td>0.70 ±0.05 0.30 ±0.05</td>
<td>298</td>
<td>5.0×10⁻¹¹</td>
<td>0</td>
</tr>
<tr>
<td>O(1D) + NF₃</td>
<td>0.07±0.21 0.93±0.07</td>
<td>199–356</td>
<td>2.0×10⁻¹¹</td>
<td>−44</td>
</tr>
<tr>
<td>O(1D) + HBr</td>
<td>0.20 ±0.07 0.20 ±0.04 0.60 (0.49-0.71)</td>
<td>297</td>
<td>1.5×10⁻¹⁰</td>
<td>0</td>
</tr>
<tr>
<td>O(1D) + Cl₂</td>
<td>0.25 ±0.10 0.75 ±0.07</td>
<td>298</td>
<td>2.7×10⁻¹⁰</td>
<td>0</td>
</tr>
<tr>
<td>O(1D) + CCl₂</td>
<td>0.20 ±0.04 0.80 ±0.04</td>
<td>194–429</td>
<td>2.2×10⁻¹⁰</td>
<td>−30</td>
</tr>
<tr>
<td>Reaction</td>
<td>Branching Ratio (^a)</td>
<td>Temperature Range of Exp. Data (K) (^b)</td>
<td>Total Rate Coefficient: O((^1)D) Loss (^c)</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>O((^1)D) + CClFO → O((^3)P) + CClFO → Products</td>
<td>0.20 0.80</td>
<td>298</td>
<td>(1.9\times10^{-10}) 0</td>
<td>1.9\times10^{-10} 1.50</td>
</tr>
<tr>
<td>O((^1)D) + CF(_2)O → O((^3)P) + CF(_2)O → Products</td>
<td>0.35 0.65 ± 0.10</td>
<td>298</td>
<td>(7.4\times10^{-11}) 0</td>
<td>7.4\times10^{-11} 1.50</td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)Cl → O((^3)P) + CH(_3)Cl → ClO + Products → Cl + Products → H + Products</td>
<td>0.10 0.46 ± 0.06 0.35 0.09</td>
<td>298</td>
<td>(2.6\times10^{-10}) 0</td>
<td>2.6\times10^{-10} 1.3</td>
</tr>
<tr>
<td>O((^1)D) + CCl(_4) (CFC-10) → O((^3)P) + CCl(_4) → ClO + Products</td>
<td>0.21 ± 0.04 0.79 ± 0.04</td>
<td>203–343</td>
<td>(3.30\times10^{-10}) 0</td>
<td>3.30\times10^{-10} 1.15</td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)CCl(_3) → O((^3)P) + CH(_3)CCl(_3) → Products</td>
<td>0.1 0.9</td>
<td>298</td>
<td>(3.25\times10^{-10}) 0</td>
<td>3.25\times10^{-10} 1.4</td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)Br → O((^3)P) + CH(_3)Br → BrO + Products → OH + Products</td>
<td>(0.76^{+0.07}_{-0.05}) 0.44 ± 0.05 0.56 (0.44-0.61)</td>
<td>297</td>
<td>(1.8\times10^{-10}) 0</td>
<td>1.8\times10^{-10} 1.15</td>
</tr>
<tr>
<td>O((^1)D) + CH(_2)Br (_2) → O((^3)P) + CH(_2)Br (_2) → Products</td>
<td>0.05 ± 0.07 0.95 (^{+0.05}_{-0.10})</td>
<td>297</td>
<td>(2.7\times10^{-10}) 0</td>
<td>2.7\times10^{-10} 1.20</td>
</tr>
<tr>
<td>O((^1)D) + CHBr(_3) → O((^3)P) + CHBr(_3) → Products</td>
<td>0.30 ± 0.10 0.70 ± 0.10</td>
<td>297</td>
<td>(6.6\times10^{-10}) 0</td>
<td>6.6\times10^{-10} 1.30</td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)F (HFC-41) → O((^3)P) + CH(_3)F → Products</td>
<td>0.18 ± 0.07 0.82 ± 0.07</td>
<td>298</td>
<td>(1.5\times10^{-10}) 0</td>
<td>1.5\times10^{-10} 1.15</td>
</tr>
<tr>
<td>O((^1)D) + CH(_2)F(_2) (HFC-32) → O((^3)P) + CH(_2)F(_2) → Products</td>
<td>0.70 ± 0.11 0.30 ± 0.11</td>
<td>298</td>
<td>(5.1\times10^{-11}) 0</td>
<td>5.1\times10^{-11} 1.20</td>
</tr>
<tr>
<td>Reaction</td>
<td>Branching Ratio (^a)</td>
<td>Temperature Range of Exp. Data (K) (^b)</td>
<td>Total Rate Coefficient: (O(1D)) Loss (^c)</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>(O(1D) + CHF_3) (HFC-23) (\rightarrow O(3P) + CHF_3 \rightarrow) Products</td>
<td>0.75 ± 0.05 (\rightarrow 0.25 ± 0.05)</td>
<td>217–372</td>
<td>8.7×10(^{-12}) (-30) (9.6×10(^{-12}) (1.05)</td>
<td>0 A30</td>
</tr>
<tr>
<td>(O(1D) + CHClF) (HCFC-21) (\rightarrow O(3P) + CHClF \rightarrow) Products</td>
<td>0.20 ± 0.05 (\rightarrow 0.74 ± 0.06) (0.06 (0.04-0.24))</td>
<td>188–343</td>
<td>1.9×10(^{-10}) (0) (1.9×10(^{-10}) (1.15)</td>
<td>50 A31</td>
</tr>
<tr>
<td>(O(1D) + CHClF_2) (HCFC-22) (\rightarrow O(3P) + CHClF_2 \rightarrow) Products</td>
<td>0.25 ± 0.05 (\rightarrow 0.56 ± 0.03) (0.05 ± 0.02) (0.14 (0.04-0.24))</td>
<td>173–373</td>
<td>1.02×10(^{-10}) (0) (1.02×10(^{-10}) (1.07)</td>
<td>0 A32</td>
</tr>
<tr>
<td>(O(1D) + CHF_2Br) (\rightarrow O(3P) + CHF_2Br \rightarrow) BrO + Products (\rightarrow Other) Products</td>
<td>0.40 ± 0.06 (\rightarrow 0.39 ± 0.07) (0.21 (0.08-0.34))</td>
<td>211–425</td>
<td>1.75×10(^{-10}) (-70) (2.2×10(^{-10}) (1.15)</td>
<td>25 A33</td>
</tr>
<tr>
<td>(O(1D) + CClF) (CFC-11) (\rightarrow O(3P) + CClF \rightarrow) Products (\rightarrow Other) Products</td>
<td>0.10 ± 0.07 (\rightarrow 0.79 ± 0.04) (0.11 (0.00-0.22))</td>
<td>173–372</td>
<td>2.30×10(^{-10}) (0) (2.30×10(^{-10}) (1.10)</td>
<td>0 A34</td>
</tr>
<tr>
<td>(O(1D) + CClF_2) (CFC-12) (\rightarrow O(3P) + CClF_2 \rightarrow) Products (\rightarrow Other) Products</td>
<td>0.14 ± 0.07 (\rightarrow 0.76 ± 0.06) (0.10 (0.00-0.23))</td>
<td>173–373</td>
<td>1.40×10(^{-10}) (-25) (1.52×10(^{-10}) (1.15)</td>
<td>0 A35</td>
</tr>
<tr>
<td>(O(1D) + CClF_3) (CFC-13) (\rightarrow O(3P) + CClF_3 \rightarrow) Products</td>
<td>0.18 ± 0.06 (\rightarrow 0.82 ± 0.06)</td>
<td>298</td>
<td>8.7×10(^{-11}) (0) (8.7×10(^{-11}) (1.20)</td>
<td>50 A36</td>
</tr>
<tr>
<td>(O(1D) + 1,2-{2-ClCICF_2}(E,Z) \rightarrow O(3P) + 1,2-{2-ClCICF_2}(E,Z) \rightarrow Products)</td>
<td>0.12 ± 0.02 (0.88 (-0.12)) (0.12 (+0.12))</td>
<td>296</td>
<td>1.56×10(^{-10}) (0) (1.56×10(^{-10}) (1.1)</td>
<td>0 A37</td>
</tr>
<tr>
<td>Reaction</td>
<td>Branching Ratio</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>Total Rate Coefficient: O(D) Loss</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>A38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CClBrF(_2) (Halon-1211)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CClBrF(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ BrO + Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Other Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35 ± 0.04</td>
<td>0.31 ± 0.06</td>
<td>0.34 (0.24-0.44)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CBr(_2)F(_2) (Halon-1202)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CBr(_2)F(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.55 ± 0.06</td>
<td>0.45 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CBr(_3)F (Halon-1301)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CBr(_3)F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ BrO + Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.55 ± 0.08</td>
<td>0.45 ± 0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CF(_4) (PFC-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CF(_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)CH(_2)F (HFC-161)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CH(_3)CH(_2)F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18 ± 0.05</td>
<td>0.82 ± 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)CH(_2)F (HFC-152a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CH(_3)CH(_2)F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ OH + Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Other Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.45 ± 0.15</td>
<td>0.15 ± 0.02</td>
<td>0.4 (0.18-0.62)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)CC(_3)F (HFC-141b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CH(_3)CC(_3)F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.31 ± 0.05</td>
<td>0.69 ± 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)CC(_3)F (HFC-142b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CH(_3)CC(_3)F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35 ± 0.10</td>
<td>0.65 ± 0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>217–373</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CH(_3)CF(_3) (HFC-143a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CH(_3)CF(_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ OH + Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Other Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35 ± 0.05</td>
<td>0.38 ± 0.06</td>
<td>0.27 (0.16-0.38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>217–373</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O((^1)D) + CH(_2)CICC(_3)F(_2) (HCFC-132b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ O((^3)P) + CH(_2)CICC(_3)F(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction</td>
<td>Branching Ratio a</td>
<td>Temperature Range of Exp. Data (K) b</td>
<td>Total Rate Coefficient: O(1D) Loss c</td>
<td>Note</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>O(1D) + CH₃ClCIF₃ (HCFC-133a) → O(1P) + CH₂ClCIF₃ → Products</td>
<td>0.20 ± 0.05 0.80 ± 0.05</td>
<td>297</td>
<td>1.2×10⁻¹⁰ 0 1.2×10⁻¹⁰ 1.25 50</td>
<td>A48</td>
</tr>
<tr>
<td>O(1D) + CH₂F₃CIF₃ (HFC-134a) → O(1P) + CH₂F₃CIF₃ → OH + Products → Other Products</td>
<td>0.65 ± 0.06 0.24 ± 0.04 0.11 (0.01-0.21)</td>
<td>297</td>
<td>4.9×10⁻¹¹ 0 4.9×10⁻¹¹ 1.15 50</td>
<td>A49</td>
</tr>
<tr>
<td>O(1D) + CHCl₂CIF₃ (HCFC-123) → O(1P) + CHCl₂CIF₃ → Products</td>
<td>0.21 ± 0.08 0.79 ± 0.08</td>
<td>297</td>
<td>2.0×10⁻¹⁰ 0 2.0×10⁻¹⁰ 1.20 50</td>
<td>A50</td>
</tr>
<tr>
<td>O(1D) + CHClF₃CIF₃ (HCFC-124) → O(1P) + CHClF₃CIF₃ → Products</td>
<td>0.31 ± 0.10 0.69 ± 0.10</td>
<td>297</td>
<td>8.6×10⁻¹¹ 0 8.6×10⁻¹¹ 1.20 50</td>
<td>A51</td>
</tr>
<tr>
<td>O(1D) + CHF₂CIF₃ (HFC-125) → O(1P) + CHF₂CIF₃ → OH + Products → Other Products</td>
<td>0.25 ± 0.05 0.60 ± 0.10 0.15 (0-0.30)</td>
<td>217–373</td>
<td>9.5×10⁻¹² −25 1.03×10⁻¹¹ 1.07 0</td>
<td>A52</td>
</tr>
<tr>
<td>O(1D) + CCl₂CIF₃ (CFC-113a) → O(1P) + CCl₂CIF₃ → ClO + Products → Other Products</td>
<td>0.10 0.79 ± 0.05 0.11 (0-0.16)</td>
<td>296</td>
<td>2.6×10⁻¹⁰ 0 2.6×10⁻¹⁰ 1.25 0</td>
<td>A53</td>
</tr>
<tr>
<td>O(1D) + CCl₂F₃CIF₂ (CFC-113) → O(1P) + CCl₂F₃CIF₂ → ClO + Products → Other Products</td>
<td>0.10 0.80 ± 0.05 0.10 (0-0.15)</td>
<td>217–373</td>
<td>2.32×10⁻¹⁰ 0 2.32×10⁻¹⁰ 1.10 0</td>
<td>A54</td>
</tr>
<tr>
<td>O(1D) + CCl₂FCF₃ (CFC-114a) → O(1P) + CCl₂FCF₃ → ClO + Products → Other Products</td>
<td>0.10 0.80 ± 0.05 0.10 (0-0.15)</td>
<td>296</td>
<td>1.6×10⁻¹⁰ 0 1.6×10⁻¹⁰ 1.20 0</td>
<td>A55</td>
</tr>
<tr>
<td>O(1D) + CClF₂CClF₂ (CFC-114) → O(1P) + CClF₂CClF₂ → ClO + Products → Other Products</td>
<td>0.10 0.85 ± 0.06 0.05 (0-0.1)</td>
<td>217–373</td>
<td>1.30×10⁻¹⁰ −25 1.41×10⁻¹⁰ 1.10 0</td>
<td>A56</td>
</tr>
<tr>
<td>Reaction</td>
<td>Branching Ratio (^a)</td>
<td>Temperature Range of Exp. Data (K) (^b)</td>
<td>Total Rate Coefficient: O((^1)D) Loss (^c)</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>(O((^1)D) + CClF_2CF_3) (CFC-115) (\rightarrow O((^3)P) + CClF_2CF_3) Products</td>
<td>0.14 ± 0.06 0.86 ± 0.06</td>
<td>217–373</td>
<td>(5.4 \times 10^{-11}) –30 (6.0 \times 10^{-11}) 1.15 0</td>
<td>A57</td>
</tr>
<tr>
<td>(O((^1)D) + CBrF_2BrF_2) (Halon-2402) (\rightarrow O((^3)P) + CBrF_2BrF_2) Products</td>
<td>0.25 ± 0.07 0.75 ± 0.07</td>
<td>297</td>
<td>(1.60 \times 10^{-10}) 0 (1.60 \times 10^{-10}) 1.20 50</td>
<td>A58</td>
</tr>
<tr>
<td>(O((^1)D) + CF_3CF_3) (CFC-116) (\rightarrow O((^3)P) + CF_3CF_3) Products</td>
<td><0.2</td>
<td>297</td>
<td>1.50×10(^{-13})</td>
<td>A59</td>
</tr>
<tr>
<td>(O((^1)D) + CF_3CHFCF_3) (HFC-227ea) (\rightarrow O((^3)P) + CF_3CHFCF_3) Products</td>
<td>0.28 ± 0.07 0.72 ± 0.07</td>
<td>217–373</td>
<td>(7.9 \times 10^{-12}) –70 (1.0 \times 10^{-11}) 1.1 0</td>
<td>A60</td>
</tr>
<tr>
<td>(O((^1)D) + CHF_2CH_2CF_3) (HFC-245fa) (\rightarrow O((^3)P) + CHF_2CH_2CF_3) Products</td>
<td>0.5 0.5</td>
<td></td>
<td>(1.5 \times 10^{-10}) 0 (1.5 \times 10^{-10}) 1.3 0</td>
<td>A61</td>
</tr>
<tr>
<td>(O((^1)D) + CHF_2CF_2CF_2HF) (HFC-338pcc) (\rightarrow O((^3)P) + CHF_2CF_2CF_2HF) Products</td>
<td>0.95 (^{+0.05}{-0.09}) 0.05 (^{+0.09}{-0.06})</td>
<td>297</td>
<td>(1.8 \times 10^{-11}) 0 (1.8 \times 10^{-11}) 1.30 50</td>
<td>A62</td>
</tr>
<tr>
<td>(O((^1)D) + c-C_4F_8) (\rightarrow O((^3)P) + c-C_4F_8) Products</td>
<td><0.04</td>
<td>297</td>
<td>8×10(^{-13})</td>
<td>A63</td>
</tr>
<tr>
<td>(O((^1)D) + CF_3CHFCHFCHF CF_3) (HFC-43-10mee) (\rightarrow O((^3)P) + CF_3CHFCHFCHF CF_3) Products</td>
<td>0.90 ± 0.10 0.10 ± 0.10</td>
<td>297</td>
<td>(2.1 \times 10^{-10}) 0 (2.1 \times 10^{-10}) 2 50</td>
<td>A64</td>
</tr>
<tr>
<td>(O((^1)D) + C_5F_12) (PFC-41-12) (\rightarrow O((^3)P) + C_5F_12) Products</td>
<td><0.12</td>
<td>297</td>
<td>4×10(^{-13})</td>
<td>A65</td>
</tr>
<tr>
<td>(O((^1)D) + C_6F_14) (PFC-51-14) (\rightarrow O((^3)P) + C_6F_14) Products</td>
<td><0.16</td>
<td>297</td>
<td>1×10(^{-12})</td>
<td>A66</td>
</tr>
<tr>
<td>Reaction</td>
<td>Branching Ratio (^{a})</td>
<td>Temperature Range of Exp. Data (K) (^{b})</td>
<td>Total Rate Coefficient: O(^{(1)D}) Loss (^{c})</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>(\text{O}^{(1)D} + 1,2- \text{CF}_3 \text{C}_2 \text{C}_4 \text{F}_6 \rightarrow \text{O}^{(1)P}) + 1,2- \text{CF}_3 \text{C}_2 \text{C}_4 \text{F}_6 \rightarrow \text{Products})</td>
<td>(-)</td>
<td>297</td>
<td>(<3 \times 10^{-13})</td>
<td>(^{A67})</td>
</tr>
<tr>
<td>(\text{O}^{(1)D} + \text{CF}4 \text{F}{10} \rightarrow \text{O}^{(1)P}) + \text{CF}4 \text{F}{10} \rightarrow \text{Products})</td>
<td>(-)</td>
<td>297</td>
<td>(<5 \times 10^{-13})</td>
<td>(^{A68})</td>
</tr>
<tr>
<td>(\text{O}^{(1)D} + \text{SF}_6 \rightarrow \text{O}^{(1)P}) + \text{SF}_6 \rightarrow \text{Products})</td>
<td>(<0.7)</td>
<td>297</td>
<td>(1.8 \times 10^{-14})</td>
<td>(^{A69})</td>
</tr>
<tr>
<td>(\text{O}^{(1)D} + \text{SO}_2 \rightarrow \text{O}^{(1)P}) + \text{SO}_2 \rightarrow \text{Products})</td>
<td>(0.24 \pm 0.07) (0.76 \pm 0.07)</td>
<td>298</td>
<td>(2.2 \times 10^{-10})</td>
<td>(0)</td>
</tr>
<tr>
<td>(\text{O}^{(1)D} + \text{SO}_2 \text{F}_2 \rightarrow \text{O}^{(1)P}) + \text{SO}_2 \text{F}_2 \rightarrow \text{Products})</td>
<td>(0.45 \pm 0.04) (0.55 \pm 0.04)</td>
<td>199–351</td>
<td>(9 \times 10^{-11})</td>
<td>(-100)</td>
</tr>
<tr>
<td>(\text{O}^{(1)D} + \text{SF}_5 \text{CF}_3 \rightarrow \text{O}^{(1)P}) + \text{SF}_5 \text{CF}_3 \rightarrow \text{Products})</td>
<td>(<0.3)</td>
<td>296–300</td>
<td>(2 \times 10^{-13})</td>
<td>(^{A72})</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6. Italicized blue entries denote estimates.

\(^{a} \) Recommended product channel branching ratios are temperature independent unless noted otherwise.

\(^{b} \) Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.

\(^{c} \) The total rate coefficient (i.e., O\(^{(1)D}\) loss) is defined as \(A \times \exp(-E/RT) \) in units of \(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \).

The rate coefficient for an individual reaction channel, if provided, is defined as Branching Ratio \(\times A \times \exp(-E/RT) \) in units of \(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \).

\(^{d} \) Units of \(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \).

\(^{e} \) \(f(298 \text{ K}) \) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

\[
f(T) = f(298 \text{ K})\exp \left| g \left(\frac{1}{T} - \frac{1}{298} \right) \right|
\]

Note that the exponent is an absolute value.
1.5.2 Notes: O(1D) Reactions

A2. O(1D) Reactions. O(1D) reactions are complex with several possible exothermic reaction pathways, which include (1) collisional (physical) quenching of O(1D) to ground state oxygen atoms, O(3P), (2) abstraction or addition-elimination reaction, and (3) reactive quenching to form O(3P) and products other than the reactant, including stable and radical species. The recommended total rate coefficient parameters given in the table are for the disappearance of O(1D). The details of deriving a recommended rate coefficient are given in the note for each reaction. In deriving recommended values, direct measurements are used whenever possible. However, rate coefficients measured via relative rate techniques have been considered for checking consistency in measured elementary reaction rate coefficients. The ratios of the rate coefficients for O(1D) reactions measured using the same method (and often the same apparatus) may be more accurate and precise than the individual recommended rate coefficients. The ratios of rate coefficients can be obtained from the original references. The weight of the evidence indicates that the results from Heidner and Husain,4 Heidner et al.,3 and Fletcher and Husain1-2 contain systematic errors and, therefore, are not considered in the determination of the recommendations.

The basis for the product branching ratio recommendations for deactivation and chemical reaction are described in the individual reaction notes. The collisional quenching channel and yield is listed as the first (possibly only) reaction pathway for each reaction given in the table. Reactive quenching channels, i.e., channels that produce O(3P) and reaction products, are included for the O3 and O2 reactions, but have not been identified in the majority of the other experimental studies. Bromine, chlorine, and hydrogen are more easily displaced than fluorine from halocarbons and, therefore, typically account for major reaction product yields in the form of BrO, ClO, and OH radicals. The uncertainties in the recommended branching ratios are taken from the experimental studies (see notes) where possible. For some channels, a range of values is provided in parenthesis that is consistent with the other reported uncertainties and a total branching ratio of unity.

(Note: 15-10) Back to Table

(1) Fletcher, I. S.; Husain, D. Absolute reaction rates of oxygen (2^1D_2) with halogenated paraffins by atomic absorption spectroscopy in the vacuum ultraviolet. J. Phys. Chem. 1976, 80, 1837-1840, doi:10.1021/j100558a002.
(2) Fletcher, I. S.; Husain, D. The collisional quenching of electronically excited oxygen atoms, O(2^1D_2), by the gases NH_3, H_2O_2, C_2H_6, C_3H_8, and C(CH_3)_4, using time-resolved attenuation of atomic resonance radiation. Can. J. Chem. 1976, 54, 1765-1770.

A3. O(1D) + O_2. The recommended 298 K rate coefficient was derived from the studies of Blitz et al.,4 Amimoto et al.,1,2 Lee and Slanger,9,10 Davidson et al.,5,6 Dunlea and Ravishankara,7 Streit et al.,13 Strekowski et al.,14 and Takahashi et al.15 The temperature dependence was computed by normalizing the results of Strekowski et al., Dunlea and Ravishankara, and Streit et al. to the 298 K value recommended here. The deactivation of O(1D) by O_2 leads to the production of O_3(Σ) with an efficiency of (80 ± 20)% (Noxon,11 Biedenkapp and Bair,9 Snelling,12 and Lee and Slanger9). O_3(Σ) is produced in the v = 0, 1, and 2 vibrational levels in the amounts 60%, 40%, and <3%, respectively (Gauthier and Snelling8 and Lee and Slanger9). The fractional deactivation of O(1D) that leads to the excitation of O_3(Σ) to O_3(Δ) is expected to be ~20%. An O_3(Σ) yield of (80 ± 20)% is recommended with the O_3(Δ) yield accounting for the balance of the reaction.

(Note: 06-2, Note: 15-10, Evaluated: 10-6) Back to Table

A4. O(1D) + O3. The room temperature rate coefficient was derived from the results of Davidson et al.,5 Streit et al.,6 Amimoto et al.,1,2 Wine and Ravishankara,10-12 Talukdar and Ravishankara,9 and Dunlea and Ravishankara.6 The reaction of O(1D) with O3 gives O2 + O2 or O2 + O + O as products. Davenport et al.3 and Amimoto et al.2 report that, on average, one ground state O atom is produced per O(1D) reacting with O3. Dunlea et al.7 have shown that the yield of O(3P) in this reaction is close to, but not exactly, unity. Dunlea et al. suggest a small, but significant decrease in the O atom yield with decreasing temperature. A O(3P) yield of unity at all temperatures is recommended until the results from the Dunlea et al. study are confirmed.

(Tabale: 06-2, Note: 15-10, Evaluated: 10-6) Back to Table

A5. O(1D) + H$_2$. The recommendation is based on the room temperature rate coefficient data from Davidson et al., Force and Wiesenfeld, Wine and Ravishankara, Talukdar and Ravishankara, Blitz et al., and Vranckx et al. Davidson et al. (200–350 K) and Vranckx et al. (227–453 K) report that k is independent of temperature. Wine and Ravishankara and Vranckx et al. report the yield of O(3P) to be <4.9% and (0.7 ± 0.7)%, respectively. Hence, the major products of this reaction are H + OH with a recommended yield of unity. Koppe et al. report a 2.7 times larger rate coefficient at a collisional energy of 0.12 eV. This does not agree with the observations of Davidson et al. and Vranckx et al. who reported that k is independent of temperature and Matsumi et al. who report no change in k when translationally hot O(1D) was moderated with Ar.

(Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

(2) Davidson, J. A.; Schiff, H. I.; Brown, T. J.; Howard, C. J. Temperature dependence of the rate constants for reactions of O(1D) with a number of halocarbons. J. Chem. Phys. 1978, 69, 4277-4279.

A6. O(1D) + H$_2$:O. The recommended k(298 K) is based on the results of Davidson et al., Amimoto et al., Wine and Ravishankara, Gericke and Comes, Dunlea and Ravishankara, Carl, and Takahashi et al. but is weighted towards the study of Dunlea and Ravishankara because they used several different methods to quantify the water vapor concentration. The results of Lee and Slinger and Dillon et al. are consistent with the recommended value. The temperature dependence of the rate coefficient was derived from the data of Streit et al. and Dunlea and Ravishankara, after normalizing the results of the two studies to the k(298 K) value recommended here. The O$_2$ + H$_2$:O product yield was measured by Zellner et al. to be (1 +0.5/-1)% and Glinski and Birks to be (0.6 +0.7/-0.6)%). The yield of O(3P) from O(1D) + H$_2$:O is reported to be less than (4.9 ± 3.2)% by Wine and Ravishankara, (2 ± 1)% by Takahashi et al., and <0.3% by Carl. The recommended yield of OH in this reaction is 2.0. To calculate the rates of OH production via O(1D) reactions in the atmosphere, the quantities of interest are the ratios of the rate coefficients for the reaction of O(1D) with H$_2$:O to those with N$_2$ and O$_2$. Ratio data are given in the original references for this reaction.

(Table 09-31, Note: 15-10, Evaluated: 10-6) Back to Table

A7. O(^1D) + N_2. The rate coefficient recommendation for this reaction is taken from Ravishankara et al., which included the results from Strekowski et al., Blitz et al., and Dunlea and Ravishankara in their analysis. The more recent results from Takahashi et al. and Dillon et al. in agreement with the recommendation. Strekowski et al. reported the rate coefficient for O(^1D) removal by air and their results are in excellent agreement with the value derived using the current recommendation for O(^1D) removal by N_2 and O_2. The reaction leads to 100% quenching of O(^1D) to O(^3P) with no significant reactive channels (see Table 2).

(Table: 06-2, Note: 15-10, Evaluated: 10-6) Back to Table

A8. O(^1D) + N_2O. This reaction has two reactive channels, one producing 2NO and the other producing N_2 + O_2. For atmospheric calculations of NOx production, the rate coefficient for the channel that produces NO is critical, while the overall rate coefficient is important for deriving the loss rate of N_2O. The recommendation for the overall room temperature rate coefficient for the removal of O(^1D) by N_2O was derived from a
weighted average of the results from Davidson et al., Amimoto et al., Wine and Ravishankara, Dunlea and Ravishankara, Carl, Takahashi et al., Dillon et al., and Vranckx et al. The temperature dependence of the rate coefficient was derived from the results of Davidson et al. (204–359 K), Dunlea and Ravishankara (220–370 K), and Vranckx et al. (227–715 K); only data at <400 K were considered in the evaluation, after normalization to the $k(298 \text{ K})$ value recommended here for the overall rate coefficient. The recommended rate coefficients for the $N_2 + \text{O}_3$ and 2NO product channels were evaluated for 298 K, the only temperature at which such data are available. The branching ratio, $R = k(\text{NO} + \text{NO})/k(\text{Total})$ is taken from Cantrell et al. who reported $R = 0.57$ as well as an analysis of all measurements from 1957–1994 that led them to recommend $R = 0.61 \pm 0.06$, where the uncertainty is the 95% confidence interval. Their recommended branching ratio agrees well with earlier measurements of the quantum yield from N_2O photolysis (Calvert and Pitts). Dependencies of the branching ratio on $\text{O}^1(\text{D})$ translational energy and temperature are at present not clearly resolved. The recommended rate coefficients for the two channels as a function of temperature were derived assuming that the branching ratio for the two channels is invariant with temperature.

The yield of $\text{O}^3(\text{P})$ from $\text{O}^1(\text{D}) + \text{N}_2\text{O}$ (physical quenching or chemical reaction) has been determined to be $<0.04, 0.04 \pm 0.02, 0.056 \pm 0.009,$ and 0.005 ± 0.002 by Wine and Ravishankara, Nishida et al., Carl, and Vranckx et al. at 298 K, respectively. Vranckx et al. report a slight increase in the $\text{O}^3(\text{P})$ yield with increasing temperature (248–600 K) and their reported yield supersedes the anomalously high value reported by Carl from the same laboratory. A recommended $\text{O}^3(\text{P})$ yield of <0.01 is based on the Vranckx et al. study. A direct measurement of the NO yield from the $\text{O}^1(\text{D}) + \text{N}_2\text{O}$ reaction in synthetic air by Greenblatt and Ravishankara and the re-analysis by Dunlea and Ravishankara agrees very well with the value predicted using the recommended $\text{O}^1(\text{D})$ rate coefficients for $\text{N}_2, \text{O}_3,$ and N_2O and the $\text{O}^1(\text{D}) + \text{N}_2\text{O}$ product branching ratio to give NO + NO. Better reactive channel branching ratio measurements at stratospheric temperatures and/or measurements of the NO yield in this reaction as a function of temperature below 298 K would be useful.

(Table 09-31, Note: 15-10, Evaluated: 10-6) Back to Table

(2) Blitz, M. A.; Dillon, T. J.; Heard, D. E.; Pilling, M. J.; Trought, I. D. Laser induced fluorescence studies of the reactions of $\text{O}^1(\text{D}_2)$ with $\text{N}_2, \text{O}_2, \text{N}_2\text{O}, \text{CH}_4, \text{H}_2, \text{CO}_2, \text{Ar}, \text{Kr}$ and n-C_3H_8. Phys. Chem. Chem. Phys. 2004, 6, 2162-2171, doi:10.1039/b400283k.

(6) Davidson, J. A.; Howard, C. J.; Schiff, H. I.; Fehsenfeld, F. C. Measurements of the branching ratios for the reaction of $\text{O}^1(\text{D}_2)$ with N_2O. J. Chem. Phys. 1979, 70, 1697-1704.

(12) Vranckx, S.; Peeters, J.; Carl, S. A. Absolute rate constant and $\text{O}^3(\text{P})$ yield for the $\text{O}^1(\text{D}) + \text{N}_2\text{O}$ reaction in the temperature range 227 K to 719 K. Atmos. Chem. Phys. 2008, 8, 6261-6272.

(13) Wine, P. H.; Ravishankara, A. R. O_3 photolysis at 248 nm and $\text{O}^1(\text{D}_2)$ quenching by $\text{H}_2\text{O}, \text{CH}_4,$ $\text{H}_2,$ and $\text{N}_2\text{O}: \text{O}^3(\text{P})$ yields. Chem. Phys. 1982, 69, 365-373.

A9. $\text{O}^1(\text{D}) + \text{NH}_3$. The recommended rate coefficient and temperature dependence is taken from Davidson et al. Sanders et al. have detected the products $\text{NH}(a^1\Delta)$ and OH formed in the reaction. They report that the yield of $\text{NH}(a^1\Delta)$ is in the range 3–15% of the amount of the OH detected. A unit reaction yield is recommended.
Further studies are needed to quantify the reaction channel branching ratios.
(Table: 82-57, Note: 15-10, Evaluated: 10-6)
Back to Table

(1) Davidson, J. A.; Schiff, H. I.; Streit, G. E.; McAfee, J. R.; Schmeltekopf, A. L.; Howard, C. J. Temperature dependence of O(1D) rate constants for reactions with N₂O, H₂, CH₄, HCl, and NH₃.

(2) Sanders, N. D.; Butler, J. E.; McDonald, J. R. Product branching ratios in the reaction of O(1D₂) with NH₃.

A10.
O(1D) + HCN.
Strekowski et al.¹ measured the total rate coefficient over the temperature range 211 to 425 K.
Their results, the only study available, are recommended.
There are several possible exothermic product channel pathways.
Strekowski et al. report a O(1P) yield at 298 K to be ~0.3 and observed the O(1P) yield to have a negative temperature dependence.
A significant H atom product channel, ~0.35, was determined at 298 K.
The recommended reactive yield was taken from this work.
(New Entry)
Back to Table

(1) Strekowski, R. S.; Nicovich, J. M.; Wine, P. H. Kinetic and mechanistic study of the reactions of O(1D₂) with HCN and CH₃CN.

A11.
O(1D) + CH₃CN.
Strekowski et al.¹ measured the total rate coefficient over the temperature range 193 to 430 K.
Their results, the only study available, are recommended.
There are several possible exothermic product channel pathways.
Strekowski et al. report a minor O(1P) collisional quenching yield over the entire temperature range.
A H atom yield of 0.16 ± 0.03 at 298 K was reported.
The recommended reactive yield was taken from this work.
(New Entry)
Back to Table

(1) Strekowski, R. S.; Nicovich, J. M.; Wine, P. H. Kinetic and mechanistic study of the reactions of O(1D₂) with HCN and CH₃CN.

A12.
O(1D) + CO₂.
k(298 K) was derived from the studies of Davidson et al.³ Streit et al.⁹ Amimoto et al.¹
Dunlea and Ravishankara,⁵ Shi and Barker,⁶ and Blitz et al.²
Temperature dependence was computed after normalizing the results of Dunlea and Ravishankara and Streit et al. (only the data in the range of 200 to 354 K) to the value of k(298 K) recommended here.
The rate coefficient at 195 K reported by Blitz et al. is consistent with the recommendation.
This reaction produces O(1P) and CO₂, and is expected to proceed through the formation of a CO₃ complex (see for example DeMore and Dede⁸).
This complex formation leads to isotopic scrambling (see for example Perri et al.⁷).
There appears to be a small, but non-negligible, channel for O(1D) quenching.
A reactive channel to give CO and O₂ has been reported,⁷ but needs better quantification.
A quenching yield of unity is recommended.
(Table: 06-2, Note: 06-2, Evaluated: 10-6)
Back To Table

(2) Blitz, M. A.; Dillon, T. J.; Heard, D. E.; Pilling, M. J.; Trought, I. D. Laser induced fluorescence studies of the reactions of O(1D₂) with N₂, O₂, N₂O, CH₄, H₂, CO₂, Ar, Kr and n-C₃H₁₀.

(3) Davidson, J. A.; Schiff, H. I.; Streit, G. E.; McAfee, J. R.; Schmeltekopf, A. L.; Howard, C. J. Temperature dependence of O(1D) rate constants for reactions with N₂O, H₂, CH₄, HCl, and NH₃.

(4) DeMore, W. B.; Dede, C. Pressure dependence of carbon trioxide formation in the gas-phase reacion of O(1D) with carbon dioxide.

(5) Dunlea, E. J.; Ravishankara, A. R. Kinetics studies of the reactions of O(1D) with several atmospheric molecules.

(7) Sediace, A. J.; Harding, D. R.; Weston Jr., R. E.; Kreutz, T. G.; Flynn, G. W. Probing the O(1D) + CO₂ reaction with second-derivative modulated diode laser spectroscopy.
A13. \(\text{O}^{(1)D} + \text{CH}_4 \): The recommended overall rate coefficient for the removal of \(\text{O}^{(1)D} \) by \(\text{CH}_4 \) at room temperature is a weighted average of the results from Davidson et al.,\(^4\) Blitz et al.,\(^1\) Dillon et al.,\(^5\) and Vranckx et al.\(^11\) The temperature dependence of the rate coefficient was derived from the results of Davidson et al. (198–357 K), Dillon et al. (223–297 K), and Vranckx et al. (227–450 K). The recommended rate coefficients for the product channels (a) \(\text{CH}_3 + \text{OH} \), (b) \(\text{CH}_2\text{O} \) or \(\text{CH}_3\text{OH} + \text{H} \) and (c) \(\text{CH}_2\text{O} + \text{H}_2 \) were evaluated for 298 K, the only temperature at which such data are available. Lin and DeMore\(^6\) analyzed the final products of \(\text{N}_2\text{O}/\text{CH}_4 \) photolysis mixtures and concluded that (a) accounted for about 90% and (c) accounted for about 9%. Casavecchia et al.\(^2\) used a molecular beam experiment to observe \(\text{H} \) and \(\text{CH}_3\text{O} \) (or \(\text{CH}_2\text{OH} \)) products. They reported that the yield of \(\text{H}_2 \) was <25% of the yield of \(\text{H} \) from channel (b). Satyapal et al.\(^9\) observed the production of \(\text{H} \) atoms in a pulsed laser experiment and reported an \(\text{H} \) atom yield of 25 ± 8%. Matsumi et al.\(^8\) reported the \(\text{H} \) atom yield in low pressure gas mixtures to be (15 ± 3)%.

(1) Blitz, M. A.; Dillon, T. J.; Heard, D. E.; Pilling, M. J.; Trought, I. D. Laser induced fluorescence studies of the reactions of \(\text{O}^{(1)D} \) with \(\text{N}_2, \text{O}_2, \text{N}_2\text{O}, \text{CH}_4, \text{H}_2, \text{CO}_2, \text{Ar, K} \) and \text{n-C}_4\text{H}_{10}. Phys. Chem. Chem. Phys. 2004, 6, 2162-2171, doi:10.1039/b400283k.

(12) Wine, P. H.; Ravishankara, A. R. \(\text{O}_3 \) photolysis at 248 nm and \(\text{O}^{(1)D} \) quenching by \(\text{H}_2\text{O}, \text{CH}_4, \text{H}_2 \), and \(\text{N}_2\text{O} \); \(\text{O}^{(3)P} \) yields. Chem. Phys. 1982, 69, 365-373.

A14. \(\text{O}^{(1)D} + \text{HCl} \). The recommended room temperature rate coefficient is based on the measurements of Davidson et al.,\(^3\) Wine et al.,\(^3\) and Chichinin.\(^1\) The temperature dependence is based on the measurements of Davidson et al. Product studies by Wine et al. indicate: \(\text{O}^{(3)P} + \text{HCl} (9 ± 5)\% \); \(\text{H} + \text{ClO} (24 ± 5)\% \); and \(\text{OH} + \text{Cl} (67 ± 10)\% \). Takahashi et al.\(^5\) report that the \(\text{O}^{(3)P} \) yield is (15 ± 4)%. Chichinin\(^1\) report the \(\text{H} + \text{ClO} \) channel to be (18 ± 4)%. The recommended total reactive yield is based on an average of the Wine et al. and Takahashi et al. results with an estimated uncertainty that encompasses the range of the measurements at the

1-21
2σ level. The \(\text{H + ClO} \) channel branching ratio is the average of the Wine et al. and Chichinin results with the balance of the reactive channel leading to the formation of \(\text{Cl + OH} \).

(Table: 06-2, Note: 15-10, Evaluated: 10-6) Back to Table

(1) Chichinin, A. I. Collisions of \(\text{O}^{(1)}\text{D} \) with \(\text{HCl, Cl}_2 \), and \(\text{COCl}_2 \): Total quenching, channel specific rate constants, and yields of \(\text{Cl}^{(3)}\text{P}(\text{p}_\text{p}) \). *J. Chem. Phys.* 1997, 106, 1057-1062.

(2) Chichinin, A. I. Isotope effects in the deactivation of \(\text{O}^{(1)}\text{D} \) atom by \(\text{XCl} \) and \(\text{XF} \) (\(\text{X} = \text{H, D} \)). *Chem. Phys. Lett.* 2000, 316, 425-432.

(4) Takahashi, K.; Wada, R.; Matsumi, Y.; Kawasaki, M. Product branching ratios for \(\text{O}^{(3)}\text{P} \) atom and \(\text{ClO} \) radical formation in the reactions of \(\text{O}^{(1)}\text{D} \) with chlorinated compounds. *J. Phys. Chem.* 1996, 100, 10145-10149.

(5) Wine, P. H.; Wells, J. R.; Ravishankara, A. R. Channel specific rate constants for reactions of \(\text{O}^{(1)}\text{D} \) with \(\text{HCl} \) and \(\text{HBr} \). *J. Chem. Phys.* 1986, 84, 1349-1354; doi:10.1063/1.450526.

A15. \(\text{O}^{(1)}\text{D} \) + HF.

The recommended values of \(k(298 \text{ K}) \) and the reactive yield are those reported by Sorokin et al.\(^4\) the only study available. It is assumed that the rate coefficient and product yields are independent of temperature. The reactive products of this reaction are \(\text{F + OH} \). The channel to give \(\text{H + F} \) is endothermic and, hence, considered to be unimportant.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(1) Sorokin, V. I.; Gritsan, N. P.; Chichinin, A. I. Collisions of \(\text{O}^{(1)}\text{D} \) with \(\text{HF, F}_2, \text{XeF}_2, \text{NF}_3, \) and \(\text{CF}_4 \): Deactivation and reaction. *J. Chem. Phys.* 1998, 108, 8995-9003.

A16. \(\text{O}^{(1)}\text{D} \) + NF\(_3\).

The recommended value for \(k(298 \text{ K}) \) is based on the results of Zhao et al.\(^4\) Dillon et al.,\(^2\) and the value reported by Baasandorj et al.\(^1\) at 296 K. The \(k(298 \text{ K}) \) value reported by Sorokin et al.\(^3\) is a factor of two lower and not considered in the recommendation. The recommended Arrhenius parameters are derived from a fit to these data after normalization to \(k(298 \text{ K}) \). Sorokin et al., Zhao et al., and Baasandorj et al. report reactive yields of 0.70, >0.95, and 0.87 +0.13/-0.15, respectively. The recommended reactive yield is an average of the values reported by Zhao et al. and Baasandorj et al. The reactive yield is expected to be independent of temperature. Sorokin et al. observed a high FO radical reaction product yield. Dillon et al. observed a high F-atom yield and attribute the FO formation in the Sorokin et al. study to secondary chemistry. No recommendation is given for the reaction products.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Baasandorj, M.; Hall, B. D.; Burkholder, J. B. Rate coefficients for the reaction of \(\text{O}^{(1)}\text{D} \) with the atmospherically long-lived greenhouse gases \(\text{NF}_3, \text{SF}_6\text{CF}_3, \text{CHF}_3, \text{C}_2\text{F}_6, \text{c-C}_3\text{F}_8, \text{n-C}_3\text{F}_{12}, \) and \(\text{n-C}_6\text{F}_{14} \). *Atmos. Chem. Phys.* 2012, 12, 11753-11764; doi:10.5194/acp-12-11753-2012.

(3) Sorokin, V. I.; Gritsan, N. P.; Chichinin, A. I. Collisions of \(\text{O}^{(1)}\text{D} \) with \(\text{HF, F}_2, \text{XeF}_2, \text{NF}_3, \) and \(\text{CF}_4 \): Deactivation and reaction. *J. Chem. Phys.* 1998, 108, 8995-9003.

(4) Zhao, Z.; Laine, P. L.; Nicovich, J. M.; Wine, P. H. Reactive and non-reactive quenching of \(\text{O}^{(1)}\text{D} \) by the potent greenhouse gases \(\text{SO}_2\text{F}_2, \text{NF}_3, \) and \(\text{SF}_2\text{CF}_3 \). *Proc. Nat. Acad. Sci.* 2010, 107, 6610-6615; doi:10.1073/pnas.0911228107.

A17. \(\text{O}^{(1)}\text{D} \) + HBr.

The recommended rate coefficient at 298 K was taken from Wine et al.\(^3\) There are no reports on the temperature dependence of this rate coefficient. Because it is close to a collisional rate coefficient, the rate coefficient is assumed to be temperature independent. On the basis of \(\text{O}^{(3)}\text{P} \) and \(\text{H}^{(2)}\text{S} \) atom detection, Wine et al. reported physical quenching, \(\text{HBr} + \text{O}^{(3)}\text{P} \), in this reaction to be \((20 \pm 7\%) \), which is recommended here assuming that no reactive quenching occurs, and the \(\text{H + BrO} \) reactive product channel to be \(<4.5\% \). In a crossed molecular beam study of this reaction, Balucani et al.\(^1\) found the BrO yield to be \(>(14 \pm 6\%) \). Using transient UV absorption spectroscopy, Cronkhite et al.\(^2\) found the BrO yield to be \((20 \pm 4\%) \), which is recommended here. The balance of the reaction leads to the formation of Br + OH products.

(Table: 87-41, Note: 15-10, Evaluated: 10-6) Back to Table
A18. O(1D) + Cl2. The recommended rate coefficient is derived from the values reported by Wine et al.\(^6\) and Sorokin et al.\(^4\). There are no reports on the temperature dependence of this rate coefficient. The rate coefficient is assumed to be temperature independent because \(k(298 \text{ K})\) is close to a collisional rate coefficient. Wine et al. report a \(O(1P)\) yield of 0.25 ± 0.10. The Cl atom measurements of Chichinin\(^1\) are consistent with a ClO + Cl yield of 0.7. These values are in excellent agreement with the directly measured ClO yield of 74 ± 15% by Takahashi et al.\(^2\) and 77 ± 10% by Feierabend et al.\(^2\). Feierabend et al. also reported no measurable (<10%) change in the ClO radical yield at 202 K. An indirect study by Freudenstein and Biedenkapp\(^3\) is in reasonable agreement with the yield of ClO. Though energetically allowed, the formation of Cl2O is expected to be negligible under atmospheric pressure and temperature conditions. On the basis of the Wine et al., Takahashi et al. and Feierabend et al. studies the recommended total reactive and Cl + ClO channel yield is 0.75 ± 0.07, independent of temperature.

(Table: 06-2, Note: 15-10, Evaluated: 15-10) **Back to Table**

A19. O(1D) + CCl3O. The recommended value of \(k(298 \text{ K})\) is derived from the values reported by Chichinin\(^1\) and Strekowski et al.\(^3\). The relative rate study of Jayanty et al.\(^2\) is consistent with the recommended value. The temperature dependence is taken from Strekowski et al. There are three possible reactive channels: CO + ClO + Cl; CO + 2 Cl; CO2 + Cl2. In the stratosphere, all these processes will lead to CO2 and ClO. Chichinin reports that the above 3 reactions account for (80 ± 15)% of O(1D) loss with 20% leading to O(1P). Strekowski et al. report a O(1P) yield of 0.20 ± 0.04, which is the basis of the recommendation. The rate coefficient for the loss of CCl3O via reaction with O(1D) may be greater than 80% of the overall rate coefficient recommended here due to reactive quenching of O(1D) to O(1P).

(Table: 06-2, Note: 15-10, Evaluated: 15-10) **Back to Table**

A20. O(1D) + CFClO. The recommended rate coefficient is derived from data of Fletcher and Husain.\(^1\). For consistency, the recommended value was derived using a scaling factor (0.5) that corrects for the difference between rate coefficients from the Husain laboratory and the recommendations for other O(1D) rate coefficients given in this evaluation. Based on consideration of similar O(1D) reactions, it is assumed that \(E/R\) equals zero and the A-factor has been set equal to \(k(298 \text{ K})\). The branching ratios are estimated based on measured values for similar compounds.

(Table: 82-57, Note: 15-10, Evaluated: 15-10) **Back to Table**

A21. O(1D) + CF_2O. The recommendation is from the data of Wine and Ravishankara. Their result is preferred over the value of Fletcher and Husain because it appears to follow the pattern of decreased reactivity with increased fluorine substitution observed for other halocarbons. This reaction has only been studied at 298 K. Based on consideration of similar O(1D) reactions, it is assumed that E/R equals zero and the A-factor has been set equal to k(298 K). Wine and Ravishankara report (71 ± 7)% quenching of O(1D) to O(3P). Using relative rate methods, Atkinson et al. and Jayanty et al. measured reactive yields of 0.5 ± 0.15 and 0.70, respectively. The recommended reactive yield is an average of these studies. (Table: 82-57, Note: 15-10, Evaluated: 15-10) Back to Table

A22. O(1D) + CH_3Cl. The k(298 K) recommendation is an average of the values reported by Matsumi et al. and Force and Wiesenfeld. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. There have been several product channels observed for this reaction. Matsumi et al. observed the formation of H and Cl atoms with a 0.27 ratio. Force and Wiesenfeld reported an O(3P) yield of 0.09, which is based on the total reactive yield recommendation. Takahashi et al. and Feierabend et al. have reported ClO radical yields that are in excellent agreement, (0.47 ± 0.10) and (0.46 ± 0.06), respectively, which is recommended. The recommended product branching ratios for the H and Cl atom channels accounts for the remaining product yield in the ratio reported by Matsumi et al.

A23. O(1D) + CCl_4. The recommended k(298 K) value is based on the data from Davidson et al. and Force and Wiesenfeld. The temperature independence of the rate coefficient is taken from Davidson et al. and Force and Wiesenfeld reported this reaction to be (14 ± 6)% collisional quenching. Takahashi et al. and Feierabend et al. report ClO radical yields of (90 ± 19)% and (79 ± 4)%, respectively. The recommended value is taken from the more precise Feierabend et al. study. Additional product channels may also be possible. (Table: 82-57, Note: 15-10, Evaluated: 15-10) Back to Table

A24. O(1D) + CH3CCl3. Nilsson et al.1 reported a room temperature reactive rate coefficient of (2.93 ± 1.2) × 10^-10 cm^3 molecule^-1 s^-1 (1σ error limit) that was obtained using a relative rate method with CH4 as the reference compound. The recommended total rate coefficient was calculated assuming a 0.9 reactive yield.

A25. O(1D) + CH3Br. The recommended rate coefficient at 298 K was taken from Thompson and Ravishankara.2 There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Thompson and Ravishankara report that the yield of O(3P) from physical quenching is (0 ± 7)%.

A26. O(1D) + CH3Br2. The recommendation for k(298 K) is based on data from Thompson and Ravishankara,1 the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. They report that the yield of O(3P) from physical quenching is (5 ± 7)%.

A27. O(1D) + CHBr3. The recommendation for k(298 K) is based on data from Thompson and Ravishankara,1 the only study available. The rate coefficient is large compared to analogous compounds. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. They report that the yield of O(3P) from physical quenching is (32 ± 8)%.

A28. O(1D) + CH3F (HFC-41). The k(298 K) recommendation is the average of the measurements of Force and Wiesenfeld2 and Schmolten et al.4 There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. The O(3P) product yield was reported to be (25 ± 3)% by Force and Wiesenfeld, (11 ± 5)% by Schmolten et al., and (19 ± 5)% by Takahashi et al.5 The recommended branching ratio is an average of these studies, with an uncertainty that encompasses the mean value from all studies at the 2σ level. Burks and Lin1 reported observing vibrationally excited HF as a product. Park and Wiesenfeld2 observed the formation of OH (X^3Π, v'' = 0, 1) in this reaction.

A29. \(\text{O}^{(1)\text{D}} + \text{CH}_2\text{F}_2 \) (HFC-32). The \(k(298\,\text{K}) \) recommendation is based on the measurement of Schmoltner et al., the only total rate coefficient study available. Using a relative rate technique, Green and Wayne measured the loss of \(\text{CH}_2\text{F}_2 \) relative to the loss of \(\text{N}_2\text{O} \). Their value when combined with the current recommendation for the \(\text{O}^{(1)\text{D}} + \text{N}_2\text{O} \) reaction yields a rate coefficient for reactive loss of \(\text{CH}_2\text{F}_2 \) that is about three times the result of Schmoltner et al. Nilsson et al. reported a \(298\,\text{K} \) reactive rate coefficient of \((4.78 \pm 1.02) \times 10^{-11}\,\text{cm}^3\text{ molecule}^{-1}\,\text{s}^{-1} \) in a relative rate experiment with the \(\text{O}^{(1)\text{D}} + \text{CH}_4 \) reaction as the reference. This corresponds to a reactive yield of 0.94 using the current total rate coefficient recommendation. Schmoltner et al. reported an \(\text{O}^{(3)\text{P}} \) yield of \((70 \pm 11)\% \), which provides the basis of the reaction yield recommendation, assuming that it is due entirely to physical quenching. Burks and Lin reported observing vibrationally excited HF as a product. (Table: 94-26, Note: 15-10, Evaluated: 10-6)

A30. \(\text{O}^{(1)\text{D}} + \text{CHF}_3 \) (HFC-23). \(k(298\,\text{K}) \) was measured by Force and Wiesenfeld and Schmoltner et al. while Baasandorj et al. measured the rate coefficient at 298 K and over the temperature range 217–373 K. The results from these studies are in good agreement and the results from the Baasandorj et al. study are recommended. The \(\text{O}^{(3)\text{P}} \) product yield was reported to be \((77 \pm 15)\% \) by Force and Wiesenfeld and \((102 \pm 3)\% \) by Schmoltner et al. Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient (relative to the \(\text{O}^{(1)\text{D}} + \text{N}_2\text{O} \) reaction) at room temperature. They obtained a reactive yield of 0.25 ± 0.05, using the current \(k(298\,\text{K}) \) recommendation for the HFC-23 reaction. This result is in good agreement with the Force and Wiesenfeld result. The reaction yield recommendation is based on the more precise Baasandorj et al. studies. There is no apparent explanation for the high quenching yield reported in the Schmoltner et al. study. Although physical quenching is the dominant process, detectable yields of vibrationally excited HF have been reported by Burks and Lin and Aker et al., which indicate the formation of HF and CF₂O products. (Table: 15-10, Note: 15-10, Evaluated: 15-10)

A31. O(1D) + CHClF (HCFC-21). The recommendation is based on the total rate coefficient measurements of Davidson et al. over the temperature range 188–343 K. Takahashi et al. and Feierabend et al. report the yield of ClO to be (74 ± 15)% and (73 ± 5)% respectively. These studies are in excellent agreement and provide the recommendation for the ClO product channel branching ratio. It is expected that the OH radical, or other products, may also be formed in this reaction. An OH channel yield based on comparison with other HCFCs is estimated to be ~0.06.

(Table: 90-1, Note: 15-10, Evaluated: 15-10) Back to Table

A32. O(1D) + CHClF2 (HCFC-22). The rate coefficient recommendation is based on the measurements of Davidson et al., Warren et al. and Baasandorj et al. Davidson et al. (173–343 K) and Baasandorj et al. (217–373 K) determined that the rate coefficient has no temperature dependence between 173 and 343 K. Warren et al. report an O(1P) yield of (28 ± 6)% which they interpret to be due to collisional quenching of O(1D) to O(1P). Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient (relative to the O(1D) + NF3 reaction) at room temperature. They obtained a reaction yield of 0.75 ± 0.05, using the current k(298 K) recommendation for the NF3 and HCFC-22 reactions, which is in good agreement with the Warren et al. result. Atkinson et al.2 gives a rate coefficient about a factor of two too high. A relative rate measurement by Nilsson et al.7 of O(1D) + CH3 was reported to yield of 0.85 ± 0.17 using the current total rate coefficient recommendation. The recommended total reactive yield of 0.75 is taken from the more precise Baasandorj et al. study.

This reaction has been shown to have multiple product channels. Addison et al.1 reported the following product yields: ClO (55 ± 10)% CF2 (45 ± 10)% O(1P) (28 +10/-15)% and OH 5%, where the O(1P) was interpreted to come from a branch yielding CF2 and HCl. Feierabend et al.5 reported a CI0 radical yield of 0.56 ± 0.03, which agrees very well with the Addison et al. measurement and is the basis of the recommendation. An OH product channel yield of 0.05 is recommended and the balance of the reactive yield is assigned to other products.

(Table: 92-20, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Addison, M. C.; Donovan, R. J.; Garraway, J. Reactions of O(2D2) and O(2P2) with halogenomethanes. Faraday Disc. 1979, 67, 286-296.

A33. O(¹D) + CHF₂Br. The recommended rate coefficient at room temperature and its temperature dependence are based on the study of Strekowski et al.² (211–425 K), which is the only available investigation of this reaction. They report a branching ratio for O(³P) production of (39 ± 6)% independent of temperature and a branching ratio for H atom production of 2.1 ± 0.4% at 298 K. Cronkhite et al.¹ report a BrO yield of (39 ± 7)% at room temperature. The recommended reactive yield is 0.60 with a significant yield, ~0.2, of unidentified reaction products.

(A Table: 06-2, Note: 15-10, Evaluated: 10-6) Back to Table

A34. O(¹D) + CClF₂ (CFC-11). The recommended rate coefficient is based on the data from Davidson et al.² (173–343 K), Force et al.⁴ (298 K), and Baasandorj et al.¹ (217–373 K), which are in good agreement and show the reaction to be independent of temperature between 173 and 373 K. Force and Wiesenfeld⁴ reported this reaction to be (12 ± 4)% quenching of O(¹D) to O(³P). Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient (relative to the O(¹D) + N₂O reaction) at room temperature and 240 K (no temperature dependence was observed). They obtained a reactive yield of 0.90 ± 0.07, using the current k(298 K) recommendation for the N₂O and their measured total rate coefficient, which is recommended here.

Takahashi et al.³ and Feierabend et al.³ report ClO yields of (88 ± 18)% and (79 ± 4)%, respectively, in good agreement with the results from the Force and Wiesenfeld and Baasandorj et al. studies. The more precise Feierabend et al. yield is recommended. On the basis of these recommendations, a ~10% yield of unidentified reaction products is possible.

(A Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Davidson, J. A.; Schiff, H. I.; Brown, T. J.; Howard, C. J. Temperature dependence of the rate constants for reactions of O(¹D) atoms with a number of halocarbons. J. Chem. Phys. 1978, 69, 4277-4279.

A35. O(¹D) + CCl₂F₂ (CFC-12). The recommended rate coefficient is based on the data from Davidson et al.² (173–343 K), Force et al.⁴ (298 K), and Baasandorj et al.¹ (217–373 K), which are in good agreement and show the reaction to have a weak negative temperature dependence between 173 and 373 K.

Force and Wiesenfeld⁴ report this reaction to be (14 ± 7)% quenching, which is assumed here to be due to physical quenching and is the basis for the recommendation. Takahashi et al.⁵ report a ClO yield of (87 ± 18)% in good agreement with the Force and Wiesenfeld study. Takahashi et al.⁵ and Feierabend et al.³ report a ClO yields of (87 ± 18)% and (76 ± 6)%, respectively. The more precise Feierabend et al. yield is recommended. On the basis of the recommendations, there may be ~10% yield of unidentified reaction products.

(A Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table
A36. **O(1D) + CClF₃ (CFC-13).** The rate coefficient recommendation is based on the room temperature measurement by Ravishankara et al.² There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Ravishankara et al. report (31 ± 10)% collisional quenching of O(1D) to O(3P). Takahashi et al.³ report yields of O(3P) (16 ± 5)% and ClO (85 ± 18)%. Feierabend et al.⁴ report a ClO radical yield of (82 ± 6)%, which is in good agreement with the Takahashi et al. work. The more precise Feierabend et al. ClO product channel yield is recommended for the reactive yield with the balance of the reaction yield assigned to physical quenching. The recommended quenching yield is less than the Ravishankara et al. value, but near to their estimated uncertainty limits.

(Table: 92-20, Note: 15-10, Evaluated: 10-6) [Back to Table](#)

A37. **O(1D) + 1,2-c-C₃Cl₂F₆ (E,Z).** Papadimitriou et al.¹ measured the total and reactive rate coefficients at 296 K for a 0.475:0.525 (E,Z) isomeric mixture. It is assumed that the isomers have equivalent reactivity and their results, the only study available, are recommended. The reactive rate coefficient was measured relative to the N₂O and CCl₃F₂ (CFC-12) reactions and the obtained rate coefficients agreed to within 10% using the current recommendations for the reference reactions. Consistent with the measured reactive yield and the observed trend for other CFCs, it is expected that the reaction is ~15% physical quenching. CF₂O and c-C₃Cl₂F₆ products were observed, although not quantified.

(New Entry) [Back to Table](#)

A38. **O(1D) + CClBrF₂ (Halon-1211).** The recommended rate coefficient at room temperature, k(298 K), is based on the data from Thompson and Ravishankara,² the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Thompson and Ravishankara report a O(3P) yield of 0.36 ± 0.04. On the basis of this work a total reactive yield of 0.65 is recommended. Cronkhite et al.¹ report a BrO yield of 0.31 ± 0.06 at room temperature. On the basis of these studies, a ~0.34 yield of yet unidentified reaction products is possible.

(Table: 94-26, Note: 15-10, Evaluated: 10-6) [Back to Table](#)
A39. **O(1D) + CBrF3 (Halon-1202).** The $k(298 \text{ K})$ recommendation is based on data from Thompson and Ravishankara, the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Thompson and Ravishankara report a O(1P) yield of 0.54 ± 0.06. Assuming this to be physical quenching, a reactive yield of 0.45 is recommended. (Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table

A40. **O(1D) + CBrF3 (Halon-1301).** The recommended rate coefficient at room temperature is based on data from Thompson and Ravishankara, the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Thompson and Ravishankara report a O(1P) yield of 0.59 ± 0.08. Lorenzen-Schmidt et al. measured the CBrF3 removal rate relative to N2O and report that the rate coefficient for CBrF3 loss in this reaction is $(4.0 \pm 0.4) \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$, which is in excellent agreement with the results of Thompson and Ravishankara. Cronkhite et al. report a BrO yield of 0.49 ± 0.07 at room temperature, which is greater than the inferred reactive yield from Thompson and Ravishankara. A reactive yield and BrO yield of 0.45 ± 0.08 is recommended, where the uncertainty limits encompass the results from the Cronkhite et al. and Thompson and Ravishankara studies. (Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table

A41. **O(1D) + CF$_4$ (CFC-14).** The recommended rate coefficient upper limit is based on the work of Ravishankara et al., who report a $(92 \pm 8\%)$ O(1P) yield. Force and Wiesenfeld measured a quenching rate coefficient about 10 times larger. Shi and Barker report an upper limit that is consistent with the recommendation. The small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this reason only an upper limit for the total rate coefficient is recommended with no reactive yield recommendation. (Table: 92-20, Note: 10-6, Evaluated: 10-6) Back to Table

A42. **O(1D) + CH$_3$CHF (HFC-161).** The $k(298 \text{ K})$ recommendation is based on the data from Schmoltner et al., the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. They report that the yield of O(1P) to be 0.18 ± 0.05. A reactive yield of 0.82 is recommended. Although no product studies are available, the OH radical is expected to be a major reaction product. (Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table

A43. **O(1D) + CH$_3$CHF$_2$ (HFC-152a).** The recommended rate coefficient at room temperature is an average of the data from Warren et al. and Kono and Matsumi, which agree to within 25%. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Warren et al. report an O(1P) yield of 0.54 ± 0.07. Kono and Matsumi report an O(1P) yield of 0.34 ± 0.06, an OH yield of 0.15 ± 0.02, and that a large fraction of the reaction, ~0.50, leads to unidentified products. There is a
significant discrepancy in the reactive yield between these two studies. The recommended physical quenching yield is an average of the Warren et al. and Kono and Matsumi results, 0.45 ± 0.15, where the uncertainty limit encompasses the results from both studies. The OH yield from the Kono and Matsumi study is recommended with the balance of the reactive yield assigned to unidentified products.

(Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

A44. O(1D) + CH3CClF (HCFC-141b). The k(298 K) recommendation is based upon the measurement of Warren et al., the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Warren et al. report an O(3P) yield of 0.31 ± 0.05, which assuming physical quenching is the basis for the recommendation. ClO and OH radical reaction product channels are expected to be significant, although no product studies are currently available.

(Table: 92-20, Note: 15-10, Evaluated: 10-6) Back to Table

A45. O(1D) + CH3CCl2F (HCFC-142b). Warren et al. (298 K) and Baasandorj et al. (217–373 K) measured the total rate coefficient for this reaction. The room temperature results from these studies are in reasonable agreement, to within 15%, and the average value from these studies is recommended. Baasandorj et al. reported the reaction to be temperature independent over the 217 to 373 K range.

Warren et al. report an O(3P) yield of 0.26 ± 0.05. Green and Wayne, who measured the loss of CH3CF2Cl relative to the loss of N2O, obtained a reactive yield of 0.75 ± 0.2 when the current recommendation for O(1D) + N2O is used. Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient (relative to the O(1D) + HCFC-22 and CFC-115 reactions) at room temperature to be (1.11 ± 0.03) × 10^{-11} cm^3 molecule^{-1} s^{-1}. This corresponds to a reactive yield of 0.55 ± 0.05 using the current total rate coefficient recommendations. This is significantly less than reported by Warren et al. The recommended reactive yield is an average of the Warren et al. and Baasandorj et al. results, where the uncertainty limit encompasses the results from both studies.

(Table: 15-10, Note: 15-10, Evaluated: 10-6) Back to Table

(2) Green, R. G.; Wayne, R. P. Relative rate constants for the reactions of O(1D) atoms with fluorochlorocarbons and with N2O. J. Photochem. 1976/77, 6, 371-374.

A46. O(1D) + CH3CF3 (HFC-143a). Kono and Matsumi (298 K) and Baasandorj et al. (217–373 K) have measured the total rate coefficient for this reaction. The room temperature results from these studies are in poor agreement with a ~50% difference. Baasandorj et al. reported the reaction to have a weak negative temperature dependence, E/R = −20 K, over the 217 to 373 K temperature range. The recommended k(298 K) is from the average of these two studies and the recommended temperature dependence is taken from Baasandorj et al.

Kono and Matsumi report an O(3P) yield of 0.18 ± 0.04, an OH yield of 0.38 ± 0.06, and that ~0.40 of the reaction occurs through unidentified product channels. That is ~0.80 of the reaction leads to loss of CH3CF3. The relative rate coefficient measurement by Green and Wayne, who measured the loss of CH3CF2 relative to N2O, is in poor agreement with the results from Kono and Matsumi. Using the current recommendation for the O(1D) + N2O rate coefficient, the Green and Wayne reaction yield would be 1.05 ± 0.20. Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient (relative to the O(1D) + NF3, HCFC-22, and CFC-115 reactions) at room temperature to be (3.91 ± 0.11) × 10^{-11} cm^3 molecule^{-1} s^{-1}. This corresponds to a reactive yield of 0.65 ± 0.05 using the current total rate coefficient recommendations. This is less than obtained from the Kono and Matsumi O(3P) yield measurement. The recommended total reactive
yield is taken from Baasandorj et al. due, in part, to the consistency of results obtained with multiple reference compounds, along with the OH yield from the Kono and Matsumi study.
(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Green, R. G.; Wayne, R. P. Relative rate constants for the reactions of O(1D) atoms with fluorochlorocarbons and with N2O. J. Photochem. 1976/77, 6, 371-374.

A47. O(1D) + CH2CICF2 (HCFC-132b). The recommendation is based on the room temperature relative rate measurement of Green and Wayne, the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Green and Wayne measured the loss of CH2CICF2 relative to the loss of N2O. The recommendation for N2O is used to obtain the recommended value. There are no product studies available for this reaction. On the basis of results obtained for other halocarbons, a reactive yield of 0.9 is estimated.
(Table: 90-1, Note: 15-10, Evaluated: 15-10) Back to Table

A48. O(1D) + CH2CIF3 (HCFC-133a). The k(298 K) recommendation is based on the room temperature measurement of Warren et al., the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Warren et al. report an O(1P) yield of 0.20 ± 0.05. Assuming that all O(1P) production is via physical quenching, a reactive yield of 0.80 ± 0.05 is recommended. No product studies are currently available. The results from the Green and Wayne study, who measured the loss of CH2CICF3 relative to the loss of N2O, agree with the recommendation when the current recommendation for N2O is used.
(Table: 92-20, Note: 15-10, Evaluated: 10-6) Back to Table

A49. O(1D) + CH3FCF3 (HFC-134a). The recommended total rate coefficient at room temperature is based on data from Warren et al. and Kono and Matsumi, which are in excellent agreement. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Warren et al. reported an O(1P) yield of 0.09 ±0.06/0.01. Kono and Matsumi reported an O(1P) yield of 0.65 ± 0.06, an OH yield of 0.24 ± 0.04, and that a small fraction of the reaction, ~0.11, leads to other products. Nilsson et al. using a relative rate method with O(1D) + CH4 as the reference reaction, report a 298 K reactive rate coefficient of (6.10 ± 1.43) × 10^-11 cm^3 molecule^-1 s^-1, which is greater than the recommended total rate coefficient. The product yields reported in the Kono and Matsumi study are recommended.
(Table: 92-20, Note: 10-6, Evaluated: 10-6) Back to Table

A50. O(1D) + CHCl2CF3 (HCFC-123). The k(298 K) recommendation is based on the room temperature measurement by Warren et al., the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. The relative rate measurement of Green and Wayne, who measured the loss of CHCl2CF3 relative to the loss of N2O, agrees well with the
recommendation when the current recommendation for N_2O is used. Warren et al. reported an $\text{O}(^3\text{P})$ yield of 0.21 ± 0.08, which assuming it is due to physical quenching is the basis of the reactive yield recommendation. (Table: 92-20, Note: 15-10, Evaluated: 10-6) Back to Table

A51. $\text{O}(^1\text{D}) + \text{CHClF}_3$ (HCFC-124). The k(298 K) recommendation is based on the room temperature measurement of Warren et al.,1 the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Warren et al. reported an $\text{O}(^3\text{P})$ yield of 0.31 ± 0.10, which assuming it is due to physical quenching is the basis of the reactive yield recommendation. (Table: 92-20, Note: 15-10, Evaluated: 10-6) Back to Table

A52. $\text{O}(^1\text{D}) + \text{CH}_2\text{F}_3\text{F}_3$ (HFC-125). The total rate coefficient has been measured by Warren et al.4 (298 K), Kono and Matsumi3 (298 K), and Baasandorj et al.1 (217–373 K). The k(298 K) results from Kono and Matsumi and Baasandorj et al. are in excellent agreement, while the results from Warren et al. are nearly a factor of 10 greater. Baasandorj et al. report a weak negative temperature dependence, $E/R = -25$ K, for the reaction. The results from the Baasandorj et al. study are recommended.

Warren et al. reported an $\text{O}(^3\text{P})$ yield of 0.85 ± 0.15–22. Kono and Matsumi reported an $\text{O}(^3\text{P})$ yield of 0.24 ± 0.04, an OH yield of 0.60 ± 0.10, and that a fraction of the reaction, -0.15, leads to other products. Green and Wayne2 measured the loss of CHClF_3 relative to the loss of N_2O and report a reactive rate coefficient that is significantly greater than the present k(298 K) recommendation. Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient (relative to the $\text{O}(^1\text{D}) + \text{NF}_3$ and HFC-23 reactions) at room temperature to be $(7.33 \pm 0.9) \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$. This corresponds to a reactive yield of 0.73 ± 0.09 using the current total rate coefficient recommendation. This is in good agreement with that obtained from the Kono and Matsumi $\text{O}(^3\text{P})$ yield measurement. The recommended total reactive yield of 0.75 ± 0.05 is taken from the Kono and Matsumi and Baasandorj et al. studies with an OH yield of 0.60 ± 0.10 from the Kono and Matsumi study. (Table: 92-20, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Green, R. G.; Wayne, R. P. Relative rate constants for the reactions of $\text{O}(^1\text{D})$ atoms with fluorochlorocarbons and with N_2O. J. Photochem. 1976/77, 6, 371-374.

A53. $\text{O}(^1\text{D}) + \text{CCl}_3\text{CF}_3$ (CFC-113a). The k(298 K) recommendation is taken from the measurement by Baasandorj et al.1, the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Baasandorj et al. reported a ClO radical yield of 0.79 ± 0.10 (2σ), which represents a lower-limit for the total reactive yield. A total reactive yield of 0.9 is estimated for this reaction with the balance assigned to physical quenching. (Table: 92-20, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Baasandorj, M.; Feierabend, K. J.; Burkholder, J. B. Rate coefficients and ClO radical yields in the reaction of $\text{O}(^1\text{D})$ with $\text{CCIF}_2\text{CCIF}_3$, CCl_3CF_3, $\text{CCIF}_2\text{CCIF}_3$, and CCl_2FCF_3. Int. J. Chem. Kinet. 2011, 43, 393-401, doi:10.1002/kin.20561.

A54. $\text{O}(^1\text{D}) + \text{CCl}_2\text{FCCIF}_2$ (CFC-113). The k(298 K) recommendation is taken from the studies of Baasandorj et al.1 (298 K) and Baasandorj et al.2 (217–373 K). Baasandorj et al.2 found no temperature dependence to the
reaction over the 217–373 K range. Baasandorj et al. reported a ClO radical yield of 0.80 ± 0.10 (2σ), which may represent a lower-limit for the reactive yield. A reactive yield of 0.9 is estimated for this reaction.

(Table: 92-20, Note: 15-10, Evaluated: 15-10) Back to Table

A55. O(1D) + CCl2FCF3 (CFC-114a). The k(298 K) recommendation is taken from the measurement by Baasandorj et al. The only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Baasandorj et al. reported a ClO radical yield of 0.79 ± 0.10 (2σ), which may represent a lower-limit for the reactive yield. A total reactive yield of 0.9 is estimated for this reaction.

(Table: 92-20, Note: 15-10, Evaluated: 15-10) Back to Table

A56. O(1D) + CClF2CClF2 (CFC-114). The total rate coefficient has been measured by Ravishankara et al. (298 K), Baasandorj et al. (298 K), and Baasandorj et al. (217–373 K). The k(298 K) results from these studies are in very good agreement. Baasandorj et al. report a weak negative temperature dependence, E/R = −25 K, for the reaction over the 217–373 K range. The recommended rate coefficient is taken from this study. Ravishankara et al. reported the reaction to be (25 ± 9)% quenching of O(1D) to O(3P). Baasandorj et al. reported a ClO radical yield of 0.85 ± 0.12 (2σ), which may represent a lower-limit for the reaction yield. The reaction yields from the Ravishankara et al. and Baasandorj et al. studies overlap, within the combined uncertainties, and a total reactive yield of 0.9 is recommended.

(Table: 92-20, Note: 15-10, Evaluated: 10-6) Back to Table

A57. O(1D) + CClF2CF3 (CFC-115). The rate coefficient has been measured by Ravishankara et al. (298 K) and Baasandorj et al. (217–373 K). The k(298 K) values from these studies are in reasonable agreement and the average value is recommended. Baasandorj et al. measured a weak negative temperature dependence, E/R = −30 K, for the reaction, which is recommended.

Ravishankara et al. reported an O(3P) yield of 0.70 ± 0.07. Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient (relative to the O(1D) + NO3, HFC-22, and HFC-125 reactions) at room temperature to be (5.16 ± 0.9) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹. This corresponds to a reactive yield of 0.86 ± 0.06 using the current total rate coefficient recommendations. This is in poor agreement with the Ravishankara et al. value. The recommended reactive yield is taken from Baasandorj et al. due, in part, to the consistency of results obtained with multiple reference compounds. There are no product studies available for this reaction.

(Table: 92-20, Note: 15-10, Evaluated: 10-6) Back to Table

A58. **O(1D) + CBrF₂BrF₂ (Halon-2402).** The \(k(298 \text{ K})\) recommendation is based on data from Thompson and Ravishankara,² the only study available. They reported an \(O(3P)\) yield of \(0.25 \pm 0.07\). Lorenzen-Schmidt et al.³ measured the Halon removal rate relative to the \(N_2O\) removal rate and report a reactive rate coefficient of \((8.8 \pm 1.2) \times 10^{-11}\) (a reactive yield of 0.55), which is significantly less than inferred by Thompson and Ravishankara. The Thompson and Ravishankara product yield is recommended with an uncertainty that encompasses the Lorenzen-Schmidt et al. result at the 2σ level. There are no product studies available for this reaction.
(Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table

A59. **O(1D) + CF₃CF₃ (PFC-116).** The \(k(298 \text{ K})\) recommendation is based on the work of Ravishankara et al.² The small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this reason, \(k(298 \text{ K})\) may be an upper limit. Ravishankara et al. report a \(O(3P)\) yield of \(0.85 \pm 0.15\). Using a relative rate technique, Baasandorj et al.¹ measured the reactive rate coefficient for this reaction, relative to the \(O(1D) + CHF_3\) reaction, to be \(<3 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\). On the basis of this study, an upper limit of 0.2 for the reactive yield is recommended.
(Table: 94-26, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Baasandorj, M.; Hall, B. D.; Burkholder, J. B. Rate coefficients for the reaction of \(O(1D)\) with the atmospherically long-lived greenhouse gases \(NF_3, SF_6, CHF_3, C_2F_6, C_3F_6, n-C_5F_{12}, \text{ and } n-C_6F_{14}\). *Atmos. Chem. Phys.* **2012**, *12*, 11753-11764, doi:10.5194/acp-12-11753-2012.

A60. **O(1D) + CF₃CHFCF₃ (HFC-227ea).** Baasandorj et al.¹ measured the total rate coefficient over the temperature range 217 to 373 K. Their results, the only study available, are recommended. Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient for this reaction relative to the \(O(1D) + NF_3, HFC-23, \text{ and } HFC-125\) reactions to be \((6.99 \pm 0.5) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\). On the basis of this study, a reactive yield of 0.72 ± 0.07 is recommended.
(New Entry) Back to Table

A61. **O(1D) + CHF₂CH₂CF₃ (HFC-245fa).** There are no experimental studies of the rate coefficient for this reaction. The rate coefficient and product yield are estimated based on trends observed for other HFCs.
(New Entry) Back to Table

A62. **O(1D) + CHF₂CF₂CF₂CHF₂ (HFC-338pce).** The \(k(298 \text{ K})\) recommendation is based on data from Schmoltnier et al.,¹ the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. They reported an \(O(3P)\) yield of 0.97 ± 0.09. On the basis of this study, a reactive yield of 0.05±0.05 is recommended.
(Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table

A63. **O(1D) + c-C₄Fs.** The \(k(298 \text{ K})\) recommendation for perfluorocyclobutane is based on the work of Ravishankara et al.,² the only study available. The small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this reason, \(k(298 \text{ K})\) may be an upper limit. Ravishankara et al. reported an \(O(3P)\) yield of 1.00 ±0.15. Using a relative rate technique, Baasandorj et al.¹ measured the reactive rate coefficient for this reaction relative to the \(O(1D) + CHF_3\) reaction to be \(<3.5 \times 10^{-14} \text{ cm}^3\)
molecule$^{-1}$ s$^{-1}$. On the basis of the Baasandorj et al. study, an upper limit of 0.04 for the reaction yield is recommended.

(Table: 92-20, Note: 15-10, Evaluated: 10-6) Back to Table

1. Baasandorj, M.; Hall, B. D.; Burkholder, J. B. Rate coefficients for the reaction of O(3D) with the atmospherically long-lived greenhouse gases NF$_3$, SF$_6$, SF$_3$CF$_3$, CHF$_3$, C$_2$F$_6$, C$_2$H$_4$, C$_2$F$_6$, n-C$_3$F$_{12}$, and n-C$_6$F$_{14}$. Atmos. Chem. Phys. 2012, 12, 11753-11764, doi:10.5194/acp-12-11753-2012.

A64. O(3D) + CF$_3$CHFCHFCF$_2$CF$_3$ (HFC-43-10mee). The k(298 K) recommendation is based on data from Schmoltner et al.1 the only study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. Schmoltner et al. report a O(3P) yield of 0.91 ± 0.04. The recommended branching ratio is taken from the Schmoltner et al. study with a larger uncertainty assigned because there is only a single study for this reaction.

(Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table

A65. O(3D) + C$_2$F$_{12}$ (CFC-41-12). The k(298 K) recommendation is based on data from Ravishankara et al.2 the only total rate coefficient study available. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. The small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this reason, k(298 K) may be an upper limit. Ravishankara et al. reported an O(3P) yield of 0.79 ± 0.12. Using a relative rate technique, Baasandorj et al.1 measured the reactive rate coefficient for this reaction relative to the O(3D) + CHF$_3$ reaction to be <5 × 10$^{-14}$ cm3 molecule$^{-1}$ s$^{-1}$. On the basis of the Baasandorj et al. study, an upper limit of 0.12 for the reactive yield is recommended.

(Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table

1. Baasandorj, M.; Hall, B. D.; Burkholder, J. B. Rate coefficients for the reaction of O(3D) with the atmospherically long-lived greenhouse gases NF$_3$, SF$_6$, SF$_3$CF$_3$, CHF$_3$, C$_2$F$_6$, C$_2$H$_4$, C$_2$F$_6$, n-C$_3$F$_{12}$, and n-C$_6$F$_{14}$. Atmos. Chem. Phys. 2012, 12, 11753-11764, doi:10.5194/acp-12-11753-2012.

A66. O(3D) + C$_6$F$_{14}$ (PFC-51-14). The k(298 K) recommendation is based on data from Ravishankara et al.2 the only total rate coefficient study available. The small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this reason, k(298 K) may be an upper limit. Ravishankara et al. reported an O(3P) yield of 0.75 ± 0.09. Using a relative rate technique, Baasandorj et al.1 measured the reactive rate coefficient for this reaction relative to the O(3D) + CHF$_3$ reaction to be <1.6 × 10$^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$. On the basis of the Baasandorj et al. study, an upper limit of 0.16 for the reaction yield is recommended.

(Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table

1. Baasandorj, M.; Hall, B. D.; Burkholder, J. B. Rate coefficients for the reaction of O(3D) with the atmospherically long-lived greenhouse gases NF$_3$, SF$_6$, SF$_3$CF$_3$, CHF$_3$, C$_2$F$_6$, C$_2$H$_4$, C$_2$F$_6$, n-C$_3$F$_{12}$, and n-C$_6$F$_{14}$. Atmos. Chem. Phys. 2012, 12, 11753-11764, doi:10.5194/acp-12-11753-2012.

A67. O(3D) + 1,2-(CF$_3$)$_2$C-F$_{6}$. The k(298 K) recommendation is based on data from Ravishankara et al.1 the only total rate coefficient study available. They reported an O(3P) yield of 0.84 ± 0.16. The small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this reason only an upper limit for the total rate coefficient and no reactive yield is recommended.

(Table: 94-26, Note: 15-10, Evaluated: 10-6) Back to Table
A68. \textbf{O}^{(1)D} + \text{C}_4\text{F}_{10}. The \(k\) (298 K) recommendation is taken from the estimated upper limit for reactive loss given by Ravishankara et al.,\(^1\) the only study available. The small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this reason an upper limit for the rate coefficient and no reactive yield is recommended. (Table: 10-6, Note: 15-10, Evaluated: 10-6) \textbf{Back to Table}

A69. \textbf{O}^{(1)D} + \text{SF}_6. The \(k\) (298 K) recommendation is based on the work of Ravishankara et al.,\(^1\) the only study available. They reported an \(\text{O}^{(3)P}\) yield of 0.32 \pm 0.10. The small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this reason, \(k\) (298 K) may be an upper limit and a reactive yield upper limit of 0.7 is recommended. (Table: 92-20, Note: 15-10, Evaluated: 10-6) \textbf{Back to Table}

A70. \textbf{O}^{(1)D} + \text{SO}_2. The room temperature rate coefficient is taken from the work of Zhao et al.,\(^1\) which is the only study for this reaction. Although no studies are available, the reaction rate coefficient is expected to have negligible temperature dependence. Zhao et al. reported the branching ratio for reactive loss to be 0.76 \pm 0.12 (2\(\sigma\)), which is the basis of the recommendation. (Table: 10-6, Note: 15-10, Evaluated: 10-6) \textbf{Back to Table}

A71. \textbf{O}^{(1)D} + \text{SO}_2\text{F}_2. The recommendation is based on the measurements of Dillon et al.\(^1\) and Zhao et al.\(^2\) which are in good agreement. Although Dillon et al. report a temperature independent rate coefficient over the temperature range 220–300 K, a weak negative temperature dependence is apparent in their data. Zhao et al. (199–351 K) report a negative temperature dependence, \(E/R = -98\) K, that reproduces both data sets very well and is recommended. Dillon et al. reported a collisional quenching yield of 0.55 \pm 0.04, independent of temperature. The results from Zhao et al. are in agreement with this result, but are less precise. The recommended reactive yield is taken from Dillon et al. Dillon et al. provide qualitative evidence that F atoms may be formed as a reaction product. (Table: 10-6, Note: 15-10, Evaluated: 10-6) \textbf{Back to Table}

A72. \textbf{O}^{(1)D} + \text{SF}_3\text{CF}_3. Zhao et al.\(^2\) and Baasandorj et al.\(^1\) have reported upper limits for the room temperature rate coefficient. There are no reports on the temperature dependence of this rate coefficient and it is assumed to be temperature independent. The determination of the small rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. Baasandorj et al. reported a \(k\) (298 K) value that is greater than reported by Zhao et al., which is most likely due to the presence of sample impurities. For this reason only an upper limit for the rate coefficient is recommended. Using a relative rate technique, Baasandorj et al. measured the reactive rate coefficient for this reaction relative to the \(\text{O}^{(1)D} + \text{CH}_2\text{F}_3\) reaction to be \(5.8 \times 10^{-14}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). On the basis of this study and the Zhao et al. \(k\) (298 K) value, an upper limit of 0.3 for the reaction yield is recommended. (Table: 10-6, Note: 15-10, Evaluated: 10-6) \textbf{Back to Table}
(1) Baasandorj, M.; Hall, B. D.; Burkholder, J. B. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF$_3$, SF$_5$CF$_3$, CHF$_3$, c-C$_3$F$_8$, n-C$_3$F$_{12}$, and n-C$_6$F$_{14}$. *Atmos. Chem. Phys.* **2012**, *12*, 11753-11764, doi:10.5194/acp-12-11753-2012.

1.5.3 Bibliography – O(1D) Reactions

Addison, M. C.; Donovan, R. J.; Garraway, J. Reactions of O(2D) and O(2P) with halogenomethanes. Faraday Disc. 1979, 67, 286-296.

Baasandorj, M.; Feierabend, K. J.; Burkholder, J. B. Rate coefficients and ClO radical yields in the reaction of O(1D) with CCl2F2 resolved detection of O(1D) applied to precise determination of absolute O(1D) reaction rate constants and O(1D) yields. Phys. Chem. Chem. Phys. 2011, 7, 4051-4053.

Davidson, J. A.; Howard, C. J.; Schiiff, H. I.; Fehsenfeld, F. C. Measurements of the branching ratios for the reaction of O(1D) with N2O. J. Chem. Phys. 1979, 70, 1697-1704.

Fletcher, I. S.; Husain, D. The collisional quenching of O(23D) by COCl$_2$, COFCl and COF$_2$ using atomic absorption spectroscopy in the vacuum ultraviolet. *J. Photochem.* 1978, 8, 355-361.

Gauthier, M. J. E.; Snelling, D. R. Production de O$_2$(b3Σ$^{-}$g) , v* = 0, 1 et 2 par la reaction O(23D) + O$_2$(X3Σ$^{-}$g). *Can. J. Chem.* 1974, 52, 4007-4015.

Lin, C. L.; DeMore, W. B. O(1D) production in ozone photolysis near 3100 Å. *J. Photochem.* 1973/74, 2, 161-164.

Vranckx, S.; Peeters, J.; Carl, S. A. Absolute rate constant and O(3P) yield for the O(1D) + N$_2$O reaction in the temperature range 227 K to 719 K. *Atmos. Chem. Phys.* 2008, 8, 6261-6272.

1.6 Singlet O₂ Reactions

1.6.1 Table 1A: Singlet O₂ Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K)</th>
<th>A-Factor</th>
<th>E/R</th>
<th>k(298 K)</th>
<th>f(298 K)</th>
<th>g</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂(¹) + O → products</td>
<td>298</td>
<td></td>
<td>0.1</td>
<td><2×10⁻¹⁶</td>
<td></td>
<td></td>
<td>A73</td>
</tr>
<tr>
<td>O₂(¹) + O₂ → products</td>
<td>100–450</td>
<td>3.6×10⁻¹⁸</td>
<td>220</td>
<td>1.7×10⁻¹⁸</td>
<td>1.2</td>
<td>100</td>
<td>A74</td>
</tr>
<tr>
<td>O₂(¹) + O₂ → O + 2O₂</td>
<td>283–360</td>
<td>5.2×10⁻¹¹</td>
<td>2840</td>
<td>3.8×10⁻¹⁵</td>
<td>1.2</td>
<td>500</td>
<td>A75</td>
</tr>
<tr>
<td>O₂(¹) + H₂O → products</td>
<td>298</td>
<td></td>
<td>4.8×10⁻¹⁸</td>
<td>1.5</td>
<td></td>
<td></td>
<td>A76</td>
</tr>
<tr>
<td>O₂(¹) + N → NO + O</td>
<td>195–300</td>
<td></td>
<td><9×10⁻¹⁷</td>
<td></td>
<td></td>
<td></td>
<td>A77</td>
</tr>
<tr>
<td>O₂(¹) + N₂ → products</td>
<td>298</td>
<td></td>
<td><10⁻²⁰</td>
<td></td>
<td></td>
<td></td>
<td>A78</td>
</tr>
<tr>
<td>O₂(¹) + CO₂ → products</td>
<td>298</td>
<td></td>
<td><2×10⁻²⁰</td>
<td></td>
<td></td>
<td></td>
<td>A79</td>
</tr>
<tr>
<td>O₂(¹) + O → products</td>
<td>300</td>
<td></td>
<td>8×10⁻¹⁴</td>
<td>5.0</td>
<td></td>
<td></td>
<td>A80</td>
</tr>
<tr>
<td>O₂(¹) + O₂ → products</td>
<td>298</td>
<td></td>
<td>3.9×10⁻¹⁷</td>
<td>1.5</td>
<td></td>
<td></td>
<td>A81</td>
</tr>
<tr>
<td>O₂(¹) + N → NO + O</td>
<td>210–370</td>
<td>3.5×10⁻¹¹</td>
<td>135</td>
<td>2.2×10⁻¹¹</td>
<td>1.15</td>
<td>50</td>
<td>A82</td>
</tr>
<tr>
<td>O₂(¹) + H₂ → products</td>
<td>173–393</td>
<td>6.4×10⁻¹²</td>
<td>600</td>
<td>8.5×10⁻¹³</td>
<td><4×10⁻¹⁷</td>
<td>1.15</td>
<td>100</td>
</tr>
<tr>
<td>O₂(¹) + H₂O → O₂ + H₂O</td>
<td>250–370</td>
<td>3.9×10⁻¹²</td>
<td>−125</td>
<td>5.9×10⁻¹²</td>
<td>1.3</td>
<td>100</td>
<td>A84</td>
</tr>
<tr>
<td>O₂(¹) + N → products</td>
<td>300</td>
<td></td>
<td><10⁻¹³</td>
<td></td>
<td></td>
<td></td>
<td>A85</td>
</tr>
<tr>
<td>O₂(¹) + N₂ → products</td>
<td>203–370</td>
<td>1.8×10⁻¹⁵</td>
<td>−45</td>
<td>2.1×10⁻¹⁵</td>
<td>1.1</td>
<td>100</td>
<td>A86</td>
</tr>
<tr>
<td>O₂(¹) + NO → products</td>
<td>210–370</td>
<td>7.0×10⁻¹⁴</td>
<td>−75</td>
<td>9.0×10⁻¹⁴</td>
<td><2×10⁻¹⁷</td>
<td>1.3</td>
<td>50</td>
</tr>
<tr>
<td>O₂(¹) + CO₂ → products</td>
<td>245–362</td>
<td>4.2×10⁻¹³</td>
<td>0</td>
<td>4.2×10⁻¹³</td>
<td>1.2</td>
<td>200</td>
<td>A88</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6.

a Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.
b Units are cm³ molecule⁻¹ s⁻¹.
c $f(298 \text{ K})$ is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

$$f(T) = f(298 \text{ K}) \exp \left| g \left(\frac{1}{T} - \frac{1}{298} \right) \right|$$

Note that the exponent is an absolute value.
1.6.2 Notes: Singlet O₂ Reactions

A73. O₂(¹Σg) + O. The recommendation is based on the upper limit reported by Clark and Wayne.¹

A74. O₂(¹Σg) + O₂. The recommendation is the average of eight room temperature measurements: Steer et al.,⁹ Findlay and Snelling,² Borrell et al.,¹ Leiss et al.,³ Tachibana and Phelps,¹⁰ Billington and Borrell,⁴ Raja et al.,³ and Wildt et al.¹¹ The temperature dependence is derived from the data of Findlay and Snelling and Billington and Borrell. Several other less direct measurements of the rate coefficient agree with the recommendation, including Clark and Wayne,² Findlay et al.,⁴ and McLaren et al.⁷ Wildt et al.¹² report observations of weak emission in the near IR due to collision-induced radiation. Wildt et al.¹³ give rate coefficients for this process.

(2) Borrell, P.; Borrell, P. M.; Pedley, M. D. Deactivation of singlet molecular oxygen, O₂(¹Δg), by oxygen. Chem. Phys. Lett. 1977, 51, 300-302.
(11) Wildt, J.; Bednarek, G.; Fink, E. H.; Wayne, R. P. Laser excitation of O₂(b1Σg+, v' = 0,1,2)- Rates and channels of energy transfer and quenching. Chem. Phys. 1988, 122, 463-470.

A75. O₂(¹Δ) + O₃. The recommendation is the average of the room temperature measurements of Clark et al.,⁴ Findlay and Snelling,⁶ Becker et al.,³ and Collins et al.⁵ Several less direct measurements agree well with the recommendation (McNeal and Cook,⁹ Wayne and Pitts,¹² and Arnold and Comes³). The temperature dependence is from the studies of Findlay and Snelling and Becker et al., which agree very well, although both covered a relatively small temperature range. An earlier study by Clark et al. covered a much larger range and found a much smaller temperature coefficient. The reason for this discrepancy is not clear. The yield of O + 2O₂ products appears to be close to unity, based on many studies of the quantum yield of O₃ destruction near the peak of the Hartley band, e.g. measurements of the number of O₃ molecules destroyed per photon absorbed (von Ellenrieder et al.,¹¹ Ravishankara et al.,¹⁰ Lissi and Heicklen,⁹ and references cited therein) and measurements of O₃ loss and O atom temporal profiles in pulsed experiments (Klais et al.⁷ and Arnold and Comes³). Anderson et al.¹ report that the rate coefficient for atom exchange between O₂(¹Δ) and O₃ is <5 × 10⁻¹⁶ at 300 K.

(2) Arnold, I.; Comes, F. J. Photolysis of ozone in the ultraviolet region. Reactions of O(¹D), O₂(¹Δg) and O₂. Chem. Phys. 1980, 47, 125-130.

A76. O$_3$(^1Delta) + H$_2$O. The recommendation is the average of the measurements reported by Becker et al.1 and Findlay and Snelling.2 An earlier study by Clark and Wayne2 reported a value about three times larger. (Table: 92-20, Note: 92-20, Evaluation: 10-6) Back to Table

1. Becker, K. H.; Groth, W.; Schurath, U. The quenching of metastable O$_3$(^1Delta_g) and O$_2$(^1Sigma_g^+) molecules. *Chem. Phys. Lett.* **1971**, *8*, 259-262.

A77. O$_3$(^1Delta) + N. The recommendation is an upper limit based upon the measurement reported by Westenberg et al.4 who used ESR to detect O$_2$(X^3Sigma and a'Delta), O(^3P) and N(^3S) with a discharge flow reactor. They used an excess of O$_3$(^1Delta) and measured the decay of N and the appearance of O at 195 and 300 K. They observed that the reaction of N with O$_3$(^1Delta) is somewhat slower than its reaction with O$_3$(^2Delta). The recommended rate constant value for the latter provides the basis for the recommendation. Clark and Wayne1,2 and Schmidt and Schiff3 reported observations of an O$_3$(^1Delta) reaction with N that is about 30 times faster than the recommended limit. Schmidt and Schiff attribute the observed loss of O$_3$(^1Delta) in excess N to a rapid energy exchange with some constituent in discharged nitrogen, other than N. (Table: 92-20, Note: 92-20, Evaluation: 10-6) Back to Table

4. Westenberg, A. A.; Roscoe, J. M.; deHaas, N. Rate measurements on N + O$_3$(^1Delta_g) → NO + O and H + O$_2$(^1Delta_g) → OH + O. *Chem. Phys. Lett.* **1970**, *7*, 597-599.

A78. O$_3$(^1Delta) + N$_2$. The recommendation is based upon the measurements by Findlay et al.3 and Becker et al.1 Other studies obtained higher values for an upper limit: Clark and Wayne2 and Steer et al.3 (Table: 92-20, Note: 92-20, Evaluation: 10-6) Back to Table

1. Becker, K. H.; Groth, W.; Schurath, U. The quenching of metastable O$_3$(^1Delta_g) and O$_2$(^1Sigma_g^+) molecules. *Chem. Phys. Lett.* **1971**, *8*, 259-262.

A79. \(O_2(\Sigma_g^+) + CO\) The recommendation is based on the measurements reported by Findlay and Snelling\(^2\) and Leiss et al.\(^3\) Upper limit rate coefficients reported by Becker et al.,\(^1\) McLaren et al.,\(^4\) and Singh et al.\(^5\) are consistent with the recommendation.

(Table: 92-20, Note: 92-20, Evaluation: 10-6) Back to Table

A80. \(O_2(\Sigma_g^+) + O\). The recommendation is based on the measurement reported by Slanger and Black.\(^1\)

(Table: 92-20, Note: 92-20, Evaluation: 10-6) Back to Table

1. Slanger, T. G.; Black, G. Interactions of \(O_2(b'\Sigma_g^+)\) with \(O(3P)\) and \(O_3\). *J. Chem. Phys.* **1979**, *70*, 3434-3438.

A81. \(O_2(\Sigma_g^+) + O_2\). The recommendation is the average of the room temperature values reported by Martin et al.,\(^5\) Lawton et al.,\(^3\) and Lawton and Phelps,\(^4\) which are in excellent agreement. Measurements by Thomas and Thrush,\(^5\) Chatha et al.,\(^1\) and Knickelbein et al.\(^2\) are in reasonable agreement with the recommendation. Knickelbein et al. report the yield of \(O_2(\Sigma_g^+)\) product to be approximately unity.

(Table: 92-20, Note: 92-20, Evaluation: 10-6) Back to Table

5. Martin, L. R.; Cohen, R. B.; Schatz, J. F. Quenching of laser induced fluorescence of \(O_2(b'\Sigma_g^+)\) by \(O_2\) and \(N_2\). *Chem. Phys. Lett.* **1976**, *41*, 394-396.

A82. \(O_2(\Sigma_g^+) + O_3\). The recommendation is based on the room temperature measurements of Gilpin et al.,\(^6\) Gauthier and Snelling,\(^7\) Slanger and Black,\(^8\) Choo and Leu,\(^9\) Shi and Barker,\(^8\) Turnipseed et al.,\(^11\) and Dunlea et al.\(^4\) Measurements by Snelling,\(^10\) Amimoto and Wiesenfeld,\(^1\) and Ogren et al.\(^7\) are in agreement with the recommendation. The value from the study of Biedenkapp and Bair\(^2\) is lower than the recommended value. The temperature dependence is taken from the results of Dunlea et al., who measured the rate coefficient between 210 and 370 K. The results of Choo and Leu, which encompassed 295–362 K, are consistent with the recommended value. This reaction has multiple product channels. The yield of \(O + 2O_2\) products is reported to be (70 ± 20)% by Slanger and Black and Amimoto and Wiesenfeld. The remaining ~30% of the reaction is expected to lead to quenching to \(O_2(\Delta\Sigma_g^+)\) while leaving ozone intact; the electronic state of \(O_2\) that is produced in all these channels is not known.

(Table: 92-20, Note: 92-20, Evaluation: 10-6) Back to Table

A83. \(\text{O}_2(\Sigma) + \text{H}_2 \). The rate coefficient for this reaction, at or around 298 K, has been measured by Kohse-Höinghaus and Stuhl,\(^2\) Braithwaite et al.,\(^3\) Choo and Leu,\(^4\) Singh and Setser,\(^5\) Wildt et al.,\(^6\) Michelangeli et al.\(^7\) Borrell and Richards,\(^1\) Hohmann et al.\(^8\) and Talukdar et al.\(^9\) \(k(298 \text{K})\) was derived from the results of all of the above studies except for the results of Singh and Setser and Borrell and Richards, which are clearly outside of the range of values obtained by others.

The temperature dependence of the rate coefficient was computed using the results of Braithwaite et al., Hohmann et al., and Talukdar et al. The results of Kohse-Höinghaus and Stuhl were not included, because they are assumed to be superseded by those of Hohmann et al. from the same group. It is suspected that the Kohse-Höinghaus and Stuhl study was hampered by impurities in their system, as discussed in Talukdar et al.

The rate coefficient for the reaction to produce 2 OH radicals is listed separately as an upper limit at 298 K and is based on the results of Talukdar et al. The same upper limit was shown to be valid even at 209 K. Therefore, this upper limit is recommended for all atmospheric calculations.

This reaction could also produce \(\text{O}(^3\text{P}) + \text{H}_2\text{O} \). However, there is no evidence for the formation of \(\text{O}(^3\text{P}) \) (Dunlea et al.\(^4\)). Therefore, it is assumed that \(\text{O}_2(\Sigma) \) is removed exclusively via quenching. The electronic state of \(\text{O}_2 \) that is produced is not known.

(Table: 06-2, Note: 06-2, Evaluation: 10-6) Back to Table

(1) Borrell, P.; Richards, D. S. Quenching of singlet molecular oxygen \(\text{O}_2(\Delta_\lambda) \) and \(\text{O}_2(\Sigma^{+}_g) \) by \(\text{H}_2 \), \(\text{D}_2 \), \(\text{HCl} \), and \(\text{HBr} \). \textit{J. Chem. Soc. Faraday Trans. 2} 1989, 85, 1401-1411.

(5) Hohmann, J.; Müller, G.; Schönnebeck, G.; Stuhl, F. Temperature-dependent quenching of \(\text{O}_2(\Sigma_g^+) \) by \(\text{H}_2 \), \(\text{D}_2 \), \(\text{CO}_2 \), \(\text{HN}_3 \), \(\text{DN}_3 \), \(\text{HNCO} \), and \(\text{DNCO} \). \textit{Chem. Phys. Lett.} 1994, 217, 577-581.

(6) Kohse-Höinghaus, K.; Stuhl, F. \(\text{H}_2\text{Laser} \) photochemical study of the temperature dependent quenching of \(\text{O}_2(\Sigma_g^+) \). \textit{J. Chem. Phys.} 1980, 72, 3720-3726.

(7) Michelangeli, D. V.; Choo, K.-Y.; Leu, M.-T. Yields of \(\text{O}_2(\Sigma_g^+) \) and \(\text{O}_2(\Delta_\lambda) \) in the \(\text{H} + \text{O}_2 \) reaction system, and the quenching of \(\text{O}_2(\Sigma_g^+) \) by atomic hydrogen. \textit{Int. J. Chem. Kinet.} 1988, 20, 915-938.

(10) Wildt, J.; Bednarek, G.; Fink, E. H.; Wayne, R. P. Laser excitation of O$_2$(b^1Σ_g^+, ν' = 0,1,2)- Rates and channels of energy transfer and quenching. Chem. Phys. 1988, 122, 463-470.

A84. O$_2$(^1Σ) + H$_2$O. The recommendation is the average of room temperature measurements reported by Stuhl and Niki,³ Avilés et al.,¹ Shi and Barker,⁷ and Dunlea et al.³ Measurements reported by O'Brien and Myers⁵ are lower, most likely due to an interference from O$_2$(^3Σ) regeneration. The results of Derwent and Thrush⁵ and Thomas and Thrush⁸ are in agreement with the recommendation. The value reported by Gauthier and Snelling⁹ has a very large uncertainty and hence overlaps with the recommendation. It is not clear why the results of Filseth et al.⁴ are lower than all the other reported values; perhaps, they had an error in measuring water vapor concentration. The temperature dependence of the reaction is taken from the only reported value of Dunlea et al. Wildt et al.¹⁰ report that the yield of O$_2$(^1Δ) is greater than 90%. There are no thermodynamically allowed reactive channels for this reaction. Therefore, the reaction products are written as O$_2$ + H$_2$O.³

(Table: 06-2, Note: 06-2, Evaluation: 10-6) Back to Table

(2) Derwent, R. G.; Thrush, B. A. Measurements on O$_2$(^1Δ_g) and O$_2$(^1Σ_g^+) in discharge flow systems. Trans. Faraday Soc. 1971, 67, 2036-2043.
(10) Wildt, J.; Bednarek, G.; Fink, E. H.; Wayne, R. P. Laser excitation of O$_2$(b^1Σ_g^+, ν' = 0,1,2)- Rates and channels of energy transfer and quenching. Chem. Phys. 1988, 122, 463-470.

A85. O$_2$(^3Σ) + N. The recommendation is based on the upper limit reported by Slanger and Black.¹

(Table: 92-20, Note: 92-20, Evaluation: 10-6) Back to Table

(1) Slanger, T. G.; Black, G. Interactions of O$_2$ (b^1Σ_g^+) with O(^3P) and O$_3$. J. Chem. Phys. 1979, 70, 3434-3438.

A86. O$_2$(^3Σ) + N$_2$. The recommendation for room temperature is the average of measurements reported by Izod and Wayne,§ Stuhl and Welge,¹¹ Filseth et al.,¹ Shi and Barker,¹⁰ and Dunlea et al.³ Less direct measurements reported by Noxon,⁹ Myers and O'Brien,⁵ and Chatha et al.¹ are consistent with the recommendation. The temperature dependence of the rate coefficient is derived from the results of Kohse-Höinghaus and Stuhl between 203 and 349 K and of Dunlea et al. between 210 and 370 K.

There are no exothermic reaction channels. The channel to produce 2 NO molecules is endothermic by 5.6 kcal mol⁻¹ at 298 K.

(Table: 06-2, Note: 06-2, Evaluation: 10-6) Back to Table

A87. O$_2$(t1Σ) + N$_2$O. The rate coefficient for the removal of O$_2$(t1Σ) by N$_2$O at 298 K is derived from the studies of Filseth et al.,3 Borrell et al.,4 and Dunlea et al.5 The results of Gauthier and Snelling6 have a large uncertainty, which overlaps the recommended value within their quoted error bars. The temperature dependence of this rate coefficient is taken from Dunlea et al., the only temperature dependent study.

There are many possible reactive channels for this reaction:

O$_2$(t1Σ$^+$) + N$_2$O \rightarrow NO + NO$_2$ \[\Delta_{\text{rxn}}H_{298} = -27.6 \text{ kcal/mol}\] (a)

\rightarrow N$_2$ + O$_3$ \[\Delta_{\text{rxn}}H_{298} = -23.0 \text{ kcal/mol}\] (b)

\rightarrow N$_2$O \[\Delta_{\text{rxn}}H_{298} = -37.3 \text{ kcal/mol}\] (c)

O$_2$(t1Σ$^+$) + N$_2$O \[\Delta_{\text{rxn}}H_{298} = -37.5 \text{ kcal/mol}\] (d)

O$_2$(t1Σ$^+$) + N$_2$O \[\Delta_{\text{rxn}}H_{298} = -15.0 \text{ kcal/mol}\] (e)

Dunlea et al. have placed upper limits of <2 x 10$^{-4}$, <1 x 10$^{-3}$, and <3 x 10$^{-3}$ for channel (a + c), channel (b), and overall N$_2$O loss, respectively, from this reaction at 298 K. Based on these results, we recommend an upper limit for NO$_x$ production of <2 x 10$^{-17}$ cm3 molecule$^{-1}$ s$^{-1}$. The upper limit for NO$_x$ production from this reaction is assumed to be valid for all atmospheric temperatures.

(Table: 06-2, Note: 06-2, Evaluation: 10-6) **Back to Table**

A88. O$_2$(t1Σ) + CO$_2$. The recommendation is the average of measurements reported by Filseth et al.,5 Davidson et al.,3 Avilés et al.,1 Muller and Houston,7 Choo and Leu,2 Wildt et al.,10 Hohmann et al.,6 Dunlea et al.,4 and Shi and Barker7 at room temperature. The temperature dependence is from the work of Choo and Leu. Muller and Houston and Singh and Setser9 give evidence that O$_2$(t1Δ) is a product. Wildt et al. report a O$_2$(t1Δ) yield of ≥90%.

(Table: 92-20, Note: 06-2) **Back to Table**

(6) Hohmann, J.; Müller, G.; Schönnenbeck, G.; Stuhl, F. Temperature-dependent quenching of O$_2$(b$^1\Sigma_g^+$) by H$_2$, D$_2$, CO$_2$, HN$_3$, DN$_3$, HNCO, and DNCO. *Chem. Phys. Lett.* 1994, 217, 577-581.

(10) Wildt, J.; Bednarek, G.; Fink, E. H.; Wayne, R. P. Laser excitation of O$_2$(b$^1\Sigma_g^+$, $\nu' = 0,1,2$)- Rates and channels of energy transfer and quenching. *Chem. Phys.* 1988, 122, 463-470.
1.6.3 Bibliography - Singlet O₂ Reactions

Arnold, I.; Comes, F. J. Photolysis of ozone in the ultraviolet region. Reactions of O(¹D), O₂(¹Δg) and O₂. Chem. Phys. 1980, 47, 125-130.

Becker, K. H.; Groth, W.; Schurath, U. The quenching of metastable O₂(¹Δg) and O₂(¹Σ⁺) molecules. Chem. Phys. Lett. 1971, 8, 259-262.

Borrell, P.; Borrell, P. M.; Pedley, M. D. Deactivation of singlet molecular oxygen, O₂(¹Δg), by H₂, D₂, HCl, and HBr. J. Chem. Soc. Faraday Trans. 2 1989, 85, 1401-1411.

Clark, I. D.; Wayne, R. P. Kinetics of the reaction between atomic nitrogen and molecular oxygen in the ground (¹Σg⁻) and first excited (¹Δg) states. Proc. Roy. Soc. Lond. A. 1970, 316, 539-550.

Derwent, R. G.; Thrush, B. A. Measurements on O₂ ¹Δg and O₂ ¹Σ⁺ in discharge flow systems. Trans. Faraday Soc. 1971, 67, 2036-2043.

Hohmann, J.; Müller, G.; Schönenbeck, G.; Stuhl, F. Temperature-dependent quenching of O$_2$(b$_1^3\Sigma^+$) by H$_2$, D$_2$, CO$_2$, HN$_3$, DN$_3$, HNCO, and DNCO. Chem. Phys. Lett. 1994, 217, 577-581.

Lawton, S. A.; Novick, S. E.; Broida, H. P.; Phelps, A. V. Quenching of optically pumped O$_2$(b$_2^3\Sigma^+$) by ground state O$_2$ molecules. J. Chem. Phys. 1977, 66, 1381-1382.

Martin, L. R.; Cohen, R. B.; Schatz, J. F. Quenching of laser induced fluorescence of O$_2$ (b$_2^3\Sigma^+$) by O$_2$ and N$_2$. Chem. Phys. Lett. 1976, 41, 394-396.

Michelangeli, D. V.; Choo, K.-Y.; Leu, M.-T. Yields of O$_2$(\Sigma^+) and O$_2$(\Delta_g) in the H + O$_2$ reaction system, and the quenching of O$_2$(\Sigma^+) by atomic hydrogen. Int. J. Chem. Kinet. 1988, 20, 915-938.

Slangar, T. G.; Black, G. Interactions of O$_2$(b$_2^3\Sigma^+$) with O(\Delta) and O$_2$. J. Chem. Phys. 1979, 70, 3434-3438.

Wayne, R. P.; Pitts, J. N., Jr. Rate constant for the reaction \(\text{O}_3 \left(^1\Delta_g \right) + \text{O}_3 \rightarrow 2\text{O}_2 + \text{O} \). *J. Chem. Phys.* **1969**, *50*, 3644-3645.

Westenberg, A. A.; Roscoe, J. M.; deHaas, N. Rate measurements on \(\text{N} + \text{O}_2 \left(^1\Delta_g \right) \rightarrow \text{NO} + \text{O} \) and \(\text{H} + \text{O}_2 \left(^1\Delta_g \right) \rightarrow \text{OH} + \text{O} \). *Chem. Phys. Lett.* **1970**, *7*, 597-599.

Wildt, J.; Bednarek, G.; Fink, E. H.; Wayne, R. P. Laser excitation of \(\text{O}_2 \left(^1\Sigma_g^+, \nu' = 0,1,2 \right) \)- Rates and channels of energy transfer and quenching. *Chem. Phys.* **1988**, *122*, 463-470.

Wildt, J.; Fink, E. H.; Biggs, P.; Wayne, R. P. The collision-induced radiation of \(\text{O}_2 \left(^1\Delta_g \right) \). *Chem. Phys.* **1989**, *139*, 401-407.

Wildt, J.; Fink, E. H.; Biggs, P.; Wayne, R. P.; Vilesov, A. F. Collision-induced emission of \(\text{O}_2 \left(^1\Delta_g \rightarrow X \ ^3\Sigma_g^- \right) \) in the gas phase. *Chem. Phys.* **1992**, *159*, 127-140.
1.7 HOx Reactions

1.7.1 Table 1B: HOx Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K)(^a)</th>
<th>A-Factor</th>
<th>E/R</th>
<th>(k(298 \text{ K}))(^b)</th>
<th>(f(298 \text{ K}))(^c)</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O} + \text{OH} \rightarrow \text{O}_2 + \text{H})</td>
<td>136–515</td>
<td>1.8×10(^{-11})</td>
<td>−180</td>
<td>3.3×10(^{-11})</td>
<td>1.15</td>
<td>50</td>
<td>B1</td>
</tr>
<tr>
<td>(\text{O} + \text{HO}_2 \rightarrow \text{OH} + \text{O}_2)</td>
<td>229–391</td>
<td>3.0×10(^{-11})</td>
<td>−200</td>
<td>5.9×10(^{-11})</td>
<td>1.05</td>
<td>50</td>
<td>B2</td>
</tr>
<tr>
<td>(\text{O} + \text{H}_2\text{O}_2 \rightarrow \text{OH} + \text{HO}_2)</td>
<td>283–386</td>
<td>1.4×10(^{-12})</td>
<td>2000</td>
<td>1.7×10(^{-15})</td>
<td>1.2</td>
<td>100</td>
<td>B3</td>
</tr>
<tr>
<td>(\text{H} + \text{O}_2 \rightarrow \text{HO}_2)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{H} + \text{O}_3 \rightarrow \text{OH} + \text{O}_2)</td>
<td>196–424</td>
<td>1.4×10(^{-10})</td>
<td>470</td>
<td>2.9×10(^{-11})</td>
<td>1.1</td>
<td>40</td>
<td>B4</td>
</tr>
<tr>
<td>(\text{H} + \text{HO}_2 \rightarrow 2 \text{OH})</td>
<td>245–300</td>
<td>7.2×10(^{-11})</td>
<td>0</td>
<td>7.2×10(^{-11})</td>
<td>1.2</td>
<td>100</td>
<td>B5</td>
</tr>
<tr>
<td>(\rightarrow \text{O} + \text{H}_2\text{O})</td>
<td></td>
<td>1.6×10(^{-12})</td>
<td>0</td>
<td>1.6×10(^{-12})</td>
<td>1.5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(\rightarrow \text{H}_2 + \text{O}_2)</td>
<td></td>
<td>6.9×10(^{-12})</td>
<td>0</td>
<td>6.9×10(^{-12})</td>
<td>1.4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2)</td>
<td>190–357</td>
<td>1.7×10(^{-12})</td>
<td>940</td>
<td>7.3×10(^{-14})</td>
<td>1.15</td>
<td>50</td>
<td>B6</td>
</tr>
<tr>
<td>(\text{OH} + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2)</td>
<td>200–1050</td>
<td>2.8×10(^{-12})</td>
<td>1800</td>
<td>6.7×10(^{-15})</td>
<td>1.05</td>
<td>100</td>
<td>B7</td>
</tr>
<tr>
<td>(\text{OH} + \text{HD} \rightarrow \text{products})</td>
<td>248–418</td>
<td>5.0×10(^{-12})</td>
<td>2130</td>
<td>4.0×10(^{-15})</td>
<td>1.15</td>
<td>50</td>
<td>B8</td>
</tr>
<tr>
<td>(\text{OH} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{O})</td>
<td>233–580</td>
<td>1.8×10(^{-12})</td>
<td>0</td>
<td>1.8×10(^{-12})</td>
<td>1.25</td>
<td>50</td>
<td>B9</td>
</tr>
<tr>
<td>(\rightarrow \text{H}_2\text{O}_2)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{OH} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2)</td>
<td>252–420</td>
<td>4.8×10(^{-11})</td>
<td>−250</td>
<td>1.1×10(^{-10})</td>
<td>1.15</td>
<td>50</td>
<td>B10</td>
</tr>
<tr>
<td>(\text{OH} + \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{HO}_2)</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B11</td>
</tr>
<tr>
<td>(\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2\text{O}_2)</td>
<td>197–413</td>
<td>1.0×10(^{-14})</td>
<td>490</td>
<td>1.9×10(^{-15})</td>
<td>1.15</td>
<td>80</td>
<td>B12</td>
</tr>
<tr>
<td>(\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2)</td>
<td>222–1120</td>
<td>3.0×10(^{-13})</td>
<td>−460</td>
<td>1.4×10(^{-12})</td>
<td>1.15</td>
<td>100</td>
<td>B13</td>
</tr>
<tr>
<td>(\rightarrow \text{H}_2\text{O}_2 + \text{O}_2)</td>
<td></td>
<td>2.1×10(^{-33}) [M]</td>
<td>−920</td>
<td>4.6×10(^{-32}) [M]</td>
<td>1.2</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>(\text{HO}_2 + \text{HO}_2 + \text{H}_2\text{O} \rightarrow \text{products})</td>
<td>298–350</td>
<td>5.4×10(^{-11})</td>
<td>410</td>
<td>1.4×10(^{-11})</td>
<td>2</td>
<td>100</td>
<td>B14</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6.

\(^{a}\) Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.

\(^{b}\) Units are cm\(^3\) molecule\(^{-1}\) s\(^{-1}\).

\(^{c}\) \(f(298 \text{ K})\) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

\[
f(T) = f(298 \text{ K}) \exp \left[g \left(\frac{1}{T} - \frac{1}{298} \right) \right]
\]

Note that the exponent is an absolute value.
1.7.2 Notes: HO$_3$ Reactions

B1. O + OH. The recommended rate coefficient was obtained from the studies of Westenberg et al.8 (228–340 K), Lewis and Watson4 (221–499 K), Howard and Smith4 (250–515 K), Smith and Stewart1 (158–294 K), and Robertson and Smith6 (136–377 K). The recommendation is consistent with earlier work near room temperature as reviewed by Lewis and Watson,4 and with the measurements of Brune et al.1 (300 K), and Robertson and Smith6 (295 K). The ratio $k(O + HO_3)/k(O + OH)$ measured by Keyser6 agrees with the recommended values. (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

B2. O + HO$_2$. The recommended values are based on the results of studies over a range of temperatures by Keyser6 (229-372 K) and Nicovich and Wine9 (266–391 K) and the room temperature studies of Sridharan et al.,12 Ravishankara et al.,10 and Brune et al.1 Earlier studies by Hack et al.4 and Burrows et al.23 are not considered because the OH + H$_2$O reaction was important in these studies and the value used for its rate constant in their analyses has been shown to be in error. A study by Lii et al.8 is also not considered because of the insensitivity of the observed decays to O + HO$_2$. Data from Ravishankara et al.10 at 298 K show no dependence on pressure between 10 and 500 Torr N$_2$. The ratio $k(O + HO_2)/k(O + OH)$ measured by Keyser6 agrees with the rate constants recommended here. Sridharan et al.11 showed that the reaction products correspond to abstraction of an oxygen atom from HO$_2$ by the O reactant. Keyser et al.7 reported <1% O$_2$(^1A) yield. (Table: 06-2, Note: 06-2, Evaluated: 10-6) Back to Table

B3. O + H₂O₂. There are two direct studies of the O + H₂O₂ reaction: Davis et al.² (283–368 K) and Wine et al.⁴ (298–386 K). The recommended value is a fit to the combined data. An indirect measurement of the E/R value by Roscoe³ is consistent with the recommendation. The A factor for both data sets is quite low compared to similar atom-molecule reactions. A somewhat higher activation barrier reported by Albers et al.¹ over the temperature range 370–800 K is suggestive of a non-linear temperature dependence.

B4. H + O₂. The recommendation is an average of the results of Lee et al.⁸ (219–360 K) and Keyser⁷ (196–424 K), which are in agreement over the 220–360 K range. Results by Seeley et al.⁹ and Finlayson-Pitts and Kleindienst¹ agree well with the present recommendation. An earlier study by Clyne and Monkhouse¹ is in very good agreement on the temperature dependence in the range 300–560 K, but lies about 60% below the recommended values. Although we have no reason not to believe the Clyne and Monkhouse values, we prefer the two studies that are in agreement, especially since they were carried out over the temperature range of interest. Reports of a channel forming HO₂ + O (Finlayson-Pitts and Kleindienst¹: ~25%, and Force and Wiesenfeld¹: ~40%) have been contradicted by other studies (Howard and Finlayson-Pitts¹: <3%; Washida et al.¹: <6%; Finlayson-Pitts et al.²: <2%; and Dodonov et al.²: <0.3%). Secondary chemistry is believed to be responsible for the observed O-atoms in this system. Washida et al.¹ measured an upper limit (<0.1%) for the production of singlet molecular oxygen for the reaction.

B5. **H + HO$_2$.** There are five studies of this reaction: Hack et al.\(^2\) (293 K), Hack et al.\(^1\) (293 K), Thrush and Wilkinson\(^3\) (298 K), Sridharan et al.\(^7\) (296 K), and Keyser\(^4\) (245–300 K). Related early work and combustion studies are referenced in Sridharan et al. All five studies used discharge flow systems. It is difficult to obtain a direct measurement of the rate constant for this reaction because both reactants are radicals and the products OH and O are reactive toward the HO$_2$ reactant. The recommendation is based on the kinetics and product data of Sridharan et al. and Keyser, because those measurements were the most direct and required the fewest corrections. Keyser found the rate coefficient and product yields to be independent of temperature for 245<T<300 K. The total rate constant measurements of, (5.0 ± 1.3) × 10^{-11} cm3 molecule$^{-1}$ s$^{-1}$ by Thrush and Wilkinson\(^1\) and (4.65 ± 1) × 10^{-11} by Hack et al.\(^1\) are are significantly less than the recommended total rate constant, 8.05 × 10^{-11} cm3 molecule$^{-1}$ s$^{-1}$. Hislop and Wayne,\(^5\) Keyser et al.,\(^6\) and Michelangeli et al.\(^8\) reported on the yield of O$_2$(b'\Sigma_g) formed in the H$_2$ + O$_2$ channel as (2.8 ± 1.3) × 10^{-4}, <8 × 10^{-3}, and <2.1 × 10^{-2}, respectively as a fraction of the overall reaction.

(Back to Table: 06-2, Note: 06-2, Evaluated: 10-6)

(6) Michelangeli, D. V.; Choo, K.-Y.; Leu, M.-T. Yields of O$_2$(\Sigma_g^+) and O$_2$(\Delta_g) in the H + O$_2$ reaction system, and the quenching of O$_2$(\Sigma_g^+) by atomic hydrogen. *Int. J. Chem. Kinet.* **1988**, *20*, 915-938.

B6. **OH + O$_3$.** The recommended values are based on the results of studies over a range of temperatures by Anderson and Kaufman\(^1\) (220–450 K), Ravishankara et al.\(^5\) (238–357 K), Smith et al.\(^6\) (240–295 K) and Nizkorodov et al.\(^4\) (190–315 K) and the room temperature measurements of Kurylo,\(^3\) Zahniser and Howard,\(^7\) and Kulcke et al.\(^2\) The recommended E/R and k(298 K) values are based on averages of the individual E/R and k(298 K) values obtained in the above mentioned studies. The value reported by Kulcke et al.\(^2\) has been corrected for a minor contribution of k(HO$_2$ + O$_3$).

(Back to Table: 02-25, Note: 10-6, Evaluated: 10-6)

(3) Kurylo, M. J. Kinetics of the reactions OH(v=0) + NH$_3$ → H$_2$O + NH$_2$ and OH(v=0) + O$_3$ → HO$_2$ + O$_2$ at 298K. *Chem. Phys. Lett.* **1973**, *23*, 467-471.
B7. **OH + H₂.** The OH + H₂ reaction has been the subject of numerous studies. The recommendation is fixed to the average of eleven studies at 298 K: Greiner,² Stuhl and Niki,² Westenberg and deHaas,¹⁰ Smith and Zellner,⁵ Atkinson et al.,¹ Overend et al.,¹⁴ Tully and Ravishankara,⁹ Zellner and Steinert,¹¹ Ravishankara et al.,⁵ Talukdar et al.,⁸ and Orkin et al.³ The temperature dependent studies of Orkin et al. (200–480 K), Talukdar et al. (230–420 K), and Ravishankara et al. (250–1050 K) find that the reaction does not follow a simple Arrhenius expression over a large range of temperature. The recommended temperature dependence is based on the average of EIR values determined in the above-mentioned studies for temperatures below 300 K. Accordingly, the recommended Arrhenius expression is only valid between 200–300 K. Even over this range the simple Arrhenius expression likely overestimates, near 250 K, and underestimates, near 200 K, the data by approximately 10%.

(Table: 06-2, Note: 06-2, Evaluated: 10-6) Back to Table

B8. **OH + HD.** The recommendation is based on direct measurements made by Talukdar et al.,² using pulsed photolysis-laser induced fluorescence over the temperature range 248–418 K. The recommendation is in excellent agreement with the ratio k(OH + H₂)/k(OH + HD) = 1.65 ± 0.05 at 298 K reported by Ehhalt et al.¹ when combined with the recommended k(OH + H₂).

(Table: 06-2, Note: 06-2, Evaluated: 10-6) Back to Table

B9. **OH + OH.** The recommendation for the OH + OH reaction is the average of eight measurements performed near 298 K at low bath gas pressures: Westenberg and deHaas,³ McKenzie et al.,⁴ Clyne and Down,³ Trainor and von Rosenberg,⁷ Farquharson and Smith,⁴ Wagner and Zellner,⁶ Bedjanian et al.,² and Bahnig and MacDonald.¹ The rate coefficients reported in these studies fall in the range (1.4–2.7) x 10⁻¹² cm³ molecule⁻¹ s⁻¹. Wagner and Zellner (250–580 K) reported a slight positive temperature dependence of the rate coefficient in contrast with that reported by Bedjanian et al. (233–360 K), who report a small negative
temperature dependence. The earlier work of Wagner and Zellner may have been complicated by an increased contribution of the OH + H reaction due to an underestimate of its reaction rate. Theoretical calculations by Harding and Wagner suggest that tunneling substantially influences the reaction rate coefficient. In taking account of the tunneling contribution, the rate coefficient is found to have a minimum value near room temperature. In view of the predicted behavior and given that the experimental data are consistent with each other, within the stated uncertainties, the recommendation is a temperature independent value for the rate coefficient over the temperature range 200–300 K.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

(1) Bahng, M.-K.; Macdonald, R. G. Determination of the rate constant for the OH(X\(^2\)Π) + OH(X\(^2\)Π) → O(\(^3\)P) + H\(_2\)O reaction over the temperature range 293-373 K. J. Phys. Chem. A 2007, 111, 3850-3861, doi:10.1021/jp066359c.

B10. OH + HO\(_2\). A study by Keyser\(^8\) appears to resolve a discrepancy among low-pressure discharge flow experiments that all gave rate coefficients near 7 × 10\(^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\): Keyser,\(^7\) Thrush and Wilkinson,\(^6\) Sridharan et al.,\(^3,4,11\) Temps and Wagner,\(^1\) and atmospheric pressure studies that gave rate coefficients near 1 × 10\(^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\): Li et al.,\(^10\) Hochanadel et al.,\(^6\) DeMore,\(^3\) Cox et al.,\(^2\) Burrows et al.,\(^1\) and Kurylo et al.\(^9\) Laboratory measurements using a discharge flow experiment and a chemical model analysis of the results by Keyser\(^8\) demonstrate that the previous discharge flow measurements were probably subject to interference from small amounts of O and H. In the presence of excess HO\(_2\), these atoms generate OH and result in a rate coefficient measurement that falls below the true value. The temperature dependence is from Keyser,\(^8\) who covered the range 254 to 382 K. A flow tube study by Schwab et al.\(^12\) reported k = (3.0 ± 3)/4 × 10\(^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). These workers measured the concentrations of HO\(_2\), OH, O, and H and used a computer model of the relevant reactions to test for interference. A flow tube study by Dransfeld and Wagner\(^4\) employing an isotope labeled \(^16\)OH reactant obtained k = (11 ± 2) × 10\(^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) in good agreement with the recommendation. They attributed about half of the reactive events to isotope scrambling because control experiments with \(^16\)OH gave k = 6 × 10\(^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). It should be noted that their control experiments were subject to the errors described by Keyser\(^8\) due to the presence of small amounts of H and O, whereas their \(^18\)OH measurements were not. Kurylo et al.\(^9\) found no evidence of significant scrambling in isotope studies of the OH and HO\(_2\) reaction. An additional careful study of the reaction temperature dependence would be useful. Hippler and Troe\(^3\) have analyzed data for this reaction at temperatures up to 1250 K. In summary, this has historically been a difficult reaction to study. Earlier problems appear to have been resolved, as discussed above, and results now tend to converge on a central value, but the recommended value is still subject to a large uncertainty.

(Table: 06-2, Note: 06-2, Evaluated: 10-6) Back to Table

(5) Hippler, H.; Troe, J. Rate constants of the reaction HO + H$_2$O$_2$ → HO$_2$ + H$_2$O at T \geq 1000 K. Chem. Phys. Lett. 1992, 192, 333-337.

B11. OH + H$_2$O$_2$. The rate coefficient for this reaction shows non-Arrhenius behavior between 96 and 1250 K with a minimum value near room temperature. Data from a number of studies are in relatively good agreement between 300 and 500 K after normalization to account for the H$_2$O$_2$ UV absorption cross section recommendation in this evaluation. Hippler and Troe1 analyzed data for this reaction at temperatures up to 1250 K. The studies of Keyser2 (245–423 K), Sridharan et al.3 (250–459 K), Wine et al.11 (273–410 K), Kurylo et al.3 (250–370 K), Lamb et al.4 (241–413 K), and Vaghjiani et al.9 (273–410 K) show that the reaction displays a small positive temperature dependence ($E/R = -160$ K) over the 300–500 K range. Measurements at room temperature by Marinelli and Johnston,5 Riffault et al.6 Turnipseed et al.8 and Vakhtin et al.10 agree with the other studies. A value of 1.8 \times 10$^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ is obtained by averaging the room temperature data. Lamb et al. and Vaghjiani report that k increases slightly with decreasing temperature for temperatures below 300 K while other studies show a slight positive temperature dependence. Vakhtin et al. used a pulsed Laval nozzle technique to study the reaction at very low temperatures (96–165 K) and report a significant increase in k with decreasing temperature. They suggest that the reaction mechanism includes the formation of a hydrogen-bonded complex. The recommendation is a temperature independent value of 1.8 \times 10$^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ with f(298 K) = 1.15 and g = 45 over the temperature range of 200–300 K.

(Table: 06-2, Note: 10-6, Evaluated: 10-6) Back to Table

(1) Hippler, H.; Troe, J. Rate constants of the reaction HO + H$_2$O$_2$ → HO$_2$ + H$_2$O at T \geq 1000 K. Chem. Phys. Lett. 1992, 192, 333-337.

(2) Keyser, L. F. Absolute rate constant of the reaction OH + H$_2$O$_2$ → HO$_2$ + H$_2$O from 245 to 423 K. J. Phys. Chem. 1980, 84, 1659-1663.

(3) Kurylo, M. J.; Murphy, J. L.; Haller, G. S.; Cornett, K. D. A flash photolysis resonance fluorescence investigation of the reaction OH + H$_2$O$_2$ → HO$_2$ + H$_2$O. Int. J. Chem. Kinet. 1982, 14, 1149-1161.

B12. **HO₂ + O₃**

The recommended values are based on results of studies over a range of temperatures by DeMore et al. at 231 to 334 K, Zahniser and Howard at 245 to 365 K, Manzanares et al. at 298 K, Sinha et al. at 243 to 413 K, Wang et al. at 233 to 400 K, and Herndon et al. at 200 to 298 K. The data of Simonaitis and Heicklen and DeMore and Tschuikow were not considered. The temperature dependence studies show varying degrees of curvature in the Arrhenius plots, with the E/R decreasing at lower temperature. This is especially evident in the low temperature data of Herndon et al. where a number of measures were taken to control potential kinetic complications. The recommended E/R and k(298 K) values are based on averages of the individual E/R and k(298 K) values. Furthermore, only data at temperatures less than 298 K were used for the E/R determination. Accordingly, the recommendation is not valid for T>298 K. Additional temperature dependence data are needed for this reaction over a larger range to more fully characterize the non-linear behavior of the rate constant. The mechanism of the reaction has been studied using ¹⁸O labeled HO₂ by Sinha et al., who reported that the reaction occurs (75 ± 10)% via H atom transfer at 297 K and by Nelson and Zahniser, who reported branching ratios for H transfer vs O transfer over the range 226–355 K. They report that the H atom transfer decreases from (94 ± 5)% at (226 ± 11) K to (88 ± 5)% at (355 ± 8) K.

B13. HO₂ + HO₂

The overall rate coefficient for this reaction is the sum of a pressure-independent bimolecular component and a pressure-dependent termolecular component. Two separate expressions are given for these rate coefficients. Both components contribute to the overall loss of HO₂ under atmospheric conditions and have negative temperature dependencies. This reaction also has a dependence on H₂O that needs to be included in atmospheric model calculations. Christensen et al. found that kinetic studies that used CH₃OH as an HO₂ radical precursor were possibly complicated by the formation of a weakly bound reactive HO₂-CH₃OH adduct, particularly important at low temperatures. The magnitude of the CH₃OH effect on the measured rate coefficients is dependent on the CH₃OH concentration and temperature in the particular study.

The recommended bimolecular and termolecular expressions for the HO₂ + HO₂ reaction were obtained from a global fit of the rate coefficient data that had negligible complications due to the presence of CH₃OH. The analysis included data obtained at low pressure (<30 Torr) from Thrush and Tyndall (7–20 Torr, 298–358 K), Simonaitis and Heicklen (5–770 Torr, 296 K), Sander (1 Torr, 298 K), Takacs and Howard (1–7 Torr, 298–358 K), and Thrush and Tyndall (1–7 Torr, 298–358 K).
There are numerous studies of the HO

reaction and reaction with HO

•CH

3

result from Christensen et al. are ~25% lower than the current recommendation. Systematic discrepancies also exist in the low-temperature rate coefficient data where the results from Christensen et al. are inconsistent with the recommendation. Lightfoot et al. reported rate coefficients at atmospheric pressure over the temperature range 298–777 K that are in agreement with the recommended value at 298 K. This study indicates an upward curvature in the rate coefficient at temperatures above 500 K. A high temperature (750–1120 K) study by Hippler et al. confirms the strong curvature. The current recommendation does not account for the non-Arrhenius behavior and is valid only for temperatures below 500 K.

Stone and Rowley reported rate coefficient data at 760 Torr over the temperature range 236–309 K that were later shown by Christensen et al. to be systematically overestimated due to the use of very high concentrations of CH3OH. The Stone and Rowley data were not included in the present evaluation. The rate coefficient data and temperature dependence reported by Cox and Burrows in general agreement with this recommendation. Data from Rozenshtein et al. are consistent with the low-pressure recommendation but they report no change in the rate coefficient with pressure up to 1 atm. Results reported by Thrush and Wilkinson and Dobis and Benson are inconsistent with the recommendation.

The HO2 + HO2 reaction exhibits a dependence on H2O concentration due to the formation of a weakly bound reactive HO2•H2O complex. English et al. report a bond energy of 6.9 kcal mol for the complex (also see Table 3). There are numerous studies of the rate coefficient H2O dependence (Hamilton, Hochanadel et al., Hamilton and Lii, Cox and Burrows, DeMore, Li et al., Sander et al., Andersson et al., Stone and Rowley, English et al., and Tang et al.) that are in good agreement. The effective rate coefficient in the presence of H2O can be obtained by multiplying the recommended rate coefficient by the factor given by Li et al. and Kircher and Sander: [1 + 1.4 × 10 (H2O) exp(2200/T)].

The major reaction products at 300 K have been identified as H2O2 + O2 by Su et al., Niki et al., Sander et al., and Simonaitis and Heicklen. (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

(10) Hippler, H.; Rahn, R.; Troe, J. Shock wave study of the reaction \(\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \): Confirmation of a rate constant minimum near 700 K. *J. Chem. Phys.* 1990, 93, 1755-1760.

(26) Tang, Y.; Tyndall, G. S.; Orlando, J. J. Spectroscopic and kinetic properties of \(\text{HO}_2 \) radicals and the enhancement of the \(\text{HO}_2 \) self reaction by \(\text{CH}_3\text{OH} \) and \(\text{H}_2\text{O} \). *J. Phys. Chem. A* 2010, 114, 369-378, doi:10.1021/jp905279b.

B14. \(\text{HO}_2 + \text{HO}_2 + \text{H}_2\text{O} \). The enhancement of the \(\text{HO}_2 + \text{HO}_2 \) reaction in the presence of \(\text{H}_2\text{O} \) vapor has been ascribed to the formation of a \(\text{H}_2\text{O}_2 \)-\(\text{H}_2\text{O} \) complex and the higher reactivity of the complex over that of \(\text{HO}_2 \). The recommendation is based upon the studies of Kanno et al., who analyzed the enhancement of \(\text{HO}_2 \) decays in the presence of \(\text{H}_2\text{O} \). Enhancement factors were obtained at 298, 325, and 350 K and a total pressure of 50 Torr \(\text{N}_2 \). A pressure dependence of the rate coefficient has not been measured and a pressure independent value is recommended.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

1-63
1.7.3 Bibliography – HO$_2$ Reactions

Bahng, M.-K.; Macdonald, R. G. Determination of the rate constant for the OH(X$^2\Pi$) + OH(X$^2\Pi$) → O(3P) + H$_2$O reaction over the temperature range 293-373 K. *J. Phys. Chem. A* 2007, 111, 3850-3861, doi:10.1021/jp066359c.

Cox, R. A.; Burrows, J. P.; Wallington, T. J. Rate coefficient for the reaction OH + HO$_2$ → H$_2$O + O$_2$ at 1 atmosphere pressure and 308 K. *Chem. Phys. Lett.* 1981, 84, 217-221.

Hippler, H.; Troe, J. Rate constants of the reaction HO + H_2O_2 → HO_2 + H_2O at T ≥ 1000 K. Chem. Phys. Lett. 1992, 192, 333-337.

Keyser, L. F. Absolute rate constant of the reaction OH + H_2O → HO_2 + H_2O from 25 to 423 K. J. Phys. Chem. 1980, 84, 1659-1663.

Michelangelo, D. V.; Choo, K.-Y.; Leu, M.-T. Yields of O₂(Σg⁺) and O₂(Δg) in the H + O₂ reaction system, and the quenching of O₂(Σg⁺) by atomic hydrogen. *Int. J. Chem. Kinet.* 1988, 20, 915-938.

Tully, F. P.; Ravishankara, A. R. Flash photolysis-resonance fluorescence kinetic study of the reactions OH + H\textsubscript{2} → H\textsubscript{2}O + H and OH + CH\textsubscript{4} → H\textsubscript{2}O + CH\textsubscript{3} from 298 to 1020 K. *J. Phys. Chem.* 1980, *84*, 3126-3130, doi:10.1021/j10460a031.

Washida, N.; Akimoto, H.; Okuda, M. Is O\textsubscript{2}⁺(a\textsubscript{1}Δ\textsubscript{g}) formed in the O + O\textsubscript{2}, H + O\textsubscript{2}, and NO + O\textsubscript{2} reactions? *Bull. Chem. Soc. Jpn.* 1980, *53*, 3496-3503.

Washida, N.; Akimoto, H.; Okuda, M. O\textsubscript{2}⁺ (a\textsubscript{1}Δ\textsubscript{g}) in the reaction of H + O\textsubscript{3}. *J. Chem. Phys.* 1980, *72*, 5781-5783.

Wine, P. H.; Nicovich, J. M.; Thompson, R. J.; Ravishankara, A. R. Kinetics of O(\textsubscript{3}P\textsubscript{1}) reactions with H\textsubscript{2}O\textsubscript{2} and O\textsubscript{3}. *J. Phys. Chem.* 1983, *87*, 3948-3954.

1.8 NOx Reactions

1.8.1 Table 1C: NOx Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K) ¹</th>
<th>A-Factor</th>
<th>E/R</th>
<th>k(298 K)b</th>
<th>f(298 K)c</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O + NO → NO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O + NO₂ → NO + O₂</td>
<td>199–2300</td>
<td>5.1×10⁻¹²</td>
<td>-210</td>
<td>1.04×10⁻¹¹</td>
<td>1.1</td>
<td>20</td>
<td>C₁</td>
</tr>
<tr>
<td>O + NO₂ → NO₃</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O + NO₃ → O₂ + NO₂</td>
<td>298–329</td>
<td>1.0×10⁻¹¹</td>
<td>0</td>
<td>1.0×10⁻¹¹</td>
<td>1.5</td>
<td>150</td>
<td>C₂</td>
</tr>
<tr>
<td>O + N₂O₅ → products</td>
<td>223–300</td>
<td><3.0×10⁻¹⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₃</td>
</tr>
<tr>
<td>O + HNO₃ → OH + NO₃</td>
<td>298</td>
<td><3.0×10⁻¹⁷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₄</td>
</tr>
<tr>
<td>O + HO₂NO₂ → products</td>
<td>228–297</td>
<td>7.8×10⁻¹¹</td>
<td>3400</td>
<td>8.6×10⁻¹⁶</td>
<td>3.0</td>
<td>750</td>
<td>C₅</td>
</tr>
<tr>
<td>H + NO₂ → OH + NO</td>
<td>195–2000</td>
<td>4.0×10⁻¹⁰</td>
<td>340</td>
<td>1.3×10⁻¹⁰</td>
<td>1.3</td>
<td>300</td>
<td>C₆</td>
</tr>
<tr>
<td>OH + NO → HONO</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + NO₂ → HNO₃</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + NO₃ → products</td>
<td>298</td>
<td>2.2×10⁻¹¹</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>C₇</td>
</tr>
<tr>
<td>OH + HONO → H₂O + NO₂</td>
<td>278–1400</td>
<td>1.8×10⁻¹¹</td>
<td>390</td>
<td>4.5×10⁻¹²</td>
<td>1.5</td>
<td>+200−500</td>
<td>C₈</td>
</tr>
<tr>
<td>OH + HNO₃ → H₂O + NO₃</td>
<td>218–1100</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₉</td>
</tr>
<tr>
<td>OH + HO₂NO₂ → products</td>
<td>218–335</td>
<td>1.3×10⁻¹²</td>
<td>-380</td>
<td>4.6×10⁻¹²</td>
<td>1.3</td>
<td>+270−500</td>
<td>C₁₀</td>
</tr>
<tr>
<td>OH + NH₃ → H₂O + NH₂</td>
<td>228–2360</td>
<td>1.7×10⁻¹²</td>
<td>710</td>
<td>1.6×10⁻¹³</td>
<td>1.2</td>
<td>200</td>
<td>C₁¹</td>
</tr>
<tr>
<td>HO₂ + NO → NO₂ + OH</td>
<td>183–1270</td>
<td>3.3×10⁻¹²</td>
<td>-270</td>
<td>8.0×10⁻¹²</td>
<td>1.15</td>
<td>20</td>
<td>C₁₂</td>
</tr>
<tr>
<td>NO₂⁺ + H₂O → OH + HONO</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₁₃</td>
</tr>
<tr>
<td>HO₂ + NO₂ → HO₂NO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO₂ + NO₂ → HONO + O₂</td>
<td>220–358</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₁₄</td>
</tr>
<tr>
<td>HO₂ + NO₃ → products</td>
<td>263–338</td>
<td>3.5×10⁻¹²</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>C₁₅</td>
</tr>
<tr>
<td>HO₂ + NH₂ → products</td>
<td>298</td>
<td>3.4×10⁻¹¹</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>C₁₆</td>
</tr>
<tr>
<td>N + O₂ → NO + O</td>
<td>280–1220</td>
<td>1.5×10⁻¹¹</td>
<td>3600</td>
<td>8.5×10⁻¹⁷</td>
<td>1.25</td>
<td>400</td>
<td>C₁₇</td>
</tr>
<tr>
<td>N + O₃ → NO + O₂</td>
<td>298</td>
<td><2.0×10⁻¹⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₁₈</td>
</tr>
</tbody>
</table>

¹ Data range (K) for each reaction.

² A-Factor for each reaction.

³ E/R for each reaction.

⁴ k(298 K) for each reaction.

⁵ f(298 K) for each reaction.

⁶ g for each reaction.

⁷ Note: (See Table 2-1)
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K)</th>
<th>A-Factor</th>
<th>E/R</th>
<th>k(298 K)</th>
<th>(f(298 \text{ K}))</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N + NO \rightarrow N_2 + O)</td>
<td>196–3660</td>
<td>2.1×10^{-11}</td>
<td>−100</td>
<td>3.0×10^{-11}</td>
<td>1.3</td>
<td>100</td>
<td>C19</td>
</tr>
<tr>
<td>(N + NO_2 \rightarrow N_2O + O)</td>
<td>223–700</td>
<td>5.8×10^{-12}</td>
<td>−220</td>
<td>1.2×10^{-11}</td>
<td>1.5</td>
<td>100</td>
<td>C20</td>
</tr>
<tr>
<td>(NO + O_3 \rightarrow NO_2 + O_2)</td>
<td>195–443</td>
<td>3.0×10^{-12}</td>
<td>1500</td>
<td>1.9×10^{-14}</td>
<td>1.1</td>
<td>200</td>
<td>C21</td>
</tr>
<tr>
<td>(NO + NO_3 \rightarrow 2NO_2)</td>
<td>209–703</td>
<td>1.5×10^{-11}</td>
<td>−170</td>
<td>2.6×10^{-11}</td>
<td>1.3</td>
<td>100</td>
<td>C22</td>
</tr>
<tr>
<td>(NO_2 + O_3 \rightarrow NO_3 + O_2)</td>
<td>259–362</td>
<td>1.2×10^{-13}</td>
<td>2450</td>
<td>3.2×10^{-17}</td>
<td>1.15</td>
<td>150</td>
<td>C23</td>
</tr>
<tr>
<td>(NO_2 + NO_3 \rightarrow NO + NO_2 + O_2)</td>
<td>236–538</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NO_2 + NO_3 \xrightarrow{M} N_2O_5)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NO_3 + NO_3 \rightarrow 2NO_2 + O_2)</td>
<td>298–1100</td>
<td>8.5×10^{-13}</td>
<td>2450</td>
<td>2.3×10^{-16}</td>
<td>1.5</td>
<td>500</td>
<td>C25</td>
</tr>
<tr>
<td>(NH_2 + O_2 \rightarrow \text{products})</td>
<td>295–2300</td>
<td><6.0×10^{-21}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NH_2 + O_3 \rightarrow \text{products})</td>
<td>248–380</td>
<td>4.3×10^{-12}</td>
<td>930</td>
<td>1.9×10^{-13}</td>
<td>3.0</td>
<td>500</td>
<td>C27</td>
</tr>
<tr>
<td>(NH_2 + NO \rightarrow \text{products})</td>
<td>200–2500</td>
<td>4.0×10^{-12}</td>
<td>−450</td>
<td>1.8×10^{-11}</td>
<td>1.3</td>
<td>150</td>
<td>C28</td>
</tr>
<tr>
<td>(NH_2 + NO_2 \rightarrow \text{products})</td>
<td>250–910</td>
<td>2.1×10^{-12}</td>
<td>−650</td>
<td>1.9×10^{-11}</td>
<td>3.0</td>
<td>250</td>
<td>C29</td>
</tr>
<tr>
<td>(NH + NO \rightarrow \text{products})</td>
<td>269–3350</td>
<td>4.9×10^{-11}</td>
<td>0</td>
<td>4.9×10^{-11}</td>
<td>1.5</td>
<td>300</td>
<td>C30</td>
</tr>
<tr>
<td>(NH + NO_2 \rightarrow \text{products})</td>
<td>300</td>
<td>3.5×10^{-13}</td>
<td>−1140</td>
<td>1.6×10^{-11}</td>
<td>2.0</td>
<td>500</td>
<td>C31</td>
</tr>
<tr>
<td>(O_3 + HNO_2 \rightarrow O_2 + HNO_3)</td>
<td>226–300</td>
<td><5.0×10^{-19}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_2O_5 + H_2O \rightarrow 2HNO_3)</td>
<td>290–298</td>
<td><2.0×10^{-21}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_2(A,v) + O_2 \rightarrow \text{products})</td>
<td>80–560</td>
<td>2.5×10^{-12}</td>
<td>ν=0</td>
<td></td>
<td>1.5</td>
<td></td>
<td>C34</td>
</tr>
<tr>
<td>(N_2(A,v) + O_3 \rightarrow \text{products})</td>
<td>298</td>
<td>4.1×10^{-11}</td>
<td>ν=0</td>
<td></td>
<td>2.0</td>
<td></td>
<td>C35</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6.

a Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.
b Units are cm³ molecule⁻¹ s⁻¹.
c \(f(298 \text{ K}) \) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

\[
f(T) = f(298 \text{ K}) \exp \left| g \left(\frac{1}{T} - \frac{1}{298} \right) \right|
\]

Note that the exponent is an absolute value.
1.8.2 Notes: NO$_x$ Reactions

C1. O + NO$_2$. The recommended values are based on the results of studies over a range of temperatures by Estupiñán et al.,3 Gierczak et al.,5 Ongstad and Birks,6 Slanger et al.,3 and Geers-Müller and Stuhl9 and the room temperature study of Paulson et al.7 In the most recent studies of Estupiñán et al.3 and Gierczak et al.,5 special emphasis was placed on accurate measurement of the NO$_2$ concentration and on measurements at low temperatures. The results of earlier studies by Davis et al.2 and Bemand et al.1 were not used in deriving the recommended values either because of possible complications from decomposition of NO$_2$ at higher temperatures or lack of direct NO$_2$ detection.

Notes: NO$_2$ detection has large uncertainty in k at 298 K and k at 298 K are due to the fact that the recommendation is based on a single study.

(1) Bemand, P. P.; Clyne, M. A. A.; Watson, R. T. Atomic resonance fluorescence and mass spectrometry for measurements of the rate constants for elementrary reactions: O(3P) + NO$_2$ → NO + O$_2$ and NO + O$_3$ → NO$_2$ + O$_2$. J. Chem. Soc. Faraday Trans. 2 1974, 70, 564-576.

C2. O + NO$_3$. The recommendation is based on the study of Graham and Johnston1 at 298 and 329 K. While limited in temperature range, the data indicate no temperature dependence. Furthermore, by analogy with the reaction of O with NO$_3$, it is assumed that this rate constant is independent of temperature. Clearly, temperature-dependence studies are needed.

Notes: NO$_3$ detection has large uncertainty in k at 298 K and k at 298 K are due to the fact that the recommendation is based on a single study.

C3. O + N$_2$O$_5$. The recommendation is based on the study by Kaiser and Japar.1

Notes: N$_2$O$_5$ detection has large uncertainty in k at 298 K and k at 298 K are due to the fact that the recommendation is based on a single study.

C4. O + HNO$_3$. The upper limit reported by Chapman and Wayne1 is accepted.

Notes: HNO$_3$ detection has large uncertainty in k at 298 K and k at 298 K are due to the fact that the recommendation is based on a single study.

C5. O + HO$_2$NO$_2$. The recommended value is based on the study of Chang et al.1 The large uncertainty in E/R and k at 298 K are due to the fact that the recommendation is based on a single study.

Notes: HO$_2$NO$_2$ detection has large uncertainty in k at 298 K and k at 298 K are due to the fact that the recommendation is based on a single study.

C6. H + NO$_2$. The recommended value of k(298 K) is derived from the studies of Wagner et al.5 Bemand and Clyne,2 Clyne and Monkhouse,3 Michael et al.5 and Ko and Fontijn.4 The temperature dependence is from

1-72
the studies of Wagner et al. and Ko and Fontijn. The data from Wategaonkar and Setser\(^7\) and Agrawalla et
al.\(^3\) were not considered.

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

C7. **OH + NO\(_2\).** The recommendation is derived from an average of the results of Boodaghians et al.,\(^2\) Mellouki et al.,\(^3\) Becker et al.,\(^1\) and Mellouki et al.\(^4\) There are no temperature dependence data. The reaction products are probably HO\(_2\) + NO\(_2\).

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

C8. **OH + HONO.** The recommended rate expression is derived from the work of Jenkin and Cox,\(^3\) which supersedes the earlier room temperature study of Cox et al.\(^2\) Results from the Burkholder et al.\(^1\) suggest that the reaction may have a small negative temperature dependence.

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

C9. **OH + HNO\(_3\).** The recent study of Brown et al.\(^2\) furnishes the most comprehensive set of rate measurements for N\(_2\) as the bath gas over a significant range of temperature (200–350 K) and pressure (20–500 Torr). They analyzed their results in terms of the mechanism proposed by Smith et al.,\(^5\) involving the formation of a bound, relatively long-lived HO\(_2\)HNO\(_3\) complex, as well as the direct reaction channel. Studies of the effects of isotopic substitution on the reactions OD + DNO\(_3\), OH + DNO\(_3\), OD + HNO\(_3\), and \(^1\)OH + HNO\(_3\) by Brown et al.\(^1\) support this mechanism and suggest that the structure of the intermediate consists of a H-bonded six-membered ring. Thus, the P dependence can be represented by combining a low-pressure (bimolecular) limit, \(k_0\), with a Lindemann-Hinshelwood expression for the p-dependence:
\[k([M],T) = k_0 + \frac{k_3[M]}{1 + \frac{k_3[M]}{k_2}} \]

The coefficients \(k_3 \) and \(k_2 \) are the termolecular and high pressure limits for the “association” channel. The value of \(k \) at high pressures is the sum \(k_0 + k_2 \).

This expression for \(k([M],T) \) and the values of the Arrhenius parameters for \(k_0, k_2, \) and \(k_3 \) derived by Brown et al.\(^2\) for \(\text{N}_2 \) as the bath gas constitute the recommended values for this rate coefficient. These recommended values are derived from a fit to the data of Brown et al.\(^2\), Stachnik et al.\(^6\), Devolder et al.\(^3\), and Margitan and Watson.\(^4\).

The reaction yield of \(\text{NO}_3 \) (per OH removed) is assumed to be unity at all temperatures for either reaction channel. These assumptions are supported by the isotopic studies of Brown et al.\(^1\) and the theoretical calculations of Xia and Lin.\(^7\)

(Tab: 00-3, Note: 02-25, Evaluated: 02-25) Back to Table

(3) Devolder, P.; Carlier, M.; Pauwels, J. F.; Sochet, L. R. Rate constant of the reaction of \(\text{OH} \) with \(\text{NO}_2 \): A new investigation by discharge flow resonance fluorescence. Chem. Phys. Lett. 1984, 111, 94-99.

C10. \(\text{OH} + \text{HO}_2\text{NO}_2 \). The recommendation for both \(k \) at 298 K and the Arrhenius expression is based upon the data of Trevor et al.\(^5\), Barnes et al.\(^1\), C. A. Smith et al.\(^4\), and Barnes et al.\(^2\). Trevor et al. studied this reaction over the temperature range 246–324 K and reported a temperature invariant value of \(4.0 \times 10^{-12} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\), although a weighted least squares fit to their data yields an Arrhenius expression with an \(E/R \) value of \((193 \pm 193) \) K. In contrast, Smith et al. studied the reaction over the temperature range 240–300 K and observed a negative temperature dependence with an \(E/R \) value of \((-650 \pm 30) \) K. The early Barnes et al.\(^1\) study was carried out only at room temperature and 1 Torr total pressure while their later study was performed in the pressure range 1–300 Torr \(\text{N}_2 \) and temperature range 268–295 K with no rate constant variation being observed. In addition, \(k(298 \) K) derived in Barnes et al.\(^1\) was revised upward in the later study from \(4.1 \times 10^{-12} \) to \(5.0 \times 10^{-12} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) due to a change in the rate constant for the reference reaction. The values of \(k(298 \) K) from the four studies are in excellent agreement. An unweighted least squares fit to the data from the above-mentioned studies yields the recommended Arrhenius expression. The less precise value for \(k \) at 298 K reported by Littlejohn and Johnston\(^3\) is in fair agreement with the recommended value. The error limits on the recommended \(E/R \) are sufficient to encompass the results of both Trevor et al. and Smith et al. It should be noted that the values of \(k \) at 220 K deduced from the two studies differ by a factor of 2. Clearly, additional studies of \(k \) as a function of temperature and the identification of the reaction products are needed. (Table 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

(1) Barnes, I.; Bastian, V.; Becker, K. H.; Fink, E. H.; Zabel, F. Rate constant of the reaction of \(\text{OH} \) with \(\text{HO}_2\text{NO}_2 \). Chem. Phys. Lett. 1981, 83, 459-464.

(2) Barnes, I.; Bastian, V.; Becker, K. H.; Fink, E. H.; Zabel, F. Pressure dependence of the reaction of \(\text{OH} \) with \(\text{HO}_2\text{NO}_2 \). Chem. Phys. Lett. 1986, 123, 28-32.

(3) Littlejohn, D.; Johnston, H. S. Rate constant for the reaction of hydroxyl radicals and peroxynitric acid. EOS 1980, 61, 966.

C11. **OH + NH₂.** The recommended value at 298 K is the average of the values reported by Stuhl,¹⁰ Smith and Zellner,³ Perry et al.,⁶ Silver and Kolb,⁷ Stephens,⁹ and Diau et al.² The values reported by Pagsberg et al.⁵ and Cox et al.,¹ were not considered because these studies involved the analysis of a complex mechanism and the results are well outside the error limits implied by the above six direct studies. The results of Kurylo³ and Hack et al.³ were not considered because of their large discrepancies with the other direct studies (factors of 3.9 and 1.6 at room temperature, respectively). Because the Arrhenius plot displays considerable curvature, the temperature dependence is based only on the data below 300 K, i.e., the study of the reactions of HO₂ + NO reaction: A temperature range 246 to 324 K.

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

(6) Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. Rate constants for the reactions OH + H₂S → H₂O + SH and OH + NH₂ → H₂O + NH₂ over the temperature range 297-427°K. *J. Chem. Phys.* 1976, 64, 3237-3239.

C12. **HO₂ + NO.** The recommendation for HO₂ + NO is based on the average of eight measurements of the rate constant at room temperature and below: Howard and Evenson,⁷ Leu,¹⁰ Howard,⁶ Hack et al.,⁵ Jemi-Alade and Thrush,³ Seeley et al.,¹² Bohn and Zetsch,² and Bardwell et al.¹ All of these are in quite good agreement. The results of Imamura and Washida⁴ were not considered due to the relatively large uncertainty limits reported in this study. An earlier study, Burrows et al.³ has been disregarded because of an error in the reference rate constant, k(OH + H₂O). The room temperature study of Rozenshtein et al.¹¹ has also been disregarded due to an inadequate treatment of possible secondary reactions. The data of Glaschick-Schimpf et al.⁴ were not considered because of complications associated with the HO₂ detection method. The data of Thrush and Wilkinson¹³ were not considered because it is a relative rate study. The recommended Arrhenius parameters are obtained from a fit to all the data. The recommended value of k(298 K) is obtained from the Arrhenius line.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

(5) Hack, W.; Preuss, A. W.; Temps, F.; Wagner, H. G.; Hoyermann, K. Direct determination of the rate
constant of the reaction NO + HO₂ → NO₂ + OH with the LMR. Int. J. Chem. Kinet. 1980, 12, 851-860.
(6) Howard, C. J. Temperature dependence of the reaction HO₂ + NO → OH + NO₂. J. Chem. Phys. 1979,
71, 2352-2359.
(7) Howard, C. J.; Evenson, K. M. Kinetics of the reaction of HO₂ with NO. Geophys. Res. Lett. 1977, 4,
437-440.
(8) Imamura, T.; Washida, N. Measurements of rate constants for HO₂ + NO and NH₂ + NO reactions by
(9) Jemi-Alade, A. A.; Thrush, B. A. Reactions of HO₂ with NO and NO₂ studied by mid-infrared laser
(10) Leu, M. T. Rate constant for the reaction HO₂ + NO → OH + NO₂. J. Chem. Phys. 1979, 70, 1662-
1666.
(11) Rozenshtein, V. B.; Gershenzon, Y. M.; Il'in, S. D.; Kishkurovich, O. P. Reactions of HO₂ with NO, OH
(12) Seeley, J. V.; Meads, R. F.; Elrod, M. J.; Molina, M. J. Temperature and pressure dependence of the
rate constant for the HO₂ + NO reaction. J. Phys. Chem. 1996, 100, 4026-4031.

C13. NO₃ * + H₂O The reaction of NO₂ with H₂O to produce OH and HONO is endothermic by about 40 kcal
mole⁻¹ (ground state reactants and products). However, absorption of light by NO₂ at wavelengths less than
718 nm can exceed the thermodynamic threshold if all the NO₂ internal energy is available for reaction.
Crowley and Carl² photolyzed NO₂/H₂O mixtures in the 430–450 nm spectral region and observed an OH
action spectrum that mimicked the absorption features of NO₂. Because the dependence of the OH signal on
photolysis laser energy was second order, they suggested that two-photon absorption of NO₂ produced O(¹D)
in their experiment which reacted with water vapor to produce OH. The energetic threshold for O(¹D)
production is 488 nm. When they performed the same experiment with 532 nm photolysis, no OH production
was observed giving an upper limit for the OH branching fraction (reactive vs. unreactive quenching) of 7 × 10⁻⁵. Li et al.³ carried out laser pump/probe experiments at photolysis wavelengths between 560 and 640 nm
in NO₂/H₂O mixtures. In contrast to Crowley and Carl, they found significant OH production in this
wavelength range. Their experiments showed a unity slope dependence of OH production on laser energy,
suggesting a one-photon process. Overtone pumping was used to check for the presence of HONO and
HNO₃, which might be the source of the observed OH radicals. The rate constant for the NO₂* + H₂O
reaction was determined to be 1.7 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ for NO₂ excitation at 565, 590 and 612.5 nm
with an overall uncertainty of ±50%. This is large enough to have a significant impact on HO₃ production in the
troposphere. Carr et al.⁴ performed a laser pump/probe experiment at 567.5 and 563.5 nm in NO₂/H₂O mixtures. These experiments failed to detect OH formation, resulting in an upper limit of 6 × 10⁻⁵ for the
reactive branching fraction.

Although this reaction is potentially important, in view of the disagreement in the published results, the Panel
makes no recommendation on this reaction until additional credible studies are carried out.
(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

(1) Carr, S.; Heard, D. E.; Blitz, M. A. Comment on "Atmospheric hydroxyl radical production from
(2) Crowley, J. N.; Carl, S. A. OH formation in the photoexcitation of NO₂ beyond the dissociation
(3) Li, S. P.; Matthews, J.; Sinha, A. Atmospheric hydroxyl radical production from electronically excited

C14. HO₂ + NO₂. Tyndall et al.¹ obtained an upper limit to the rate coefficient of 5 × 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹
based on static photolysis experiments with FTIR analysis at 296 K and 760 Torr of N₂.
(Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

(1) Tyndall, G. S.; Orlando, J. J.; Calvert, J. G. Upper limit for the rate coefficient for the reaction HO₂ +

C15. HO₂ + NO₃. The recommendation for kₜ(298 K) is based on a weighted average of the data of Hall et al.,²
Mellouki et al.,³ Becker et al.,¹ and Mellouki et al.⁴ There are insufficient data on which to base the
temperature dependence of the rate coefficient. The measured branching ratios for the OH + NO₂ + O₂

1-76
channel range from 0.57 to 1.0. The most direct measurement is derived from the study of Mellouki et al., which obtained a value of 1.0 \pm 0.3 at 298 K.

(Table: 96, Note: 96-26, Evaluated: 96-26)

C16. HO2 + NH2. There is a fairly good agreement on the value of k at 298 K between the direct study of Kurasawa and Lesclaux and the relative studies of Cheskis and Sarkisov and Pagsberg et al. The recommended value is the average of the values reported in these three studies. The identity of the products is not known; however, Kurasawa and Lesclaux suggest that the most probable reaction channels give either NH3 + O2 or HNO + H2O as products.

(Table: 83-62, Note: 83-62, Evaluated: 83-62)

(2) Kurasawa, H.; Lesclaux, R. 14th Informal Photochemistry Conference, 1980, Newport Beach, CA.

C17. N + O3. The recommended expression is derived from a least squares fit to the data of Kistiakowsky and Volpi, Becker et al., Westenberg et al., Clark and Wayne, Winkler et al., and Barnett et al. k(298 K) is derived from the Arrhenius expression and is in excellent agreement with the average of all of the room temperature determinations.

(Table: 90-1, Note: 90-1, Evaluated: 90-1)

C18. N + O3. The recommendation is based on the results of Barnett et al. The value of \(1.0 \pm 0.2 \times 10^{-16} \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}\) reported by Barnett et al. should probably be considered an upper limit rather than a determination. The low values reported by Barnett et al., Stief et al., and Garvin and Broida cast doubt on the much faster rates reported by Phillips and Schiff and Chen and Taylor.

(Table: 90-1, Note: 90-1, Evaluated: 90-1)

C19. N + NO. The recommended temperature dependence is based on the discharge flow-resonance fluorescence studies of Wennberg and Anderson, and the discharge flow-resonance fluorescence and flash photolysis-resonance fluorescence studies of Lee et al. There is relatively poor agreement between these studies and the results of Clyne and McDermid. Kistiakovksy and Volpi, Herron, Phillips and Schiff, Lin et al., Ishikawa et al., Sugawara et al., Cheah and Clyne, Husain and Slater, Clyne and Ono, Brunning and Clyne, and Jeoung et al. (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

C20. N + NO2. The recommendation for k(298 K) is from the discharge flow-resonance fluorescence study of Wennberg and Anderson. The latter study had significantly better sensitivity for N(4S) than the discharge flow-resonance fluorescence study of Clyne and Ono, which obtained a value about four times smaller. The results of Husain and Slater and Clyne and McDermid are not considered. The temperature dependence is obtained from the study of Wennberg and Anderson. In the latter study, atomic oxygen was shown to be the principal reaction product, in agreement with Clyne and McDermid. A recent study by Iwata et al. suggested an upper limit of 3.3 × 10^{-13} \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1} for the corresponding reaction involving N(2D) and N(2P) atoms (sum of all reaction channels). (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

1-78
C21. NO + O₂. The recommended values are based on the results of studies over a range of temperatures by Birks et al.,² Lippmann et al.,⁵ Ray and Watson,⁸ Michael et al.,⁶ Borders and Birks,³ and Moonen et al.¹ and the room temperature studies of Stedman and Niki¹⁰ and Bemand et al.¹ The six temperature-dependent studies were given equal weighting in the recommendation by averaging over the E/R’s from each individual data set. Following the Moonen et al. recommendation, the 200 K data point from their study has been excluded from the fit. All of the temperature dependence studies show some curvature in the Arrhenius plot at temperatures below 298 K. Increasing scatter between the data sets is evident at the lower temperatures. Clough and Thrush,⁴ Birks et al., Schurath et al.,⁹ and Michael et al. have reported individual Arrhenius parameters for the two primary reaction channels producing ground and excited molecular oxygen.

(Table: 00-3, Note: 00-3, Evaluated: 00-3) Back to Table

(1) Bemand, P. P.; Clyne, M. A. A.; Watson, R. T. Atomic resonance fluorescence and mass spectrometry for measurements of the rate constants for elementary reactions: O⁵P₂ + NO₂ → NO + O₂ and NO + O₁ → NO₂ + O₂. J. Chem. Soc. Faraday Trans. 2 1974, 70, 564-576.

C22. NO + NO₂. The recommendation is based on the studies of Hammer et al.,¹ Sander and Kircher,² and Tyndall et al.,³ which are in excellent agreement.

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

(3) Tyndall, G. S.; Orlando, J. J.; Cantrell, C. A.; Shetter, R. E.; Calvert, J. G. Rate coefficient for the reaction NO + NO₃ → 2NO₂ between 223 and 400 K. J. Phys. Chem. 1991, 95, 4381-4386.

C23. NO₂ + O₃. The recommended expression is derived from a least squares fit to the data of Davis et al.,² Graham and Johnston,³ Huie and Herron,⁴ and Cox and Coker.¹ The data of Verhees and Adema⁵ and Stedman and Niki⁶ were not considered because of systematic discrepancies with the other studies.

(Table: 90-1, Note: 90-1, Evaluated: 90-1) Back to Table

C24. NO₂ + NO₃. The existence of the reaction channel forming NO + NO₂ + O₂ has not been firmly established. However, studies of N₂O₅ thermal decomposition that monitor NO₂ (Daniels and Johnston; Johnston and Tao; Cantrell et al.¹) and NO (Hjorth et al.² and Cantrell et al.³) require reaction(s) that decompose NO₃ into NO + O₂. The rate constant from the first three studies is obtained from the product K_{eq}, where K_{eq} is the equilibrium constant for NO₂ + NO₃ → N₂O₅, while for the latter two studies the rate constant is obtained from the ratio k(k(NO + NO₃), where k(NO + NO₃) is the rate constant for the reaction NO + NO₃ → 2NO₂. Using K_{eq} and k(NO + NO₃) from this evaluation, the rate expression that best fits the data from all five studies is 4.5 × 10⁻¹⁴ exp (–1260/T) cm³ molecule⁻¹ s⁻¹ with an overall uncertainty factor of 2.

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

2. Cantrell, C. A.; Shetter, R. E.; McDaniel, A. H.; Calvert, J. G. The rate coefficient for the reaction NO₂ + NO₃ → NO + NO₂ + O₂ from 273 to 313 K. J. Geophys. Res. 1990, 95, 20531-20537.

C25. NO₃ + NO₃. The recommendation for k(298 K) is from the studies of Graham and Johnston⁵ and Biggs et al.¹

The temperature dependence is from Graham and Johnston.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

C26. NH₂ + O₂. This reaction has several product channels which are energetically possible, including NO + H₂O and HNO + OH. With the exception of the studies of Hack et al.³ and Jayanty et al.³ and several studies at high temperature, there is no evidence for a reaction. The following upper limits have been measured (cm³ molecule⁻¹ s⁻¹): 3 × 10⁻¹⁵ (Lesclaux and Demissy⁶), 8 × 10⁻¹⁵ (Pagsberg et al.), 1.5 × 10⁻¹⁷ (Cheskis and Sarkisov), 3 × 10⁻¹⁸ (Lovozovsky et al.), 1 × 10⁻¹⁷ (Patrick and Golden) and 7.7 × 10⁻¹⁸ (Michael et al.) and 6 × 10⁻²¹ (Tyndall et al.). The recommendation is based on the study of Tyndall et al., which was sensitive to reaction paths leading to the products NO₂, and N₂O. The reaction forming NH₂O₂ cannot be ruled out, but is apparently not important in the atmosphere.

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

C27. NH₂ + O₃. There is poor agreement among the recent studies of Cheskis et al.,² k(298) = 1.5 × 10⁻¹³ cm³ s⁻¹. Patrick and Golden,⁵ k(298) K = 3.25 × 10⁻¹³ cm³ s⁻¹, Hack et al.,³ ¹.₈₄ × 10⁻¹³ cm³ s⁻¹, Bulatov et al.,¹ ¹.₂ × 10⁻¹³ cm³ s⁻¹, and Kurasawa and Lesclaux,⁴ ⁰.₆₃ × 10⁻¹³ cm³ s⁻¹. The very low value of Kurasawa and Lesclaux may be due to regeneration of NH₂ from secondary reactions (see Patrick and Golden), and it is disregarded here. The discharge flow value of Hack et al. is nearly a factor of two less than the recent Patrick and Golden flash photolysis value. The large discrepancy between Bulatov et al. and Patrick and Golden eludes explanation. The recommendation is the k(298) K average of these four studies, and E/R is an average of Patrick and Golden (1151 K) with Hack et al. (710 K).

C28. NH₂ + NO. The recommended value for k at 298 K is the average of the values reported by Lesclaux et al.,¹¹ Hancock et al.,⁹ Sarkisov et al.,¹³ Stief et al.,¹⁷ Andresen et al.,¹ Whyte and Phillips,¹⁰ Dreier and Wolfrum,⁵ Atakan et al.,³ Wolf et al.,²⁰ Diau et al.,³ and Imamura and Washida.¹⁰ The results of Gordon et al.,⁷ Gehring et al.,⁶ Hack et al.,⁶ and Silver and Kolb were not considered because they lie at least 2 standard deviations from the average of the previous group. The results tend to separate into two groups. The flash photolysis results average 1.₈ × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ (except for the pulse radiolysis study of Gordon et al.), while those obtained using the discharge flow technique average 0.₉ × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹. The apparent discrepancy cannot be due simply to a pressure effect as the pressure ranges of the flash photolysis and discharge flow studies overlapped and none of the studies observed a pressure dependence for k. Whyte and Phillips have suggested that the difference may be due to decomposition of the adduct NH₃NO, which occurs on the timescale of the flow experiments, but not the flash experiments. There have been many studies of the temperature dependence but most have investigated the regime of interest to combustion and only two have gone below room temperature (Hack et al. from 209–505 K and Stief et al. from 216–480 K. Each study reported k to decrease with increasing temperature. The recommended temperature dependence is taken from a fit to the Stief et al. data at room temperature and below. The reaction proceeds along a complex potential energy surface, which results in product branching ratios that are strongly dependent on temperature. Ab initio calculations by Walch show the existence of four saddle points in the potential surface leading to N₂ + H₂O without a reaction barrier. Elimination to form OH + HN₂ can occur at any point along the surface. While results from early studies on the branching ratio for OH formation differ significantly, the most recent studies (Hall et al., Dolson, Silver and Kolb, Atakan et al., Stephens et al.,¹⁶ and Park and Lin) agree on a value around 0.1 at 300 K, with N₂ + H₂O making up the balance.

(Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table
C29. \(\text{NH}_2 + \text{NO}_2 \). There have been four studies of this reaction (Hack et al.,\(^1\) Kurasawa and Lesclaux;\(^2\) Whyte and Phillips;\(^3\) and Xiang et al.\(^4\)). There is very poor agreement among these studies both for \(k \) at 298 K (factor of 2.3) and for the temperature dependence of \(k \) (\(T^{-1.0} \) and \(T^{-1.3} \)). The recommended values of \(k \) at 298 K and the temperature dependence of \(k \) are averages of the results reported in these four studies. Hack et al. have shown that the predominant reaction channel (>95%) produces \(\text{N}_2\text{O} + \text{H}_2\text{O} \). Just as for the \(\text{NH}_2 + \text{NO} \) reaction, the data for this reaction seem to indicate a factor of two discrepancy between flow and flash techniques, although the database is much smaller.

(Table: 85-37, Note: 87-41, Evaluated: 87-41) Back to Table

(2) Kurasawa, H.; Lesclaux, R. Kinetics of the reaction of \(\text{NH}_2 \) with \(\text{NO}_2 \). Chem. Phys. Lett. 1979, 66, 602-607.
(4) Xiang, T.; Torres, M. L.; Guillard, W. A. State-selected reaction and relaxation of \(\text{NH}_2[X^3\text{B}(0,\nu_2,0)] \) radicals and \(\text{NO}_2 \). J. Chem. Phys. 1985, 83, 1623-1629.

C30. \(\text{NH} + \text{NO} \). The recommendation is derived from the room temperature results of Hansen et al.,\(^2\) Cox et al.,\(^1\) and Harrison et al.\(^3\) The temperature dependence is from Harrison et al.

(Table: 92-20, Note: 92-20) Back to Table
C31. \(\text{NH} + \text{NO}_2 \). The recommendation is derived from the temperature-dependence study of Harrison et al.\(^1\) (Table: 92-20, Note: 92-20, Evaluated: 92-20) \(\text{Back to Table}\)

C32. \(\text{O}_3 + \text{HNO}_2 \). Based on Kaiser and Japar\(^1\) and Streit et al.\(^2\) (Table: 82-57, Note: 82-57, Evaluated: 82-57) \(\text{Back to Table}\)

C33. \(\text{N}_2\text{O}_3 + \text{H}_2\text{O} \). The recommended value at 298 K is based on the studies of Tuazon et al.\(^4\) Atkinson et al.\(^1\) and Hjorth et al.\(^2\) Sverdrup et al.\(^3\) obtained an upper limit that is a factor of four smaller than that obtained in the other studies, but the higher upper limit is recommended because of the difficulty of distinguishing between homogeneous and heterogeneous processes in the experiment. See the heterogeneous chemistry section of this evaluation for additional rate data for this reaction. (Table: 85-37, Note: 90-1, Evaluated: 90-1) \(\text{Back to Table}\)

(2) Hjorth, J.; Ottobrini, G.; Cappellani, F.; Restelli, G. A Fourier transform infrared study of the rate constant of the homogeneous gas-phase reaction \(\text{N}_2\text{O}_3 + \text{H}_2\text{O} \) and determination of absolute infrared band intensities of \(\text{N}_2\text{O}_3 \) and HNO\(_3\). *J. Phys. Chem.* 1987, 91, 1565-1568, doi:10.1021/j100290a055.

C34. \(\text{N}_2(A,v) + \text{O}_2 \). Rate constants for the overall reaction for the \(v = 0, 1 \) and 2 vibrational levels of \(\text{N}_2(A) \) have been made by Dreyer et al.\(^2\), Zipf\(^9\), Piper et al.\(^7\), Iannuzzi and Kaufman\(^6\), Thomas and Kaufman\(^8\), and De Sousa et al.\(^2\). The results of these studies are in relatively good agreement. The recommended values are \((2.5 \pm 0.4), (4.0 \pm 0.6), \text{and} (4.5 \pm 0.6) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\), from the work of De Sousa et al. The only temperature dependence data are from De Sousa et al., who obtained \(k(T,v) = k(v,298 \text{ K})(T/300)^{0.35} \) for \(v = 0,1,2 \). The observation of high \(\text{N}_2\text{O}_5 \) production initially reported by Zipf\(^9\) has not been reproduced by other groups, and the branching ratio for this channel is probably less than 0.02 (Iannuzzi et al.\(^3\), Black et al.\(^1\), De Sousa et al.\(^2\), and Fraser and Piper\(^4\)). The branching ratios for the other channels are poorly established, although there is strong evidence for the formation of both \(\text{O}_3(\text{P}) \) and \(\text{O}_2(\text{B}^2\Sigma_u^\text{a}) \). (Table: 94-26, Note: 94-26, Evaluated: 94-26) \(\text{Back to Table}\)

(1) Black, G.; Jusinski, L. E.; Slanger, T. G. Rate coefficients for CS reactions with \(\text{O}_2, \text{O}_3 \), and \(\text{NO}_2 \) at 298 K. *Chem. Phys. Lett.* 1983, 102, 64-68.

(2) De Sousa, A. R.; Touzeau, M.; Petitdidier, M. Quenching reactions of metastable \(\text{N}_2(A^3\Sigma, v=0, 1, 2) \) molecules by \(\text{O}_2 \). *Chem. Phys. Lett.* 1985, 121, 423-428.

(3) Dreyer, J. W.; Perner, D.; Roy, C. R. Rate constants for the quenching of \(\text{N}_2(A^3\Sigma_u^+, v_A = 0-8) \) by CO, \(\text{CO}_2, \text{NH}_3, \text{NO}, \text{and} \text{O}_2 \). *J. Chem. Phys.* 1974, 61, 3164-3169.

(6) Iannuzzi, M. P.; Kaufman, F. Rate constants for the reaction of N$_2$(A$^3\Sigma_u^+$, v = 0, 1, and 2) with O$_2$. *J. Phys. Chem.* **1981**, *85*, 2163.

(8) Thomas, J. W.; Kaufman, F. Rate constants of the reactions of metastable N$_2$(A$^3\Sigma_u^+$) in ν = 0, 1, 2, and 3 with ground state O$_2$ and O. *J. Chem. Phys.* **1985**, *83*, 2900-2903.

(9) Zipf, E. C. A laboratory study on the formation of nitrous oxide by the reaction N$_2$(A$^3\Sigma_u^+$) + O$_2$ → N$_2$O + O. *Nature (London)* **1980**, *287*, 523-525.

C35. N$_2$(A,ν) + O$_3$. The only study is that of Bohmer and Hack,1 who obtained 298 K rate constants of 4.1 ± 1.0, 4.1 ± 1.2, 8.0 ± 2.3, and 10 ± 3.0 (10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$) for the ν = 0–3 vibrational levels of N$_2$(A), respectively. This study determined that the NO channel accounts for about 20% of the reaction products. (Table: 94-26, Note: 94-26, Evaluated: 94-26) [Back to Table](#)

1.8.3 Bibliography – NOx Reactions

Black, G.; Jusinski, L. E.; Slangar, T. G. Rate coefficients for CS reactions with O₂, O₃ and NO₂ at 298 K. *Chem. Phys. Lett.* 1983, 102, 64-68.

Cantrell, C. A.; Shetter, R. E.; McDaniel, A. H.; Calvert, J. G. The rate coefficient for the reaction NO₂ + NO₃ → NO + NO₂ + O₂ from 273 to 313 K. *J. Geophys. Res.* 1990, 95, 20531-20537.

Iannuzzi, M. P.; Kaufman, F. Rate constants for the reaction of N₂(A³Σ⁺, ν = 0, 1, and 2) with O₂. *J. Phys. Chem.* 1981, 85, 2163.

Kurasawa, H.; Lesclaux, R. 14th Informal Photochemistry Conference, 1980, Newport Beach, CA.

Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. Rate constants for the reactions OH + H₂S → H₂O + SH and OH + NH₃ → H₂O + NH₄ over the temperature range 297-427 °C. J. Chem. Phys. 1976, 64, 3237-3239.

Thomas, J. W.; Kaufman, F. Rate constants for the reactions of metastable N₂(A 5Σu⁺) in ν = 0, 1, 2, and 3 with ground state O₂ and O. J. Chem. Phys. 1985, 83, 2900-2903.

Tyndall, G. S.; Orlando, J. J.; Cantrell, C. A.; Shetter, R. E.; Calvert, J. G. Rate coefficient for the reaction \(\text{NO} + \text{NO}_3 \rightarrow 2\text{NO}_2 \) between 223 and 400 K. *J. Phys. Chem.* 1991, 95, 4381-4386.

Wagner, H. G.; Welzbacher, U.; Zellner, R. Rate measurements for reactions \(\text{H} + \text{NO}_2 \rightarrow \text{OH} + \text{NO} \) and \(\text{H} + \text{NOCl} \rightarrow \text{HCl} + \text{NO} \) by Lyman-\(\alpha \) fluorescence. *Ber. Bunsenges. Phys. Chem.* 1976, 80, 1023-1027.

Wategaonkar, S. J.; Setser, D. W. Infrared chemiluminescence studies of H atom reactions with \(\text{Cl}_2\text{O} \), \(\text{ClNO} \), \(\text{F}_2\text{O} \), \(\text{CF}_3\text{OF} \), \(\text{ClO}_2 \), \(\text{NO}_2 \), and \(\text{ClO} \). *J. Chem. Phys.* 1989, 102, 451-454.

Westenberg, A. A.; Roscoe, J. M.; deHaas, N. Rate measurements on \(\text{N} + \text{O}_2(\Delta_g) \rightarrow \text{NO} + \text{O} \) and \(\text{H} + \text{O}_2(\Delta_g) \rightarrow \text{OH} + \text{O} \). *Chem. Phys. Lett.* 1970, 7, 597-599.

Whyte, A. R.; Phillips, L. F. Rates of reaction of \(\text{NH}_2 \) with \(\text{N} \), \(\text{NO} \) and \(\text{NO}_2 \). *Chem. Phys. Lett.* 1983, 102, 451-454.

Xiang, T.; Torres, M. L.; Guillory, W. A. State-selected reaction and relaxation of \(\text{NH}_2[X^2\text{B}_1(0,0,0)] \) radicals and \(\text{NO}_2 \). *J. Chem. Phys.* 1985, 83, 1623-1629.

Zipf, E. C. A laboratory study on the formation of nitrous oxide by the reaction \(\text{N}_2(^3\Sigma_u^+) + \text{O}_2 \rightarrow \text{N}_2\text{O} + \text{O} \). *Nature (London)* 1980, 287, 523-525.
1.9 Reactions of Organic Compounds

1.9.1 Table 1D: Reactions of Organic Compounds

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K) a</th>
<th>A-Factor</th>
<th>E/R</th>
<th>k(298 K)b</th>
<th>f(298 K)c</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O + CH₃ → products</td>
<td>259–341</td>
<td>1.1×10⁻¹⁰</td>
<td>0</td>
<td>1.1×10⁻¹⁰</td>
<td>1.3</td>
<td>250</td>
<td>D 1</td>
</tr>
<tr>
<td>O + HCN → products</td>
<td>469–900</td>
<td>1.0×10⁻¹¹</td>
<td>4000</td>
<td>1.5×10⁻¹⁷</td>
<td>10</td>
<td>0</td>
<td>D 2</td>
</tr>
<tr>
<td>O + C₂H₂ → products</td>
<td>(See Note)</td>
<td>3.0×10⁻¹¹</td>
<td>1600</td>
<td>1.4×10⁻¹³</td>
<td>1.3</td>
<td>250</td>
<td>D 3</td>
</tr>
<tr>
<td>O + H₂CO → products</td>
<td>250–748</td>
<td>3.4×10⁻¹¹</td>
<td>1600</td>
<td>1.6×10⁻¹³</td>
<td>1.25</td>
<td>250</td>
<td>D 4</td>
</tr>
<tr>
<td>O + CH₃CHO → CH₃CO + OH</td>
<td>298–475</td>
<td>1.8×10⁻¹¹</td>
<td>1100</td>
<td>4.5×10⁻¹³</td>
<td>1.25</td>
<td>200</td>
<td>D 5</td>
</tr>
<tr>
<td>O₂ + HOCO → HO₂ + CO₂</td>
<td>298</td>
<td>2×10⁻¹²</td>
<td></td>
<td>(See Note)</td>
<td></td>
<td>2</td>
<td>D 6</td>
</tr>
<tr>
<td>O₃ + C₂H₂ → products</td>
<td>243–323</td>
<td>1.0×10⁻¹⁴</td>
<td>4100</td>
<td>1.0×10⁻₂⁰</td>
<td>3</td>
<td>500</td>
<td>D 7</td>
</tr>
<tr>
<td>O₃ + C₂H₄ → products</td>
<td>178–373</td>
<td>1.2×10⁻¹⁴</td>
<td>2630</td>
<td>1.7×10⁻¹⁸</td>
<td>1.25</td>
<td>100</td>
<td>D 8</td>
</tr>
<tr>
<td>O₃ + C₃H₆ → products</td>
<td>183–362</td>
<td>6.5×10⁻¹⁵</td>
<td>1900</td>
<td>1.1×10⁻¹⁷</td>
<td>1.15</td>
<td>200</td>
<td>D 9</td>
</tr>
<tr>
<td>O₃ + CH₂=C(CH₃)CHO → products</td>
<td>240–324</td>
<td>1.5×10⁻¹⁵</td>
<td>2110</td>
<td>1.3×10⁻¹⁸</td>
<td>1.1</td>
<td>200</td>
<td>D10</td>
</tr>
<tr>
<td>O₃ + CH₃C(O)CH=CH₂ → products</td>
<td>240–324</td>
<td>8.5×10⁻¹⁶</td>
<td>1520</td>
<td>5.2×10⁻¹⁸</td>
<td>1.15</td>
<td>100</td>
<td>D11</td>
</tr>
<tr>
<td>O₃ + CH₂=C(CH₃)CH=CH₂ → products</td>
<td>242–353</td>
<td>1.1×10⁻¹⁴</td>
<td>2000</td>
<td>1.3×10⁻¹⁷</td>
<td>1.1</td>
<td>200</td>
<td>D12</td>
</tr>
<tr>
<td>OH + CO → Products</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D13</td>
</tr>
<tr>
<td>OH + CH₄ → CH₃ + H₂O</td>
<td>178–2025</td>
<td>2.45×10⁻¹²</td>
<td>1775</td>
<td>6.3×10⁻¹⁵</td>
<td>1.1</td>
<td>100</td>
<td>D14</td>
</tr>
<tr>
<td>OH + ¹³CH₄ → ¹³CH₃ + H₂O</td>
<td>See Note</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D15</td>
</tr>
<tr>
<td>OH + CH₃D → products</td>
<td>249–420</td>
<td>3.5×10⁻¹²</td>
<td>1950</td>
<td>5.0×10⁻¹⁵</td>
<td>1.15</td>
<td>200</td>
<td>D16</td>
</tr>
<tr>
<td>OH + H₂CO → H₂O + HCO</td>
<td>228–2500</td>
<td>5.5×10⁻¹²</td>
<td>−125</td>
<td>8.5×10⁻¹²</td>
<td>1.15</td>
<td>50</td>
<td>D17</td>
</tr>
<tr>
<td>OH + CH₃OH → products</td>
<td>210–1350</td>
<td>2.9×10⁻¹²</td>
<td>345</td>
<td>9.1×10⁻¹³</td>
<td>1.10</td>
<td>60</td>
<td>D18</td>
</tr>
<tr>
<td>OH + CH₃OHO → products</td>
<td>203–423</td>
<td>3.8×10⁻¹²</td>
<td>−200</td>
<td>7.4×10⁻¹²</td>
<td>1.4</td>
<td>150</td>
<td>D19</td>
</tr>
<tr>
<td>OH + HC(O)OH → products</td>
<td>296–445</td>
<td>4.0×10⁻¹³</td>
<td>0</td>
<td>4.0×10⁻¹³</td>
<td>1.2</td>
<td>100</td>
<td>D20</td>
</tr>
<tr>
<td>OH + HC(O)C(O)H → products</td>
<td>210–390</td>
<td>1.15×10⁻¹¹</td>
<td>0</td>
<td>1.15×10⁻¹¹</td>
<td>1.5</td>
<td>200</td>
<td>D21</td>
</tr>
<tr>
<td>OH + HOCH₂CHO → products</td>
<td>233–362</td>
<td>1.1×10⁻¹¹</td>
<td>0</td>
<td>1.1×10⁻¹¹</td>
<td>1.2</td>
<td>200</td>
<td>D22</td>
</tr>
<tr>
<td>OH + HCN → products</td>
<td>296–563</td>
<td>1.2×10⁻¹³</td>
<td>400</td>
<td>3.1×10⁻¹⁴</td>
<td>3</td>
<td>150</td>
<td>D23</td>
</tr>
<tr>
<td>OH + C₂H₂ → products</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a: Temperature Range of Experimental Data (K) a
b: A-Factor
E/R: E/R
k(298 K)b: k(298 K)b
f(298 K)c: f(298 K)c
g: g
Note: Note
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K)</th>
<th>A-Factor</th>
<th>E/R</th>
<th>$k(298\text{ K})$</th>
<th>$f(298\text{ K})$</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH + C$_2$H$_4$ \rightarrow products</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + C$_2$H$_6$ \rightarrow H$_2$O + C$_2$H$_5$</td>
<td>226–2000</td>
<td>7.66×10^{-12}</td>
<td>1020</td>
<td>2.5×10^{-14}</td>
<td>1.07</td>
<td>50</td>
<td>D24</td>
</tr>
<tr>
<td>OH + CH$_3$CHO \rightarrow products</td>
<td>202–900</td>
<td>4.63×10^{-12}</td>
<td>-350</td>
<td>1.5×10^{-11}</td>
<td>1.05</td>
<td>20</td>
<td>D25</td>
</tr>
<tr>
<td>OH + CH$_3$CH$_2$OH \rightarrow products</td>
<td>216–498</td>
<td>3.35×10^{-12}</td>
<td>0</td>
<td>3.35×10^{-12}</td>
<td>1.05</td>
<td>20</td>
<td>D26</td>
</tr>
<tr>
<td>OH + CH$_3$C(O)OH \rightarrow products</td>
<td>229–802</td>
<td>3.15×10^{-14}</td>
<td>-920</td>
<td>6.9×10^{-13}</td>
<td>1.15</td>
<td>100</td>
<td>D27</td>
</tr>
<tr>
<td>OH + C$_2$H$_6$ \rightarrow products</td>
<td>227–2000</td>
<td>8.7×10^{-12}</td>
<td>615</td>
<td>1.1×10^{-12}</td>
<td>1.05</td>
<td>50</td>
<td>D28</td>
</tr>
<tr>
<td>OH + C$_2$H$_5$CHO \rightarrow C$_2$H$_5$CO + H$_2$O</td>
<td>240–372</td>
<td>4.9×10^{-12}</td>
<td>-405</td>
<td>1.9×10^{-11}</td>
<td>1.05</td>
<td>80</td>
<td>D29</td>
</tr>
<tr>
<td>OH + 1–C$_3$H$_7$OH \rightarrow products</td>
<td>263–372</td>
<td>4.4×10^{-12}</td>
<td>-70</td>
<td>5.6×10^{-12}</td>
<td>1.05</td>
<td>80</td>
<td>D30</td>
</tr>
<tr>
<td>OH + 2–C$_3$H$_7$OH \rightarrow products</td>
<td>240–745</td>
<td>3.0×10^{-12}</td>
<td>-180</td>
<td>5.5×10^{-12}</td>
<td>1.05</td>
<td>80</td>
<td>D31</td>
</tr>
<tr>
<td>OH + C$_2$H$_5$C(O)OH \rightarrow products</td>
<td>240–445</td>
<td>1.2×10^{-12}</td>
<td>0</td>
<td>1.2×10^{-12}</td>
<td>1.1</td>
<td>200</td>
<td>D32</td>
</tr>
<tr>
<td>OH + CH$_3$C(O)CH$_3$ \rightarrow H$_2$O + CH$_3$C(O)CH$_3$ \rightarrow CH$_3$ + CH$_3$C(O)OH</td>
<td>242–1650</td>
<td>(See Note)</td>
<td>< 2% of k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + CH$_3$C(O)CH=CH$_2$ \rightarrow products</td>
<td>234–423</td>
<td>9.6×10^{-12}</td>
<td>-360</td>
<td>3.2×10^{-11}</td>
<td>1.15</td>
<td>100</td>
<td>D34</td>
</tr>
<tr>
<td>OH + CH$_3$C(O)CH=CH$_2$ \rightarrow products</td>
<td>232–424</td>
<td>2.7×10^{-12}</td>
<td>-580</td>
<td>1.9×10^{-11}</td>
<td>1.07</td>
<td>100</td>
<td>D35</td>
</tr>
<tr>
<td>OH + CH$_2$C(C(CH$_3$)CH=CH$_2$ \rightarrow products</td>
<td>240–422</td>
<td>3.0×10^{-11}</td>
<td>-360</td>
<td>9.9×10^{-11}</td>
<td>1.1</td>
<td>50</td>
<td>D36</td>
</tr>
<tr>
<td>OH + CH$_3$CN \rightarrow products</td>
<td>256–424</td>
<td>7.8×10^{-13}</td>
<td>1050</td>
<td>2.3×10^{-14}</td>
<td>1.5</td>
<td>200</td>
<td>D37</td>
</tr>
<tr>
<td>OH+ CH$_3$ONO$_2$ \rightarrow products</td>
<td>221–423</td>
<td>8.0×10^{-13}</td>
<td>1000</td>
<td>2.8×10^{-14}</td>
<td>1.7</td>
<td>200</td>
<td>D38</td>
</tr>
<tr>
<td>OH + CH$_3$C(O)O$_2$NO$_2$ (PAN) \rightarrow products</td>
<td>273–299</td>
<td><4×10$^{-14}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH+ C$_2$H$_5$ONO$_2$ \rightarrow products</td>
<td>298–373</td>
<td>1.0×10^{-12}</td>
<td>490</td>
<td>2.0×10^{-13}</td>
<td>1.4</td>
<td>150</td>
<td>D40</td>
</tr>
<tr>
<td>OH + 1–C$_3$H$_7$ONO$_2$ \rightarrow products</td>
<td>298–368</td>
<td>7.1×10^{-13}</td>
<td>0</td>
<td>7.1×10^{-13}</td>
<td>1.5</td>
<td>200</td>
<td>D41</td>
</tr>
<tr>
<td>OH + 2–C$_3$H$_7$ONO$_2$ \rightarrow products</td>
<td>295–299</td>
<td>1.2×10^{-12}</td>
<td>320</td>
<td>4.1×10^{-13}</td>
<td>1.5</td>
<td>200</td>
<td>D42</td>
</tr>
<tr>
<td>HO$_2$ + CH$_2$O \rightarrow adduct</td>
<td>273–373</td>
<td>6.7×10^{-15}</td>
<td>-600</td>
<td>5.0×10^{-14}</td>
<td>5</td>
<td>600</td>
<td>D43</td>
</tr>
<tr>
<td>HO$_2$ + CH$_3$O \rightarrow CH$_3$OOH + O$_2$</td>
<td>228–700</td>
<td>4.1×10^{-13}</td>
<td>-750</td>
<td>5.2×10^{-12}</td>
<td>1.3</td>
<td>150</td>
<td>D44</td>
</tr>
<tr>
<td>HO$_2$ + C$_3$H$_6$O$_2$ \rightarrow C$_3$H$_6$OOH + O$_2$</td>
<td>210–480</td>
<td>7.5×10^{-13}</td>
<td>-700</td>
<td>8.0×10^{-12}</td>
<td>1.5</td>
<td>250</td>
<td>D45</td>
</tr>
<tr>
<td>HO$_2$ + CH$_3$C(O)O$_2$ \rightarrow products</td>
<td>253–403</td>
<td>4.3×10^{-13}</td>
<td>-1040</td>
<td>1.4×10^{-11}</td>
<td>2</td>
<td>500</td>
<td>D46</td>
</tr>
<tr>
<td>HO$_2$ + CH$_3$C(O)CH$_2$O$_2$ \rightarrow products</td>
<td>298</td>
<td>8.6×10^{-13}</td>
<td>-700</td>
<td>9.0×10^{-12}</td>
<td>2</td>
<td>300</td>
<td>D47</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{K})$</td>
<td>$f(298 \text{K})$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{CO} \rightarrow \text{products}$</td>
<td>295–298</td>
<td><4.0×10⁻¹⁹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D48</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{CH}_2\text{O} \rightarrow \text{products}$</td>
<td>295–298</td>
<td>5.8×10⁻¹⁶</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td>D49</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{CH}_3\text{CHO} \rightarrow \text{products}$</td>
<td>263–433</td>
<td>1.4×10⁻¹²</td>
<td>1900</td>
<td>2.4×10⁻¹⁵</td>
<td>1.3</td>
<td>300</td>
<td>D50</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{CH}_2=\text{C(CHO)} \rightarrow \text{products}$</td>
<td>296–323</td>
<td>3.4×10⁻¹⁵</td>
<td></td>
<td></td>
<td>1.25</td>
<td></td>
<td>D51</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{CH}_3\text{C(O)}\text{CH}=\text{CH}_2 \rightarrow \text{products}$</td>
<td>296–323</td>
<td><4×10⁻¹⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D52</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{CH}_2=\text{C(CH}_3\text{)}\text{CH}=\text{CH}_2 \rightarrow \text{products}$</td>
<td>251–381</td>
<td>3.5×10⁻¹²</td>
<td>450</td>
<td>7.8×10⁻¹³</td>
<td>1.25</td>
<td>100</td>
<td>D53</td>
</tr>
<tr>
<td>$\text{CH}_3 + \text{O}_2 \rightarrow \text{products}$</td>
<td>298–3000</td>
<td><3.0×10⁻¹⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D54</td>
</tr>
<tr>
<td>$\text{M} \rightarrow \text{CH}_3\text{O}_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_3 + \text{O}_3 \rightarrow \text{products}$</td>
<td>221–384</td>
<td>5.4×10⁻¹²</td>
<td>220</td>
<td>2.6×10⁻¹²</td>
<td>2</td>
<td>150</td>
<td>D55</td>
</tr>
<tr>
<td>$\text{HCO} + \text{O}_2 \rightarrow \text{CO} + \text{HO}_2$</td>
<td>200–2000</td>
<td>5.2×10⁻¹²</td>
<td>0</td>
<td>5.2×10⁻¹²</td>
<td>1.4</td>
<td>100</td>
<td>D56</td>
</tr>
<tr>
<td>$\text{CH}_2\text{OH} + \text{O}_2 \rightarrow \text{CH}_2\text{O} + \text{HO}_2$</td>
<td>215–2000</td>
<td>9.1×10⁻¹²</td>
<td>0</td>
<td>9.1×10⁻¹²</td>
<td>1.3</td>
<td>200</td>
<td>D57</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O} + \text{O}_2 \rightarrow \text{CH}_2\text{O} + \text{HO}_2$</td>
<td>296–900</td>
<td>3.9×10⁻¹⁴</td>
<td>900</td>
<td>1.9×10⁻¹⁵</td>
<td>1.5</td>
<td>300</td>
<td>D58</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O} + \text{NO} \rightarrow \text{CH}_2\text{O} + \text{HNO}$</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D59</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O} + \text{NO} \rightarrow \text{CH}_3\text{ONO}$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_3\text{O} + \text{NO}_2 \rightarrow \text{CH}_2\text{O} + \text{HONO}$</td>
<td>298–1100</td>
<td>1.1×10⁻¹¹</td>
<td>1200</td>
<td>2.0×10⁻¹³</td>
<td>5</td>
<td>600</td>
<td>D60</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O} + \text{NO}_2 \rightarrow \text{CH}_3\text{ONO}_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_3\text{OO} + \text{H}_2\text{O} \rightarrow \text{products}$</td>
<td>293–298</td>
<td><1.5×10⁻¹⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D61</td>
</tr>
<tr>
<td>$\text{CH}_3\text{OO} + (\text{H}_2\text{O})_2 \rightarrow \text{products}$</td>
<td>283–324</td>
<td>2.8×10⁻¹⁶</td>
<td>−3010</td>
<td>6.8×10⁻¹²</td>
<td>1.3</td>
<td>300</td>
<td>D62</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O}_2 + \text{O}_3 \rightarrow \text{products}$</td>
<td>298</td>
<td>2.9×10⁻¹⁶</td>
<td>1000</td>
<td>1.0×10⁻¹⁷</td>
<td>3</td>
<td>500</td>
<td>D63</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \rightarrow \text{products}$</td>
<td>248–700</td>
<td>9.5×10⁻¹⁴</td>
<td>−390</td>
<td>3.5×10⁻¹³</td>
<td>1.2</td>
<td>100</td>
<td>D64</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O}_2 + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2$</td>
<td>193–429</td>
<td>2.8×10⁻¹²</td>
<td>−300</td>
<td>7.7×10⁻¹²</td>
<td>1.15</td>
<td>100</td>
<td>D65</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O}_2 + \text{NO}_2 \rightarrow \text{CH}_3\text{O}_2\text{NO}_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_3\text{O}_2 + \text{CH}_3\text{C(O)}\text{O}_2 \rightarrow \text{products}$</td>
<td>253–368</td>
<td>2.0×10⁻¹²</td>
<td>−500</td>
<td>1.1×10⁻¹¹</td>
<td>1.5</td>
<td>250</td>
<td>D66</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O}_2 + \text{CH}_3\text{C(O)}\text{CH}_2\text{O} \rightarrow \text{products}$</td>
<td>298</td>
<td>7.5×10⁻¹³</td>
<td>−500</td>
<td>4.0×10⁻¹²</td>
<td>2</td>
<td>300</td>
<td>D67</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>(k(298 \text{K})^b)</td>
<td>(f(298 \text{K})^c)</td>
<td>(g)</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_5 + \text{O}_2 \to \text{C}_2\text{H}_4 + \text{HO}_2)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>D68</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_5 + \text{O}_2 \to \text{C}_2\text{H}_6\text{O}_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_5\text{O} + \text{O}_2 \to \text{CH}_3\text{CHO} + \text{HO}_2)</td>
<td>225–411</td>
<td>6.3×10^{-14}</td>
<td>550</td>
<td>1.0×10^{-14}</td>
<td>1.5</td>
<td>200</td>
<td>D69</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_5\text{O} + \text{NO} \to \text{products})</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_5\text{O} + \text{NO}_2 \to \text{products})</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>syn-(\text{CH}_3\text{CHO} + \text{H}_2\text{O} \to \text{products})</td>
<td>298</td>
<td></td>
<td></td>
<td><2×10^{-16}</td>
<td></td>
<td></td>
<td>D70</td>
</tr>
<tr>
<td>anti-(\text{CH}_3\text{CHO} + \text{H}_2\text{O} \to \text{products})</td>
<td>298</td>
<td></td>
<td></td>
<td>2.4×10^{-14}</td>
<td>1.3</td>
<td></td>
<td>D70</td>
</tr>
<tr>
<td>syn-(\text{CH}_3\text{CHO} + (\text{H}_2\text{O})_2 \to \text{products})</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-(\text{CH}_3\text{CHO} + (\text{H}_2\text{O})_2 \to \text{products})</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_5\text{O}_2 + \text{C}_2\text{H}_5\text{O}_2 \to \text{products})</td>
<td>228–460</td>
<td>6.8×10^{-14}</td>
<td>0</td>
<td>6.8×10^{-14}</td>
<td>2</td>
<td>300</td>
<td>D71</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_5\text{O}_2 + \text{NO} \to \text{products})</td>
<td>220–355</td>
<td>2.6×10^{-12}</td>
<td>−365</td>
<td>8.7×10^{-12}</td>
<td>1.2</td>
<td>150</td>
<td>D72</td>
</tr>
<tr>
<td>(\text{CH}_3\text{C}(\text{O})\text{O}_2 + \text{CH}_3\text{C}(\text{O})\text{O}_2 \to \text{products})</td>
<td>253–368</td>
<td>2.9×10^{-12}</td>
<td>−500</td>
<td>1.5×10^{-11}</td>
<td>1.5</td>
<td>150</td>
<td>D73</td>
</tr>
<tr>
<td>(\text{CH}_3\text{C}(\text{O})\text{O}_2 + \text{NO} \to \text{products})</td>
<td>218–402</td>
<td>8.1×10^{-12}</td>
<td>−270</td>
<td>2.0×10^{-11}</td>
<td>1.5</td>
<td>100</td>
<td>D74</td>
</tr>
<tr>
<td>(\text{CH}_3\text{C}(\text{O})\text{O}_2 + \text{NO}_2 \to \text{products})</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{C}(\text{O})\text{CH}_2\text{O}_2 + \text{NO} \to \text{products})</td>
<td>298</td>
<td>2.9×10^{-12}</td>
<td>−300</td>
<td>8.0×10^{-12}</td>
<td>1.5</td>
<td>300</td>
<td>D75</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6. Italicized blue entries denote estimates.

- Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.
- Units are \(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \).
- \(f(298 \text{K}) \) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

\[
f(T) = f(298 \text{K}) \exp \left[g \left(\frac{1}{T} - \frac{1}{298} \right) \right]
\]

Note that the exponent is an absolute value.
1.9.2 Notes: Reactions of Organic Compounds

D1. O + CH₂. The recommended k(298 K) is the weighted average of the measurements by Washida and Bayes,³ Washida,² and Plumb and Ryan.¹ The E/R value is based on the results of Washida and Bayes,³ who found k to be independent of temperature between 259 and 341 K. (Table: 83-62, Note: 83-62, Evaluated 83-62) Back to Table

D2. O + HCN. Because it is a very slow reaction, there are no studies of this reaction below 450 K. Davies and Thrush¹ studied this reaction between 469 and 574 K while Perry and Melius³ studied it between 540 and 900 K. Results of Perry and Melius are in agreement with those of Davies and Thrush. Our recommendation is based on these two studies. The higher-temperature (T>1000 K) combustion-related studies of Roth et al.,⁴ Szekely et al.,³ and Louge and Hanson² have not been considered. This reaction has two reaction pathways: O + HCN → H + NCO, ΔH = −2 kcal/mol (k₃); and O + HCN → CO + NH (k₆), ΔH = −36 kcal/mol. The branching ratio $k₃/k₆$ for these two channels has been measured to be ~2 at T = 860 K. The branching ratio at lower temperatures, which is likely to vary significantly with temperature, is unknown. (Table: 87-41, Note: 92-20, Evaluated 92-20) Back to Table
(3) Perry, R. A.; Melius, C. F. In Twentieth Symposium (International) on Combustion; The Combustion Institute, 1984; pp 639-646.

D3. O + C₂H₂. The value at 298 K is an average of ten measurements (Arrington et al.,² Sullivan and Warnecke,⁸ Brown and Thrush,³ Hoyermann et al.,⁴,⁵ Westenberg and deHaas,¹⁰ James and Glass,⁶ Stuhl and Niki,⁷ Westenberg and deHaas,¹¹ and Aleksandrov et al.¹). There is reasonably good agreement among these studies. Arrington et al.² did not observe a temperature dependence, an observation that was later shown to be erroneous by Westenberg and deHaas.¹⁰ Westenberg and deHaas,¹⁰ Hoyermann et al.,⁴ and Aleksandrov et al.¹ are the only authors who have measured the temperature dependence below 500 K. Westenberg and deHaas observed a curved Arrhenius plot at temperatures higher than 450 K. In the range 194–450 K, Arrhenius behavior provides an adequate description and the E/R obtained by a fit of the data from these three groups in this temperature range is recommended. The A-factor was calculated to reproduce k(298 K). This reaction can have two sets of products, i.e., C₂H₂ + H or CH₂ + CO. Under molecular beam conditions C₂H₂ has been shown to be the major product. The study by Aleksandrov et al. using a discharge flow-resonance fluorescence method (under undefined pressure conditions) indicates that the C₂H₂ + H channel contributes no more than 7% to the net reaction at 298 K, while a similar study by Vinckier et al.⁹ suggests that both CH₂ and C₂H₂ are formed. (Table: 82-57, Note: 82-57, Evaluated 82-57) Back to Table
(7) Stuhl, F.; Niki, H. Determination of rate constants for reactions of O atoms with C\textsubscript{2}H\textsubscript{2}, C\textsubscript{2}D\textsubscript{2}, C\textsubscript{2}H\textsubscript{4}, and C\textsubscript{2}H\textsubscript{6} using a pulse vacuum-UV photolysis-chemiluminescence method. J. Chem. Phys. 1971, 55, 3954-3957.

(11) Westenberg, A. A.; deHaas, N. A flash photolysis-resonance fluorescence study of the O + C\textsubscript{2}H\textsubscript{2} and O + C\textsubscript{2}H\textsubscript{5}Cl reactions. J. Chem. Phys. 1977, 66, 4900-4905.

D4. O + H\textsubscript{2}CO. The recommended values for A, E/R and k(298 K) are the averages of those determined by Klemm7 (250 to 498 K) using flash photolysis-resonance fluorescence, by Klemm et al.4 (298 to 748 K) using discharge flow-resonance fluorescence, and Chang and Barker1 (296 to 436 K) using discharge flow-mass spectrometry techniques. All three studies are in good agreement. The k(298 K) value is also consistent with the results of Niki et al.,6 Herron and Penzhorn,2 and Mack and Thrush.5 Although the mechanism for O + H\textsubscript{2}CO has been considered to be the abstraction reaction yielding OH + HCO, Chang and Barker suggest that an additional channel yielding H + HCO may be occurring to the extent of 30% of the total reaction. This conclusion is based on an observation of CO\textsubscript{2} as a product of the reaction under conditions where reactions such as O + HCO \rightarrow H + CO\textsubscript{2} and O + HCO \rightarrow OH + CO apparently do not occur. This interesting suggestion needs independent confirmation.

(Table: 82-57, Note: 82-57, Evaluated 82-57) Back to Table

(4) Klemm, R. B.; Skolnik, E. G.; Michael, J. V. Absolute rate parameters for the reaction of O(^3\text{P}) with H\textsubscript{2}CO over the temperature range 250 to 750 K. J. Chem. Phys. 1980, 72, 1256-1264.

D5. O + CH\textsubscript{3}CHO. The recommended k(298 K) is the average of three measurements by Cadle and Powers,2 Mack and Thrush,3 and Singleton et al.,4 which are in good agreement. Cadle and Powers and Singleton et al. studied this reaction as a function of temperature between 298 and 475 K and obtained very similar Arrhenius parameters. The recommended E/R value was obtained by considering both sets of data. This reaction is known to proceed via H-atom abstraction (Mack and Thrush,3 Avery and Cvetanovic,4 and Singleton et al.4).

(Table: 87-41, Note: 87-41, Evaluated 87-41) Back to Table

D6. O\textsubscript{2} + HOCO. HOCO is produced by the association of OH with CO (See Table 2). The rate coefficient for the reaction of O\textsubscript{2} with HOCO has been measured by Petty et al.2 and Nolte et al.1 and the recommendation is based on these measurements. There are no reports on the temperature dependence of this reaction; however, the value at 298 K would be appropriate for all atmospheric conditions. The products of this reaction are HO\textsubscript{2}, as shown by Nolte et al., and CO\textsubscript{2}, as seen in numerous previous studies where it has been known to be the product of the reaction of OH with CO in air.
D8. \(\text{O}_3 + \text{C}_2\text{H}_4 \). The rate constant of this reaction is well established over a large temperature range, 178 to 360 K. The present recommendation is based on the data of DeMore,a Stedman et al.,b Herron and Huie,c Japar et al.,d,e Toby et al.,f Su et al.,g Adeniji et al.,h Kan et al.,i Atkinson et al.,j and Bahta et al.k (Table: 90-1, Note: 90-1, Evaluated 90-1) \textbf{Back to Table}

D9. \(\text{O}_3 + \text{C}_2\text{H}_4 \). The rate constant of this reaction is well established over the temperature range 185 to 360 K. The present recommendation is based largely on the data of Herron and Huie,\(^5\) in the temperature range 235–362 K. (Note that a typographical error in Table 2 of that paper improperly lists the lowest temperature as 250 K, rather than the correct value, 235 K.) The recommended Arrhenius expression agrees within 25% with the low temperature (185–195 K) data of DeMore,\(^4\) and is consistent with, but slightly higher (about 10%) than the data of Treacy et al.,\(^1\) and slightly lower (about 40%) than the data of Adeniji et al.\(^1\) in the temperature range 260–294 K. Room temperature measurements of Cox and Penkett,\(^3\) Stedman et al.,\(^9\) Japar et al.,\(^6,7\) and Atkinson et al.\(^5\) and Neeb and Moorgat\(^4\) are in good agreement (10% or better) with the recommendation.

(Table: 06-2, Note: 06-2, Evaluated 06-2) Back to Table

D10. \(\text{O}_3 + \text{CH}_2=\text{C(}\text{CH}_3\text{)}\text{CHO} \). The recommended E/R is based on the single temperature dependence study by Treacy et al.\(^7\) The recommended 298 K rate constant is obtained from an unweighted fit to \(\ln k = \ln A – E/RT \) of the ambient temperature results of Atkinson et al.,\(^2\) Grosjean and Grosjean,\(^4\) Kamens et al.,\(^5\) Neeb et al.,\(^6\) and Treacy et al.\(^7\) in conjunction with the recommended E/R. While OH was scavenged only in the studies of Grosjean and Grosjean and Neeb et al., the studies where OH was not scavenged report results that agree well with the studies where OH was scavenged. By monitoring the production of cyclohexanone + cyclohexanol under conditions where OH was >95% scavenged by cyclohexane, Aschmann et al.\(^1\) report an upper limit OH yield of 20\(^{±10}\)–13 percent. Ozone + alkene reactions proceed via initial formation of a primary oxide that decomposes to a carbonyl compound plus a Criegee biradical with two different carbonyl/Criegee pairs produced (depending on which O–O bond cleaves); the Criegee biradical/carbonyl pairs produced in this case are \(\text{CH}_3\text{C(O)}\text{CHO} \) (methyl glyoxal) + \(\cdot \text{CH}_2\text{O} \cdot \) and \(\text{H}_2\text{CO} + \text{CH}_3\text{C(}\text{O})\text{OO} \cdot \text{CHO} \).

Grosjean et al.\(^3\) report carbonyl product yields to be 58% \(\text{CH}_3\text{C(O)}\text{CHO} \) and 12% \(\text{H}_2\text{CO}. \)

(New Entry) Back to Table

D11. \(\text{O}_3 + \text{CH}_2\text{C(O)}(\text{O})\text{CH} = \text{CH}_2\). The recommended E/R is based on the single temperature dependence study by Treacy et al.\(^8\) The recommended 298 K rate constant is obtained from an unweighted fit to \(ln \ k = ln \ A – E/RT\) of the ambient temperature results of Atkinson et al.,\(^2\) Grosjean et al.,\(^3\) Grosjean and Grosjean,\(^4\) Kamens et al.,\(^5\) Neeb et al.,\(^6\) and Treacy et al.\(^8\) in conjunction with the recommended E/R. While OH was scavenged only in the more recent studies of Grosjean et al., Grosjean and Grosjean, and Neeb et al., the studies where OH was not scavenged report results that agree well with the studies where OH was scavenged. The yield of OH is reported to be 0.16 ± 0.08 and 0.16 ± 0.05 by Aschmann et al.\(^1\) and Paulson et al.,\(^7\) respectively.

Ozone + alkene reactions proceed via formation of a primary ozonide that decomposes to a carbonyl compound plus a Criegee biradical with two different carbonyl/Criegee pairs produced (depending on which O–O bond cleaves); the Criegee biradical/carbonyl pairs produced in this case are \(\text{CH}_2\text{C(O)}(\text{O})\text{CHO}\) (methyl glyoxal) + \(\cdot\text{CH}_2\text{O}\text{O}\) and \(\text{H}_2\text{CO} + \text{CH}_2\text{C(O)}\text{C}\text{HOO}\). Grosjean et al.\(^3\) report carbonyl product yields to be 87% \(\text{CH}_2\text{C(O)}(\text{O})\text{CHO}\) and 5% \(\text{H}_2\text{CO}\); these investigators also report a 5% yield of \(\text{CH}_2\text{C(O)}(\text{O})\text{O}\) (pyruvic acid).

(New Entry) Back to Table

D12. \(\text{O}_3 + \text{CH}_2\text{C}(\text{CH}_2)\text{CH} = \text{CH}_2\). The recommended E/R is based on a single temperature-dependent rate constants reported by Kamagano and Hites\(^13\) to \(ln \ k = ln \ A – E/RT\), while the recommended A-factor is based on the ambient temperature rate constants reported by Greene and Atkinson,\(^6\) Grosjean et al.,\(^7\) Grosjean and Grosjean,\(^8\) Neeb and Moortgat,\(^16\) Klawatsch-Carrasco et al.,\(^14\) and Karl et al.\(^12\). In all of the above studies, measures were taken to prevent secondary consumption of reactants by OH radicals, which are known to be generated in ozone + alkene reactions. Results from early studies by Adeniji et al.,\(^1\) Atkinson et al.,\(^3\) and Treacy et al.,\(^19\) while in reasonable agreement with other studies, are not used to arrive at the recommendation because OH radicals were not scavenged in those studies. The Arrhenius parameters reported by Azviano and Aria are not accepted because of inconsistencies in their paper that the authors were unable to resolve (private communication from Aria). Donahue et al.\(^5\) have directly detected OH as a product of the \(\text{O}_3 + \text{isoprene reaction}, and OH yields have been reported in a number of studies where OH production was monitored indirectly by following the loss of an OH scavenger or the production of a product of an OH + scavenger reaction.\(^1,9,10,15-18\) At room temperature and atmospheric pressure of air, reported OH yields from seemingly careful studies range from 0.19 to 0.53 with an average value of 0.32. The chemical pathways leading to OH production are too complex to discuss in this note; the interested reader is referred to a review article by Johnson and Marston.\(^11\) As discussed by Johnson and Marston, the reaction proceeds via initial formation of a primary ozonide that decomposes to a carbonyl compound plus a Criegee biradical with several different carbonyl/Criegee pairs produced; the Criegee biradicals can react unimolecularly from a
chemically activated state or be collisionally deactivated and live long enough to undergo bimolecular reactions under atmospheric conditions.

(Table: 15-10, Note: 15-10, Evaluated 15-10) Back to Table

D13. OH + CO. See note for the OH + CO reaction in Section 2. Back to Table

D14. OH + CH$_4$. This reaction has been extensively studied. The most recent data are from Vaghjiani and Ravishankara, Saunders et al., Finlayson-Pitts et al., Dunlop and Tully, Mellouki et al., and Gierczak et al., who measured the absolute rate coefficients for this reaction using discharge flow and pulsed photolysis techniques. Sharkey and Smith have reported a high value (7.7 × 10$^{-15}$ cm3 molecule$^{-1}$ s$^{-1}$) for k(298 K), and this value has not been considered here. The current recommendation for k(298 K) was derived from the results of Vaghjiani and Ravishankara, Dunlop and Tully, Saunders et al., Mellouki et al., Finlayson-Pitts et al., and Gierczak et al. The temperature dependence of this rate coefficient has been measured by Vaghjiani and Ravishankara (223–420 K), Dunlop and Tully (above 298 K), Finlayson-Pitts et al. (278–378 K), and
Mellouki et al. (233–343 K). Gierczak et al. have extended the measurements of \(k \) to 195 K, and it appears that the rate coefficient does not strictly follow an Arrhenius expression. The recommended \(E/R \) was obtained from these results using data below 300 K.

A more accurate representation of the rate constant as a function of temperature is obtained by using the three-parameter expression: \(k(T) = 2.80 \times 10^{-14} T^{0.67} \exp(-1575/T) \) cm³ molecule⁻¹ s⁻¹. This three-parameter fit may be preferred for lower stratosphere and upper troposphere calculations. A report on this rate coefficient by Bonard et al.¹ agrees very well with the value recommended here.

(Table: 97-4, Note: 06-2, Evaluated 06-2) Back to Table

D15. \(\text{OH} + ^{13}\text{CH}_4 \). This reaction has been studied relative to the \(\text{OH} + \text{CH}_4 \) reaction, since the ratio of the rate coefficients is the quantity needed for quantifying methane sources. Rust and Stevens,³ Davidson et al.,² and Cantrell et al.¹ have measured \(k_{12}/k_{13} \) at 298 K to be 1.003, 1.010, and 1.0055, respectively. Cantrell et al.’s data supersedes the results of Davidson et al. The recommended value of 1.005 ± 0.002 is based on the results of Rust and Stevens and Cantrell et al. Cantrell et al. find \(k_{12}/k_{13} \) to be independent of temperature between 273 and 353 K.

(Table: 92-20, Note: 92-20, Evaluated 92-20) Back to Table

D16. \(\text{OH} + \text{CH}_3\text{D} \). The rate coefficient for this reaction has been measured between 249 and 422 K using a pulsed laser photolysis-laser induced fluorescence system by Gierczak et al.³ The recommended values of \(k(298 \text{ K}) \) and \(E/R \) are from this study. The recommendation agrees within about 10% at 298 K with the rate constant measured by DeMore¹ in a relative rate study over the temperature range 298–360 K. The difference, while small in an absolute sense, is nevertheless significant for the isotopic fractionation of atmospheric \(\text{CH}_3\text{D} \) and \(\text{CH}_4 \) by OH. An earlier result of Gordon and Mulac⁴ at 416 K is in good agreement with the extrapolated data of both of these determinations. However, that measurement has not been explicitly included in this recommendation because the experiments were carried out at higher temperatures and therefore are less applicable to the atmosphere. The rate coefficients for the reactions of OH with other deuterated methanes have also been measured (Dunlop and Tully,² Gierczak et al.,³ Gordon and Mulac⁴).

(Table: 94-26, Note: 94-26, Evaluated 94-26) Back to Table

D17. OH + H₂CO. The value for k(298 K) is the average of those determined by Niki et al.,⁶ Atkinson and Pitts,¹ Stief et al.,⁶ Yetter et al.,¹¹ Temps and Wagner,¹⁰ and Sivakumaran et al.⁷ The value reported by Morris and Niki³ is expected to be superseded by the later report of Niki et al.,⁶ although it agrees within the stated uncertainty. There are two relative values that are not in agreement with the recommendations. The value of Niki et al.⁴ relative to the OH + C₂H₄ reaction is higher, while the value of Smith⁸ relative to the OH + OH reaction is lower. The later report of Niki et al.⁶ is assumed to supersede the earlier rate constant. The rate coefficients reported by Zabarnick et al.¹² at and above 298 K are consistently higher than those recommended here, but overlap within the combined uncertainty. The temperature dependence was calculated from the data of Stief et al. obtained below 298 K and from the data of Sivakumaran et al. below 330 K after normalizing the results of both studies to k(298 K) recommended here. There is a clear indication that the Arrhenius plot of this rate coefficient is curved with a positive activation energy at temperatures above ~330 K. It is therefore important that the recommended rate coefficients be used only in the 200-300 K temperature range. The abstraction reaction shown in the table is the major channel (Temps and Wagner,¹⁰ Niki et al.³); other channels may contribute to a small extent (Horowitz et al.²). There is no indication that this rate coefficient is pressure dependent at atmospheric pressures and temperatures. (Table: 06-2, Note: 06-2, Evaluated 06-2) Back to Table

(8) Smith, R. H. Rate constant and activation energy for the gaseous reaction between hydroxyl and formaldehyde. *Int. J. Chem. Kinet.* 1978, 10, 519-528.

D18. OH + CH₃OH. The recommended value for k(298 K) is the average of direct studies by Overend and Paraskevopoulos,¹⁰ Ravishankara and Davis,¹² Hagele et al.,¹ Meier et al.,³ McCaulley et al.,⁶ Wallington and Kurylo,¹⁴ Hess and Tully,⁵ Jimenez et al.,⁶ and Dillon et al.³ When these measurements were not at exactly 298 K, their values were recalculated for 298 K by using the E/R recommended here. Indirect measurements by Campbell et al.,² Barnes et al.,¹ Tuazon et al.,¹¹ Picquet et al.,¹¹ and Klopffer et al.⁷ are in good agreement with the recommended value. The temperature dependence of k has been measured by Hagele et al., Meier et al., Greenhill and O’Grady, Wallington and Kurylo, Hess and Tully, Jimenez et al., and Crowley et al. The recommended value of E/R was calculated using the results obtained at temperature below 330 K by Wallington and Kurylo, Meier et al., Hess and Tully, Jimenez et al., and Crowley et al. The results of Greenhill and O’Grady are in reasonable agreement with the recommendation at and above 298 K, but are clearly lower than the recommendation below 298 K. Hess and Tully report a curved Arrhenius plot over the temperature range 298–1000 K, while Meier et al. did not observe such a curvature. This reaction has two pathways: abstraction of the H-atom from the methyl group to give CH₂OH + H₂O or from the OH group to give CH₄O + H₂O. The results of Hagele et al., Meier et al., and Hess and Tully suggest that H abstraction from the methyl group to give CH₂OH + H₂O is the dominant channel below room temperature. At 298 K, for example, the branching ratio for the formation of CH₂OH is about 0.85 and increases as the temperature decreases. In the Earth’s atmosphere, the eventual products of OH + CH₃OH reaction are the same for both reaction channels: CH₂O and HO₂.

D19. OH + CH₃OOH. The recommended value for k(298 K) is the average of the rate coefficients measured by Niki et al.¹ and Vaghjiani and Ravishankara,² which differ by nearly a factor of two. Niki et al. measured the rate coefficient relative to that for OH with C₂H₅ (= 8.0 × 10⁻¹² cm³ molecule⁻¹ s⁻¹) by monitoring CH₃OOH disappearance using an FTIR system. Vaghjiani and Ravishankara monitored the disappearance of OH, O₃, and ¹⁸OH in excess CH₃OOH in a pulsed photolysis-LIF system. They measured k between 203 and 423 K and report a negative activation energy with E/R = -190 K; the recommended E/R is based on their results. The reaction of OH with CH₃OOH occurs via abstraction of H from the oxygen end to produce the CH₃O.
radical and from the CH₃ group to produce the CH₂OOH radical, as originally proposed by Niki et al. and confirmed by Vaghjiani and Ravishankara. CH₂OOH is unstable and falls apart to CH₂O and OH within a few microseconds. The possible reaction of CH₂OOH with O₂ is unimportant under atmospheric conditions (Vaghjiani and Ravishankara). The recommended branching ratios are,

\[\text{OH + CH₂OOH} \rightarrow \text{CH₂O} + \text{H₂O} \] (a) 70%

\[\text{OH + CH₂OOH} \rightarrow \text{CH₂OOH} + \text{H₂O} \] (b) 30%

(from Vaghjiani and Ravishankara) and are nearly independent of temperature.

(Table: 02-25, Note: 02-25, Evaluated 02-25) Back to Table

D20. \text{OH + HC(O)OH}. The recommended value of \(k(298 \text{ K}) \) is the average of those measured by Zetzsch and Stuhl, Wine et al., Jolly et al., Dagaut et al., and Singleton et al. The temperature dependence of \(k \) has been studied by Wine et al. and by Singleton et al., who observed \(k \) to be essentially independent of \(T \). Wine et al. found the rate coefficient for the OH + HC(O)OH reaction to be the same as that for OH + DC(O)OH reaction. Jolly et al. found the formic acid dimer to be unreactive toward OH, i.e., abstraction of the H atom attached to C was not the major pathway for the reaction. A comprehensive study of Singleton et al. showed that reactivity of HC(O)OH is essentially the same as that of DC(O)OH, but DC(O)OD reacts much slower than HC(O)OH and DC(O)OH. These observations show that the reaction proceeds via abstraction of the acidic H atom. Wine et al. and Jolly et al. also found that H atoms are produced in the reaction, which is consistent with the formation of HC(O)O, which would rapidly fall apart to CO₂ and H₂O. The products of this reaction would be mostly HC(O)OH and H₂O. The rate of HC(O)O in the atmosphere will be to give HO₂ either directly via reaction with O₂ or via thermal decomposition to H atom, which adds to O₂.

Wine et al. have suggested that, in the atmosphere, the formic acid could be hydrogen bonded to a water molecule and its reactivity with OH could be lowered because the hydrogen bonded water would obstruct the abstraction of the H atom. This suggestion needs to be checked.

(Table: 02-25, Note: 02-25, Evaluated 02-25) Back to Table

D21. \text{OH + HC(O)C(O)H}. The only available data are from the 298 K relative rate study of Plum et al. and the results are recommended here. Because the rate coefficient is so large, it is unlikely to have a substantial temperature dependence and an E/R of zero is recommended. This reaction is expected to proceed via H-abstraction to yield H₂O, CO and HCO.

(Table: 06-2, Note: 06-2, Evaluated 06-2) Back to Table

D22. \text{OH + HOCH₂CHO}. The available data are from relative rate studies at 298 K (Bacher et al., Niki et al., and Mellouki et al.2). The recommendation is based on all these studies, which are in good agreement. Because the rate coefficient is very large, it is unlikely to have a substantial temperature dependence.
Therefore, we recommend an E/R of zero. There are three possible sites for H-abstraction: the alcohol group, the CH₂ group and the carbonyl group. Of these, the likely pathways for abstraction are from the latter two sites:

\[\text{OH} + \text{HOCH}_2\text{CHO} \rightarrow \text{H}_2\text{O} + \text{HOC(CHO)} \quad (a) \]
\[\text{OH} + \text{HOCH}_2\text{CHO} \rightarrow \text{H}_2\text{O} + \text{HOCH}_2\text{CO} \quad (b) \]

Niki et al. have shown that the branching ratio for channel (b) is 0.8 and for channel (a) is 0.2. It is unlikely that the branching ratio changes significantly with temperature.

(Table: 06-2, Note: 06-2, Evaluated 06-2) Back to Table

D23. \textbf{OH + HCN}. This reaction is pressure dependent. The recommended value is the high pressure limit measured by Fritz et al.3 using a laser photolysis-resonance fluorescence apparatus. Phillips5 studied this reaction using a discharge flow apparatus at low pressures and found the rate coefficient to have reached the high pressure limit at ~10 Torr at 298 K. Fritz et al.’s results contradict this finding. They agree with Phillips’ measured value, within a factor of two, at 7 Torr, but they find k to increase further with pressure. Bunkan et al.4 report the 12C/13C and 14N/15N kinetic isotope effects at $T = 298$ K and $P = 1.00$ atm to be 0.9733 ± 0.0012 and 0.9840 ± 0.0016, respectively (uncertainties are 1σ). The reaction mechanism has been investigated theoretically by Galano5 and Bunkan et al. They find that OH adds (over a barrier of ~16 kJ mol-1) to the carbon atom in HCN. It is predicted theoretically that, under atmospheric conditions, HC(OH)N reacts with O\textsubscript{3} to generate nitroso formaldehyde (HC(O)NO) and recycle OH.13 The rate constant for the HC(O)OH + O\textsubscript{3} reaction at $T = 298$ K and $P = 1.00$ atm is evaluated theoretically to be 9×10^{-16} cm3 molecule-1 s-1.1

(Table: 83-62, Note: 15-10, Evaluated 83-62) Back to Table

D24. \textbf{OH + C\textsubscript{2}H\textsubscript{6}}. There are numerous studies of this reaction at 298 K (Greiner,11 Horne and Norrish,14 Greiner,12 Overend et al.,21 Howard and Evenson,15 Leu,18 Lee and Tang,17 Tully et al.,29 Jeong et al.,16 Smith et al.,25 Baulch et al.,2 Schmidt et al.,23 Edney et al.,9 Tully et al.,28 Nielsen et al.,20 Stachnik et al.,26 Wallington et al.,30 Bourmada et al.,3 Zabarnick et al.,31 Abbott et al.,1 Schiffman et al.,22 Dobe et al.,7 Sharkey and Smith,24 Finlayson-Pitts,10 Talukdar et al.,27 Crowley et al.,6 Cavalli et al.,4 Donahue et al.,8 Clarke et al.,5 Heathfield et al.,13 and Li et al.19). The recommended value for $k(298 \text{K})$ is an average of the majority of the results reported at room temperature (Overend et al.,21 Howard and Evenson,15 Leu,18 Lee and Tang,17 Tully et al.,29 Smith et al.,25 Baulch et al.,2 Schmidt et al.,23 Tully et al.,28 Stachnik et al.,26 Wallington et al.,30 Bourmada et al.,3 Zabarnick et al.,31 Abbott et al.,1 Schiffman et al.,22 Dobe et al.,7 Sharkey and Smith,24 Finlayson-Pitts,10 Talukdar et al.,27 Crowley et al.,6 Cavalli et al.,4 Donohue et al.,8 Clarke et al.,5 Heathfield et al.,13 and Li et al.19). The room temperature studies not used were either of lower precision (as evidenced by data scatter) or yielded somewhat higher rate constants.

The temperature dependence of the rate coefficient below 298 K has been measured by Jeong et al.16 Stachnik et al.,26 Smith et al.,25 Wallington et al.,30 Talukdar et al.,27 Crowley et al.,6 and Clarke et al.5 The last six of these studies are in good agreement (the data from Jeong et al.16 exhibiting noticeable upward curvature below 298 K). Thus the recommended value for E/R is derived from a combined fit to the data below 300 K from the aforementioned six studies after each data set was normalized to the recommended value for $k(298 \text{K})$.

1-105

D25. **OH + CH₃CHO.** The recommended values for k(298 K) and E/R come from a combined fit to the data of Sivakumaran and Crowley¹³ and Zhu et al.²¹ at T ≤ 300 K. There are 14 other studies of this reaction that provide the room temperature rate constant (Morris et al.,⁹ Niki et al.,¹⁰ Atkinson and Pitts,¹ Kerr and Sheppard,⁷ Semmes et al.,¹² Michael et al.,⁸ Dobe et al.,⁶ Balestra-Garcia et al.,² Scollard et al.,¹¹ Tyndall et al.,¹⁵ Taylor et al.,¹⁴ D’Anna et al.,⁵ Wang et al.,²⁰ and Taylor et al.¹⁵). The average value of k(298 K) from all of these studies is identical to that derived from the above fit. The study by Michael et al.⁸ also provided data down to 244 K. While these data are far more scattered than those from Sivakumaran and Crowley¹³ and Zhu et al.,²¹ they are encompassed by the 95% confidence limits of the recommendation.

Measurements of H₂O formation yields were conducted by Wang et al.,²⁰ Butkovskaya et al.,³ and Vandenberk and Peet.¹⁸ These investigators reported values of ~100%, (97.7 ± 4.7)%, and (89 ± 6)%, respectively at about room temperature. Butkovskaya et al.³ report identical yields at both 298 K and 248 K. Tyndall et al.¹⁶ concluded that more than 90% of the reaction proceeds via H-atom abstraction based on no measurable detection of acidic acid formation. Cameron et al.² detected CH₃ and CH₂CO radicals and H-atoms. The major reaction pathway was determined to be CH₃CHO + OH → CH₃CO + H₂O with a measured yield of (93 ± 18)%. Butkovskaya et al.³ detected CH₂CHO radicals to obtain a branching ratio for H-atom abstraction from the CH₃ group of 5.1±1.4%. Wöhringer-Martinez et al.¹⁹ studied the effect of water vapor on the reaction rate constant at temperatures between 300 K and 60 K. They found little-to-no effect at 300 K and enhancements approaching a factor of 2 at temperatures below 100 K.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table
The branching ration for channel (b) is expected to increase with decreasing temperature. This suggests a temperature independent reaction rate at low and elevated temperatures and coincide with the recommended value of $k_{\text{298 K}}$. The analysis of the data used were either of lower precision (as evidenced by data scatter) or yielded systematically higher or lower rate constants. Comprehensive studies of this reaction at sub-ambient temperatures were done by Jimenez et al., Dillon et al., and Orkin et al. The last two studies resulted in indistinguishable rate constants at low temperatures and coincide with the recommended value of $k_{\text{298 K}}$. The analysis of the data at low temperatures suggests a temperature independent reaction rate constant between 210 K and 298 K. This reaction has three possible product channels: (a) $\text{CH}_3\text{CHO} + \text{H}_2\text{O}$, (b) $\text{CH}_3\text{CH}_2\text{OH} + \text{H}_2\text{O}$, and (c) $\text{CH}_3\text{CHO} + \text{H}_2\text{O}$. At room temperature, channel (b) is the major pathway accounting for (75% ± 15%) of the reaction (Meier et al.) which is consistent with the thermochemistry of these three possible pathways. The branching ration for channel (b) is expected to increase with decreasing temperature.

D26. $\text{OH} + \text{C}_2\text{H}_3\text{OH}$. There are numerous studies of the reaction rate constant at room temperature (Campbell et al., Overend and Paraskevopoulos, Ravishankara and Davis, Kerr and Stocker, Wallington and Kurylo, Hess and Tully, Nelson et al., Picquet et al., Oh and Andino, Sorensen et al., Jimenez et al., Wu et al., Dillon et al., Kovacs et al., Rajakumar et al., Carr et al., and Orkin et al.). The recommended k (298 K) is an average of the rate constants measured by Campbell et al., Kerr and Stocker, Wallington and Kurylo, Hess and Tully, Nelson et al., Sorensen et al., Jimenez et al., Wu et al., Dillon et al., Kovacs et al., Rajakumar et al., and Orkin et al. The room temperature studies not used were either of lower precision (as evidenced by data scatter) or yielded systematically higher or lower rate constants. Comprehensive studies of this reaction at sub-ambient temperatures were done by Jimenez et al., Dillon et al., and Orkin et al. The last two studies resulted in indistinguishable rate constants at low temperatures and coincide with the recommended value of $k_{\text{298 K}}$. The analysis of the data at low temperatures suggests a temperature independent reaction rate constant between 210 K and 298 K. This reaction has three possible product channels: (a) $\text{CH}_3\text{CHO} + \text{H}_2\text{O}$, (b) $\text{CH}_3\text{CHO} + \text{H}_2\text{O}$, and (c) $\text{CH}_3\text{CHO} + \text{H}_2\text{O}$. At room temperature, channel (b) is the major pathway accounting for (75% ± 15%) of the reaction (Meier et al.) which is consistent with the thermochemistry of these three possible pathways. The branching ration for channel (b) is expected to increase with decreasing temperature.

D27. **OH + CH$_3$(O)OH.** The recommended values of $k/(298$ K) and E/R are derived from a combined fit to the data of Singleton et al.,8 Butkovskaya et al.,1 Cruinaire et al.,2 Vimal and Stevens,9 Khamaganov et al.,7 Huang et al.,6 and Huang et al. at T ≤300 K. Data from these studies are in reasonable agreement below 300 K. However, above 300 K there is not a consistent picture of the temperature dependence of the rate constant with E/R values ranging from ~−500 K to ~−1000 K. In an earlier study by Daguata et al.7 at room temperature and above, an E/R value of +170 K was obtained. For this reason data from this study were not included in the combined fit, although $k/(298$ K) from this study is in good agreement with recommended value. All studies required corrections for the presence of acetic acid dimer especially at temperatures below 298 K and they assumed no reactivity between OH and the dimer. This latter assumption is based on results from Singleton et al.8 However, in the same study Singleton et al.8 found that the rate constant for the reaction of OH with the dimer of propionic acid is equal to or greater than that of the rate constant of OH with propionic acid monomer. This result suggests that uncertainties regarding the reactivity of acetic acid dimer may remain. Such uncertainties would propagate into uncertainties in the reactivity of the monomer, especially at lower temperatures.

Three studies give similar results for the reaction mechanism. Butkovskaya et al.1 reported a yield of (64 ± 17)% over the temperature range of 300–249 K for H-atom abstraction from the carboxyl group, (OH + CH$_3$C(O)OH → CH$_3$ + CO$_2$ + H$_2$O). At room temperature, De Smedt et al.4 and Cruinaire et al.2 reported similar yields of (64 ± 14)% and (78 ± 13)%, respectively. Observations by Singleton et al.8 regarding the decrease in reactivity upon D substitution on the carboxylic site and no change in reactivity upon substitution on the methyl group, are reasonably consistent with these mechanistic studies.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table
Our recommendations are in reasonable agreement with the older data of Greiner. The ratio of the rate coefficients
study:
Arrhenius behavior over a wide temperature range. The branching ratios were estimated from the latter
k(298 K). This reaction has two possible channels, i.e., abstraction of the primary and the secondary H
systematic calibration errors. Due
outstanding agreement between all of the data sets after correcting some of them for small offsets due to
measured the temperature dependence of this reaction. Donahue and Clark
considered only the direct measurements (Greiner
Drogue and Tully indicate that the reaction exhibits non
bonding.
Vimal, D.; Stevens, P. S. Experimental and theoretical studies of the kinetics of the reactions of OH
radicals with acetic acid, acetic acid-d_1 and acetic acid-d_4 at low pressure. J. Phys. Chem. A 2006, 110,
11509-11516, doi:10.1021/jp063224y.

D28. OH + C_3Hs. There are many measurements of the rate coefficients at 298 K. In this evaluation we have
considered only the direct measurements (Greiner, Tully et al., Drogue and Tully, Schmidt et al., Baulch et al.,
Bradley et al., Abbatt et al., Schiffman et al., Talukdar et al., Mellouki et al., Donahue et al., Clarke et al., and Kozlov et al.). The 298 K value is the average of these thirteen studies. Greiner, Tully et al., Drogue and Tully, Talukdar et al., Mellouki et al., Donahue et al., Clarke et al. and Kozlov et al. have measured the temperature dependence of this reaction. Donahue and Clark have shown that there is
outstanding agreement between all of the data sets after correcting some of them for small offsets due to
systematic calibration errors. Due to the significant curvature in the Arrhenius behavior over the studied
temperature range, the recommended Arrhenius expression is only valid between 190 and 300 K. The
recommended E/R is obtained from a composite fit to the four data sets (Kozlov et al., Clarke et al., Talukdar et al., and Mellouki et al.) at temperature below 300 K. Each data set was normalized to the recommended
k(298 K). This reaction has two possible channels, i.e., abstraction of the primary and the secondary H-atom. Observations of both channels by Tully et al. and Drogue and Tully indicate that the reaction exhibits non-
Arrhenius behavior over a wide temperature range. The branching ratios were estimated from the latter study:

\[k_{\text{primary}} = 6.3 \times 10^{-12} \exp(-1050/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]

\[k_{\text{secondary}} = 6.3 \times 10^{-12} \exp(-580/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]

These numbers are in reasonable agreement with the older data of Greiner. The ratio of the rate coefficients
for OH reactions with C_3H_4 and C_3H_6 has been measured by Finlayson-Pitts et al. and DeMore and Bayes. Our recommendations are in reasonable agreement with their ratios.

(Table: 06-2, Note: 06-2) Back to Table

and axially resolved high-pressure discharge flow with results for OH + (C_3H_6, C_3H_4, n-C_3H_10, n-C_3H_12)

(2) Baulch, D. L.; Campbell, I. M.; Saunders, S. M. Rate constants for the reactions of hydrogen radicals

D29. OH + C2HCHO. The recommended value at 298 K is an average of the results from Niki et al., Audley et al., Kerr and Sheppard, Semmes et al., Papagni, Thévenet, and D’Anna. The temperature dependence has been measured by Thévenet. The E/R is taken from Thévenet and the A-factor is adjusted to reproduce k(298 K). Vandenberk and Peeters measured unity yields of H2O from the reaction and conclude that the reaction proceeds exclusively by H- abstraction of the aldehydic H-atom.

Table: 06-2, Note: 06-2, Evaluated 06-2. Back to Table

D30. OH + 1-C3H5OH. There have been a number of room temperature measurements that are in excellent agreement. The recommended value is an average of the results from absolute kinetics studies by Overend and Paraskevopoulos, Wallington and Kurylo, Nelson et al., and Yujiing and Mellouki. Relative rate studies of Nelson et al., Oh and Andino, Wu et al., and Cheema et al. are in excellent agreement with the
recommended value. The indirect study of Campbell\(^2\) is consistent with, but 30% lower than the recommended value. The reaction is observed to be nearly temperature independent; Yujing and Mellouki find a slight positive temperature dependence while Cheema et al. find a small negative temperature dependence. The recommended E/R value is based on the direct study of Yujing and Mellouki. End product studies carried out by Azad and Andino\(^1\) support predictions based on the structure-activity relationship that identify the primary reaction channels as hydrocarbon abstraction by the OH radical from the \(\alpha\) (\(\sim 75\%\)) and \(\beta\) (\(\sim 20\%\)) carbons.

(Table: 06-2, Note: 06-2, Evaluated 06-2) Back to Table

D31. \(\text{OH} + 2\text{-C}_3\text{H}_7\text{OH}\). The recommended value at 298 K is an average of the absolute measurements by Overend and Paraskevopoulos,\(^4\) Wallington and Kurylo,\(^5\) Nelson et al.,\(^3\) Dunlop and Tully,\(^1\) and Yujing and Mellouki.\(^6\) A relative rate study by Lloyd et al.\(^2\) is, within its wide error limits, consistent with the recommendation. The temperature dependence is observed to vary little with temperature below 400 K. Measurements over the range 293-745 K by Dunlop and Tully revealed a “bowl” shaped temperature dependence, with a minimum in the rate coefficient observed at 378 K. The recommended E/R is based on the measurements of Yujing and Mellouki and, on account of the complex reaction behavior, is valid only for temperatures below 400 K. Temperature dependent data of Dunlop and Tully and Wallington and Kurylo are, within the experimental uncertainties, consistent with the recommendation. By using isotopic substitution, Dunlop and Tully determined that the primary reaction channel below 400 K involves H atom abstraction by OH from the \(\alpha\)-site. This result is in agreement with estimates based on the structure-activity relationship (Yujing and Mellouki\(^6\)).

(Table: 06-2, Note: 06-2, Evaluated 06-2) Back to Table

D32. OH + C₂H₅C(O)OH. Studies of this reaction have been confined to 298 K and above on account of the tendency of propionic acid to dimerize at lower temperatures and higher concentrations. Kinetic isotope effects measured by Singleton et al.² are consistent with a two channel mechanism proposed previously for OH reaction with acetic acid. In the propionic acid case, the channel involving direct abstraction of an alkyl hydrogen is predominant, thus accounting for the observed temperature independence of the rate constant. The recommended temperature independent rate constant, is based on an average of the results of Singleton et al. and Dagout et al.¹ taken at a variety of temperatures between 298 K and 446 K. An study room temperature measurement by Zetsch and Stuhl² is ~30% higher, but consistent with the recommendation. Further studies below 298 K would be desirable in order to investigate possible non-Arrhenius behavior. (Table: 06-2, Note: 06-2, Evaluated 06-2)
Back to Table

D33. OH + CH₃C(O)CH₃. The rate coefficient for this reaction has been measured at temperatures close to 298 K by Cox et al.,³ Zetzsch,¹³ Chiorboli et al.,¹ Kerr and Stocker,³ Wallington and Kurylo,¹¹ LeCalve et al.,⁶ Wollenhaupt et al.,¹² Gierczak et al.,³ and Yamada et al.¹³ Cox reported only an upper limit of <5 x 10⁻¹³ cm³ molecule⁻¹ s⁻¹, which is consistent with this recommendation. The primary aim of Chiorboli et al. was to examine the atmospheric degradation of styrene, which produces acetone. They employed a relative rate measurement and reported a value of k(298 K) that is almost three times faster than the recommended value. Because of possible complications in their system, we have not included their results in arriving at the recommended value. Wallington and Kurylo, LeCalve et al., Wollenhaupt et al., Gierczak et al., and Yamada et al. have reported k as a function of temperature; all these studies directly measured the rate constant using the pulsed photolysis method where the temporal profile of OH was measured using resonance fluorescence or laser induced fluorescence. The extensive data of Wollenhaupt et al. and Gierczak et al. seem to show that this rate coefficient does not follow an Arrhenius expression. The results of LeCalve et al. and Wallington et al. are in general agreement with the results of Wollenhaupt et al. and Gierczak et al. The non-Arrhenius behavior was not evident in the results of Wallington et al. and LeCalve et al. because they measured the rate constant at a few temperatures and did not explore temperature below 240 K, where the curvature becomes increasingly evident. Yamada et al. measured k only above room temperature and their values are consistently lower than those of the others noted above. As they noted in their paper, Yamada et al. did not measure the acetone concentration in the reactor and, thus, could have overestimated its concentration leading to consistently lower values of k. We have not included data of Yamada et al. in deriving the fit because of this possible systematic error and because they did not report k under atmospheres temperatures. The following recommendation reproduces all reported data, except that of Chiorboli et al. within the recommended uncertainty of 25% at all temperatures:

\[k(T) = 1.33 \times 10^{-13} + 3.82 \times 10^{-11}\exp(-2000/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]

This reaction can proceed via the abstraction of an H atom or via the formation of a complex that decomposes to give many different products, which include CH₃ + CH₃C(O)OH, CH₃OH + CH₃C(O), CH₄ + CH₃CO₂, and H₂O + CH₃C(O)CH₂. The branching ratios for the formation of different sets of products could vary with temperature. Wollenhaupt et al.¹² have deduced that CH₃ radicals are produced with a yield of ~50% at 298 K and ~30% at 233 K. A similar branching ratio has also been reported by Vasvari et al.¹⁰ The results of Gierczak et al. on the OH + CD₃C(O)CD₃ reaction, whose rate coefficient nearly obeys an Arrhenius expression between 240 and 400 K and is nearly an order of magnitude smaller than the non-deuterated analog at 250 K, suggest that H abstraction may be the dominant channel. Vandenberk et al.,⁹ Tyndall et al.,⁸ and Talukdar et al.,⁷ clearly show that CH₃C(O)OH is a minor, if not negligible, product of this reaction and that the reaction proceeds to abstract an H atom. The results of Yamada et al. are consistent with this finding. Theoretical calculations of Henon et al.⁴ and Vandenberk et al.⁹ also suggest that formation of acetic acid is negligible. We recommend that the products of this reaction be taken as H₂O and CH₃C(O)CH₂. (Table: 06-2, Note: 06-2, Evaluated 06-2)
Back to Table
D34. \(\text{OH} + \text{CH}_3=\text{C}(\text{CH}_3)\text{CHO} \) (methacrolein). The recommended E/R is that obtained from an unweighted fit to \(\ln k = \ln A - E/RT \) of the rate constants reported by Gierczak et al.\(^7\) (234-373 K), which is the only study that reports rate constants at \(T < 295 \) K. The recommended value for \(k(298 \text{ K}) \) is the average of ambient temperature rate constants obtained in the flash photolysis studies of Kleindienst et al.,\(^9\) Gierczak et al.,\(^7\) and Chuong and Stevens;\(^8\) the turbulent flow reactor study of Chuong and Stevens;\(^9\) and the relative rate study of Atkinson et al.,\(^4\) with all rate constants adjusted to 298 K using the recommended E/R. In a second relative rate study, Edney et al.\(^6\) obtain a value for \(k(298 \text{ K}) \) that is significantly faster than the rate constants reported in all other studies. Temperature-dependent rate constants reported by Kleindienst et al. and Chuong and Stevens in their flash photolysis studies are encompassed by the recommended error limits for all temperatures below 400 K. Product studies by Tuazon and Atkinson\(^11\) and Orlando and Tyndall\(^10\) demonstrate that, in air at \(T \approx 298 \text{ K} \) and \(P \approx 1 \text{ atm} \), abstraction of the aldehydic hydrogen accounts for 45-50% of overall reactivity and addition to the double bond accounts for the rest; more than 80% of addition is to the terminal carbon. Chuong and Stevens\(^3\) observe OH recycling in the presence of \(\text{O}_2 \) and NO at \(T = 300 \text{ K} \) and conclude that (i) methacrolein-based peroxy radicals (\(\text{OH}^{\text{--methacrolein--OO}} \)) react with NO with \(k \approx 2 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) and (ii) the peroxy radical + NO reactions produce \(\text{NO}_2 \) with a yield of \(-90\%\) and organic nitrates with a yield of \(-10\%\). A turbulent flow reactor study by Hsin and Elrod\(^8\) obtains \(\text{OH}^{\text{--methacrolein--OO}} + \text{NO} \text{ rate constants that are a factor of two slower than those reported by Chuong and Stevens. In a combined experimental/theoretical study, Crouse et al.\(^4\) provide evidence that \(\text{OH}^{\text{--methacrolein--OO}} \) undergoes a 1.4 H shift of the aldehydic hydrogen to \(\text{OO} \) at a rate of \(-0.5 \text{ s}^{-1} \) to form a radical that rapidly decomposes to recycle OH. In a theoretical study, da Silva concludes that chemically
activated OH–methacrolein and OH–methacrolein–OO strongly impact product distributions and OH recycling.5

D35. **OH + CH3C(O)CH=CH2 (MVK).** The recommendation is based on the temperature-dependent flash photolysis studies of Kleindienst et al.7 and Gierczak et al.4 the room temperature turbulent flow reactor study of Chuong and Stevens,3 and the room temperature relative rate studies of Atkinson et al.4 and Holloway et al.3 Chuong and Stevens3 observe pressure-dependent rate constants in 1–5 Torr Helium over the temperature range 300–422 K. All data used to arrive at the recommendation were obtained under (presumably) high pressure limit conditions, i.e., P > 16 Torr. All data points reported in each temperature dependent study were scaled by a factor equal to the ratio k(298)exp/k(298)avo where k(298)exp is the 298 K rate constant obtained from the best fit Arrhenius expression describing the individual T-dependent data set and k(298)avo is the average of all reported high-P limit room temperature rate constants. The best fit Arrhenius expression for the scaled data is recommended. A product study by Tuazon and Atkinson4 demonstrates that reactivity is dominated by addition to the double bond with 72 ± 28 % of the addition being to the terminal carbon. Chuong and Stevens5 observe OH recycling in the presence of O3 and NO at T ≈ 300 K and conclude that (i) MVK-based peroxy radicals (OH-MVK-OO) react with NO with k ~ 2 × 10^{-11} cm³ molecule⁻¹ s⁻¹ and (ii) the peroxy radical + NO reactions produce NO₂ with a yield of ~90% and organic nitrates with a yield of ~10%. A turbulent flow reactor study by Hsin and Elrod6 obtains OH-MVK-OO + NO rate constants that are more than a factor of two slower than those reported by Chuong and Stevens.

D36. \(\text{OH} + \text{CH} = \text{C} (\text{CH}_3) \text{CH} = \text{CH}_2 \). The recommended E/R is the average of values obtained from the temperature-dependent data sets of Kleindienst et al.,12 Campuzano-Jost et al.,23 Gill and Hites,7 Park et al.,16 and Hites and Turner;9 each data set was analyzed using an unweighted fit to \(\ln k = \ln A - E/RT \). The recommended \(k(298 \text{ K}) \) is the average of the values obtained from the best fit Arrhenius expressions for the five temperature-dependent studies plus the ambient temperature results reported by Winer et al.20 (based on data reported by Grimsrud et al.8), Cox et al.,5 Ohta,15 Atkinson and Aschmann,1 Edney et al.,6 Stevens et al.,19 McGivern et al.,13 Zhang et al.,21 McQuaid et al.,14 Iida et al.,10 Karl et al.,11 Singh and Li.37 Ambient temperature results obtained at temperatures other than 298 K were adjusted using the recommended E/R. Only results obtained under (investigator-reported) high pressure limit conditions are considered; this excludes the data of Chuong and Stevens4 at \(T > 300 \text{ K} \) and the data of Singh and Li at \(T = 340 \text{ K} \). Data from the Laval nozzle study of Spangenberg et al.18 are not considered because the investigated \(T, P \) conditions are not relevant for application to atmospheric chemistry. Singh and Li report the Arrhenius expression \(k = 2.33 \times 10^{-11} \exp (444/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} 240-340 \text{ K} \); their reported temperature dependence is not used to evaluate E/R because (high pressure limit) rate constants are reported only at 298 K. Although the detailed pressure-dependence remains a subject of disagreement,4,10,11,13,19 it is clear that the reaction is in its high pressure limit under all relevant atmospheric conditions. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

D37. **OH + CH$_3$CN.** This rate coefficient has been measured as a function of temperature by Harris et al.2 between 298 and 424 K, Kurylo and Knable4 between 250 and 363 K, Rhasa6 between 295 and 520 K, and Hynes and Wine3 between 256 and 388 K. In addition, the 298 K value has been measured by Poulet et al.5 The 298 K results of Harris et al. are in disagreement with all other measurements and therefore have not been included. The recommended 298 K value is a weighted average of all other studies. The temperature dependence was computed using the results of Kurylo and Knable, the lower temperature values (i.e., 295–391 K) of Rhasa, and the data of Hynes and Wine. Three points are worth noting: (a) Rhasa observed a curved Arrhenius plot even in the temperature range of 295 to 520 K, and therefore extrapolation of the recommended expression could lead to large errors; (b) Hynes and Wine observed a pressure dependent increase of k(298 K) that levels off at about 1 atmosphere, and this observation is contradictory to the results of other investigations; (c) Hynes and Wine have carried out extensive pressure, temperature, O$_2$ concentration, and isotope variations in this reaction. Hynes and Wine postulate that the reaction proceeds via addition as well as abstraction pathways. They observe OH regeneration in the presence of O$_2$. The recommended k(298 K) and E/R are applicable for only lower tropospheric conditions. Because of the unresolved questions of pressure dependence, the recommended value may not be applicable under upper tropospheric and stratospheric conditions. At T= 296 K and P = 700 Torr air, Tyndall et al. observe that HC(O)CN, an expected end product when reaction is initiated by H-abstraction, is formed with a yield of 0.4 ± 0.2.7 The OH regeneration in the presence of O$_2$ reported by Hynes and Wine has been explained theoretically by Galano as resulting from initial formation of a CH$_3$C(O)H N adduct that rearranges and dissociates to OH + CH$_3$C(O)NO.1 In agreement with the observations of Hynes and Wine and Tyndall et al., Galano’s theoretical analysis predicts similar branching ratios for H-abstraction and addition.

D38. OH + CH₂ONO₂. The rate coefficient for this reaction at 298 K has been measured by Kerr and Stocker, 5 Nielsen et al., 3 Gaffney et al., 2 Talukdar et al., 5 Kakesu et al., 3 and Shallcross et al. 6 The results of Kerr and Stocker and of Nielsen et al. are a factor of ten higher than those reported by the other groups. There are no obvious reasons for the reported differences but the lower values are preferred for a number of reasons. Firstly, Talukdar et al. have carried out a large number of checks which ruled out possible effects in their system due to the regeneration of OH via secondary reactions, to bath gas pressure, and to formation of an adduct that could undergo further reaction in the presence of oxygen. Secondly, the lower values are more consistent with reactivity predictions of Atkinson and Aschmann, 1 who assumed that the series of nitrate reactions proceed by H-atom abstraction pathways. Kinetic measurements of Talukdar et al. performed with isotopically substituted hydroxyl radical (OH, 18OH, and OD) and methyl nitrate (CH₃ONO₂ and CD₃ONO₂) are consistent with this reaction proceeding via an H-atom abstraction pathway. Accordingly, the recommended value of k(298 K) is based on an average of the values given by Gaffney et al., Talukdar et al., Kakesu et al., and Shallcross et al. Further verification of the reaction mechanism by identification of the products of the reaction is needed. The temperature dependence of the rate coefficient has been measured by Nielsen et al., Talukdar et al., and Shallcross et al. While Nielsen et al. report a negative activation energy, Talukdar et al. and Shallcross et al. report positive values. For the reasons given above, the temperature dependence recommended here is based on an average of Talukdar et al. and Shallcross et al.

(Table: 06-2, Note: 06-2, Evaluated 06-2)

D39. OH + CH₃C(O)O₂NO₂ (PAN). This reaction has been studied by four groups Winer et al., 4 Wallington et al., 3 Tsalkani et al., 2 and Talukdar et al. 1 Winer et al. obtained only an upper limit for the rate coefficient. Tsalkani et al. noted that their system was very ill-behaved and obtained a value of k(298 K) that is a factor of ~2 lower than that obtained by Wallington et al. The pulsed photolysis study of Wallington et al. yielded consistent results, but PAN was not directly measured and photodissociation of H₂O in the vacuum UV, where PAN absorbs strongly, was used as the OH source. The recent study of Talukdar et al. 1 yielded much lower rate coefficients. These investigators measured the PAN concentration directly in their system, minimized secondary reactions due to the photodissociation of PAN, and carried out extensive tests for
decomposition of PAN, impurities, and secondary reactions. The recommended upper limit is a factor of two higher than the highest value measured by Talukdar et al. at 298 K and at 272 K. The quoted upper limit is expected to be valid at all atmospheric temperatures. The products of the reaction are not known. Further measurements of the rate coefficients and information on the reaction pathways are needed.

(Table: 94-26, Note: 94-26, Evaluated 94-26) Back to Table

D40. \(\text{OH} + \text{C}_2\text{H}_5\text{ONO}_2 \). The rate constant for this reaction at 298 K has been measured by Kerr and Stocker,\(^2\) Nielsen et al.,\(^3\) Talukdar et al.,\(^3\) Kakesu et al.,\(^4\) and Shallcross et al.\(^4\) As in the case of the reaction of OH with CH\(_3\)ONO\(_2\), the results of Kerr and Stocker and of Nielsen et al. are larger (by a factor of 3) than those of the more recent studies. The reasons for the differences are not clear. Because of the exhaustive tests carried out (see the note for the OH + CH\(_3\)ONO\(_2\) reaction), the values of Talukdar et al., Kakesu et al., and Shallcross et al. are recommended. Nielsen et al., Talukdar et al., and Shallcross et al. have measured the rate constant as a function of temperature. As with the OH + CH\(_3\)ONO\(_2\) reaction, Nielsen et al. report a negative activation energy while Talukdar et al. and Shallcross et al. have observed a small positive activation energy. Talukdar et al. note that the rate coefficient for this reaction does not strictly follow Arrhenius behavior, consistent with the abstraction of both the primary and the secondary H atoms. Above 298 K, E/R values measured by Shallcross et al. and Talukdar et al. are in excellent agreement. Only Talukdar et al. have kinetics data below 298 K and the recommended E/R value was obtained by fitting the rate coefficients measured by Talukdar et al. at or below 298 K. The large uncertainty encompasses the results of Kerr and Stocker and Nielsen et al.

(Table: 06-2, Note: 06-2, Evaluated 06-2) Back to Table

D41. \(\text{OH} + \text{C}_2\text{H}_4\text{ONO}_2 \). The reaction has been studied by Kerr and Stocker\(^2\) and Atkinson and Aschmann\(^4\) at room temperature and by Nielsen et al.\(^3\) between 298 and 368 K. The results of the three studies are in good agreement at room temperature. Nielsen et al. find that the reaction is temperature independent within the measurement uncertainty over the range studied. However as discussed above, the Nielsen et al. results for the analogous reactions of OH with CH\(_3\)ONO\(_2\) and C\(_2\)H\(_5\)ONO\(_2\), yield negative activation energies that disagree with the positive activation energies obtained by others. Judging from the E/R’s for the analogous reactions, one might expect the E/R for this reaction to be on the order of 300 K. Accordingly, we place a large uncertainty on the recommended temperature dependence. A thorough investigation of the temperature dependence of this reaction is needed.

(Table: 02-25, Note: 02-25, Evaluated 02-25) Back to Table

D42. **OH + 2-C3H4ONO2**. The reaction has been studied by Atkinson and Aschmann,1 Atkinson et al.,2 and Becker and Wirtz3 at room temperature and by Talukdar et al.4 over the range 253 and 395 K. The results of Atkinson and Aschmann supersede those of Atkinson et al. There is fair agreement between the results of the three studies at room temperature, with roughly a factor of two spread in the values. The recommendation is based on an average of the room temperature values and the E/R measured by Talukdar et al.

D43. **HO2 + CH2O**. There is sufficient evidence to suggest that HO2 adds to CH2O (Su et al.,2,3 Veyret et al.,4 Zabel et al.,6 Barnes et al.,1 and Veyret et al.4). The recommended k(298 K) is the average of values obtained by Su et al.,2 Veyret et al.,4 and Veyret et al.4. The temperature dependence observed by Veyret et al. is recommended. The value reported by Barnes et al. at 273 K is consistent with this recommendation. The adduct HO2•CH2O seems to isomerize to HOCH2OO reasonably rapidly and reversibly. There significant discrepancies between measured values of the equilibrium constants for this reaction.

D44. **HO2 + CH3O2**. This recommendation is taken from the evaluated review of Tyndall et al.4 The kinetics of this reaction have been studied by using UV absorption following pulsed photolytic production of the radicals. These authors first analyzed the available data for the products of the reaction and concluded that the major products are CH2OOH and O2. They used this product yield information with their evaluated UV absorption cross sections for HO2 and CH2O2 to reanalyze the UV absorption profiles measured in kinetics experiments by Dagaut et al.1 and by Lightfoot et al.,3 the two groups that carried out the most extensive studies. They found that rate coefficients reported by these two groups need to be increased by ~20%. The recommended value is based on the average of the corrected data from these two groups. The temperature dependence was evaluated by Tyndall et al. by assuming that the absorption cross sections of CH2O2 and HO2 are independent of temperature at the wavelengths used for the kinetics studies. The products of this reaction are shown as CH2OOH + O2 in the table. However, Elrod et al.2 have determined that the reaction also yields
CH₃O + H₂O + O₂ with yields that range from 0.1 at 298 K to 0.3 at 220 K. In anticipation of further work, the recommended product yield for the CH₂O channel is zero.

(Table: 02-25, Note: 06-2, Evaluated 06-2) Back to Table

D45. HO₂ + C₂H₂O₂. The recommended value is the weighted average of those measured by Cattell et al.,¹ Dagaut et al.,² Fenter et al.,³ and Maricq and Szente.⁴ In all experiments the rate coefficient was obtained by modeling the reaction system. Also, the calculated rate coefficients depended on the UV absorption cross sections of both C₂H₂O₂ and HO₂. The absorption cross section of C₂H₂O₂ is not well-defined. The value reported by Dagaut et al. would be ~30% higher if the cross sections used by Maricq and Szente were used. The recommended E/R is derived from the measurements of Dagaut et al., Fenter et al., and Maricq and Szente. Wallington and Japa⁵ have shown that C₂H₂O₂H and O₂ are the only products of this reaction.

(Table: 94-26, Note: 94-26, Evaluated 94-26) Back to Table

D46. HO₂ + CH₃C(O)O₂. This recommendation is taken from the evaluated review of Tyndall et al.⁵ This reaction has two sets of products:

CH₃C(O)O₂ + HO₂ → CH₃C(O)O₂H + O₂ \hspace{2cm} (a)

CH₃C(O)O₂ + HO₂ → CH₃C(O)OH + O₃ \hspace{2cm} (b)

The majority of the reaction proceeds via channel (a), but there is clear evidence for channel (b). Tyndall et al. reevaluated the available data on end products of this reaction, particularly those of Crawford et al.,¹ Moortgat et al.,³ and Horie and Moortgat,² and concluded that channel (a) contributes ~80% while channel (b) contributes ~20% at 298 K. They also concluded that kₕ/kₛ = 37 × exp(–660/T) with a large uncertainty in this value. They derived the overall rate coefficient for this reaction, which has been measured only by following the radical concentrations via UV absorption. They based their recommendation mostly on the results of Moortgat et al.³ and Tomas et al.⁴

(Table: 02-25, Note: 02-25, Evaluated 02-25) Back to Table

D47. **HO$_2$ + CH$_3$C(O)CH$_2$O$_2$.** This reaction has been studied by only Bridier et al.\(^1\) and Tyndall et al. based their recommendation on this one study. (Table: 02-25, Note: 02-25, Evaluated 02-25) [Back to Table]

D48. **NO$_3$ + CH$_2$=C(CH$_3$)CHO (methacrolein).** The recommendation is the average of the results of relative rate studies by Chew et al.\(^2\) and Canosa-Mas et al.\(^3\). The Chew et al. study supersedes an earlier study by the same group.\(^4\) Chew et al. report two rate constants obtained using propene and 1-butene as reference compounds while Canosa-Mas et al. report a single rate constant obtained using propene as the reference. Two flow tube studies\(^1\)\(^4\) report faster rate constants, presumably due to the presence of reactive impurities in methacrolein samples. Reaction can proceed via addition to the double bond or via abstraction of the aldehydic hydrogen atom. In 760 Torr O$_2$, Canosa-Mas et al. observe production of both methyl glyoxal (CH$_3$C(O)CHO), likely formed via reactions involving a primary addition product, and MPAN (CH$_2$=C(CH$_3$)C(O)OOONO$_2$), likely formed via reactions involving the H-abstraction product. Product yields have not been reported. (New Entry) [Back to Table]

D49. **NO$_3$ + CH$_3$C(O)CH=CH$_2$ (MVK).** In a low pressure flow tube study where NO$_3$ was produced by thermal decomposition of N$_2$O$_5$ and detected by long path diode laser absorption at 662 nm, Rudich et al.\(^5\) measured a rate constant of (1.0 ± 0.2) × 10$^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$; acknowledging that “our experiment is not suited to accurately measuring such low rate coefficients,” Rudich et al. chose to report their result as an upper limit, i.e., k < 1.2 × 10$^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$. In units of 10$^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$, Canosa-Mas et al.\(^1\) report k = 3.2 ± 0.6 based on a low pressure flow tube study where NO$_3$ was produced via the F + HNO$_3$ reaction and detected by laser induced fluorescence; these authors also obtained a rate constant of 5.3 ± 1.9 (corrected using updated information for the NO$_3$ + C$_3$H$_4$ reference reaction) from a relative rate study in 760 Torr N$_2$. Kwok et al. report k < 6 × 10$^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$ based on a relative rate study in 740 Torr air using NO$_3$ + C$_3$H$_6$ as the reference reaction.\(^2\) The recommendation, k < 4 × 10$^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$, is consistent with the results reported in both absolute rate constant determinations. The initial step in the reaction of NO$_3$ with MVK is addition of NO$_3$ to the double bond. In 760 Torr O$_2$ bath gas, Canosa-Mas et al. observe methyl glyoxal (CH$_3$C(O)CHO) as a reaction product; they propose a pathway where NO$_3$ adds to the terminal carbon followed by formation of a peroxy radical that reacts with a second NO$_3$ to form (via multiple steps) CH$_3$C(O)CHO + HCHO + 2NO$_2$ + O$_2$. (New Entry) [Back to Table]

D50. $\text{NO}_3 + \text{CH}_2=\text{C}($$\text{CH}_3$$)$\text{CH}=\text{CH}_2$. The recommended E/R is obtained from an unweighted fit of the single temperature-dependent data set of Dlugokencky and Howard6 to $\ln k = \ln A - \frac{E}{RT}$ ($E/R = 446$ K, 251-381 K). The recommended 298 K rate constant is an unweighted average of ambient temperature results reported by Atkinson et al.1,2 Dlugokencky and Howard6 (rate constant obtained from the best fit Arrhenius expression), Barnes et al.3 Wille et al.10 Ellermann et al.7 Berndt and Böge.5 Suh et al.9 and Stabel et al.8 Ambient temperature results obtained at temperatures other than 298 K were adjusted using the recommended E/R. The 298 K rate constant reported by Benter and Schindler4 is not considered because (a) it is faster than all others in the literature and (b) it is superseded by a later study from the same group.10 (Table 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

D51. NO$_3$ + CO. The upper limit is based on the results of Hjorth et al.2 who monitored isotopically labeled CO loss in the presence of NO$_3$ by FTIR. Burrows et al.1 obtained an upper limit of 4×10^{-16} cm3 molecule$^{-1}$ s$^{-1}$, which is consistent with the Hjorth et al. study. Products are expected to be NO$_2$ + CO$_2$, if the reaction occurs.
(Table: 87-41, Note: 92-20, Evaluated 92-20) Back to Table

(1) Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Absorption spectrum of NO$_3$ and kinetics of the reactions of NO$_3$ with NO$_2$, Cl, and several stable atmospheric species at 298 K. J. Phys. Chem. 1985, 89, 4848-4856.

D52. NO$_3$ + CH$_2$O. There are three measurements of this rate coefficient at 298 K: Atkinson et al.1 Cantrell et al.2,3 and Hjorth et al.3. The value reported by Atkinson et al.1 $k = (3.23 \pm 0.26) \times 10^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$, is corrected to 5.8×10^{-16} cm3 molecule$^{-1}$ s$^{-1}$ to account for the different value of the equilibrium constant for the NO$_3$ + NO$_2$ ↔ N$_2$O$_5$ reaction that was measured subsequent to this study by the same group using the same apparatus. This correction is in accordance with their suggestion (Tuazon et al.2). The values reported by Cantrell et al. and Hjorth et al.3, $k = 6.3 \times 10^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$ and $(5.4 \pm 1.1) \times 10^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$, respectively, are in good agreement with the corrected value of Atkinson et al. The recommended value is the average of these three studies. Cantrell et al. have good evidence to suggest that HNO$_3$ and CHO are the products of this reaction. The temperature dependence of this rate coefficient is unknown, but comparison with the analogous NO$_3$ + CH$_3$CHO reaction suggests a large E/R.
(Table: 90-1, Note: 90-1, Evaluated 90-1) Back to Table

D53. NO$_3$ + CH$_3$CHO. There are four measurements of this rate constant: Morris and Niki, Atkinson et al., Cantrell et al., and Dlugokencky and Howard. The value reported by Atkinson et al., $k = (1.34 \pm 0.28) \times 10^{-15}$ cm3 molecule$^{-1}$ s$^{-1}$, is corrected to 2.4×10^{-15} cm3 molecule$^{-1}$ s$^{-1}$ as discussed for the NO$_3$ + HCHO reaction above and as suggested by Tuazon et al. The recommended value is the average of the values obtained by Atkinson et al., Cantrell et al., and Dlugokencky and Howard. The results of Morris and Niki agree with the recommended value when their original data are re-analyzed using a more recent value for the equilibrium constant for the reaction NO$_3$ + NO$_3$ ↔ N$_2$O$_5$ as shown by Dlugokencky and Howard. Dlugokencky and Howard have studied the temperature dependence of this reaction. Their measured value of E/R is recommended. The A-factor has been calculated to agree with the k(298 K) recommended here. Morris and Niki, and Cantrell et al. observed the formation of HNO$_3$ and PAN in their studies, which strongly suggests that HNO$_3$ and CH$_3$CO are the products of this reaction.

(Table: 87-41, Note: 87-41, Evaluated 87-41) Back to Table

D54. CH$_3$ + O$_2$. This bimolecular reaction is not expected to be important, based on the results of Baldwin and Golden, who found k < 5 \times 10$^{-17}$ cm3 molecule$^{-1}$ s$^{-1}$ for temperatures up to 1200 K. Klais et al. failed to detect OH (via CH$_3$ + O$_2$ → CH$_3$O + OH) at 368 K and placed an upper limit of 3 \times 10$^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$ for this rate coefficient. Bhaskaran et al. measured k = 1 \times 10$^{-11}$ exp (−12,900/T) cm3 molecule$^{-1}$ s$^{-1}$ for 1800 $<$ T $<$ 2200 K. The latter two studies thus support the results of Baldwin and Golden. Studies by Selzer and Bayes and Plumb and Ryan confirm the low value for this rate coefficient. Previous studies of Washida and Bayes are superseded by those of Selzer and Bayes. Plumb and Ryan have placed an upper limit of 3 \times 10$^{-16}$ cm3 molecule$^{-1}$ s$^{-1}$ based on their inability to find HCHO in their experiments. A study by Zellner and Ewig suggests that this reaction is important at combustion temperature but is unimportant for the atmosphere.

(Table: 83-62, Note: 83-62, Evaluated 83-62) Back to Table

D55. CH₃ + O₂. The recommended A-factor and E/R are those obtained from the results of Ogryzlo et al.⁴ The results of Simonaitis and Heicklen,⁵ based on an analysis of a complex system, are not used. Washida et al.⁷ used O + C₂H₆ as the source of CH₃. Studies on the O + C₂H₄ reaction (Schmoltner et al.⁵ Kleinermanns and Luntz,³ Hunziker et al.¹ and Inoue and Akimoto)⁶ have shown this reaction to be a poor source of CH₃. Therefore, the results of Washida et al. are also not used.

(Table: 83-62, Note: 83-62, Evaluated 83-62) **Back to Table**

D56. HCO + O₂. The value of k(298 K) is the average of the determinations by Washida et al.,¹² Shibuya et al.,⁸ Veyret and Lesclaux,¹¹² Langford and Moore,³ Nesbitt et al.,⁵ Temps et al.⁷ and Ninomiya et al.⁹ There are three measurements of k where HCO was monitored via the intracavity dye laser absorption technique (Reilly et al.,⁷ Nadtochenko et al.,⁴ and Gill et al.). Even though these studies agree with the recent measurements of Nesbitt et al., the only recent measurement to obtain a low value, they have not been included in deriving the recommended value of k(298 K). However, the uncertainty has been increased to overlap with those measurements. The main reason for not including them in the average is the possible depletion of O₂ in those static systems (as suggested by Veyret and Lesclaux). Also, these experiments were designed more for the study of photochemistry than kinetics. The temperature dependence of this rate coefficient has been measured by Veyret and Lesclaux, Timonen et al.,¹⁰ and Nesbitt et al. While Timonen et al. obtain a slightly positive activation energy, Veyret and Lesclaux, and Nesbitt et al. measure slightly negative activation energy. It is very likely that the Arrhenius expression is curved. We recommend an E/R value of zero, with an uncertainty of 100 K. Veyret and Lesclaux preferred a Tⁿ form (k = 5.5 × 10⁻¹¹ Tⁿ⁻¹⁰¹⁰ cm³ molecule⁻¹ s⁻¹). Hsu et al.² suggest that this reaction proceeds via addition at low temperature and abstraction at higher temperatures.

(Table: 02-25, Note: 02-25, Evaluated 02-25) **Back to Table**

(4) Nadtochenko, V. A.; Sarkisov, O. M.; Vedeneev, V. I. *Doklady Akademii Nauk SSSR* 1979, 244, 152.

D57. CH3OH + O2. The rate coefficient was first measured directly by Radford7 by detecting the HO2 product in a laser magnetic resonance spectrometer. The wall loss of CH3OH could have introduced a large error in this measurement. Radford also showed that the previous measurement of Avramenko and Kolesnikova1 was in error. Wang et al.8 measured a value of 1.4 x 10⁻¹² cm³ molecule⁻¹ s⁻¹ by detecting the HO2 product. Recently, Dóbé et al.,2 Grotheer et al.,3 Payne et al.,5 Grotheer et al.,4 and Nesbitt et al.5 have measured k(298 K) to be close to 1.0 x 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ under conditions where wall losses are small. This reaction appears to exhibit a very complex temperature dependence. Based on the recent data of Grotheer et al.4 and Nesbitt et al.,5 k appears to increase from 200 K to approximately 250 K in an Arrhenius fashion, levels off at approximately 300 K, decreases from 300 to 500 K, and finally increases as temperature is increased. This complex temperature dependence is believed to be due to the formation of a CH3(OH)•O2 adduct which can isomerize to CH3O•HO2 or decompose to reactants. The CH3O•HO2 isomer can also decompose to CH3O and HO2 or reform the original adduct. At temperatures less than 250 K, the data of Nesbitt et al. suggests an E/R value of ~1700 K. For atmospheric purposes, the value E/R = 0 is appropriate.

(Table: 90-1, Note: 90-1, Evaluated 90-1) Back to Table

D58. CH3O + O2. The recommended value for k(298 K) is the average of those reported by Lorenz et al.3 and Wantuck et al.8 The recommended E/R was obtained using the results of Gutman et al.4 (413 to 608 K), Lorenz et al.3 (298 to 450 K), and Wantuck et al.3 (298 to 498 K). These investigators have measured k directly under pseudo–first order conditions by following CH3O via laser induced fluorescence. Wantuck et al. measured k up to 973 K and found the Arrhenius plot to be curved; only their lower temperature data are used in the fit to obtain E/R. The A factor has been adjusted to reproduce the recommended k(298 K). The previous high temperature measurements (Barker et al.1 and Batt and Robinson2) are in reasonable agreement with the derived expression. This value is consistent with the 298 K results of Cox et al.3 obtained from an end product analysis study, and with the upper limit measured by Sanders et al.7 The A-factor appears low for a hydrogen atom transfer reaction. The reaction may be more complicated than a simple abstraction. At 298 K, the products of this reaction are HO2 and CH2O, as shown by Niki et al.6

(Table: 87-41, Note: 87-41, Evaluated 87-41) Back to Table

(7) Sanders, N.; Butler, J. E.; Fasternack, L. R.; McDonald, J. R. CH3O (X'E) production from 266 nm photolysis of methyl nitrite and reaction with NO. Chem. Phys. 1980, 48, 203-208.

D59. CH3O + NO. The reaction of CH3O with NO proceeds mainly via addition to form CH3ONO (Batt et al.,1 Wiebe and Heicklen,2 Frost and Smith,2 and Ohmori et al.3). However, a fraction of the energized CH3ONO adducts decomposes to CH3O + HNO, and appear to be a bimolecular channel. This reaction has been investigated by direct detection of CH3O via laser-induced fluorescence (Zellner,3 Frost and Smith,2 Ohmori et al.),4 End-product studies (Batt et al.,1 Wiebe and Heicklen5) are generally consistent with this conclusion. Since the fraction of the CH3ONO adduct that falls apart to CH3O + HNO decreases with increasing pressure and decreasing temperature, it is not possible to derive a “bimolecular” rate coefficient. A value of k ≈ 10–12 cm molecule–1 s–1 can be deduced from the work of Frost and Smith2 and Ohmori et al.3 for lower atmospheric conditions.

(Table: 97-4, Note: 97-4, Evaluated 97-4) Back to Table

D60. CH3O + NO2. The reaction of CH3O with NO2 proceeds mainly via the formation of CH3ONO2. However, a fraction of the energized adducts fall apart to yield CH3O + HNO2. The bimolecular rate coefficient reported here is for the fraction of the reaction that yields CH3O and HNO2. It is not meant to represent a bimolecular metathesis reaction. The recommended value was derived from the study of McCaulley et al.1 and is discussed in the section on association reactions.

(Table: 97-4, Note: 97-4, Evaluated 97-4) Back to Table

D61. CH3OO + H2O. The recommendation is based on the results of Chao et al.,5 who coupled CH3OO production by UV laser flash photolysis or CH2I2/O2 with time-resolved UV spectroscopic monitoring of CH3OO kinetics; they observed a well-defined quadratic dependence of the pseudo-first order CH3OO decay rate constant on [H2O], and obtained the recommended upper limit bimolecular rate constant from estimation of the maximum possible contribution to the observed kinetics from a process whose pseudo-first order rate constant varied linearly as a function of [H2O]. A similar experiment is reported by Lewis et al.,5 but with more scatter in the data. A less sensitive upper limit is also reported by Welz et al.,11 who observed no significant increase in the CH3OO decay rate upon addition of up to 3 × 1010 H2O per cm2 to their reaction mixtures; Welz et al. produced CH3OO in the same manner as Chao et al. and Lewis et al., but employed photoionization mass spectrometry as the CH3OO detection technique and lower total pressures than the other studies. Theoretical work by Ryzhkov and Ariya7 suggests that the CH3OO + H2O rate constant may be
significantly slower than any of the experimental upper limits. Experimental rate constants slower than the recommended upper limit are reported by Ouyang et al. and Stone et al. As discussed by Lewis et al., misinterpretation of complex chemical mechanisms are likely to have been a problem in the Ouyang et al. and Stone et al. studies; also, Chao et al. suggest that interferences to detected signals from reaction products could have been a problem in these studies. Suto et al. and Becker et al. report significantly faster rate constants than those obtained in other studies based on competitive kinetics results with CH3OO + SO2 used as the reference reaction. Both Suto et al. and Becker et al. employed the highly exothermic C2H4 + O3 reaction to generate CH3OO, suggesting that reactions of non-thermalized CH3OO could impact the competitive kinetics results. Also, the O3 + C2H4 reaction is known to produce OH. Since OH was not scavenged in the Suto et al. or Becker et al. studies, interfering side reactions could result from its presence. Based on theoretical studies by Aplincourt and Ruiz-López, Ryzhkov and Ariya, and Anglada et al., it is well-established that CH3OO interacts with H2O to form a hydrogen bonded complex that isomerizes rapidly to hydroxymethyl hydroperoxide (HMHP, HOCH2OOH). HMHP is stable ~190 kJ mol⁻¹ relative to CH3OO + H2O.

(New Entry) Back to Table

D62. CH3OO + (H2O)2. The recommendation for k(298 K) is the average of the value reported by Chao et al. and the value obtained from an Arrhenius expression describing the temperature dependent rate constants reported by Smith et al. The Smith et al. study reports the only available temperature dependent data, so the recommended E/R is obtained from the Arrhenius fit to their data. Both Chao et al. and Smith et al. (same research group) coupled CH3OO production by UV laser flash photolysis of CH3I/O2 with time-resolved UV spectroscopic monitoring of CH3OO kinetics; in both studies well-defined quadratic dependence of the pseudo-first order CH3OO decay rate constant on [H2O], and the source of information they used to obtain an equilibrium constant for 2 H2O ↔ (H2O)2 is also the basis for the recommendation in Table 3 of this document. A similar (to Chao et al. and Smith et al.) experiment is reported by Lewis et al., but with more
scatter in the data; these authors obtain a rate constant somewhat slower than the recommendation. Berndt et al. report a somewhat faster rate constant than those obtained in the other studies based on competitive kinetics results with CH$_3$OO + SO$_2$ used as the reference reaction; these investigators employed the highly exothermic CH$_3$ + O$_2$ reaction to generate CH$_3$OO, suggesting that reactions of non-thermalized CH$_3$OO could impact the competitive kinetics results. Lewis et al. speculate that enhanced formation of (H$_2$O)$_3$ in the mass spectrometer sampling region could have been a problem in the Berndt et al. study. Unlike earlier studies that employed O$_3$ + C$_2$H$_4$ as the CH$_3$OO source, Berndt et al. added propane to their reaction mixtures to scavenge OH radicals; this could explain why they observed a quadratic dependence of CH$_3$OO reactivity on [H$_2$O] that was not observed in the earlier studies. The recommended uncertainty (σ) is chosen so σ^2 approximately brackets the results of the four experimental studies. The available experimental results, where a quadratic dependence of the CH$_3$OO loss rate on [H$_2$O] is observed, do not distinguish between two possible reaction mechanisms: CH$_3$OO + (H$_2$O)$_2$ → Pr or the two step process CH$_3$OO + H$_2$O → X, followed by X + H$_2$O → Pr. The theoretical results of Ryzhkov and Ariya7,8 provide strong support for the CH$_3$OO + (H$_2$O)$_2$ pathway. Ryzhkov and Ariya have also theoretically examined the possible role of (H$_3$O)$_3$ and (H$_2$O)$_4$ in the atmospheric degradation of CH$_3$OO, and find these reactions to be much less important than CH$_3$OO + (H$_2$O)$_3$. The theoretical work of Ryzhkov and Ariya7 shows that CH$_3$OO interacts with (H$_2$O)$_2$ to form hydrogen bonded ring complexes which isomerize rapidly to hydrogen bonded complexes of H$_2$O with hydroxymethyl hydroperoxide (HMHP, HOCH$_2$OOH) that are stable by −190 kJ mol$^{-1}$ relative to CH$_3$OO + (H$_2$O)$_3$; as discussed theoretically by Crehuet et al.4 these complexes can undergo unimolecular conversion to HCOOH + 2 H$_2$O or H$_2$O + H$_3$CO + H$_2$O. Theoretical analysis by Smith et al. confirms that the unusually large negative activation energy they observe experimentally is consistent with the mechanism described above.

(New Entry) Back to Table

D63. CH$_3$O$_2$ + O$_3$. This recommendation is from Tyndall et al.1 Their recommendation is based mostly on the recent study by Tyndall et al.2 The temperature dependence is based on the assumption that the only possible reaction which can occur is the O atom transfer from the CH$_3$O$_2$ radical and that the activation energy of ~2 kcal mol$^{-1}$ for this O-atom transfer is similar to that in the HO$_2$ + O$_3$ reaction.
D64. CH$_3$O$_2$ + CH$_3$O$_2$. This recommendation is from Tyndall et al.1 There are two confirmed sets of products for this reaction.

\[
\begin{align*}
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 & \rightarrow \text{CH}_3\text{O} + \text{CH}_3\text{O} + \text{O}_2 \quad \text{(a)} \\
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 & \rightarrow \text{CH}_3\text{OH} + \text{HCHO} + \text{O}_2 \quad \text{(b)}
\end{align*}
\]

The relative product yield, k_a/k_b, was evaluated by Tyndall et al. to be $(26.2 \pm 6.6) \times \exp((-1130 \pm 240)/T)$. They concluded that there was no evidence for the formation of the CH$_3$OOCH$_3$. The kinetics of this reaction have been studied by using UV absorption following pulsed photolytic production of the radicals. Tyndall et al. used the values of k/σ measured by a large number of groups along with the σ values from their evaluation to calculate k. (σ is the absorption cross section of the radical at the wavelength at which it was monitored.) They only used the kinetics data obtained at wavelengths larger than 240 nm, since the absorption by HO$_2$ radicals that are unavoidably produced in these measurements can significantly contribute to the measured UV profiles at shorter wavelengths. They noted that the values of k/σ measured by various groups were much more accurate than the values of σ measured by the same groups. The value of k obtained by this method was then corrected using the above branching ratio for the production of CH$_3$O that leads to the unavoidable occurrence of the CH$_3$O$_2$ + HO$_2$ side reaction; this side reaction consumes another CH$_3$O$_2$ radical.

(D64. CH$_3$O$_2$ + CH$_3$O$_2$. This recommendation is from Tyndall et al.1 They evaluated the available information to deduce that the main set of products under atmospheric conditions is CH$_3$O + NO$_2$. They noted, however, that a very small yield, <0.5%, of CH$_3$ONO$_2$ is also possible. The rate coefficient for the reaction at 298 K and its temperature dependence is based on numerous direct studies of this reaction that have been reported. (Table: 02-25, Note: 02-25, Evaluated 02-25) Back to Table

D65. CH$_3$O$_2$ + NO. This recommendation is from Tyndall et al.1 They evaluated the available information to deduce that the main set of products under atmospheric conditions is CH$_3$O + NO$_2$. They noted, however, that a very small yield, <0.5%, of CH$_3$ONO$_2$ is also possible. The rate coefficient for the reaction at 298 K and its temperature dependence is based on numerous direct studies of this reaction that have been reported. (Table: 02-25, Note: 02-25, Evaluated 02-25) Back to Table

D66. CH$_3$C(O)O$_2$. This recommendation is from Tyndall et al.2 This reaction has two sets of products:

\[
\begin{align*}
\text{CH}_3\text{C(O)O}_2 + \text{CH}_3\text{O}_2 & \rightarrow \text{CH}_3 + \text{CO}_2 + \text{CH}_3\text{O} + \text{O}_2 \quad \text{(a)} \\
\text{CH}_3\text{C(O)O}_2 + \text{CH}_3\text{O}_2 & \rightarrow \text{CH}_3\text{C(O)OH} + \text{HCHO} + \text{O}_2 \quad \text{(b)}
\end{align*}
\]

Tyndall et al. reanalyzed the previously available data on the branching ratios for this reaction and concluded that the branching ratio for channel (a) was $k_a/k_b = 0.9 \pm 0.1$ and $k_b/k_c = 0.1 \pm 0.1$ at 298 K. They also concluded that branching ratios could not be derived for other temperatures from the existing data and therefore did not make a recommendation for the temperature dependence. The recommendation from Tyndall et al. is based on the work of Roehl et al.1 and Villenave et al.3 Their recommended temperature dependence for the overall rate coefficient is based on analogy with other RO$_2$ reactions. (Table: 02-25, Note: 02-25, Evaluated 02-25) Back to Table

1-130

D67. CH₃O₂ + CH₃C(O)CH₂O₂. This recommendation is from Tyndall et al.³ This reaction has three possible sets of products:

\[
\begin{align*}
\text{(a)} & \quad \text{CH₃C(O)CH₂O₂ + CH₃O₂} \rightarrow \text{CH₃C(O) + HCHO + CH₃O + O₂} \\
\text{(b)} & \quad \text{CH₃C(O)CH₂O₂ + CH₃O₂} \rightarrow \text{CH₃C(O)CH₂OH + HCHO + O₂} \\
\text{(c)} & \quad \text{CH₃C(O)CH₂O₂ + CH₃O₂} \rightarrow \text{CH₃C(O)CHO + CH₂OH + O₂}
\end{align*}
\]

The branching ratios for these channels, \(k/k = 0.3 \pm 0.1 \), \(k/s/k = 0.2 \pm 0.1 \), and \(k/L/k = 0.5 \pm 0.1 \), are based on the work of Bridier et al.¹ and Jenkin et al.² The overall rate coefficient for this reaction has been studied only at 298 K by Bridier et al. and the recommendation is based on this value. The recommended values of E/R and g are based on analogy with other RO₂ reactions.

(Table: 02-25, Note: 02-25, Evaluated 02-25) Back to Table

D68. C₃H₅ + O₂. This is a complex reaction that involves the formation of a C₃H₅ adduct, which can either be stabilized by collisions or fall apart to HO₂ and C₂H₄. Wagner et al.¹ Bozzelli and Dean,¹ and Kaiser et al.² The fraction of the energized adducts that fall apart to give HO₂ and C₂H₄ will decrease with increasing pressure and decreasing temperature, i.e., as the C₃H₅ formation increases. The C₃H₅-formation channel cannot be separated from the addition reaction. We recommend a conservative upper limit as a guide to the extent of this reaction. This upper limit is applicable only for lower atmospheric pressure and temperature conditions.

(Table: 94-26, Note: 94-26, Evaluated 94-26) Back to Table

D69. C₃H₅O + O₂. The recommendation is based on the pulsed laser photolysis studies of Gutman et al.¹ and Hartmann et al.² In both these studies, removal of C₂H₅O in an excess of O₂ was directly monitored via laser induced fluorescence. Gutman et al. measured k at only two temperatures, while Hartmann et al. measured k at 5 temperatures between 295 and 411 K. The E/R is from Hartmann et al. The 298 K value deduced from an indirect study by Zabarnick and Heicklen³ is in reasonable agreement with the recommended value.

(Table: 92-20, Note: 92-20, Evaluated 92-20) Back to Table

D70. CH₃CHO (syn and anti conformers) + H₂O, (H₂O)₂. Experimental measurements of k(298 K) have been reported by Taatjes et al.⁶ and Sheps et al.⁵ In both studies CH₃CHO was produced by UV laser flash photolysis of CH₃CH₃/O₂. Taatjes et al. monitored CH₃CHO using time-resolved photoionization mass spectrometry; the anti and syn conformers could be differentiated in the detection scheme because they have different ionization potentials. Sheps et al. used time-resolved broadband (300–450 nm) cavity-enhanced spectrometry to monitor both conformers simultaneously; they determined spectra of the individual conformers based on their very different reactivities toward H₂O and SO₂. Both studies employed relatively
low total pressures of 4 Torr O₂ and 5–20 Torr He. The rate constant reported by Sheps et al. for reaction of the more reactive anti conformer with H₂O is over a factor of two faster than the one reported by Taatjes et al. In both studies, only upper limits could be obtained for the syn–CH₂CHOO + H₂O rate constant, with the Sheps et al. upper limit being a factor of twenty smaller than the Taatjes et al. upper limit. The Sheps et al. rate constants are recommended because their approach appears to provide better sensitivity and selectivity for detection of the individual conformers. The recommended uncertainty in the anti–CH₂CHOO + H₂O rate constant is somewhat larger than reported by Sheps et al. pending independent verification of their result.

The CH₂CHOO + water reactions have been studied theoretically by Anglada et al., Ryzhkov and Ariya, and Kuwata et al. The more reactive anti conformer is found to lie 14–15 kJ mol⁻¹ higher in energy than the syn conformer. There is general agreement that reaction proceeds via initial formation of a hydrogen-bonded complex that isomerizes to the hydroxyl hydroperoxide CH₂CH(ÖH)OOH. The syn conformer is unreactive because the transition state for the isomerization reaction lies 22 kJ mol⁻¹ higher in energy than CH₂CHOO + H₂O reactants; for the anti conformer, isomerization takes place rapidly over a “submerged” barrier that lies 7 kJ mol⁻¹ lower in energy than reactants. Rate constants for conversion of CH₂CHOO + H₂O to the hydroperoxide at T = 298 K and P = 1 atm are predicted in all four theoretical studies. There is general agreement that the anti conformer is more reactive than the syn conformer by factors of 4–7 × 10⁴.

The most recent theoretical work predicts a rate constant for anti–CH₂CHOO + H₂O that is a factor of 7 faster than the experimental value, whereas all three earlier theoretical studies predict anti–CH₂CHOO + H₂O rate constants that are substantially slower than the experimental value (factors of 10, 35, and 80).

To explain available experimental observations, there is no need to postulate the occurrence of a reaction of CH₂CHOO with (H₂O)₂. It should be pointed out, however, that the Taatjes et al. study was limited to P₄H₂O ≤1.4 Torr and the Sheps et al. study was limited to P₄H₂O ≤4.3 Torr. The data of Sheps et al. do show slight indication of upward curvature with increasing [H₂O] in the plot of the pseudo-first order anti–CH₂CHOO decay rate vs. [H₂O]. In their theoretical study, Ryzhkov and Ariya calculated rate constants for reactions of syn- and anti–CH₂CHOO with both H₂O and (H₂O)₂; they predict that at 298 K (H₂O)₂ is 1.0 × 10⁴ times more reactive than H₂O with the syn conformer and 4.2 × 10⁵ times more reactive with the anti conformer. For CH₂OO, where experimental evidence verifies the dominance of the (H₂O)₂ reaction, the reactivity ratio obtained theoretically by Ryzhkov and Ariya is 1.8 × 10⁵. Experiments at higher total pressures and higher H₂O partial pressures appear necessary for quantitatively assessing the importance of (H₂O)₂ reaction as a loss process for CH₂CHOO in the atmosphere.

(9) Back to Table

D71. C₂H₄O₂ + C₂H₃O₄. k(298 K) has been studied by Adachi et al., Anastasi et al., Munk et al., Cattell et al., Anastasi et al., Wallington et al., Bauer et al., and Fenter et al. All the above determinations used only UV absorption to monitor C₂H₂O₂ and hence measured k/σ, where σ is the absorption cross section of C₂H₄O₂ at the monitoring wavelength. These investigators also measured the σ that was used in evaluating the rate coefficient. There are large discrepancies in the measured values of σ. For this evaluation, we have used the cross sections recommended here and recalculated the values of k from each investigation. The recommended k is based on the results of Cattell et al., Wallington et al., Bauer et al., and Fenter et al. In all...
these experiments the observed rate coefficient is higher than the true rate coefficient because of secondary reactions involving HO₂. HO₂ is formed by the reaction of CH₃CH₂O with O₂ and it reacts with C₂H₅O₂ to enhance the observed rate coefficient (see Wallington et al.¹¹ or Lightfoot et al.² for further discussion). Based on product branching ratios discussed below, which determine the magnitude of the necessary correction, the recommended rate coefficient is 0.6 times the average observed rate coefficient. The recommended value of E/R was obtained from the results of Anastasi et al., Wallington et al., Cattell et al., Bauer et al., and Fenter et al. They obtained the experiments (Niki et al.⁴), which suggest that at 298 K the channel to yield 2 C₂H₅O₂ + O₂ accounts for about 60% of the reaction; the channel to yield CH₃CHO + C₂H₅OH + O₂ accounts for about 40% of the reaction; and the channel to yield C₂H₅C₂H₅ + O₂ accounts for less than 5% of the reaction. These branching ratios were used to obtain the true rate coefficient from the observed rate coefficient.

(Table: 94-26, Note: 94-26, Evaluated 94-26) Back to Table

D72. C₂H₅O₂ + NO. The recommended k(298 K) is obtained from the results of Plumb et al.,⁶ Sehested et al.,⁷ Daële et al.,³ Eberhard and Howard,⁴ and Maricq and Szente.⁵ The value reported by Adachi and Basco,¹ which is a factor of three lower than the recommended value, was not used. The rate coefficient for the CH₂O + NO reaction measured by Basco and co-workers (Adachi et al.,⁴) using the same apparatus is also much lower than the value recommended here. The recommended temperature dependence is derived from Eberhardt and Howard⁴ and Maricq and Szente,³ which are in good agreement.

(Table: 97-4, Note: 97-4, Evaluated 97-4) Back to Table

D73. $\text{CH}_3\text{C(O)}\text{O}_2 + \text{CH}_3\text{C(O)}\text{O}_2$. This reaction has been studied by Addison et al., Basco and Parmar, Moortgat et al., Marieq and Szente, and Roehl et al. The recommended value is obtained from the data of Moortgat et al., Marieq and Szente, and Roehl et al. As pointed out by Moortgat et al., the six times lower value of k obtained by Addison et al. is likely due to the use of incorrect UV absorption cross sections for the peroxy radical. The k obtained by Basco and Parmar is ~2 times lower than the recommended value. This discrepancy is possibly due to neglecting the UV absorption of CH_3O_2 and other stable products in their data analysis (Moortgat et al., Marieq and Szente). The recommended temperature dependence was calculated from the data of Moortgat et al., the six times lower value of k obtained by Addison et al., the data of Moortgat et al., Maricq and Szente, and Roehl et al.

D74. $\text{CH}_3\text{C(O)}\text{O}_2 + \text{NO}$. This recommendation is from Tyndall et al. These authors have argued that the only set of products of importance in the atmosphere is the production of $\text{CH}_3 + \text{CO}_2 + \text{NO}_2$. This is because the alkoxy radical produced upon O abstraction from the peroxy radical by NO will be unstable towards decomposition to give CH_3 and CO_2. The rate coefficient for the reaction was deduced primarily from direct studies, but was found to be consistent with the relative rate studies. In the relative rate studies, this rate coefficient was measured relative to the rate coefficient for the reaction of $\text{CH}_3\text{C(O)}\text{O}_2$ with NO_2.

D75. $\text{CH}_3\text{C(O)}\text{CH}_2\text{O} + \text{NO}$. This recommendation is from Tyndall et al. They deduced, based on the results of Sehested et al., Jenkin et al., and Orlando et al., that the products of this reaction are $\text{CH}_3\text{C(O)}\text{CH}_2\text{O} + \text{NO}_2$. The $\text{CH}_3\text{C(O)}\text{CH}_2\text{O}$ radical decomposes rapidly to give $\text{CH}_3\text{C(O)} + \text{CH}_2\text{O}$. The only kinetics study of this reaction by Sehested et al. forms the basis for the rate coefficient at 298 K. This value is uncertain because of the corrections that had to be made in the study of Sehested et al. to account for the production of NO_2, the monitored species, via the reaction of peroxy radicals (such as $\text{CH}_3\text{C(O)}\text{O}_2$ and CH_3O_2) with NO. The temperature dependence of the reaction is derived based on analogy with other peroxy radical reactions.

(3) Sehested, J.; Christensen, L. K.; Nielsen, O. J.; Bilde, M.; Wallington, T. J.; Schneider, W. F.; Orlando, J. J.; Tyndall, G. S. Atmospheric chemistry of acetone: kinetic study of the $\text{CH}_3\text{C(O)}\text{CH}_2\text{O} + \text{NO}/\text{NO}_2$ reactions and decomposition of $\text{CH}_3\text{C(O)}\text{CH}_2\text{O}\text{NO}_2$. *Int. J. Chem. Kinet.* 1998, 30, 475-489.
1.9.3 Bibliography – Reactions of Organic Compounds

Anastasi, C.; Brown, M. J.; Smith, D. B.; Waddington, D. J. Joint French and Italian sections of the Combustion Institute, 1987, Amalfi, Italy.

Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Absorption spectrum of NO3 and kinetics of the reactions of NO3 with NO2, Cl, and several stable atmospheric species at 298 K. *J. Phys. Chem.* 1985, 89, 4848-4856.

DeMore, W. B. Rate constant ratio for the reaction of OH with CH3D and CH4. J. Phys. Chem. 1993, 97, 8564-8566.

DeMore, W. B.; Bayes, K. D. Rate constants for the reactions of hydroxyl radical with several alkanes, cycloalkanes, and dimethyl ether. J. Phys. Chem. A 1999, 103, 2649-2654.

Harris, G. W.; Kleindienst, T. E.; Pitts, J. N., Jr. Rate constants for the reaction of OH radicals with CH₃CN, C₂H₅CN and CH₃=CH-CN in the temperature range 298-424 K. *Chem. Phys. Lett.* 1981, 80, 479-483.

Howard, C. J.; Evenson, K. M. Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K. *J. Chem. Phys.* 1976, 64, 4303-4306.

1-140

Rhasa, D. In Diplomarbeit Univ. of Gottingen FRG, 1983.

Sanders, N.; Butler, J. E.; Pasternack, L. R.; McDonald, J. R. CH$_3$O (XE) production from 266 nm photolysis of methyl nitrite and reaction with NO. *Chem. Phys.* 1980, 48, 203-208.

Sehested, J.; Christensen, L. K.; Nielsen, O. J.; Bilde, M.; Wallington, T. J.; Schneider, W. F.; Orlando, J. J.; Tyndall, G. S. Atmospheric chemistry of acetone: Kinetic study of the CH$_3$C(O)CH$_2$O + NO/NO$_2$ reactions and decomposition of CH$_3$C(O)CH$_2$O$_2$. *Int. J. Chem. Kinet.* 1998, 30, 475-489.

Zetzsch, C. “Rate constants for the reactions of OH with acetone and methylethylketone in the gas phase”; 7th International Symposium on Gas Kinetics, 1982, Goettingen, Germany.

1.10 FOx Reactions

1.10.1 Table 1E: FOx Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K)</th>
<th>A Factor</th>
<th>E/R</th>
<th>(k(298 \text{ K}))</th>
<th>(f(298 \text{ K}))</th>
<th>(g)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O + FO \rightarrow F + O_2)</td>
<td>298</td>
<td>(2.7 \times 10^{-11})</td>
<td>0</td>
<td>(2.7 \times 10^{-11})</td>
<td>3.0</td>
<td>250</td>
<td>(E\ 1)</td>
</tr>
<tr>
<td>(O + FO_2 \rightarrow FO + O_2)</td>
<td>–</td>
<td>(5.0 \times 10^{-11})</td>
<td>0</td>
<td>(5.0 \times 10^{-11})</td>
<td>5.0</td>
<td></td>
<td>(E\ 2)</td>
</tr>
<tr>
<td>(OH + CH_2F \rightarrow CH_2F + H_2O) (HFC-41)</td>
<td>243–480</td>
<td>(2.2 \times 10^{-12})</td>
<td>1400</td>
<td>(2.0 \times 10^{-14})</td>
<td>1.1</td>
<td>150</td>
<td>(E\ 3)</td>
</tr>
<tr>
<td>(OH + CH_2F_2 \rightarrow CHF_2 + H_2O) (HFC-32)</td>
<td>220–492</td>
<td>(1.7 \times 10^{-12})</td>
<td>1500</td>
<td>(1.1 \times 10^{-14})</td>
<td>1.07</td>
<td>100</td>
<td>(E\ 4)</td>
</tr>
<tr>
<td>(OH + CHF_3 \rightarrow CF_3 + H_2O) (HFC-23)</td>
<td>253–1663</td>
<td>(6.1 \times 10^{-13})</td>
<td>2260</td>
<td>(3.1 \times 10^{-16})</td>
<td>1.15</td>
<td>100</td>
<td>(E\ 5)</td>
</tr>
<tr>
<td>(OH + CH_{2}CHF \rightarrow \text{products}) (HFC-161)</td>
<td>210–480</td>
<td>(2.5 \times 10^{-12})</td>
<td>730</td>
<td>(2.2 \times 10^{-13})</td>
<td>1.07</td>
<td>50</td>
<td>(E\ 6)</td>
</tr>
<tr>
<td>(OH + CH_{2}CHF_2 \rightarrow \text{products}) (HFC-152a)</td>
<td>210–480</td>
<td>(8.7 \times 10^{-13})</td>
<td>975</td>
<td>(3.3 \times 10^{-14})</td>
<td>1.07</td>
<td>50</td>
<td>(E\ 7)</td>
</tr>
<tr>
<td>(OH + CH_2FCH_2F \rightarrow CHFCH_2F + H_2O) (HFC-152)</td>
<td>210–480</td>
<td>(1.05 \times 10^{-12})</td>
<td>710</td>
<td>(9.7 \times 10^{-14})</td>
<td>1.07</td>
<td>100</td>
<td>(E\ 8)</td>
</tr>
<tr>
<td>(OH + CHF_2F \rightarrow CH_2CF_2F + H_2O) (HFC-143a)</td>
<td>261–425</td>
<td>(1.07 \times 10^{-12})</td>
<td>2000</td>
<td>(1.3 \times 10^{-15})</td>
<td>1.1</td>
<td>100</td>
<td>(E\ 9)</td>
</tr>
<tr>
<td>(OH + CHFCHF_2 \rightarrow \text{products}) (HFC-143)</td>
<td>278–441</td>
<td>(3.9 \times 10^{-12})</td>
<td>1620</td>
<td>(1.7 \times 10^{-14})</td>
<td>1.2</td>
<td>200</td>
<td>(E\ 10)</td>
</tr>
<tr>
<td>(OH + CHF_2CF_3 \rightarrow CHFCHCF_3 + H_2O) (HFC-134a)</td>
<td>220–473</td>
<td>(1.03 \times 10^{-12})</td>
<td>1620</td>
<td>(4.5 \times 10^{-15})</td>
<td>1.1</td>
<td>100</td>
<td>(E\ 11)</td>
</tr>
<tr>
<td>(OH + CHFCHF_2 \rightarrow CF_2CHF_2 + H_2O) (HFC-134)</td>
<td>294–434</td>
<td>(1.6 \times 10^{-12})</td>
<td>1660</td>
<td>(6.1 \times 10^{-15})</td>
<td>1.2</td>
<td>200</td>
<td>(E\ 12)</td>
</tr>
<tr>
<td>(OH + CHF_3CF_3 \rightarrow CF_2CF_2F + H_2O) (HFC-125)</td>
<td>220–441</td>
<td>(6.0 \times 10^{-13})</td>
<td>1700</td>
<td>(2.0 \times 10^{-15})</td>
<td>1.1</td>
<td>100</td>
<td>(E\ 13)</td>
</tr>
<tr>
<td>(OH + CH_{2}CHFCH_3 \rightarrow \text{products}) (HFC-281ea)</td>
<td>288–394</td>
<td>(3.0 \times 10^{-12})</td>
<td>490</td>
<td>(5.8 \times 10^{-13})</td>
<td>1.2</td>
<td>100</td>
<td>(E\ 14)</td>
</tr>
<tr>
<td>(OH + CH_{2}CH_2CF_3 \rightarrow \text{products}) (HFC-263fb)</td>
<td>238–375</td>
<td>(3.7 \times 10^{-12})</td>
<td>1290</td>
<td>(4.9 \times 10^{-14})</td>
<td>1.15</td>
<td>100</td>
<td>(E\ 15)</td>
</tr>
<tr>
<td>(OH + CHFCHFCHF_2 \rightarrow \text{products}) (HFC-245ca)</td>
<td>260–365</td>
<td>(2.1 \times 10^{-12})</td>
<td>1620</td>
<td>(9.2 \times 10^{-15})</td>
<td>1.2</td>
<td>150</td>
<td>(E\ 16)</td>
</tr>
<tr>
<td>(OH + CHF_2CF_2F \rightarrow \text{products}) (HFC-245cb)</td>
<td>298–370</td>
<td>(4.2 \times 10^{-13})</td>
<td>1680</td>
<td>(1.5 \times 10^{-15})</td>
<td>1.1</td>
<td>200</td>
<td>(E\ 17)</td>
</tr>
<tr>
<td>(OH + CHFCHFCHFH_2 \rightarrow \text{products}) (HFC-245ea)</td>
<td>238–375</td>
<td>(1.53 \times 10^{-12})</td>
<td>1340</td>
<td>(1.7 \times 10^{-14})</td>
<td>1.1</td>
<td>150</td>
<td>(E\ 18)</td>
</tr>
<tr>
<td>(OH + CHFCHFCHF_3 \rightarrow \text{products}) (HFC-245eb)</td>
<td>238–375</td>
<td>(1.16 \times 10^{-12})</td>
<td>1260</td>
<td>(1.7 \times 10^{-14})</td>
<td>1.15</td>
<td>100</td>
<td>(E\ 19)</td>
</tr>
<tr>
<td>(OH + CHFCH_2CF_3 \rightarrow \text{products}) (HFC-245fa)</td>
<td>273–370</td>
<td>(6.1 \times 10^{-13})</td>
<td>1330</td>
<td>(7.0 \times 10^{-15})</td>
<td>1.15</td>
<td>100</td>
<td>(E\ 20)</td>
</tr>
<tr>
<td>(OH + CHFCHFCF_2 \rightarrow CHFCHFCF_3 + H_2O) (HFC-236cb)</td>
<td>251–314</td>
<td>(1.03 \times 10^{-12})</td>
<td>1620</td>
<td>(4.5 \times 10^{-15})</td>
<td>2.0</td>
<td>200</td>
<td>(E\ 21)</td>
</tr>
<tr>
<td>(OH + CHFCHFCF_3 \rightarrow \text{products}) (HFC-236ea)</td>
<td>251–380</td>
<td>(9.4 \times 10^{-13})</td>
<td>1550</td>
<td>(5.2 \times 10^{-15})</td>
<td>1.2</td>
<td>200</td>
<td>(E\ 22)</td>
</tr>
<tr>
<td>(OH + CF_2CH_2CF_3 \rightarrow CF_3CHCF_3 + H_2O) (HFC-236fa)</td>
<td>251–413</td>
<td>(1.45 \times 10^{-12})</td>
<td>2500</td>
<td>(3.3 \times 10^{-16})</td>
<td>1.15</td>
<td>150</td>
<td>(E\ 23)</td>
</tr>
<tr>
<td>(OH + CF_2CHFCF_3 \rightarrow CF_3CFCF_3 + H_2O) (HFC-227ea)</td>
<td>250–463</td>
<td>(4.8 \times 10^{-13})</td>
<td>1680</td>
<td>(1.7 \times 10^{-15})</td>
<td>1.15</td>
<td>75</td>
<td>(E\ 24)</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)¹</td>
<td>A Factor</td>
<td>E/R</td>
<td>k(298 K)²</td>
<td>f(298 K)²</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>OH + CH₃CF₂CH₂CF₃ → products (HFC-365mfc)</td>
<td>269–373</td>
<td>1.8×10⁻¹²</td>
<td>1660</td>
<td>6.9×10⁻¹⁵</td>
<td>1.3</td>
<td>100</td>
<td>E25</td>
</tr>
<tr>
<td>OH + CF₃CH₂CH₂CF₃ → products (HFC-358mllf)</td>
<td>260–365</td>
<td>3.4×10⁻¹²</td>
<td>1820</td>
<td>7.6×10⁻¹⁵</td>
<td>1.2</td>
<td>300</td>
<td>E26</td>
</tr>
<tr>
<td>OH + CH₃FCH₂CF₂CF₃ → products (HFC-356mcf)</td>
<td>252–346</td>
<td>1.7×10⁻¹²</td>
<td>1100</td>
<td>4.2×10⁻¹⁴</td>
<td>1.3</td>
<td>150</td>
<td>E27</td>
</tr>
<tr>
<td>OH + CHF₂CF₂CF₂CF₂H → products (HFC-338pcc)</td>
<td>232–419</td>
<td>7.7×10⁻¹³</td>
<td>1540</td>
<td>4.4×10⁻¹⁵</td>
<td>1.2</td>
<td>150</td>
<td>E28</td>
</tr>
<tr>
<td>OH + CF₃CH₂CF₂CH₂CF₃ → products (HFC-458mcf)</td>
<td>278–354</td>
<td>1.1×10⁻¹²</td>
<td>1800</td>
<td>2.6×10⁻¹⁵</td>
<td>1.5</td>
<td>200</td>
<td>E29</td>
</tr>
<tr>
<td>OH + CF₃CHFCHFCF₂CF₃ → products (HFC-43-10mee)</td>
<td>250–400</td>
<td>5.2×10⁻¹³</td>
<td>1500</td>
<td>3.4×10⁻¹⁵</td>
<td>1.2</td>
<td>150</td>
<td>E30</td>
</tr>
<tr>
<td>OH + CF₃CF₂CH₂CH₂CF₂CF₃ → products (HFC-55-10-mcf)</td>
<td>298</td>
<td>3.5×10⁻¹²</td>
<td>1800</td>
<td>8.3×10⁻¹⁵</td>
<td>1.5</td>
<td>300</td>
<td>E31</td>
</tr>
<tr>
<td>OH + CH₂=CHF → products</td>
<td>220–426</td>
<td>1.77×10⁻¹²</td>
<td>-310</td>
<td>5.0×10⁻¹²</td>
<td>1.07</td>
<td>20</td>
<td>E32</td>
</tr>
<tr>
<td>OH + CH₂=CF₂ → products</td>
<td>219–373</td>
<td>1.7×10⁻¹²</td>
<td>-150</td>
<td>2.8×10⁻¹²</td>
<td>1.07</td>
<td>20</td>
<td>E33</td>
</tr>
<tr>
<td>OH + CHF=CF₂ → products</td>
<td>253–328</td>
<td>2.52×10⁻¹²</td>
<td>-340</td>
<td>7.9×10⁻¹²</td>
<td>1.1</td>
<td>50</td>
<td>E34</td>
</tr>
<tr>
<td>OH + CF₂=CF₂ → products</td>
<td>250–370</td>
<td>3.4×10⁻¹²</td>
<td>-320</td>
<td>1.0×10⁻¹¹</td>
<td>1.15</td>
<td>100</td>
<td>E35</td>
</tr>
<tr>
<td>OH + CH₂=CHCH₂F → products</td>
<td>228–388</td>
<td>6.0×10⁻¹²</td>
<td>-290</td>
<td>1.6×10⁻¹¹</td>
<td>1.3</td>
<td>100</td>
<td>E36</td>
</tr>
<tr>
<td>OH + CH₂=CHCF₃ → products</td>
<td>252–370</td>
<td>8.2×10⁻¹³</td>
<td>-170</td>
<td>1.45×10⁻¹²</td>
<td>1.07</td>
<td>50</td>
<td>E37</td>
</tr>
<tr>
<td>OH + CH₂=CFCF₃ → products</td>
<td>206–380</td>
<td>1.1×10⁻¹²</td>
<td>0</td>
<td>1.1×10⁻¹²</td>
<td>1.05</td>
<td>0</td>
<td>E38</td>
</tr>
<tr>
<td>OH + (E)-CHF=CHCF₃ → products</td>
<td>220–370</td>
<td>6.1×10⁻¹³</td>
<td>-40</td>
<td>7.0×10⁻¹³</td>
<td>1.1</td>
<td>0</td>
<td>E39</td>
</tr>
<tr>
<td>OH + (E)-CHF=CFCF₃ → products</td>
<td>296</td>
<td>1.65×10⁻¹²</td>
<td>-100</td>
<td>2.3×10⁻¹²</td>
<td>1.3</td>
<td>50</td>
<td>E40</td>
</tr>
<tr>
<td>OH + (Z)-CHF=CFCF₃ → products</td>
<td>200–380</td>
<td>7.5×10⁻¹³</td>
<td>-165</td>
<td>1.3×10⁻¹²</td>
<td>1.07</td>
<td>50</td>
<td>E41</td>
</tr>
<tr>
<td>OH + CF₂=CFCF₃ → products</td>
<td>250–489</td>
<td>5.34×10⁻¹³</td>
<td>-415</td>
<td>2.15×10⁻¹²</td>
<td>1.05</td>
<td>50</td>
<td>E42</td>
</tr>
<tr>
<td>OH + CF₂=CFCF=CF₂ → products</td>
<td>298</td>
<td>4.0×10⁻¹²</td>
<td>-300</td>
<td>1.1×10⁻¹¹</td>
<td>1.15</td>
<td>100</td>
<td>E43</td>
</tr>
<tr>
<td>OH + CH₂=CHCF₂CF₃ → products</td>
<td>296</td>
<td>7.9×10⁻¹³</td>
<td>-170</td>
<td>1.4×10⁻¹²</td>
<td>1.2</td>
<td>50</td>
<td>E44</td>
</tr>
<tr>
<td>OH + (Z)-CF₂=CH=CHCF₃ → products</td>
<td>212–374</td>
<td>2.46×10⁻¹³</td>
<td>-200</td>
<td>4.8×10⁻¹³</td>
<td>1.07</td>
<td>20</td>
<td>E45</td>
</tr>
<tr>
<td>OH + (E)-CF₃CF=CFCF₃ → products</td>
<td>230–370</td>
<td>3.17×10⁻¹³</td>
<td>-180</td>
<td>5.8×10⁻¹³</td>
<td>1.1</td>
<td>20</td>
<td>E46</td>
</tr>
<tr>
<td>OH + (Z)-CF₃CF=CFCF₃ → products</td>
<td>230–370</td>
<td>2.9×10⁻¹³</td>
<td>-80</td>
<td>3.8×10⁻¹³</td>
<td>1.1</td>
<td>20</td>
<td>E47</td>
</tr>
<tr>
<td>OH + (CF₃)₂C=C=CFCF₂CF₃</td>
<td>250–370</td>
<td>7.1×10⁻¹⁴</td>
<td>0</td>
<td>7.1×10⁻¹⁴</td>
<td>1.05</td>
<td>50</td>
<td>E48</td>
</tr>
<tr>
<td>OH + CF₃OH → CF₃O + H₂O</td>
<td>–</td>
<td><2×10⁻¹⁷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E49</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A Factor</td>
<td>E/R</td>
<td>k(298 K)</td>
<td>f(298 K)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>OH + CH₂FCH₂OH → products</td>
<td>220–370</td>
<td>1.82×10⁻¹²</td>
<td>210</td>
<td>9.0×10⁻¹³</td>
<td>1.05</td>
<td>50</td>
<td>E50</td>
</tr>
<tr>
<td>OH + CHF₂CH₂OH → products</td>
<td>220–370</td>
<td>1.4×10⁻¹²</td>
<td>500</td>
<td>2.6×10⁻¹³</td>
<td>1.05</td>
<td>100</td>
<td>E51</td>
</tr>
<tr>
<td>OH + CF₃CH₂OH → products</td>
<td>220–430</td>
<td>8.6×10⁻¹³</td>
<td>640</td>
<td>1.0×10⁻¹³</td>
<td>1.05</td>
<td>100</td>
<td>E52</td>
</tr>
<tr>
<td>OH + CF₃CF₂CH₂OH → products</td>
<td>250–430</td>
<td>1.16×10⁻¹²</td>
<td>730</td>
<td>1.0×10⁻¹³</td>
<td>1.05</td>
<td>100</td>
<td>E53</td>
</tr>
<tr>
<td>OH + (CF₃)₂CHOH → products</td>
<td>220–430</td>
<td>4.05×10⁻¹³</td>
<td>830</td>
<td>2.5×10⁻¹⁴</td>
<td>1.05</td>
<td>100</td>
<td>E54</td>
</tr>
<tr>
<td>OH + CF₃CHFCF₂CH₂OH → products</td>
<td>230–430</td>
<td>1.07×10⁻¹²</td>
<td>640</td>
<td>1.25×10⁻¹³</td>
<td>1.1</td>
<td>100</td>
<td>E55</td>
</tr>
<tr>
<td>OH + CF₃CF₂CF₂CF₂CH₂OH → products</td>
<td>296</td>
<td>1.16×10⁻¹²</td>
<td>730</td>
<td>1.0×10⁻¹³</td>
<td>1.1</td>
<td>200</td>
<td>E56</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂ → products (HFE-152a)</td>
<td>298–460</td>
<td>1.05×10⁻¹¹</td>
<td>1700</td>
<td>3.5×10⁻¹⁴</td>
<td>1.3</td>
<td>200</td>
<td>E57</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂ → products (HFE-143a)</td>
<td>268–460</td>
<td>1.84×10⁻¹²</td>
<td>1500</td>
<td>1.2×10⁻¹⁴</td>
<td>1.1</td>
<td>150</td>
<td>E58</td>
</tr>
<tr>
<td>OH + CHF₂OCHF₂ → CF₂OCHF₂ + H₂O (HFE-134)</td>
<td>251–464</td>
<td>1.1×10⁻¹²</td>
<td>1830</td>
<td>2.4×10⁻¹⁵</td>
<td>1.1</td>
<td>150</td>
<td>E59</td>
</tr>
<tr>
<td>OH + CHF₂OCHF₂ → CF₂OCHF₂ + H₂O (HFE-125)</td>
<td>298–393</td>
<td>4.6×10⁻¹³</td>
<td>2040</td>
<td>4.9×10⁻¹⁶</td>
<td>1.2</td>
<td>200</td>
<td>E60</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂CF₂ → products</td>
<td>253–328</td>
<td>2.05×10⁻¹²</td>
<td>760</td>
<td>1.6×10⁻¹³</td>
<td>1.15</td>
<td>50</td>
<td>E61</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂CF₂ → products (Sevoflurane)</td>
<td>241–422</td>
<td>8.77×10⁻¹³</td>
<td>960</td>
<td>3.5×10⁻¹⁴</td>
<td>1.15</td>
<td>100</td>
<td>E62</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂CF₂ → products</td>
<td>250–430</td>
<td>1.7×10⁻¹³</td>
<td>1300</td>
<td>2.2×10⁻¹⁴</td>
<td>1.3</td>
<td>200</td>
<td>E63</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂CF₂ → products</td>
<td>250–430</td>
<td>1.1×10⁻¹²</td>
<td>1370</td>
<td>1.1×10⁻¹⁴</td>
<td>1.2</td>
<td>150</td>
<td>E64</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂CF₂ → products (HFE-245fa2)</td>
<td>292–460</td>
<td>2.9×10⁻¹²</td>
<td>1660</td>
<td>1.1×10⁻¹⁴</td>
<td>1.15</td>
<td>200</td>
<td>E65</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂CF₂ → products (Desflurane)</td>
<td>241–298</td>
<td>8.15×10⁻¹³</td>
<td>1570</td>
<td>4.2×10⁻¹⁵</td>
<td>1.15</td>
<td>100</td>
<td>E66</td>
</tr>
<tr>
<td>OH + CHF₂OCF₂CHF₂ → products</td>
<td>253–407</td>
<td>5.8×10⁻¹³</td>
<td>1600</td>
<td>2.7×10⁻¹⁵</td>
<td>1.2</td>
<td>50</td>
<td>E67</td>
</tr>
<tr>
<td>OH + CF₂OCHF₂CF₂ → products</td>
<td>250–430</td>
<td>3.1×10⁻¹³</td>
<td>1680</td>
<td>1.1×10⁻¹⁵</td>
<td>1.15</td>
<td>100</td>
<td>E68</td>
</tr>
<tr>
<td>OH + CH₂OCHF₂CF₂CF₂ → products</td>
<td>250–430</td>
<td>1.4×10⁻¹³</td>
<td>1440</td>
<td>1.1×10⁻¹⁴</td>
<td>1.15</td>
<td>150</td>
<td>E69</td>
</tr>
<tr>
<td>OH + CH₂OCH(CF₃)₂ → products (HFE-356mm1)</td>
<td>253–328</td>
<td>1.36×10⁻¹²</td>
<td>530</td>
<td>2.3×10⁻¹³</td>
<td>1.1</td>
<td>50</td>
<td>E70</td>
</tr>
<tr>
<td>OH + CH₂OCH(CF₃)₂ → products</td>
<td>250–430</td>
<td>1.3×10⁻¹²</td>
<td>1330</td>
<td>1.5×10⁻¹⁴</td>
<td>1.1</td>
<td>100</td>
<td>E71</td>
</tr>
<tr>
<td>OH + CH₃OCF₆ → products</td>
<td>295</td>
<td>1.3×10⁻¹²</td>
<td>1400</td>
<td>1.2×10⁻¹⁴</td>
<td>1.15</td>
<td>150</td>
<td>E72</td>
</tr>
<tr>
<td>OH + CHF₂OCH₂CF₂CHF₂ → products</td>
<td>250–430</td>
<td>1.82×10⁻¹²</td>
<td>1410</td>
<td>1.6×10⁻¹⁴</td>
<td>1.2</td>
<td>200</td>
<td>E73</td>
</tr>
<tr>
<td>OH + CHF₂OCH₂CF₂CF₂ → products</td>
<td>250–430</td>
<td>1.6×10⁻¹²</td>
<td>1510</td>
<td>1.0×10⁻¹⁴</td>
<td>1.3</td>
<td>200</td>
<td>E74</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})^a$</td>
<td>$f(298 \text{ K})^b$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>-----</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>OH + CHF$_2$OCH(CF$_3$)$_2$ → products</td>
<td>284–398</td>
<td>1.03×10$^{-12}$</td>
<td>1760</td>
<td>2.8×10$^{-15}$</td>
<td>1.2</td>
<td>150</td>
<td>E75</td>
</tr>
<tr>
<td>OH + CH$_2$CH$_2$OCF$_2$CHF$_2$ → products</td>
<td>250–430</td>
<td>2.1×10$^{-12}$</td>
<td>670</td>
<td>2.2×10$^{-13}$</td>
<td>1.1</td>
<td>100</td>
<td>E76</td>
</tr>
<tr>
<td>OH + CF$_3$CH$_2$OCH$_2$CF$_3$ → products</td>
<td>268–409</td>
<td>2.8×10$^{-12}$</td>
<td>890</td>
<td>1.4×10$^{-13}$</td>
<td>1.1</td>
<td>100</td>
<td>E77</td>
</tr>
<tr>
<td>OH + CF$_3$CH$_2$OCF$_2$CHF$_2$ → products (HFE-347pcf2)</td>
<td>250–430</td>
<td>1.32×10$^{-12}$</td>
<td>1470</td>
<td>9.5×10$^{-15}$</td>
<td>1.1</td>
<td>50</td>
<td>E78</td>
</tr>
<tr>
<td>OH + CHF$_2$OCF$_2$OCHF$_2$ → products</td>
<td>295</td>
<td>1.0×10$^{-12}$</td>
<td>1800</td>
<td>2.4×10$^{-15}$</td>
<td>1.4</td>
<td>200</td>
<td>E79</td>
</tr>
<tr>
<td>OH + CHF$_2$OCF$_2$CF$_2$OCHF$_2$ → products</td>
<td>295</td>
<td>2.0×10$^{-12}$</td>
<td>1800</td>
<td>4.7×10$^{-15}$</td>
<td>1.5</td>
<td>200</td>
<td>E80</td>
</tr>
<tr>
<td>OH + CHF$_2$OCF$_2$CF$_2$OCF$_2$OCHF$_2$ → products</td>
<td>295</td>
<td>1.9×10$^{-12}$</td>
<td>1800</td>
<td>4.6×10$^{-15}$</td>
<td>1.5</td>
<td>200</td>
<td>E81</td>
</tr>
<tr>
<td>F + O$_2$ → FO$_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F + O$_3$ → FO + O$_2$</td>
<td>253–365</td>
<td>2.2×10$^{-11}$</td>
<td>230</td>
<td>1.0×10$^{-11}$</td>
<td>1.5</td>
<td>200</td>
<td>E82</td>
</tr>
<tr>
<td>F + H$_2$ → HF + H</td>
<td>77–765</td>
<td>1.4×10$^{-10}$</td>
<td>500</td>
<td>2.6×10$^{-11}$</td>
<td>1.2</td>
<td>200</td>
<td>E83</td>
</tr>
<tr>
<td>F + H$_2$O → HF + OH</td>
<td>240–373</td>
<td>1.4×10$^{-11}$</td>
<td>0</td>
<td>1.4×10$^{-11}$</td>
<td>1.3</td>
<td>200</td>
<td>E84</td>
</tr>
<tr>
<td>F + NO → FNO</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F + NO$_2$ → FNO$_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F + HNO$_3$ → HF + NO$_3$</td>
<td>260–373</td>
<td>6.0×10$^{-12}$</td>
<td>−400</td>
<td>2.3×10$^{-11}$</td>
<td>1.3</td>
<td>200</td>
<td>E85</td>
</tr>
<tr>
<td>F + CH$_4$ → HF + CH$_3$</td>
<td>139–423</td>
<td>1.6×10$^{-10}$</td>
<td>260</td>
<td>6.7×10$^{-11}$</td>
<td>1.4</td>
<td>200</td>
<td>E86</td>
</tr>
<tr>
<td>FO + O$_3$ → products</td>
<td>298</td>
<td><1 × 10$^{-14}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO + NO → NO$_2$ + F</td>
<td>298–845</td>
<td>8.2×10$^{-12}$</td>
<td>−300</td>
<td>2.2×10$^{-11}$</td>
<td>1.5</td>
<td>200</td>
<td>E88</td>
</tr>
<tr>
<td>FO + NO$_2$ → FONO$_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO + NO → 2F + O$_2$</td>
<td>298–435</td>
<td>1.0×10$^{-11}$</td>
<td>0</td>
<td>1.0×10$^{-11}$</td>
<td>1.5</td>
<td>250</td>
<td>E89</td>
</tr>
<tr>
<td>FO$_2$ + O$_3$ → products</td>
<td>298</td>
<td><3.4×10$^{-16}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO$_2$ + NO → FNO + O$_2$</td>
<td>190–298</td>
<td>7.5×10$^{-12}$</td>
<td>690</td>
<td>7.5×10$^{-13}$</td>
<td>2.0</td>
<td>400</td>
<td>E91</td>
</tr>
<tr>
<td>FO$_2$ + NO$_2$ → products</td>
<td>260–315</td>
<td>3.8×10$^{-11}$</td>
<td>2040</td>
<td>4.0×10$^{-14}$</td>
<td>2.0</td>
<td>500</td>
<td>E92</td>
</tr>
<tr>
<td>FO$_2$ + CO → products</td>
<td>298</td>
<td><5.1×10$^{-16}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO$_2$ + CH$_4$ → products</td>
<td>298</td>
<td><2×10$^{-16}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$ + O$_2$ → CF$_3$O$_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K) a</td>
<td>A Factor</td>
<td>E/R</td>
<td>(k(298\text{ K})^b)</td>
<td>(f(298\text{ K})^c)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{M} \rightarrow \text{F} + \text{CF}_2\text{O} + \text{M})</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{O}_2 \rightarrow \text{FO} + \text{CF}_2\text{O})</td>
<td>373</td>
<td>(<3 \times 10^{-11})</td>
<td>5000</td>
<td>(<1.5 \times 10^{-18})</td>
<td></td>
<td></td>
<td>E95</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{O}_3 \rightarrow \text{CF}_3\text{O}_2 + \text{O}_2)</td>
<td>210–353</td>
<td>(2 \times 10^{-12})</td>
<td>1400</td>
<td>(1.8 \times 10^{-14})</td>
<td>1.3</td>
<td>600</td>
<td>E96</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{H}_2\text{O} \rightarrow \text{OH} + \text{CF}_3\text{OH})</td>
<td>296–381</td>
<td>(3 \times 10^{-12})</td>
<td>(>3600)</td>
<td>(<2 \times 10^{-17})</td>
<td></td>
<td></td>
<td>E97</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{NO} \rightarrow \text{CF}_2\text{O} + \text{FNO})</td>
<td>213–393</td>
<td>(3.7 \times 10^{-11})</td>
<td>(<-110)</td>
<td>(5.4 \times 10^{-11})</td>
<td>1.2</td>
<td>70</td>
<td>E98</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{NO}_2 \rightarrow \text{products})</td>
<td>222–302</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E99</td>
</tr>
<tr>
<td>(\text{M} \rightarrow \text{CF}_3\text{ONO}_2)</td>
<td>(See Note)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{CO} \rightarrow \text{products})</td>
<td>233–332</td>
<td>(See Note)</td>
<td></td>
<td>(<2 \times 10^{-15})</td>
<td></td>
<td></td>
<td>E100</td>
</tr>
<tr>
<td>(\text{M} \rightarrow \text{CF}_3\text{OCO})</td>
<td>(See Note)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{CH}_4 \rightarrow \text{CH}_3 + \text{CF}_3\text{OH})</td>
<td>231–573</td>
<td>(2.6 \times 10^{-12})</td>
<td>1420</td>
<td>(2.2 \times 10^{-14})</td>
<td>1.1</td>
<td>200</td>
<td>E101</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O} + \text{C}_2\text{H}_6 \rightarrow \text{C}_2\text{H}_5 + \text{CF}_3\text{OH})</td>
<td>233–573</td>
<td>(4.9 \times 10^{-12})</td>
<td>400</td>
<td>(1.3 \times 10^{-12})</td>
<td>1.2</td>
<td>100</td>
<td>E102</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O}_2 + \text{O}_3 \rightarrow \text{CF}_3\text{O} + 2\text{O}_2)</td>
<td>210–353</td>
<td></td>
<td></td>
<td>(<3 \times 10^{-15})</td>
<td></td>
<td></td>
<td>E103</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O}_2 + \text{CO} \rightarrow \text{CF}_3\text{O} + \text{CO}_2)</td>
<td>296</td>
<td></td>
<td></td>
<td>(<5 \times 10^{-16})</td>
<td></td>
<td></td>
<td>E104</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O}_2 + \text{NO} \rightarrow \text{CF}_3\text{O} + \text{NO}_2)</td>
<td>230–430</td>
<td>(5.4 \times 10^{-12})</td>
<td>(<-320)</td>
<td>(1.6 \times 10^{-11})</td>
<td>1.1</td>
<td>150</td>
<td>E105</td>
</tr>
<tr>
<td>(\text{CF}_3\text{O}_2 + \text{NO}_2 \rightarrow \text{CF}_3\text{O}_2\text{NO}_2)</td>
<td></td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6. Italicized blue entries denote estimates.

a Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.
b Units are cm\(^3\) molecule\(^{-1}\) s\(^{-1}\).
c \(f(298\text{ K})\) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

\[
f(T) = f(298\text{ K}) \exp \left| g \left(\frac{1}{T} - \frac{1}{298} \right) \right|
\]

Note that the exponent is an absolute value.
1.10.2 Notes: FO3 Reactions

E1. O + FO. The recommended value for k(298 K) is based on results of the room temperature study of Bedzhanyan et al.1 The temperature dependence of the rate constant is expected to be small, as it is for the analogous ClO reaction. (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

E2. O + FO2. The recommended Arrhenius parameters are estimated, as there are no experimental data. The rate constant for such a radical-atom process is expected to approach the gas collision frequency, and is not expected to exhibit a strong temperature dependence. (Table: 82-57, Note: 82-57, Evaluated: 82-57) Back to Table

E3. OH + CH2F (HFC-41). The recommended value for k(298 K) is an average of the values from Schmoltner et al.,8 Nip et al.,7 Hsu and DeMore,4 and DeMore5 (with the relative rate constants from the last two studies listed above recalculated based on the current recommendations for the rate constants for the OH + CH3CHF2 and OH + CH3Cl reference reactions, respectively.) The recalculation procedure for relative rate measurements referenced to the OH + CH3CHF2 reaction is discussed in the note for that reaction. The recommended value for E/R is an average of the values obtained in the studies of Schmoltner et al.,8 Hsu and DeMore,4 and DeMore5. The results of Howard and Evenson,3 Jeong and Kaufman,5 Bera and Hanraham,1 and Wallington and Hurley9 appear to be systematically lower than those of the other studies over the temperature region of interest and were not used to derive the recommended parameters. The results from the 298 K study by Kowalczyk et al.,6 although in good agreement with the recommended value for k(298 K), also were not used since the results reported in this study for several halocarbons vary widely (ranging from 10% agreement with recommendations to as much as 3 orders of magnitude disagreement with recommendations).

Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E4. OH + CHF2 (HFC-32). The recommended value of k(298 K) is an average from the studies of Nip et al.,7 Jeong and Kaufman,5 Talukdar et al.,9 Hsu and DeMore4 (recalculated using the three-parameter expression given in the current recommendation for the rate constant for the OH + CH3CHF2 reference reaction), and Szilagyi et al.8 The recommended value for E/R is derived from a fit to the data from Jeong and Kaufman,5 Talukdar et al.,9 and Hsu and DeMore4 below 400 K after scaling each data set to the recommended value for
k(298 K). The results of Howard and Evenson,\(^3\) Clyne and Holt,\(^2\) Bera and Hanrahan,\(^1\) and Kowalczyk et al.\(^6\) are somewhat more scattered and were not used in deriving the recommended parameters.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) **Back to Table**

2. Clyne, M. A. A.; Holt, P. M. Reaction kinetics involving ground \(X^2\Pi\) and excited \(A^2\Sigma^+\) hydroxyl radicals Part 2.-Rate constants for reactions of OH \(X^2\Pi\) with halogenomethanes and halogenoethanes. *J. Chem. Soc. Faraday Trans. 2* 1979, 75, 582-591.

E5. OH + CHF\(_3\) (HFC-23). The recommended value for k(298 K) is an average of the values reported in the absolute rate study of Schmoltner et al.\(^9\) and in the relative rate studies of Hsu and DeMore\(^3\) (recalculated based on the current recommendation for the rate constant for the OH + CHF\(_2\)CF\(_3\) reference reaction) and of Chen et al.\(^2\) (two relative rate determinations recalculated based on the current recommendations for the rate constants for the OH + CHF\(_2\)CF\(_3\) and OH + CHF\(_3\)Cl reference reactions). The recommended value for \(E/R\) is derived from a fit to the data from these same three studies after scaling each data set to the recommended value of k(298 K). The results of Jeong and Kaufman\(^6\) and Medhurst et al.\(^7\) being predominantly above room temperature, were not used in deriving the recommended parameters. The results from Clyne and Holt\(^1\) and Bera and Hanrahan\(^1\) were also not used due to their inconsistency with the other studies. The room temperature values of Howard and Evenson\(^2\) and Nip et al.\(^8\) are encompassed within the 2σ confidence limits.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) **Back to Table**

3. Clyne, M. A. A.; Holt, P. M. Reaction kinetics involving ground \(X^2\Pi\) and excited \(A^2\Sigma^+\) hydroxyl radicals Part 2.-Rate constants for reactions of OH \(X^2\Pi\) with halogenomethanes and halogenoethanes. *J. Chem. Soc. Faraday Trans. 2* 1979, 75, 582-591.

E6. **OH + CH₃CH₂F (HFC-161).** The recommended value for k(298 K) is an average of the values from Nip et al.,² Schmoltner et al.,³ and Kozlov et al.² The value of E/R is derived from a fit to the data from the latter two studies at room temperature and below after scaling each data set to the value recommended for k(298 K). The relative rate study by Hsu and DeMore¹ reports a temperature dependence that is markedly stronger than those of Schmoltner et al.³ and Kozlov et al.² which are in excellent agreement. This difference is due to significantly lower rate constant values being in the Hsu and DeMore study in the region near room temperature. The Hsu and DeMore temperature dependence for HFC-161 is also significantly stronger than measured and recommended for HFC-152 and HFC-152a, where similar dependences would be expected. Curvature in the Arrhenius plot is evident from the study by Kozlov et al.² which was conducted over an extended temperature range above and below room temperature. Singleton et al.⁵ determined that 85 ± 3% of the abstraction by OH is from the fluoro-substituted methyl group at room temperature. Hence, curvature in the Arrhenius plot may be due to the increasing importance of hydrogen abstraction from the unsubstituted methyl group with increasing temperature, although similar curvature was observed in the case of OH + CH₃FCH₂F with two identical fluoromethyl groups. Due to such curvature, the recommended Arrhenius parameters should not be used for calculating rate constants above room temperature. Rather, one should use the three-parameter expression that is derived from a fit to the data of Kozlov et al. over the temperature range from 210 K to 480 K after the data were scaled to match the recommended value of k(298 K):

$$k(T) = 3.1 \times 10^{-13} \left(\frac{T}{298}\right)^{2.45} \exp(-103/T)$$

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E7. **OH + CH₃CH₂F₂ (HFC-152a).** The recommended value for k(298 K) is an average of the values from the absolute rate studies of Howard and Evenson,² Handwerk and Zellner,³ Handwerk and Zellner,³ and Wilson et al.¹² (two determinations that have been recalculated based on the current recommendations for the rate constants of the OH + CH₄ and OH + CH₃CCl₃ reference reactions), Wilson et al.¹² (two determinations that have been recalculated based on the current recommendations for the rate constants of the OH + C₂H₆ and OH + c-C₃H₆ reference reactions), and Taketani et al.¹¹ (two determinations that have been recalculated based on the current recommendations for the rate constants of the OH + C₂H₂ and OH + C₂H₄ reference reactions). There are systematic differences in the temperature dependencies determined in the absolute studies (particularly below room temperature) and relative studies (conducted at room temperature and above). Curvature in the Arrhenius plot (as suggested by the data of Gierczak et al.³) has been more clearly demonstrated in the study of Kozlov et al.² and seems to explain the earlier cited differences between the relative and absolute rate data. This curvature may be due to the presence of two hydrogen-abstraction reaction channels, although similar curvature was observed in case of OH + CH₃FCH₂F with two identical fluoromethyl groups. Hence, care must be taken in deriving a recommended rate expression suitable for atmospheric modeling (in the temperature region below room temperature).
In spite of the noticeable Arrhenius curvature over the temperature range from 210 K to 480 K, the data below 300 K can be well represented by a two-parameter Arrhenius expression. Thus, the recommended value for E/R is derived from a combined fit to the data (T \leq 300 K) of Gierczak et al. and Kozlov et al. after scaling each data set to the recommended value for k(298 K). The studies by Clyne and Holt, Brown et al., and Nielsen all yield systematically higher rate constants and were not used in deriving the recommended parameters. The study by Liu et al. is superseded by that of Kozlov et al. In light of the observed Arrhenius curvature, the Arrhenius parameters recommended for temperatures below 300 K are not suitable for use in recalculating rate constants from relative rate studies conducted at temperatures above 300 K in which the OH + CHF\(_2\) reaction was the reference. For such purposes, we recommend use of the three-parameter expression derived from a fit to the data of Kozlov et al. over the temperature range from 210 K to 480 K after the data were scaled to match the recommended value of k(298 K):

\[
k(T) = 7.57 \times 10^{-14} \frac{(T/298)^{3.02}}{\exp(-247/T)}
\]

The site-specific rate coefficients were estimated by Kozlov et al. (assuming that the observed curvature in the Arrhenius plot is entirely due to different reaction channels) to be 33% reaction at the CH\(_3\) group and 67% H atom abstraction from the CHF\(_2\) group.

(Table: 10-6, Note: 15-10, Evaluated: 15-1244) Back to Table

(4) Handwerk, V.; Zellner, R. Kinetics of the reactions of OH radicals with some halocarbons (CHClF\(_2\), CH\(_2\)ClF, CH\(_3\)ClCF\(_3\), CH\(_3\)CClF\(_3\), CH\(_3\)CHF\(_2\)) in the temperature range 260-370 K. Ber. Bunsenges. Phys. Chem. 1978, 82, 1161-1166.

E8. OH + CH\(_2\)FCH\(_2\)F (HFC-152). The recommended value for k(298 K) is an average of the values from the absolute rate studies of Martin and Paraskevopoulos and Kozlov et al. and from the relative rate studies of Wilson et al. (three determinations recalculated using the current recommendations for the reference reactions of OH with HFC-152a, cyclopropane, and ethane). The value for E/R is from a fit to the data of Kozlov et al. at room temperature and below. The data above room temperature from Kozlov et al. are in excellent agreement with the three relative rate data sets of Wilson et al. Together, they show a pronounced curvature in the Arrhenius plot, which may indicate the existence of different conformers for HFC-152, each
with differing temperature populations and reactivities. The data over the temperature range from 210 K to 480 K can be represented by the three-parameter expression from Kozlov et al. after the latter was scaled to match the recommended k(298 K):

$$k(T) = 4.23 \times 10^{-14} (T/298)^{3.85} \exp(+247/T)$$

(Table: 10-6, Note: 15-10, Evaluated: 15-10) **Back to Table**

E9. OH + CH$_3$CF$_3$ (HFC-143a). The recommended value for k(298 K) is an average of the values from the absolute rate studies of Orkin et al. and Talukdar et al. (two different determinations by DF-LMR and LP-LIF), and from the relative rate study of Hsu and DeMore (two determinations that have been recalculated based on the current recommendations for the rate constants of the OH + CH$_4$ and OH + CHF$_2$CF$_3$ reference reactions). The value for E/R is from a combined fit of the data from these three studies after scaling each data set to the recommended value for k(298 K). The data of Clyne and Holt (333–425 K) and from Martin and Paraskevopoulos (298 K) were not used due to their inconsistency with the other studies.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) **Back to Table**

E10. OH + CH$_3$FCHF$_2$ (HFC-143). The recommended value for k(298 K) is an average of the room temperature values of Martin and Paraskevopoulos and Barry et al. The recommended temperature dependence is based on results of the relative rate study of Barry et al., which have been recalculated based on the current recommendation for the rate constant of the reference reaction OH + CH$_3$CCl$_3$. The significantly higher values reported by Clyne and Holt were not used in the derivation of the recommended parameters.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) **Back to Table**

E11. OH + CH$_3$FCF$_3$ (HFC-134a). The recommended value for k(298 K) is an average of the values derived from the absolute rate studies of Gierczak et al. (two determinations using discharge flow and pulsed photolysis), Leu and Lee, Liu et al., and Orkin and Khamaganov, from the relative rate study of DeMore (three determinations that have been recalculated based on the current recommendations for the rate constants of the reference reactions OH + CH$_4$, OH + CH$_3$CCl$_3$, and OH + CHF$_2$CF$_3$), and from the room temperature investigations of Bednarek et al. and Martin and Paraskevopoulos. The value for E/R is derived from a combined fit (T ≤400 K) to the data from the first five investigations listed above after each data set was
scaled to the recommended value of k(298 K), together with the single determination at T = 270 K by Zhang et al. The data from Liu et al. above 350 K were excluded from the combined fit since they significantly exceed the results from the other studies at these temperatures, and subsequent experiments from the same laboratory have demonstrated that a systematic underestimation of the reaction cell temperature above 350 K may have been responsible. The data at 243 K and 223 K from the pulsed photolysis – LIF study by Gierczak et al. were also excluded from the combined fit since this data set (obtained at T < 298 K) exhibits a substantially weaker A temperature dependence (E/R = 1310 K) when compared with that from other studies conducted mainly above T = 270 K. This could be indicative of curvature in the Arrhenius plot at lower temperatures. Nevertheless, the “g” uncertainty factor was selected to encompass these low temperature data. The data of Brown et al., Clyne and Holt and Jeong et al. are considerably higher than those from all other studies and were not used in deriving the recommended parameters.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E12. OH + CHF2CHF2 (HFC-134). The recommended Arrhenius parameters are based on results of the three relative rate measurements by DeMore, which have been recalculated based on the current rate constant recommendations for the OH + CH3CCl3, OH + CH2FCF3, and OH + CHF2CF2 reference reactions. The room temperature value of Clyne and Holt agrees within the 2σ confidence limits.

E13. OH + CHF2CF3 (HFC-125). The recommended value for k(298 K) is an average of values derived from the data of Talukdar et al., DeMore, and Young et al. The recommended value for E/R was taken from Talukdar et al. The temperature dependent data of Brown et al. and Clyne and Holt were not used in deriving the recommended parameters since they exhibit considerable scatter and the derived rate constants are systematically higher than those from the other studies, which may be indicative of impurity effects. The room temperature data of Martin and Paraskevopoulos were not included in the k(298 K) average for similar reasons.
(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Clyne, M. A. A.; Holt, P. M. Reaction kinetics involving ground \(^{3} \Pi \) and excited \(^{1} \Sigma^{+} \) hydroxyl radicals Part 2. Rate constants for reactions of \(\text{OH} \) \(^{3} \Pi \) with halogenomethanes and halogenoethanes. J. Chem. Soc. Faraday Trans. 2 1979, 75, 582-591.

E14. OH + CH₃CHFCH₃ (HFC-281ea). The recommended value for k(298 K) is an average of values derived from fits to each of five relative rate data sets of DeMore and Wilson¹ (using infrared detection with C₂H₆, C₃H₈, and C₂H₄Cl as reference compounds and gas chromatography with C₂H₆ and C₃H₈ as reference compounds). All of the data were recalculated based on the current recommendations for the rate constants of the reference compounds reacting with OH. The recommended value for E/R is derived from the combined fit to all data from this study after each data set was scaled to the recommended value of k(298 K).

E15. OH + CH₃CH₂CF₃ (HFC-263fb). The recommended value for k(298 K) is an average of the values reported by Nelson et al.¹ and by Rajakumar et al.² The temperature dependence is from a fit to the data of Rajakumar et al.²

E16. OH + CH₂FCF₂CHF₂ (HFC-245ca). There is an approximate 50% difference between the absolute rate constant results of Zhang et al.² and those derived from the relative rate data of Hsu and DeMore¹ (recalculated using the current recommendation for the rate constant of the OH + CH₄ reference reaction) over the common temperature region of the measurements. Both data sets, however, exhibit nearly identical temperature dependencies. The recommended value for k(298 K) is an average of the values from both studies. The recommended value for E/R is derived from a combined fit to the data from both studies after each data set was scaled to the recommended value of k(298 K).

(1) Hsu, K. J.; DeMore, W. B. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements. J. Phys. Chem. 1995, 99, 1235-1244.

E17. **OH + CH₃CF₂CF₃ (HFC-245cb).** The recommended Arrhenius parameters are based on the data of Orkin et al. The Arrhenius parameters for this reaction are expected to be similar to those for OH + CH₃CF₂ (HFC-143a). Hence, the 95% confidence limits have been selected to encompass the recommendation for the latter reaction.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) [Back to Table](#)

E18. **OH + CHF₂CHFCHF₂ (HFC-245ea).** Nelson et al. measured the room temperature rate constant for this reaction. Rajakumar et al. studied the temperature dependence in experiments conducted above and below room temperature. However, this study was complicated by the presence of a reactive impurity, as demonstrated by some additional low temperature results obtained with a purified sample. The recommended value for E/R was derived from a fit to the original data from Rajakumar et al. corrected for the effect of reactive impurities at T ≥298 K and the data obtained with the purified sample below 298 K. The recommended value for k(298 K) is an average of the value obtained from this fit and the value reported by Nelson et al., which are in excellent agreement.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table](#)

E19. **OH + CH₂FCHFCF₃ (HFC-245eb).** The recommended value for k(298 K) is an average of the values reported by Nelson et al. and by Rajakumar et al. The recommended value for E/R was derived from a fit to the data from Rajakumar et al.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table](#)

E20. **OH + CHF₂CH₂CF₃ (HFC-245fa).** The recommended value for k(298 K) is an average of values reported by Orkin et al. and Nelson et al., which are in good agreement. The temperature dependence is from Orkin et al.

(Table: 15-10, Note: 02-25, Evaluated: 15-10) [Back to Table](#)

E21. **OH + CH₂F₂CF₂CF₃ (HFC-236cb).** The recommended rate expression is estimated as being the same as that for the reaction of OH with CH₂F₂CF₃ (HFC-134a), since these reactions are expected to have similar Arrhenius parameters. This estimate is preferred over the results reported by Garland et al., the only published experimental study. The A-factor reported in that study is much lower than expected, and the reported E/R = 1107 K is lower than that reported for any similar halocarbon reaction.

(Table: 15-10, Note: 10-6, Evaluated: 15-10) [Back to Table](#)

E22. OH + CHF₂CHFCF₃ (HFC-236ea). The recommended value for k(298 K) is an average of the values from the relative rate study of Hsu and DeMore² (recalculated based on the current recommendation for the rate constant of the OH + CH₄ reference reaction) and from the absolute study of Nelson et al.³ The temperature dependence is from Hsu and DeMore.² The higher and somewhat more scattered values of Garland et al.¹ and Zhang et al.⁴ were not used in deriving the recommended expression.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

(2) Hsu, K. J.; DeMore, W. B. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propane by relative rate measurements. J. Phys. Chem. 1995, 99, 1235-1244.

E23. OH + CF₃CH₂CF₃ (HFC-236fa). The recommended rate expression is derived from a combined fit to the data from the relative rate study of Hsu and DeMore⁵ (recalculated based on the current recommendation for the rate constant of the reference reaction OH + CHF₂CF₃) and from the absolute rate study of Gierczak et al.⁴ The higher results of Nelson et al.⁶ and of Garland and Nelson,³ which superseded the earlier results of Garland et al.² were not used. A relative rate determination at room temperature by Barry et al.¹ yields a rate constant in excellent agreement with the recommended value. However, the extremely small measured rate constant ratio (due to the use of OH + CH₃CF₂CH₂CF₃ as the reference) is associated with fairly large uncertainty. Hence, this determination was not directly used in the evaluation.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

E24. OH + CF₂CHFCF₃ (HFC-227ea). The recommended value for k(298 K) is the average of values derived from the absolute rate studies of Nelson et al.⁷ Zellner et al.⁵ Zhang et al.⁶ and Tokuhashi et al.³ and from the relative rate studies of Hsu and DeMore¹ (two determinations that have been recalculated based on the current recommendations for the rate constants of the reference reactions OH + CH₄ and OH + CHF₂CF₃) and Wallington et al.⁸ (two determinations that have been recalculated based on the current recommendations for the rate constants of the reference reactions OH + C₂H₄ and OH + C₃H₂). The recommended value for E/R is
derived from a fit to the data below 400 K reported by Nelson et al.\(^2\) Zellner et al.\(^5\) Tokuhashi et al.\(^3\) and Hsu and DeMore\(^1\) after scaling each data set to the recommended value for \(k(298\text{ K})\).

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(6) Zhang, Z.; Padmaja, S.; Saini, R. D.; Huie, R. E.; Kurylo, M. J. Reactions of hydroxyl radicals with several hydrofluorocarbons: The temperature dependencies of the rate constants for \(\text{CHF}_2\text{CF}_2\text{CF}_3\) (HFC-245ca), \(\text{CF}_3\text{CHFCHF}_2\) (HFC-236ea), \(\text{CF}_3\text{CHFCCF}_3\) (HFC-227ea), and \(\text{CF}_3\text{CH}_2\text{CH}_2\text{CF}_3\) (HFC-356mfc). *J. Phys. Chem.* 1994, 98, 4312-4315, doi:10.1021/jp00067a017.

E25. \(\text{OH} + \text{CH}_3\text{CF}_3\text{CH}_2\text{CF}_3\) (HFC-365mfc). The recommended value of \(k(298\text{ K})\) is an average of the values obtained from fits to the data from the absolute rate study of Mellouki et al.\(^2\) and of the relative rate study of Barry et al.\(^1\) (recalculated using the current recommendation for the rate constant of the reference reaction \(\text{OH} + \text{CH}_3\text{CCl}_3\)). The value for \(E/R\) is an average of the values for this parameter from the same two studies.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

E26. \(\text{OH} + \text{CF}_3\text{CH}_2\text{CH}_2\text{CF}_3\) (HFC-356mff). The recommended value of \(k(298\text{ K})\) is an average of the values from Nelson et al.\(^1\) and Zhang et al.\(^2\). The temperature dependence is from a fit to the data of Zhang et al., excluding the lowest temperature points (at 260 K), which are somewhat higher than an extrapolation from other data in that study.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

(2) Zhang, Z.; Padmaja, S.; Saini, R. D.; Huie, R. E.; Kurylo, M. J. Reactions of hydroxyl radicals with several hydrofluorocarbons: The temperature dependencies of the rate constants for \(\text{CHF}_2\text{CF}_2\text{CF}_3\) (HFC-245ca), \(\text{CF}_3\text{CHFCHF}_2\) (HFC-236ea), \(\text{CF}_3\text{CHFCCF}_3\) (HFC-227ea), and \(\text{CF}_3\text{CH}_2\text{CH}_2\text{CF}_3\) (HFC-356mfc). *J. Phys. Chem.* 1994, 98, 4312-4315, doi:10.1021/jp00067a017.

E27. \(\text{OH} + \text{CH}_2\text{FCH}_2\text{CF}_2\text{CF}_3\) (HFC-356mcf). The recommended values for both \(k(298\text{ K})\) and \(E/R\) are based on the data of Nelson et al.\(^1\)

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

E28. \(\text{OH} + \text{CHF}_2\text{CF}_3\text{CF}_2\text{CF}_3\text{H}\) (HFC-338pce). The recommended value for \(k(298\text{ K})\) is an average of values derived from fits to the data of Schmoltner et al.\(^1\) and Zhang et al.\(^2\). The recommended value for \(E/R\) is
derived from the combined fit to the data from both studies after each data set was scaled to the recommended value of k(298 K).

(Table: 02-25, Note: 15-10, Evaluated: 15-10) Back to Table

E29. OH + CF3CH2CF2CH2CF3 (HFC-458mfcf). The recommended values for both k(298 K) and E/R are based on the data of Nelson et al.1

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

E30. OH + CF3CHFCHFCF2CF3 (HFC-43-10mee). The recommended value for k(298 K) is an average of values derived from absolute studies by Schmoltner et al.1 and Zhang et al.2 The recommended value for E/R is derived from a combined fit to the data from Schmoltner et al. and Zhang et al. after scaling each data set to the recommended value for k(298 K).

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

E31. OH + CF3CF2CH2CF2CF2CF3 (HFC-55-10mcf). The recommended value for k(298 K) is that reported by Nelson et al.1 As expected, the rate constant is similar to that for OH + CF3CH2CH2CF3. Hence, the recommendation for E/R is estimated as being approximately the same as that for this reaction.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

E32. OH + CH2=CHF. The recommended values for k(298 K) and E/R are from the absolute study by Baasandorj et al.1 Data from the relative rate study by Chen et al.2 are in reasonable agreement with the recommendation but are significantly more scattered. Baasandorj et al. found the rate constant to be pressure independent between 20 and 600 Torr, indicating that the high-pressure limit was achieved at these pressures for the reaction of this fluorinated alkene. Since this is the simplest of the halogenated alkenes, it implies that the recommendations for all of the halogenated alkene reactions included in Table 1 represent the high-pressure limits for the rate constants. The results of Perry et al.3 are ~10% larger at room temperature, with the agreement improving above room temperature. These data are encompassed within the recommended uncertainty.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E33. \(\text{OH} + \text{CH}_2\text{=CF}_2 \). The recommended value for \(k(298 \text{ K}) \) is an average of values derived from the absolute study by Baasandorj et al.\(^1\) and the relative rate study by Chen et al.\(^2\). The value recommended for \(E/R \) is derived from a combined fit to the data from Baasandorj et al. and Chen et al.\(^2\) after scaling each data set to the recommended value for \(k(298 \text{ K}) \). Baasandorj et al. found the rate constant to be pressure independent between 20 and 600 Torr, indicating that the high-pressure limit was achieved for the reaction of this fluorinated alkene. Howard\(^3\) studied this reaction at lower pressures and found a smaller rate constant that increased with pressure between 0.7 Torr and 7 Torr. This dependence is consistent with the recommended high pressure limit from Baasandorj et al.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) [Back to Table]

E34. \(\text{OH} + \text{CHF}_2\text{=CF}_2 \). The recommended values for \(k(298 \text{ K}) \) and \(E/R \) are derived from a combined fit to the data from the two relative rate studies of Chen et al.\(^1\) after scaling each data set to the recommended value for \(k(298 \text{ K}) \).

(Table: 15-10, Note: 15-10, Evaluated: 15-10) [Back to Table]

E35. \(\text{OH} + \text{CF}_2\text{=CF}_2 \). The recommended value for \(k(298 \text{ K}) \) is an average of the values determined in the studies of Acerboni et al.\(^1\) (two relative rate determinations referenced to the rate constants for the reactions of \(\text{OH} \) with propene and cyclohexane) and the absolute rate studies of Orkin et al.\(^2\) and Orkin et al.\(^3\). The value for \(E/R \) is derived from a fit to the data of Orkin et al.\(^3\). As discussed for the \(\text{OH} + \text{CH}_2\text{=CHF} \) reaction, the recommended rate constant represents the high-pressure limit for this reaction.

(Table: 02-25, Note: 10-6, Evaluated: 10-6) [Back to Table]

2. Orkin, V. L.; Huie, R. E.; Kurylo, M. J. Rate constants for the reactions of \(\text{OH} \) with \(\text{HFC}-245\text{cb} \) (\(\text{CH}_2\text{F}_2\text{=CBr}_2 \)) and some fluoroalkenes (\(\text{CH}_2\text{=CHCF}_3 \), \(\text{CH}_2\text{=CFCF}_3 \), \(\text{CF}_2\text{=CFCF}_3 \), and \(\text{CF}_2\text{=CF}_2 \)). *J. Phys. Chem. A* 1997, 101, 9118-9124.

E36. \(\text{OH} + \text{CH}_2\text{=CHCF}_3 \). The recommended values for both \(k(298 \text{ K}) \) and \(E/R \) are derived from a fit to the data from the absolute study by Albaladejo et al.\(^1\). Based on results obtained for other fluorinated alkenes the recommended rate constant represents the high-pressure limit for this reaction.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table]

E37. \(\text{OH} + \text{CH}_2\text{=CHCF}_3 \). The recommended value for \(k(298 \text{ K}) \) is an average of the values from the absolute rate constant measurements by Orkin et al.\(^2\) and González et al.\(^1\). The room temperature results from the two relative rate studies by Sulbaek Andersen et al.\(^3\) (recalculated using the current recommendations for the reference reactions \(\text{OH} + \text{C}_2\text{H}_4 \) and \(\text{OH} + \text{C}_2\text{H}_2 \)) are somewhat lower but are encompassed within the combined reported uncertainties. The recommended value for \(E/R \) is derived from a combined fit to the data from Orkin et al.\(^1\) and González et al.\(^1\) after scaling each data set to the recommended value for \(k(298 \text{ K}) \).
E38. OH + CH\textsubscript{2}CF=CF\textsubscript{2}. The results of absolute reaction rate studies by Orkin et al.,2 Papadimitriou et al.,4 and Orkin et al.,3 agree to better than 3\% over the entire common temperature range of measurements between 220 K to 370 K. The recommended Arrhenius parameters are derived from a combined fit at T ≤300 K to the data of Papadimitriou et al.,4 and Orkin et al.,3 which supersedes Orkin et al.,2 and has higher reported accuracy. The two relative rate determinations at 298 K by Nielsen et al.,1 (recalculated using the current rate constant recommendations for the reference reactions OH + C\textsubscript{2}H\textsubscript{4} and OH + C\textsubscript{2}H\textsubscript{2}) lie outside the 95\% uncertainty band assigned to k(298 K). Papadimitriou et al.,4 found the rate constant to be pressure independent between 25 and 600 Torr and Orkin et al.,3 found the rate constant to be pressure independent between 30 and 300 Torr, indicating that the high-pressure limit is achieved for this reaction. The data at above room temperature exhibit slight curvature in the Arrhenius plot. (Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

(1) Nielsen, O. J.; Javadi, M. S.; Sulbaek Andersen, M. P.; Hurley, M. D.; Wallington, T. J.; Singh, R. Atmospheric chemistry of C\textsubscript{2}F\textsubscript{2}CF-CH\textsubscript{2}: Kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and O\textsubscript{3}. J. Phys. Chem. A 2019, 103, 11905-11914.

(2) Orkin, V. L.; Huie, R. E.; Kurylo, M. J. Rate constants for the reactions of OH with HFC-245cb (CH\textsubscript{2}CF=CF\textsubscript{2}) and some fluoroalkenes (CH\textsubscript{2}CHCF\textsubscript{3}, CH\textsubscript{2}CFCF\textsubscript{3}, CF\textsubscript{2}CFCF\textsubscript{3}, and CF\textsubscript{2}CF\textsubscript{2}). J. Phys. Chem. A 1997, 101, 9118-9124.

E39. OH + (E)-CHF=CHCF\textsubscript{2}. The data obtained by Orkin et al.,1 exhibit a very weak temperature dependence and curvature in the Arrhenius plot between 370 K and 220 K. The recommended values for both k(298 K) and E/R are derived from a fit to the data of Orkin et al. at T ≤300 K. Orkin et al. found the rate constant to be pressure independent between 30 and 200 Torr, indicating that the high-pressure limit is achieved for this reaction. The two relative rate determinations at 298 K by Sondgaard et al.,2 (recalculated using the current recommendations for the rate constants of the reference reactions OH + C\textsubscript{2}H\textsubscript{4} and OH + C\textsubscript{2}H\textsubscript{2}) lie about 20\% higher than the recommended value. The data over the temperature range from 220 K to 370 K can be better represented by the three-parameter expression from Orkin et al.

\[k(T) = 1.12 \times 10^{-13} \text{ (T/298)}^{2.03} \exp(552/T) \]

E40. \(\text{OH} + (E)-\text{CHF}=\text{CFCF}_3 \). The recommended value for \(k(298 \text{ K}) \) is an average of the two relative rate determinations by Hurley et al.,\(^1\) recalculated using the current recommendations for the rate constants of the reference reactions \(\text{OH} + \text{C}_2\text{H}_4 \) and \(\text{OH} + \text{C}_2\text{H}_2 \). The value for \(E/R \) is estimated from that for similar fluorinated propenes. Based on the results obtained for other fluorinated alkenes, the recommended rate constant represents the high-pressure limit for this reaction.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

E41. \(\text{OH} + (Z)-\text{CHF}=\text{CFCF}_3 \). The recommended value for \(k(298 \text{ K}) \) is from Papadimitriou et al.\(^2\) who found the rate constant to be pressure independent between 25 and 600 Torr, indicating that the high-pressure limit is achieved for this reaction. The two room temperature values from the relative rate studies by Hurley et al.\(^1\) are in very good agreement with this recommendation. Papadimitriou et al.\(^2\) found weak curvature in the Arrhenius plot from 206 K to 380 K. Thus, the recommended value for \(E/R \) is derived from a fit to their data at \(T \leq 300 \text{ K} \). The data over the temperature range from 206 K to 380 K can be represented by the three-parameter expression obtained from the fit to the data reported by Papadimitriou et al.

\[
k(T) = 1.55 \times 10^{-13} \left(\frac{T}{298}\right)^{1.92} \exp(+633/T).
\]

(Table: 10-6, Note: 15-10, Evaluated: 15-10) Back to Table

E42. \(\text{OH} + \text{CF}_2=\text{CFCF}_3 \). The recommended value for \(k(298 \text{ K}) \) is an average of the values reported in the absolute rate constant investigations by McIlroy and Tully,\(^3\) Orkin et al.,\(^4\) Orkin et al.,\(^5\) and Tokuhashi et al.\(^6\) (two studies) and in the relative rate study by Mashino et al.\(^2\) (using two different reference gases). All of these individual \(k(298 \text{ K}) \) values are in excellent agreement and lie within 3% of the recommended value. Results of the room temperature relative rate study by Acerboni et al.\(^1\) are internally inconsistent and exceed the recommended value by ~12% and ~60% when \(\text{C}_2\text{H}_4 \) and \(\text{C}_2\text{H}_2 \), respectively, were used as reference compounds. Although the first value overlaps the recommended \(k(298 \text{ K}) \) within the reported uncertainty, the reason for the large difference when \(\text{C}_2\text{H}_6 \) was used as the reference compound is not clear, especially since the result for \(\text{OH} + \text{C}_2\text{F}_4 \) reported by the same group using the same reference reaction is in good agreement with other available data. The recommended value for \(E/R \) is derived from a fit of the data of Orkin et al.\(^3\) at \(T \leq 300 \text{ K} \). Based on results obtained for other fluorinated alkenes, the recommended rate constant represents the high-pressure limit for this reaction. The complete data set of Orkin et al.\(^5\) between 230–480 K exhibits pronounced curvature in the Arrhenius plot and can be best fit by the three-parameter expression:

\[
k(T) = 9.75 \times 10^{-14} \left(\frac{T}{298}\right)^{1.94} \exp(+922/T).
\]

This expression encompasses all data from the studies used in deriving the recommendation within an \(\pm(T) \) factor of 1.05 between 230 K to 480 K.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(4) Orkin, V. L.; Huie, R. E.; Kurylo, M. J. Rate constants for the reactions of OH with HFC-245eb (\(\text{CH}_3\text{CF}=\text{CFCF}_3 \)) and some fluorooalkenes (\(\text{CH}_2\text{CHCF}_3 \), \(\text{CH}_2\text{CFCF}_3 \), \(\text{CF}_2\text{CFCF}_3 \), and \(\text{CF}_2\text{CF}_2 \)). \emph{J. Phys. Chem. A} \textbf{1997}, \textit{101}, 9118-9124.
E43. OH + CF$_2$=CFCF=CF$_3$. Only two relative rate studies of this reaction near room temperature have been conducted. There is approximately a 25-30% difference between the results from these studies using different reference compounds and approximately the same difference between the results when the same reference compound, C$_2$H$_2$, was used. Thus, the recommended value for k(298 K) is an average of all values determined in the relative rate studies of Acerboni et al.1 (using ethene, propene, and cyclohexane as reference compounds) and of Wallington and Hurley2 (using ethene and acetylene as reference compounds). The current recommendations for the rate constants of the reactions of OH with reference compounds were used to recalculate the results of each of the relative rate measurements. The recommended value for E/R is estimated as being approximately the same as that for OH + CF$_2$=CF$_2$.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E44. OH + CH$_2$=CHCF$_2$CF$_3$. The recommended value for k(298 K) is an average of the two relative rate study results by Sulbaek Andersen et al.1, which were recalculated using the current rate constant recommendations for the reference reactions OH + C$_2$H$_2$ and OH + C$_2$H$_4$. The recommended value for E/R is estimated as being the same as that for OH + CH$_2$=CHCF$_3$. Sulbaek Andersen et al. determined the rate constants at T = 296 K for OH reactions with CH$_2$=CHCF$_{2x+1}$ (for x=1,2,4,6,8), and the recommendation given here covers all of these compounds. Based on results obtained for other fluorinated alkenes, the recommended rate constant represents the high-pressure limit for this reaction.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E45. OH + (Z)-CF$_3$CH=CHCF$_3$. The recommended values for both k(298 K) and E/R are derived from a fit to the data below 300 K of Baasandorj et al.1. The complete data set of Baasandorj et al. between 212–374 K exhibits pronounced curvature in the Arrhenius plot and can be best fit by the three-parameter expression:

$$k(T) = 3.68 \times 10^{-14} \exp(+774/T)$$

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E46. OH + (E)-CF$_3$CF=CFCF$_3$. The data reported by Orkin et al.2 for this individual isomer exhibit curvature in the Arrhenius plot. The recommended values for both k(298 K) and E/R are derived from a fit to the data of Orkin et al.2 at T <300 K, the only temperature range where these recommended Arrhenius parameters should be used. The data over the broader temperature range from 230 K to 370 K can be represented by the three-parameter expression obtained from the fit to the data reported by Orkin et al.2

$$k(T) = 7.5 \times 10^{-14} \exp(+612/T)$$

Cometto et al.1 and Young et al.3 studied the reaction of OH with the industrial mixture of the two isomers, (E)-octafluoro-2-butene and (Z)-octafluoro-2-butene, at room temperature using a relative rate technique. They reported rate constants that are 35% and 25% lower than the recommended value, respectively, without including uncertainties in the reference rate constants. Orkin et al.2 separated and analyzed the individual isomer abundance to find that the industrial mixture contains ~71% of the more reactive (E)-octafluoro-2-
butene and ~ 29% of the less reactive (Z)-octafluoro-2-butene. Therefore, the result reported by Young et al. is in quantitative agreement with that calculated for such a mixture using the individual isomer rate constants of Orkin et al.2 The result reported by Cometto et al. appears too low for such a mixture based on the values recommended here.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Cometto, P. M.; Taccone, R. A.; Nieto, J. D.; Dalmasso, P. R.; Lane, S. I. Kinetic study of OH radical reactions with CF\textsubscript{3}CCl=CCL\textsubscript{2}, CF\textsubscript{3}CCl=CCIF\textsubscript{3} and CF\textsubscript{3}CF=CFCF\textsubscript{3}. ChemPhysChem 2010, 11, 4053-4059, doi:10.1002/cphc.201000430.

(3) Young, C. J.; Hurley, M. D.; Wallington, T. J.; Mabury, S. A. Atmospheric chemistry of perfluorobutenes (CF\textsubscript{3}CF=CFCF\textsubscript{3} and CF\textsubscript{3}CF\textsubscript{2}CF=CF\textsubscript{2}): Kinetics and mechanisms of reactions with OH radicals and chlorine atoms, IR spectra, global warming potentials, and oxidation to perfluorocarboxylic acids. Atmos. Environ. 2009, 43, 3717-3724, doi:10.1016/j.atmosenv.2009.04.025.

E47. OH + (Z)-CF\textsubscript{3}CF=CFCF\textsubscript{3}. The data reported by Orkin et al.2 for this individual isomer exhibit a weak temperature dependence and curvature in the Arrhenius plot. The recommended values for both k(298 K) and E/R are derived from a fit to the data of Orkin et al.2 at T <300 K, the only temperature range where these recommended Arrhenius parameters should be used. The data over the broader temperature range from 230 K to 370 K can be represented by the three-parameter expression obtained from the fit to the data reported by Orkin et al.

\[
k(T) = 3.0 \times 10^{-14} \left(\frac{T}{298}\right)^{2.61} \exp(+760/T)
\]

Cometto et al.1 and Young et al.1 studied the reaction of OH with the industrial mixture of the two isomers, (E)-octafluoro-2-butene and (Z)-octafluoro-2-butene, at room temperature using a relative rate technique. Orkin et al.2 separated and analyzed the individual isomer abundance to find that the industrial mixture contains ~29% of the less reactive (Z)-octafluoro-2-butene and ~71% of the more reactive (E)-octafluoro-2-butene. The rate constant reported by Young et al. agrees with that calculated for such a mixture using the individual isomer rate constants measured by Orkin et al. within the total combined uncertainty. The result reported by Cometto et al. appears too low for such a mixture based on the values recommended here.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Cometto, P. M.; Taccone, R. A.; Nieto, J. D.; Dalmasso, P. R.; Lane, S. I. Kinetic study of OH radical reactions with CF\textsubscript{3}CCl=CCL\textsubscript{2}, CF\textsubscript{3}CCl=CCIF\textsubscript{3} and CF\textsubscript{3}CF=CFCF\textsubscript{3}. ChemPhysChem 2010, 11, 4053-4059, doi:10.1002/cphc.201000430.

(3) Young, C. J.; Hurley, M. D.; Wallington, T. J.; Mabury, S. A. Atmospheric chemistry of perfluorobutenes (CF\textsubscript{3}CF=CFCF\textsubscript{3} and CF\textsubscript{3}CF\textsubscript{2}CF=CF\textsubscript{2}): Kinetics and mechanisms of reactions with OH radicals and chlorine atoms, IR spectra, global warming potentials, and oxidation to perfluorocarboxylic acids. Atmos. Environ. 2009, 43, 3717-3724, doi:10.1016/j.atmosenv.2009.04.025.

E48. OH + (CF\textsubscript{3})\textsubscript{2}C=CFCF\textsubscript{2}CF\textsubscript{3}. The rate constant reported by Orkin et al.2 decreases with decreasing temperature and exhibits pronounced curvature in the Arrhenius plot between 250 K and 370 K. The recommended values for both k(298 K) and E/R are derived from a fit to the data of Orkin et al. between ~300 K and 250 K, the temperature region where the rate constant reached a minimum and became essentially temperature independent. The data over the complete temperature range from 370 K to 250 K can be represented by the three-parameter expression reported by Orkin et al.

\[
k(T) = 2.17 \times 10^{-15} \left(\frac{T}{298}\right)^{3.90} \exp(+1044/T)
\]

The uncertainty parameters were chosen to encompass the possible increase of the rate constant at lower temperatures (below 250 K) following this three-parameter expression. Jubb et al.1 measured the rate constant ratio for CH\textsubscript{3}OCF\textsubscript{3}F\textsubscript{13} to both (CF\textsubscript{3})\textsubscript{2}C=CFCF\textsubscript{2}CF\textsubscript{3} and (Z)-CF\textsubscript{3}CH=CHCF\textsubscript{3} at 298 K, thereby enabling calculation of a room temperature rate constant for (CF\textsubscript{3})\textsubscript{2}C=CFCF\textsubscript{2}CF\textsubscript{3} from the current k(298 K) recommendation for (Z)-CF\textsubscript{3}CH=CHCF\textsubscript{3}. The resulting value is in excellent agreement with that recommended here.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B. Methyl-perfluoroheptene-ethers (CH\textsubscript{3}OCF\textsubscript{3}F\textsubscript{13}): Measured OH radical reaction rate coefficients for several

E49. **OH + CF$_3$OH.** There are no measurements of the rate coefficient of this reaction. The recommendation is based on the recommended limit for the reverse reaction rate coefficient and an estimated equilibrium constant. The thermochemistry of CF$_3$O and CF$_3$OH are taken from *ab initio* calculations (Montgomery et al.2 and Schneider and Wallington)3) and laboratory measurements (Huey et al.1) to estimate $\Delta G^\circ_{\text{298k}}$(OH + CF$_3$OH → CF$_3$O + H$_2$O) to be about (2 ± 4) kcal mol$^{-1}$. In considering the large uncertainty in the free energy change, the estimated rate coefficient limit is based on the assumption that the reaction is approximately thermoneutral. (Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

E50. **OH + CH$_2$FCH$_2$OH.** The recommended values for k(298 K) and E/R are averages of the parameters derived from fits to the data of Rajakumar et al.2 and Orkin et al.1 for T <300 K with the former data corrected for an apparent error in the UV absorption cross section of CH$_2$FCH$_2$OH (which was used to determine the reactant concentration). When this correction is made, the data from these two studies are indistinguishable. The room temperature rate constant determined in the relative rate study of Sellevåg et al.3 is about 50% greater than that recommended. The data over the temperature range 230 K to 370 K from both Rajakumar et al.2 and Orkin et al.1 exhibit curvature in the Arrhenius plot (more evident in the higher precision data from the latter study) and can be represented by the three-parameter expression reported by Orkin et al.

$$k(T) = 3.47 \times 10^{-14} \ (T/298)^{4.5} \ exp(+977/T)$$

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E51. **OH + CHF$_2$CH$_2$OH.** The recommended value of k(298 K) is an average of the values reported in the absolute rate studies of Kovacs et al.1 and Orkin et al.2 The value of E/R is derived from a fit at T ≤300 K to the data of Orkin et al.2 which are the only temperature dependent data available. The room temperature rate constant determined in the relative rate study of Sellevåg et al.3 is about 80% greater than that recommended. The data over the temperature range 220 K to 370 K exhibit a curvature in the Arrhenius plot and can be represented by the three-parameter expression that is derived from a fit to the data of Orkin et al.2 over the temperature range from 220 K to 370 K after the data were scaled to match the recommended value of k(298 K).

$$k(T) = 3.73 \times 10^{-14} \ (T/298)^{4.25} \ exp(+578/T)$$

(Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

E52. OH + CF₃CH₂OH. The recommended value for k(298 K) is an average of the values reported in the absolute rate studies of Wallington et al., Tokuhashi et al., Kovács et al., and Orkin et al., and the relative rate study of Hurley et al. (using OH + C₂H₂ as the reference reaction). The value of k(298 K) reported by Sellevåg et al. is significantly larger than those from all of the other studies and was not used in deriving the recommended value. The recommended value for E/R is an average of the values derived from fits to the data below 300 K of Tokuhashi et al. and Orkin et al. The data over the temperature range from 220 K to 370 K exhibit a curvature in the Arrhenius plot and can be represented by the three-parameter expression derived from a fit to the data of Orkin et al. after the data were scaled to match the recommended k(298 K).

\[k(T) = 2.57 \times 10^{-14} \left(\frac{T}{298} \right)^{4.0} \exp(405/T) \]

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E53. OH + CF₃CF₂CH₂OH. The recommended value for k(298 K) is an average of the values derived from the data of Tokuhashi et al. (discharge flow and pulsed photolysis absolute rate studies) and from the relative rate studies of Chen et al. (recalculated based on the current recommendation for the rate constant for the OH + CH₂Cl₂ reference reaction) and Hurley et al. (recalculated based on the current recommendation for the rate constant for the OH + C₂H₂ reaction). The recommended value for E/R is derived from the combined fit to the temperature dependent data of Tokuhashi et al. (T <400 K) and Chen et al. after scaling each data set to the recommended value of k(298 K).

(Table: 10-6, Note: 15-10, Evaluated: 15-10) Back to Table

E54. OH + (CF₃)₂CHOH. The results of the absolute measurements reported by Tokuhashi et al.² (three determinations) and Orkin et al.¹ are in excellent agreement over the common temperature range of the measurements. The recommended k(298 K) is the same value obtained in both studies. The data from Orkin et al.¹ exhibit a noticeable curvature in the Arrhenius plot between 220 K and 370 K, which is most pronounced at lower temperatures. Because of this curvature, the recommended value for E/R is derived from a fit to the data from both studies only between 298 K and 250 K. The data over the temperature range from 220 K to 370 K can be represented by the three-parameter expression that is derived from a fit to the data of Orkin et al.¹

\[k(T) = 5.7 \times 10^{-16} (T/298)^{6.65} \exp(+1125/T) \]

The g-factor is set to encompass the low temperature extrapolation of both the recommended two-parameter Arrhenius expression and the three-parameter expression from Orkin et al.¹

E55. OH + CF₃CHFCF₂CH₂OH. The recommended value of k(298 K) is an average of the values derived from the two relative rate studies of Chen et al.¹ (recalculated using the recommended rate constants for the reference reactions) and the two absolute rate studies of Chen et al.¹ The recommended value for E/R is derived from a fit to all of the data (for T <=300 K) from both the relative rate and absolute rate determinations after scaling each data set to the recommended k(298 K).

E56. OH + CF₃CF₂CF₂CF₂CH₂OH. The recommended value for k(298 K) is from the relative rate study of Hurley et al.¹ (recalculated using the current recommendation for the rate constant of the OH + C₂H₅ reference reaction). The recommended value for E/R is estimated as being the same as that for the reaction of OH with CF₃CF₂CH₂OH.

E57. OH + CH₃OCF₂ (HFE-152a). The recommended Arrhenius parameters are derived from a fit to the data of Orkin et al.¹

E58. OH + CH₃OCF₃ (HFE-143a). The recommended value for k(298 K) is an average of the values derived in the studies of Orkin et al.³ Hsu and DeMore² (two relative rate determinations that have been recalculated based on the current recommendations for the rate constants of the OH + CH₃CHF₂ and OH + CH₃F₂ reference reactions), and Chen et al.¹ (two relative rate determinations that have been recalculated based on the current recommendations for the rate constants of the OH + CH₃ and OH + CH₃CCl₃ reference reactions). The recalculation procedure for relative rate measurements referenced to the OH + CH₃CHF₂ reaction is discussed in the note for that reaction. The room temperature result of Zhang et al.⁴ was not used in the derivation since it is significantly higher than the values of the other studies and was likely influenced by the presence of reactive impurities. The recommended value for E/R is derived from a fit to the data from Orkin...
et al.,3 Hsu and DeMore,2 and Chen et al.1 (for T <400 K) after scaling each data set to the recommended k(298 K).

(Table: 10-6, Note: 15-10, Evaluated: 15-10) Back to Table

E59. \(\text{OH + CHF}_3\text{OCHF}_2 \) (HFE-134). The recommended value of k(298 K) is an average of the values derived in the relative rate studies of Hsu and DeMore2 (recalculated using the current recommendation for the rate constant of the \(\text{OH} + \text{CH}_3\text{CCl}_3 \) reference reaction) and of Wilson et al.3 (recalculated using the current recommendation for the rate constant of the \(\text{OH} + \text{CHF}_3\text{CF}_3 \) reference reaction) and the absolute rate study of Orkin et al.3 The recommended value for E/R is derived from a combined fit to the data from these three studies after scaling each data set to the recommended value of k(298 K). The more scattered data of Garland et al.1 were not used in derivation of the recommended value.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E60. \(\text{OH + CHF}_2\text{OCF}_3 \) (HFE-125). The recommended Arrhenius parameteres are based on results of the relative rate study of Hsu and DeMore1 (recalculated using the current recommendation for the rate constant of the \(\text{OH} + \text{CHF}_3 \) reference reaction). Additional measurements by Hsu and DeMore1 relative to \(\text{OH} + \text{CHF}_2\text{CF}_3 \) and \(\text{OH} + \text{CH}_4 \) are encompassed well within the 2σ uncertainty limits, but were not used for assigning the recommended rate expression due to the large differences in reactivity between the two reference species and the target molecule. The room temperature result of Zhang et al.5 lies significantly higher than the recommended value, possibly due to the presence of reactive impurities in the sample.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

E61. \(\text{OH + CH}_3\text{OCHFCF}_3 \). The recommended value for k(298 K) is an average of values derived from two relative rate determinations by Chen et al.1 (recalculated using the current recommendations for the rate constants of the reference reactions \(\text{OH} + \text{C}_2\text{H}_4 \) and \(\text{OH} + \text{CH}_3\text{CHF}_2 \)). The recommended E/R is derived from a fit to these data after scaling each individual data set to the recommended k(298 K).

E62. OH + CH₃FOCH(CF₃) (Sevoflurane). The recommended value for k(298K) is an average of the values from the two studies (one relative rate and one absolute) by Sulbaek Andersen et al.¹ The room temperature rate constants determined by Brown et al.¹ are approximately a factor of two higher than recommended here and may be indicative of impurity effects. The room temperature rate constant determined by Langbein et al.² is approximately 30% lower than recommended and is encompassed within the 95% confidence limits. The recommended value for E/R is derived from an Arrhenius fit to the data from the absolute rate constant measurements of Sulbaek Andersen et al.³

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E63. OH + CH₃OCF₂CHF₂. The recommended value for k(298 K) is an average of the values from the two absolute determinations by Tokuhashi et al.² using pulsed photolysis and discharge flow techniques. The recommended value for E/R is derived from a fit to the pulsed photolysis data below 400 K. A room temperature measurement by Heathfield et al.¹ is nearly an order of magnitude higher than recommended, which may be due to reactive impurities.

(Table: 02-25, Note: 15-10, Evaluated: 15-10) Back to Table

E64. OH + CH₃OCF₂CF₃. The recommended Arrhenius parameters are derived from a fit to the data (below 400 K) of Tokuhashi et al.¹ (three independent absolute measurement studies). The expression, as expected, is similar to those for the OH + CH₃OCF₂ and OH + CH₃OCF₂CF₂F₃ reactions.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

E65. OH + CHF₂OCH₂CF₃ (HFE-245fa2). The recommended value of k(298 K) is an average of the values reported in the absolute studies of Zhang et al.¹ and Orkin et al.¹ and in the relative rate study of Oyaró et al.² (recalculated using the current recommendations for the rate constants of the OH + CH₃CCl₃ and OH + CHF₂CH₂F reference reactions). The recommended value of E/R is derived from a fit to the data of Orkin et al.¹

(Table: 10-6, Note: 15-10, Evaluated: 15-10) Back to Table

E66. **OH + CHF$_2$OCHCF$_3$ (Desflurane).** The recommended value for $k(298\text{ K})$ is an average of the values obtained in the absolute rate studies of Langbein et al. and Sulbaek Andersen et al. The values of the room temperature rate constant determined in the two relative rate studies of Oyaro et al. (relative to the reactions of OH with CH$_3$CCl$_3$ and CHF$_2$CH$_2$F) are approximately 50% greater than the recommended value. The recommendation for E/R is derived from a fit to the data of Sulbaek Andersen et al., which is the only study of the temperature dependence of this reaction.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) [Back to Table](#)

E67. **OH + CHF$_2$OCF$_2$CHF$_2$.** The recommended value for $k(298\text{ K})$ is an average of the relative rate determinations of Chen et al. (two studies that were recalculated using the current recommendations for the reference reactions of OH with CH$_3$OCF$_2$CF$_3$ and CH$_2$OCF$_2$CF$_2$CF$_3$) and Wilson et al. (two studies that were recalculated using the current recommendations for the reference reactions of OH with HFC-134a and HFC-143a). The recommended value for E/R is from a combined fit to the data of Chen et al. and Wilson et al. after each data set was scaled to the recommended value of $k(298\text{ K})$.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table](#)

E68. **OH + CF$_3$OCHFCF$_3$.** The recommended value for $k(298\text{ K})$ is an average of the values reported in the relative rate studies of Takahashi et al. (two studies that were recalculated using the current rate constant recommendations for the OH + C$_2$H$_4$ and OH + C$_2$H$_2$ reference reactions) and Oyaro et al. (recalculated using the current recommended rate constant for the OH + HFC-143 reference reaction) and in the two absolute rate constant determinations of Tokuhashi et al. The $k(298\text{ K})$ value reported by Li et al. is approximately a factor of 5 greater than that recommended. The recommended value of E/R comes from a fit to the data of Tokuhashi et al. below 400 K.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) [Back to Table](#)

E69. **OH + CH₃OCF₂CF₂F₃**. The recommended value for k(298 K) is an average of the values reported by Tokuhashi et al.² (two absolute measurement studies) and Ninomiya et al.¹ (two relative rate determinations, which have been recalculated based on the current recommendations for the rate constants of the OH + CH₄ and OH + CH₃Cl reference reactions). The recommended value for E/R is determined from a fit to the data (below 400 K) of Tokuhashi et al. The expression, as expected, is similar to those for the OH + CH₃OCF₃ and OH + CH₃OCF₂CF₂F₃ reactions.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

E70. **OH + CH₃OCH(CF₃)₂** (HFE-356mm1). The recommended values for both k(298 K) and E/R are derived from a fit to the relative rate data of Chen et al.,¹ recalculated using the recommended values for the rate constants of the reference reactions.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E71. **OH + CH₃OCF(CF₃)₂**. The recommendation for k(298 K) is an average of the values from the absolute measurements of Tokuhashi et al.² (three determinations) and Andersen et al.¹. The recommended value for E/R is derived from a fit to the temperature-dependent data of Tokuhashi et al.² below 400 K. The uncertainties, which were originally set to encompass the recommendations for the similar OH + CH₃OCF₃ and OH + CH₃OCF₂CF₂F₃ reactions, have been reduced slightly to account for the additional data point at 298 K.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E72. **OH + CH₃OCF(CF₃)O**. The recommendation for k(298 K) is based on the relative rate measurements by Wallington et al.² (recalculated using the current recommendation for the rate constant of the OH + CH₃Cl reference reaction). Measurements in the same study using OH + CH₄ as the reference reaction are in general agreement, but exhibit more scatter. The recommended value of k(298 K) is similar with similar reactions of OH with CH₃OCF₃, CH₃OCF₂F₃, and CH₃OCF₁₇. A relative rate study by Cavalli et al.¹ at 298 K yielded a rate constant about 60% lower than recommended. The recommended value for E/R is estimated to be approximately equal to that for the reactions of OH with CH₃OCF₂F₃ and CH₃OCF₃F₇.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

E73. **OH + CHF₂OCH₂CF₂CHF₂**. The recommended value for k(298 K) is an average of the values from the two absolute determinations by Tokuhashi et al.¹ using pulsed photolysis and discharge flow techniques. The recommended value for E/R is derived from a fit to the pulsed photolysis data.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table
E74. **OH + CHF₂OCH₂CF₂CF₃**. The recommended value for k(298 K) is an average of the values from the two absolute determinations by Tokuhashi et al.¹ using pulsed photolysis and discharge flow techniques. The recommended value for E/R is derived from a fit to the pulsed photolysis data below 400 K.

E75. **OH + CHF₂OCH(CHF)₂**. The recommended value for k(298 K) is an average of the values from the two relative rate determinations by Wilson et al.¹ recalculated using the current rate constant recommendations for the OH + HFC-134a and OH + HFC-143a reference reactions. The recommended value for E/R is derived from a combined fit to the data after scaling each data set to the recommended value for k(298 K).

E76. **OH + CH₃CH₂OCF₂CHF₂**. The recommended parameters are from a combined fit to the data obtained by Heathfield et al.² (three absolute determinations) below 400 K. A room temperature rate constant determined by Heathfield et al.³ is about a factor of two greater than that recommended.

E77. **OH + CF₃CH₂OCH₂CF₃**. The recommended value for k(298 K) is an average of the rate constants measured in the absolute study of Orkin et al.¹ and in the relative rate studies of Oyaro et al.² and Wilson et al.³ (two determinations). The relative rate data were recalculated using the current rate constant recommendations for the OH reactions with the reference compounds (CHCl₃ for Oyaro et al.² and HFC-152a and HFC-161 for Wilson et al.³). The recommended value for E/R is an average of the values for this parameter derived from fits to the Orkin et al.¹ and Wilson et al.³ data.

E78. **OH + CF₃CH₂OFC₂CHF₂** (HFE-347pfc2). The recommended value for k(298 K) is an average of the rate constants measured in the absolute study of Tokuhashi et al.³ (three studies) and in the relative rate experiments of Chen et al.¹ (two studies relative to OH + CH₃CCl₃ and OH + CHF₂Cl) and of Wilson et al.⁴ (two studies relative to OH + HFC-152a and OH + HFC-32). All results of the relative rate studies were recalculated using the current recommendations for the reference reactions. The recommended value of E/R is from a combined fit to the data from all three groups after scaling each data set to the recommended k(298 K) values from the absolute determinations.

K). The room temperature rate constant reported by Heathfield et al.\(^2\) is about an order or magnitude greater than that from any of the other investigation and was not used to derive the recommendations given here. (Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table]

E79. OH + CHF\(_2\)OCF\(_2\)OCHF\(_2\). The recommended value for k(298 K) is from the relative rate study by Cavalli et al.,\(^4\) recalculted using the current recommendation for the rate constant of the reference reaction OH + CH\(_4\). The value for k(298 K) is identical to that for OH + CHF\(_2\)OCHF\(_2\), which might be expected to have a slightly higher rate constant. The value for E/R is estimated as being similar to that for the reaction of OH with CHF\(_2\)OCHF\(_2\).

(Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table]

E80. OH + CHF\(_2\)OCF\(_2\)CF\(_3\)OCHF\(_2\). The recommended value for k(298 K) is from the relative rate study by Cavalli et al.,\(^4\) recalculted using the current recommendation for the rate constant of the reference reaction OH + CH\(_4\). However, the value for k(298 K) is a factor of two greater than that measured in the same study for OH + CHF\(_2\)OCF\(_2\)OCHF\(_2\), which might be expected to have a similar rate constant. Hence, the recommended value for f(298 K) was chosen to encompass the rate constant recommended for the reaction of OH with CHF\(_2\)OCF\(_2\)OCHF\(_2\). As with OH + CHF\(_2\)OCF\(_2\)OCHF\(_2\), the value for E/R is estimated as being similar to that for the reaction of OH + CHF\(_2\)OCHF\(_2\).

(Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table]

E81. OH + CHF\(_2\)OCF\(_2\)CF\(_3\)OCF\(_2\)OCHF\(_2\). The recommended value for k(298 K) is from the relative rate study by Cavalli et al.,\(^4\) recalculted using the current recommendation for the rate constant of the reference reaction OH + CH\(_4\). The value for k(298 K) is almost the same as that measured for OH + CHF\(_2\)OCF\(_2\)CF\(_3\)OCHF\(_2\) in the same study. For both compounds, the measured values for k(298 K) are inexplicably a factor of two greater than that measured in the same study for OH + CHF\(_2\)OCF\(_2\)OCHF\(_2\), which might be expected to have the same or even slightly higher rate constant. Hence, the recommended value for f(298 K) was selected accordingly. As with OH + CHF\(_2\)OCF\(_2\)CF\(_3\)OCHF\(_2\) and OH + CHF\(_2\)OCF\(_2\)CF\(_3\)OCHF\(_2\), the value for E/R is estimated as being similar to that for the reaction of OH + CHF\(_2\)OCHF\(_2\).

(Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table]

E82. F + O\(_3\). The recommended parameters are based on results of the room temperature study of Bedzhanyan et al.,\(^1\) and the temperature-dependent study of Wagner et al.\(^2\) The recommendation appears to be quite reasonable in view of the well-known reactivity of atomic chlorine with O\(_3\).

(Table: 94-26, Note: 94-26, Evaluated: 94-26) [Back to Table]

E83. **F + H₂.** The value of k(298 K) seems to be well established with the results reported by Zhitneva and Pshezhetskii,¹⁰ Heidner et al.,³,⁶ Wurzburg and Houston,⁶ Dodonov et al.,⁴ Clyne et al.,⁷ Bozzelli,¹ Igoshin et al.,¹ and Stevens et al.,⁸ being in excellent agreement (range of k being 2.3–3.0 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹). The recommended value at 298 K is taken to be the average of the values reported in these references. Values of E/R range from 433–595 K (Heidner et al.; Wurzburg and Houston; Igoshin et al.; and Stevens et al.). The recommended value of E/R is derived from a fit to the data in these studies. (Table: 90-1, Note: 90-1, Evaluated: 90-1) [Back to Table]

E84. **F + H₂O.** The recommended temperature-independent value for this rate constant is based on results reported in the study by Stevens et al.² over the temperature range 240–373 K using a discharge flow system with chemical conversion of fluorine atoms to deuterium atoms and detection of the latter by resonance fluorescence. This value is in excellent agreement with the room temperature results of Frost et al.,¹ and Walther and Wagner.³ In a limited temperature-dependent study, Walther and Wagner reported an E/R value of 400 K. Although these data have not been included in the derivation of the recommended value for E/R, with the exception of the one low temperature data point, they are encompassed within the indicated uncertainty limits. (Table: 90-1, Note: 90-1, Evaluated: 90-1) [Back to Table]

E85. **F + HNO₃.** The recommendation is based on results of the temperature-dependent study of Wine et al.⁴ and the room temperature results of Mellouki et al.,² Raham et al.,³ and Becker et al.¹ The rate constant values at room temperature are in good agreement. The study of Wine et al.⁴ was conducted over the temperature range 260–373 K. Below 320 K the data were fit by the Arrhenius expression recommended here, whereas at higher temperatures a temperature-independent value was found, suggesting the occurrence of different mechanisms in the two temperature regimes. (Table: 90-1, Note: 90-1, Evaluated: 90-1) [Back to Table]
E86. F + CH₄. The recommended value of k(298 K) is the average of the results of Wagner et al.,⁴ Clyne et al.,¹ Kompa and Wanner,⁴ Foon and Reid,⁵ Fasano and Nogar,² and Persky et al.³ The temperature dependence is that reported by Persky et al. in a competitive study using F + D₂ as the reference reaction. These results are recommended over the temperature dependences reported in the earlier studies of Wagner et al. and Foon and Reid.

(Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

E87. FO + O₂. The recommended upper limit for k(298 K) is based on the results of Li et al.² in a study using a discharge flow mass-spectrometric technique. FO was produced in the reaction of F atoms with excess O₂. No appreciable decay of FO, and only a small increase in FO₂, was detected, allowing an upper limit to the rate constant of 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ to be derived. A two orders of magnitude higher upper limit was derived by Sehested et al.³ A lower value of the upper limit was derived by Colussi and Grela¹ from a re-analysis of data on the quantum yields for ozone destruction in F₂/O₂ mixtures reported by Starrico et al.⁴ The results of the recent, more direct, study of Li et al.² are preferred over the earlier results of Starrico et al. There are two possible pathways which are exothermic, resulting in the production of F + 2O₂ or FO₂ + O₂.

(Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

E88. FO + NO. The recommended parameters are based on results of the temperature-dependent study of Bedzhyan et al.¹ and the 298 K value reported by Ray and Watson² using the discharge flow-mass spectrometric technique.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

E89. **FO + FO.** The recommended parameters are based on the results of Bedzhanyan et al.\(^1\) and Clyne and Watson.\(^2\) Wagner et al.,\(^3\) in a less direct study, report a higher value. The results of Bedzhanyan et al. indicate the predominant reaction channel is that to produce 2F + O\(_2\).

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

E90. **FO\(_2\) + O\(_3\).** The recommended upper limit for k(298 K) is based on results of Sehested et al.\(^2\) A higher upper limit has been reported by Li et al.\(^1\)

(Table: 94-26, Note: 97-4, Evaluated: 97-4) Back to Table

E91. **FO\(_2\) + NO.** The recommended parameters are based on results of Li et al.,\(^1\) the only temperature-dependent study. The recommended value for k(298 K) is nearly a factor of 2 less than that reported by Sehested et al.\(^2\)

(Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

E92. **FO\(_2\) + NO\(_2\).** The recommended parameters are based on the results of Li et al.,\(^1\) the only temperature-dependent study. The recommended value for k(298 K) is a factor of 2.5 less than the results of Sehested et al.\(^2\) This discrepancy might be attributable to a small NO impurity in the NO\(_2\) sample used in the Sehested et al. study.

(Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

E93. **FO\(_2\) + CO.** The recommended upper limit for k(298 K) is based on results of Sehested et al.,\(^1\) the only published study of this reaction.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

E94. **FO\(_2\) + CH\(_4\).** The recommended upper limit for k(298 K) is based on results of Li et al.\(^1\) This upper limit is a factor of 20 less than derived in the study by Sehested et al.\(^2\)

(Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

E95. CF₃O + O₂. The recommendation is based upon the results of Turnipseed et al.¹ who reported k(373 K) ≤ 4 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹. Assuming an E/R of 5000 K, which is equal to the reaction endothermicity, yields the recommended A and k(298 K) limits. By comparison to other reactions involving abstraction by O₂, the A-factor is likely to be much smaller.

E96. CF₃O + O₃. The recommended value for k(298 K) is based on the average of room temperature measurements reported by Turnipseed et al.⁶ Wallington and Ball,⁷ and Bourbon et al.⁵ Turnipseed et al. and Bourbon et al. made direct measurements using LIF detection of CF₃O with pulsed photolysis and flow tube reactors, respectively. Wallington and Ball used a competitive reaction scheme with IR absorption detection and CF₃O + CH₃ as the reference reaction. The recommended A factor is estimated by comparison to other CF₃O reactions, and the E/R is calculated to agree with the recommended k(298 K). Upper limits reported by Maricq and Szente,⁵ Nielsen and Sehested,⁵ and Wallington et al.⁸ are consistent with the k(298 K) recommendation. Measurements reported by Fockenberg et al.² and Mellor and Moortgat⁴ give rate coefficients about an order of magnitude less than the recommended value. Although the reason for this discrepancy is not known, both studies may have possibly been affected by significant secondary chemistry. The reaction products have not been observed.

E97. CF₃O + H₂O. The recommendation is based upon the measurement of k(381 K) ≤ 2×10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ reported by Turnipseed et al.¹ As for the reaction CF₃O + O₃, the A factor is estimated, and the E/R is calculated to fit k(381 K). The limits k = (0.2–40) × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ at 296 ± 2 K given by Wallington et al.² are consistent with the recommendation.

dependence study by Dibble et al.5 are in good agreement with the recommendation. The reaction products have been reported by Chen et al.,4 Bevilacqua et al.,1 Bhatnagar and Carr,2 and Dibble et al.3

(1) Bevilacqua, T. J.; Hanson, D. R.; Howard, C. J. Chemical ionization mass spectrometric studies of the gas-phase reactions CF\textsubscript{3}O\textsubscript{2} + NO, CF\textsubscript{3}O + NO, CF\textsubscript{3}O + RH. \textit{J. Phys. Chem.} 1993, 97, 3750-3757.

(2) Bhatnagar, A.; Carr, R. W. Flash photolysis time-resolved mass spectrometric investigations of the reactions of CF\textsubscript{3}O\textsubscript{2} and CF\textsubscript{3}O radicals with NO. \textit{Chem. Phys. Lett.} 1994, 231, 454-459.

(7) Sehested, J.; Nielsen, O. J. Absolute rate constants for the reaction of CF\textsubscript{3}O\textsubscript{2} and CF\textsubscript{3}O radicals with NO at 295 K. \textit{Chem. Phys. Lett.} 1993, 206, 369-375.

(8) Turnipseed, A. A.; Barone, S. B.; Ravishankara, A. R. Kinetics of the reactions of CF\textsubscript{3}O\textsubscript{2} radicals with NO, O\textsubscript{3}, and O\textsubscript{2}. \textit{J. Phys. Chem.} 1994, 98, 4594-4601.

E99. CF\textsubscript{3}O + NO\textsubscript{2}. There are no published measurements of the rate coefficient for this reaction. The reaction products have been reported by Chen et al.,1 who used photolysis of CF\textsubscript{3}O\textsubscript{2} to prepare CF\textsubscript{3}O\textsubscript{2} and subsequently CF\textsubscript{3}O in 700 Torr of air at 297 ± 2 K. They considered two product channels: (a) CF\textsubscript{3}OONO obtained via three-body recombination and (b) CF\textsubscript{3}O + FNO\textsubscript{2} obtained via fluorine transfer. Products from both channels were observed and found to be thermally stable in their reactor. They report k\textsubscript{a}/(k\textsubscript{a} + k\textsubscript{b}) ≥ 90% and k\textsubscript{a}/k\textsubscript{b} ≤ 10%, thus the formation of CF\textsubscript{3}OONO\textsubscript{2} is the dominant channel at 700 Torr and 297 K.

(1) Chen, J.; Young, V.; Zhu, T.; Niki, H. Long path Fourier transform infrared spectroscopic study of the reactions of CF\textsubscript{3}O\textsubscript{2} and CF\textsubscript{3}O radicals with NO\textsubscript{2}. \textit{J. Phys. Chem.} 1993, 97, 11696-11698.

E100. CF\textsubscript{3}O + CO. The kinetics of this reaction were studied by Turnipseed et al.,1 who used pulsed laser photolysis with pulsed laser-induced fluorescence detection and a flow tube reactor with chemical ionization detection to obtain data at temperatures from 233 to 332 K and at pressures from 0.8 to about 300 Torr in He and at about 300 Torr in SF\textsubscript{6}. The reaction was found to be predominantly a three-body recombination, presumably producing CF\textsubscript{3}OCO, as described in Table 2-1. The bimolecular reaction has at least two product channels: (a) CF\textsubscript{3}O + CFO and (b) CF\textsubscript{3} + CO\textsubscript{2}. The recommended upper limit for the bimolecular rate coefficient is derived from the low pressure results of Turnipseed et al., where the reaction was in the fall-off region. Their low pressure data indicate that k\textsubscript{b} ≤ 4 × 10-16 cm3 molecule-1 s-1 at 298 K. The fate of the CF\textsubscript{3}OCO adduct is uncertain, and it may lead to the regeneration of CF\textsubscript{3} or CF\textsubscript{3}O radicals in the atmosphere. Wallington and Ball2 report a yield of 96 ± 8% CO\textsubscript{2} at one atmosphere and 296 ± 2 K.

(2) Wallington, T. J.; Ball, J. C. Atmospheric chemistry of CF\textsubscript{3}O radicals: Reactions with CH\textsubscript{4}, CO, CH\textsubscript{3}F, CF\textsubscript{3}H, 13CO, C\textsubscript{2}H\textsubscript{2}F, C\textsubscript{2}H\textsubscript{2}, C\textsubscript{2}H\textsubscript{4}, CH\textsubscript{3}OH, i-C\textsubscript{2}H\textsubscript{4}, and C\textsubscript{2}H\textsubscript{2}. \textit{J. Phys. Chem.} 1995, 99, 3201-3205, doi:10.1021/j100010a034.

E101. CF\textsubscript{3}O + CH\textsubscript{4}. The recommended value of k(298 K) is an average of the values reported in the absolute studies of Saathoff and Zellner,8 Barone et al.,1 Jensen et al.,6 Bourbon et al.,4 and Bednarek et al.,2 which are all in excellent agreement. Kelly et al.7 used a relative method with FTIR detection to determine the ratio k(CF\textsubscript{3}O + CH\textsubscript{4})/k(CF\textsubscript{3}O + C\textsubscript{2}H\textsubscript{2}) = R = 0.01 ± 0.001 at 298 ± 2 K. This ratio is considerably smaller than that calculated from the rate constants recommended in this evaluation, which is R = 0.017. However, a relative rate measurement reported by Wallington and Ball2 yields R = 0.0152 ± 0.0023 at 296 K, which is in good agreement with that calculated from the recommended rate coefficients. A relative rate measurement reported by Chen et al.5 using FTIR methods also gives a low result for the rate coefficient for this reaction, thus, in better agreement with the value of R from Kelly et al.7 The recommended temperature dependence is
from the data of Barone et al. (247–360 K), Jensen et al. (231–385 K), and Bednarek et al. (235–401 K), which agree very well. Measurements at higher temperatures by Bourbon et al. (296–573 K) yield a higher value E/R (1606 K). The CF₃OH product was observed by Jensen et al. and Bevilacqua et al.³ (Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

(3) Bevilacqua, T. J.; Hanson, D. R.; Howard, C. J. Chemical ionization mass spectrometric studies of the gas-phase reactions CF₃O + NO, CF₃O + NO, CF₃O + RH. J. Phys. Chem. 1993, 97, 3750-3757.

E102. CF₃O + C₂H₆. The recommended value for k(298 K) is based on results reported by Saathoff and Zellner,⁵ Barone et al.,¹ and Bourbon et al.,² which are in excellent agreement. Chen et al.³ measured the rate coefficient relative to that for the CF₃O + NO reaction in 700 Torr of air at 297 K. Their ratio is in good agreement with the values recommended in this evaluation. Kelly et al.⁴ used a relative method with FTIR detection to determine the ratio k(CF₃O + CH₄)/k(CF₃O + C₂H₆) = R = 0.01 ± 0.001 at 298 ± 2 K. This does not agree with the ratio calculated using the rate constants recommended in this evaluation, which is R = 0.017. However, a relative rate measurement reported by Wallington and Ball⁶ yields R = 0.0152 ± 0.0023 at 296 K in good agreement with that calculated using the recommended rate coefficients. The recommended temperature dependence is from the work of Barone et al., who studied the reaction over the temperature range from 233 to 360 K. Measurements by Bourbon et al. (295–573 K) give a higher E/R (642 K). The products are inferred by analogy to other reactions of CF₃O with organic compounds. (Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

E103. CF₃O₂ + O₃. The recommended upper limit for k(298 K) is from the measurements reported by Ravishankara et al.,⁴ who used chemical ionization detection of CF₃O₂ with a flow tube reactor. No measurable reaction was observed in their study. The less direct studies of Nielsen and Sehested,³ Maricq and Szente,¹ and Turnipseed et al.⁵ report somewhat larger upper limits to the rate coefficient. An observable reaction was reported in an indirect measurement by Meller and Moortgat.² However, their result for the CF₃O₂ + O₃ reaction is not consistent with the value recommended in this evaluation, suggesting that their study may have interference from unknown reactions. The products are assumed to be CF₃O + 2O₂. (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table
E104. CF$_3$O$_2$ + CO. The recommended upper limit for k(298 K) is from Turnipseed et al., who used chemical ionization mass spectrometric detection of CF$_3$OO with a flow tube reactor at 296 K. This result is at odds with an earlier study by Czarnowski and Schumacher, who deduced a "fast reaction" when they observed the thermal decomposition of CF$_3$OOOCF$_3$ to accelerate in the presence of CO at 315–343 K. It is possible that the reaction of CF$_3$O with CO could account for their observations. (Table: 94-26, Note: 94-26) Back to Table

E105. CF$_3$O$_2$ + NO. The recommended value for k(298 K) is an average of the room temperature rate coefficients reported by Plumb and Ryan, Dognon et al., Peeters et al., Bevilacqua et al., Sehested and Nielsen, Bourbon et al., and Bhattacharjee and Carr, all of which are in excellent agreement. The temperature dependence is derived from the results of Dognon et al. Several studies have confirmed the identity of the products. (Table: 97-4, Note: 97-4) Back to Table

1.10.3 Bibliography – FO₃ Chemistry

DeMore, W. B. Rate constants for the reactions of OH with HFC-134a (CF₂CH₂F) and HFC-134 (CF₂CHF₂).

Handwerk, V.; Zellner, R. Kinetics of the reactions of OH radicals with some halocarbons (CHClF₂, CH₂ClF₂, CH₂CICF₃, CH₂CCICF₃, CH₂(CHF₂) in the temperature range 260-370 K. Ber. Bunsenges. Phys. Chem. 1978, 82, 1161-1166.

Howard, C. J.; Evenson, K. M. Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K. J. Chem. Phys. 1976, 64, 4303-4306.

Hsu, K. J.; DeMore, W. B. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements. J. Phys. Chem. 1995, 99, 1235-1244.

Igoshin, V. I.; Kulakov, L. V.; Nikitin, A. I. Determination of the rate constant of the chemical reaction F + H₂(D₂) → HF(DF) + H(D) from the stimulated emission of the HF(DF) molecules. Sov. J. Quant. Electron. 1974, 3, 306.

Zhang, Z.; Huie, R. E.; Kurylo, M. J. Rate constants for the reactions of OH with CH₃CFCl₂ (HCFC-141b), CH₃CF₂Cl (HCFC-142b), and CH₂FCF₃ (HFC-134a). *J. Phys. Chem.* **1992**, *96*, 1533-1535.

1.11 ClOₙ Reactions

1.11.1 Table 1F: ClOₙ Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K)</th>
<th>A-Factor</th>
<th>E/R</th>
<th>k(298 K)</th>
<th>f(298 K)</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O + ClO → Cl + O₂</td>
<td>220–1250</td>
<td>2.8×10⁻¹¹</td>
<td>−85</td>
<td>3.7×10⁻¹¹</td>
<td>1.05</td>
<td>50</td>
<td>F1</td>
</tr>
<tr>
<td>O + OCIO → ClO + O₂</td>
<td>243–400</td>
<td>2.4×10⁻¹²</td>
<td>960</td>
<td>1.0×10⁻¹³</td>
<td>2.0</td>
<td>300</td>
<td>F2</td>
</tr>
<tr>
<td>O + Cl₂O → ClO + ClO</td>
<td>230–297</td>
<td>2.7×10⁻¹¹</td>
<td>530</td>
<td>4.5×10⁻¹²</td>
<td>1.2</td>
<td>100</td>
<td>F3</td>
</tr>
<tr>
<td>O + HCl → OH + Cl</td>
<td>293–3197</td>
<td>1.0×10⁻¹¹</td>
<td>3300</td>
<td>1.5×10⁻¹⁶</td>
<td>1.5</td>
<td>350</td>
<td>F4</td>
</tr>
<tr>
<td>O + HOCl → OH + ClO</td>
<td>213–298</td>
<td>1.7×10⁻¹³</td>
<td>0</td>
<td>1.7×10⁻¹³</td>
<td>3.0</td>
<td>300</td>
<td>F5</td>
</tr>
<tr>
<td>O + ClONO₂ → products</td>
<td>202–325</td>
<td>3.6×10⁻¹²</td>
<td>840</td>
<td>2.1×10⁻¹³</td>
<td>1.2</td>
<td>100</td>
<td>F6</td>
</tr>
<tr>
<td>O₃ + OCIO → products</td>
<td>262–298</td>
<td>2.1×10⁻¹²</td>
<td>4700</td>
<td>3.0×10⁻¹⁹</td>
<td>2.5</td>
<td>1000</td>
<td>F7</td>
</tr>
<tr>
<td>O₃ + Cl₂O₂ → products</td>
<td>195–217</td>
<td><1×10⁻¹⁹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F8</td>
</tr>
<tr>
<td>OH + Cl₂ → HOCl + Cl</td>
<td>231–836</td>
<td>2.6×10⁻¹²</td>
<td>1100</td>
<td>6.5×10⁻¹⁴</td>
<td>1.1</td>
<td>200</td>
<td>F9</td>
</tr>
<tr>
<td>OH + ClO → Cl + HO₂</td>
<td>208–373</td>
<td>7.4×10⁻¹²</td>
<td>−270</td>
<td>1.8×10⁻¹¹</td>
<td>1.2</td>
<td>50</td>
<td>F10</td>
</tr>
<tr>
<td>→ HCl + O₂</td>
<td>208–373</td>
<td>6.0×10⁻¹³</td>
<td>−230</td>
<td>1.3×10⁻¹²</td>
<td>1.7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>OH + OCIO → HOCl + O₂</td>
<td>242–473</td>
<td>1.4×10⁻¹²</td>
<td>−600</td>
<td>1.0×10⁻¹¹</td>
<td>1.5</td>
<td>150</td>
<td>F11</td>
</tr>
<tr>
<td>OH + Cl₂O → HOCl + ClO</td>
<td>223–383</td>
<td>4.7×10⁻¹²</td>
<td>−140</td>
<td>7.5×10⁻¹²</td>
<td>1.2</td>
<td>100</td>
<td>F12</td>
</tr>
<tr>
<td>OH + Cl₂O₂ → HOCl + ClOO</td>
<td>223–318</td>
<td>6.0×10⁻¹³</td>
<td>−670</td>
<td>5.7×10⁻¹²</td>
<td>1.3</td>
<td>100</td>
<td>F13</td>
</tr>
<tr>
<td>OH + HCl → H₂O + Cl</td>
<td>138–1060</td>
<td>1.8×10⁻¹²</td>
<td>250</td>
<td>7.8×10⁻¹³</td>
<td>1.1</td>
<td>50</td>
<td>F14</td>
</tr>
<tr>
<td>OH + HOCl → H₂O + ClO</td>
<td>298</td>
<td>3.0×10⁻¹²</td>
<td>500</td>
<td>5.0×10⁻¹³</td>
<td>3.0</td>
<td>500</td>
<td>F15</td>
</tr>
<tr>
<td>OH + ClONO₂ → HOCl + NO₂</td>
<td>259–348</td>
<td>2.4×10⁻¹²</td>
<td>1250</td>
<td>3.6×10⁻¹⁴</td>
<td>2.0</td>
<td>300</td>
<td>F16</td>
</tr>
<tr>
<td>OH + ClONO₂ → products</td>
<td>245–387</td>
<td>1.2×10⁻¹²</td>
<td>330</td>
<td>3.9×10⁻¹³</td>
<td>1.5</td>
<td>200</td>
<td>F17</td>
</tr>
<tr>
<td>OH + CH₂Cl → CH₂Cl + H₂O</td>
<td>224–955</td>
<td>1.96×10⁻¹²</td>
<td>1200</td>
<td>3.5×10⁻¹⁴</td>
<td>1.1</td>
<td>50</td>
<td>F18</td>
</tr>
<tr>
<td>OH + CH₃Cl → CHCl₂ + H₂O</td>
<td>219–955</td>
<td>1.92×10⁻¹²</td>
<td>880</td>
<td>1.0×10⁻¹³</td>
<td>1.15</td>
<td>100</td>
<td>F19</td>
</tr>
<tr>
<td>OH + CHCl₃ → CCl₃ + H₂O</td>
<td>249–775</td>
<td>2.2×10⁻¹²</td>
<td>920</td>
<td>1.0×10⁻¹³</td>
<td>1.15</td>
<td>150</td>
<td>F20</td>
</tr>
<tr>
<td>OH + CCl₄ → products</td>
<td>298</td>
<td>1×10⁻¹¹</td>
<td>>6200</td>
<td><1×10⁻²⁰</td>
<td></td>
<td></td>
<td>F21</td>
</tr>
<tr>
<td>OH + CH₂FCl → CHFCl + H₂O (HCFC-31)</td>
<td>245–486</td>
<td>2.4×10⁻¹²</td>
<td>1210</td>
<td>4.1×10⁻¹⁴</td>
<td>1.15</td>
<td>200</td>
<td>F22</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})$</td>
<td>$\theta(298 \text{ K})$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>OH + CHFCl₂ → CFCl₂ + H₂O (HCFC-21)</td>
<td>241–810</td>
<td>1.52×10^{-12}</td>
<td>1170</td>
<td>3.0×10^{-14}</td>
<td>1.1</td>
<td>150</td>
<td>F23</td>
</tr>
<tr>
<td>OH + CH₂F₂Cl → CF₂Cl₂ + H₂O (HCFC-22)</td>
<td>241–807</td>
<td>9.2×10^{-13}</td>
<td>1560</td>
<td>4.9×10^{-15}</td>
<td>1.07</td>
<td>100</td>
<td>F24</td>
</tr>
<tr>
<td>OH + CFCI₃ → products (CFC-11)</td>
<td>297–434</td>
<td>1×10^{-11}</td>
<td>>9700</td>
<td>$<1 \times 10^{-25}$</td>
<td></td>
<td></td>
<td>F25</td>
</tr>
<tr>
<td>OH + CF₂Cl₂ → products (CFC-12)</td>
<td>293–480</td>
<td>1×10^{-11}</td>
<td>>11900</td>
<td>$<1 \times 10^{-28}$</td>
<td></td>
<td></td>
<td>F26</td>
</tr>
<tr>
<td>OH + CF₂Cl₂ → products (CFC-113)</td>
<td>298</td>
<td>1×10^{-11}</td>
<td>>6200</td>
<td>$<1 \times 10^{-20}$</td>
<td></td>
<td></td>
<td>F27</td>
</tr>
<tr>
<td>OH + CF₂Cl₂ → products (CFC-114)</td>
<td>296</td>
<td>1×10^{-11}</td>
<td>>6200</td>
<td>$<1 \times 10^{-20}$</td>
<td></td>
<td></td>
<td>F27</td>
</tr>
<tr>
<td>OH + CF₂Cl₂ → products (CFC-115)</td>
<td>–</td>
<td>1×10^{-11}</td>
<td>>6200</td>
<td>$<1 \times 10^{-20}$</td>
<td></td>
<td></td>
<td>F27</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>223–789</td>
<td>5.4×10^{-12}</td>
<td>800</td>
<td>3.7×10^{-13}</td>
<td>1.2</td>
<td>100</td>
<td>F28</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>292–775</td>
<td>1.14×10^{-11}</td>
<td>1150</td>
<td>2.4×10^{-13}</td>
<td>1.1</td>
<td>200</td>
<td>F29</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>243–761</td>
<td>1.64×10^{-12}</td>
<td>1520</td>
<td>1.0×10^{-14}</td>
<td>1.10</td>
<td>50</td>
<td>F30</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>220–479</td>
<td>1.25×10^{-12}</td>
<td>1600</td>
<td>5.8×10^{-15}</td>
<td>1.07</td>
<td>100</td>
<td>F31</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>220–808</td>
<td>1.3×10^{-12}</td>
<td>1770</td>
<td>3.4×10^{-15}</td>
<td>1.15</td>
<td>50</td>
<td>F32</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>249–788</td>
<td>3.6×10^{-12}</td>
<td>1600</td>
<td>1.7×10^{-14}</td>
<td>1.5</td>
<td>200</td>
<td>F33</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>298–370</td>
<td>8.2×10^{-13}</td>
<td>1250</td>
<td>1.23×10^{-14}</td>
<td>1.15</td>
<td>100</td>
<td>F34</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>263–866</td>
<td>9.4×10^{-13}</td>
<td>1300</td>
<td>1.2×10^{-14}</td>
<td>1.1</td>
<td>100</td>
<td>F35</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>298–460</td>
<td>7.7×10^{-13}</td>
<td>810</td>
<td>5.1×10^{-14}</td>
<td>1.2</td>
<td>150</td>
<td>F36</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>298–460</td>
<td>9.0×10^{-13}</td>
<td>1200</td>
<td>1.6×10^{-14}</td>
<td>1.1</td>
<td>100</td>
<td>F37</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>213–866</td>
<td>7.4×10^{-13}</td>
<td>900</td>
<td>3.6×10^{-14}</td>
<td>1.1</td>
<td>100</td>
<td>F38</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>298–460</td>
<td>8.6×10^{-13}</td>
<td>1250</td>
<td>1.3×10^{-14}</td>
<td>1.3</td>
<td>200</td>
<td>F39</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>210–867</td>
<td>7.1×10^{-13}</td>
<td>1300</td>
<td>9.0×10^{-15}</td>
<td>1.15</td>
<td>100</td>
<td>F40</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>253–372</td>
<td>5.8×10^{-13}</td>
<td>530</td>
<td>9.8×10^{-13}</td>
<td>1.15</td>
<td>50</td>
<td>F41</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>233–372</td>
<td>2.35×10^{-12}</td>
<td>365</td>
<td>6.9×10^{-13}</td>
<td>1.15</td>
<td>50</td>
<td>F42</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>295–367</td>
<td>7.7×10^{-13}</td>
<td>1720</td>
<td>2.4×10^{-15}</td>
<td>1.3</td>
<td>200</td>
<td>F43</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>251–400</td>
<td>6.3×10^{-13}</td>
<td>960</td>
<td>2.5×10^{-14}</td>
<td>1.2</td>
<td>200</td>
<td>F44</td>
</tr>
<tr>
<td>OH + CH₂Cl₂ → products</td>
<td>270–400</td>
<td>5.5×10^{-13}</td>
<td>1230</td>
<td>8.9×10^{-15}</td>
<td>1.1</td>
<td>150</td>
<td>F45</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>(k(298,\text{K}))(^{a})</td>
<td>(f(298,\text{K}))(^{b})</td>
<td>(g)</td>
<td>Note</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>-----------------</td>
<td>-----</td>
<td>---------------------------------</td>
<td>------------------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>(\text{OH} + \text{CF}_2\text{CHCl}_2\rightarrow \text{CF}_3\text{CHCl}_2 + \text{H}_2\text{O}) (HFC-234fb)</td>
<td>298</td>
<td>1.8×10^{-12}</td>
<td>2300</td>
<td>8.0×10^{-18}</td>
<td>1.5</td>
<td>200</td>
<td>F66</td>
</tr>
<tr>
<td>(\text{OH} + \text{CH}_2=\text{CHCl} \rightarrow \text{products})</td>
<td>293–1173</td>
<td>1.3×10^{-12}</td>
<td>−500</td>
<td>6.9×10^{-12}</td>
<td>1.2</td>
<td>100</td>
<td>F47</td>
</tr>
<tr>
<td>(\text{OH} + (E)-\text{CHCl}=\text{CHCl} \rightarrow \text{products})</td>
<td>240–720</td>
<td>1.06×10^{-12}</td>
<td>−230</td>
<td>2.3×10^{-12}</td>
<td>1.1</td>
<td>100</td>
<td>F48</td>
</tr>
<tr>
<td>(\text{OH} + (Z)-\text{CHCl}=\text{CHCl} \rightarrow \text{products})</td>
<td>240–400</td>
<td>2.04×10^{-12}</td>
<td>−70</td>
<td>2.6×10^{-12}</td>
<td>1.1</td>
<td>100</td>
<td>F49</td>
</tr>
<tr>
<td>(\text{OH} + \text{CH}_2=\text{CCl}_2 \rightarrow \text{products})</td>
<td>240–750</td>
<td>2.17×10^{-12}</td>
<td>−470</td>
<td>1.05×10^{-11}</td>
<td>1.1</td>
<td>100</td>
<td>F50</td>
</tr>
<tr>
<td>(\text{OH} + \text{CHCl}=\text{CCl}_2 \rightarrow \text{products})</td>
<td>234–1500</td>
<td>8.0×10^{-13}</td>
<td>−300</td>
<td>2.2×10^{-12}</td>
<td>1.2</td>
<td>100</td>
<td>F51</td>
</tr>
<tr>
<td>(\text{OH} + \text{CCl}_2=\text{CCl}_2 \rightarrow \text{products})</td>
<td>296–720</td>
<td>4.7×10^{-12}</td>
<td>990</td>
<td>1.7×10^{-13}</td>
<td>1.2</td>
<td>200</td>
<td>F52</td>
</tr>
<tr>
<td>(\text{OH} + \text{CF}_2=\text{CFCI} \rightarrow \text{products})</td>
<td>296–364</td>
<td>1.06×10^{-12}</td>
<td>−580</td>
<td>7.4×10^{-12}</td>
<td>1.2</td>
<td>100</td>
<td>F53</td>
</tr>
<tr>
<td>(\text{OH} + (E)-\text{CHCl}=\text{CHF}_3 \rightarrow \text{products})</td>
<td>213–376</td>
<td>9.0×10^{-13}</td>
<td>280</td>
<td>3.5×10^{-13}</td>
<td>1.07</td>
<td>20</td>
<td>F54</td>
</tr>
<tr>
<td>(\text{OH} + (Z)-\text{CHCl}=\text{CHF}_3 \rightarrow \text{products})</td>
<td>213–376</td>
<td>3.67×10^{-13}</td>
<td>−280</td>
<td>9.4×10^{-13}</td>
<td>1.1</td>
<td>20</td>
<td>F55</td>
</tr>
<tr>
<td>(\text{OH} + \text{CHF}_2\text{OCHClF}_3 \rightarrow \text{products}) (Isoflurane)</td>
<td>250–430</td>
<td>1.1×10^{-12}</td>
<td>1275</td>
<td>1.5×10^{-14}</td>
<td>1.07</td>
<td>50</td>
<td>F56</td>
</tr>
<tr>
<td>(\text{OH} + \text{CHF}_2\text{OCF}_2\text{CHFCl} \rightarrow \text{products}) (Enflurane)</td>
<td>250–430</td>
<td>6.73×10^{-13}</td>
<td>1200</td>
<td>1.2×10^{-14}</td>
<td>1.1</td>
<td>100</td>
<td>F57</td>
</tr>
<tr>
<td>(\text{OH} + \text{CH}_2\text{OCl} \rightarrow \text{products})</td>
<td>250–431</td>
<td>2.5×10^{-12}</td>
<td>370</td>
<td>7.1×10^{-13}</td>
<td>2.0</td>
<td>150</td>
<td>F58</td>
</tr>
<tr>
<td>(\text{OH} + \text{CCl}_3\text{CHO} \rightarrow \text{H}_2\text{O} + \text{CCl}_3\text{CO})</td>
<td>298–520</td>
<td>9.1×10^{-12}</td>
<td>580</td>
<td>1.3×10^{-12}</td>
<td>1.3</td>
<td>200</td>
<td>F59</td>
</tr>
<tr>
<td>(\text{HO}_2 + \text{Cl} \rightarrow \text{HCl} + \text{O}_2)</td>
<td>226–420</td>
<td>1.4×10^{-11}</td>
<td>−270</td>
<td>3.5×10^{-11}</td>
<td>1.2</td>
<td>100</td>
<td>F60</td>
</tr>
<tr>
<td>(\rightarrow \text{OH} + \text{ClO})</td>
<td>226–420</td>
<td>3.6×10^{-11}</td>
<td>375</td>
<td>1.0×10^{-11}</td>
<td>1.4</td>
<td>150</td>
<td>F61</td>
</tr>
<tr>
<td>(\text{HO}_2 + \text{ClO} \rightarrow \text{HOCl} + \text{O}_2)</td>
<td>203–364</td>
<td>2.6×10^{-12}</td>
<td>−290</td>
<td>6.9×10^{-12}</td>
<td>1.2</td>
<td>150</td>
<td>F61</td>
</tr>
<tr>
<td>(\text{H}_2\text{O} + \text{ClO}\text{NO}_2 \rightarrow \text{products})</td>
<td>298</td>
<td><2×10^{-21}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F62</td>
</tr>
<tr>
<td>(\text{NO} + \text{OCIO} \rightarrow \text{NO}_2 + \text{ClO})</td>
<td>220–367</td>
<td>2.5×10^{-12}</td>
<td>600</td>
<td>3.4×10^{-13}</td>
<td>2.0</td>
<td>300</td>
<td>F63</td>
</tr>
<tr>
<td>(\text{NO} + \text{Cl}_2\text{O}_2 \rightarrow \text{products})</td>
<td>220–298</td>
<td><1×10^{-15}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F64</td>
</tr>
<tr>
<td>(\text{NO}_3 + \text{OCIO} \rightarrow \text{O}_2\text{ClO}\text{NO}_2)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{NO}_3 + \text{HCl} \rightarrow \text{HNO}_3 + \text{Cl})</td>
<td>298–473</td>
<td><5×10^{-17}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F65</td>
</tr>
<tr>
<td>(\text{HO}_2\text{NO}_2 + \text{HCl} \rightarrow \text{products})</td>
<td>296</td>
<td><1×10^{-21}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F66</td>
</tr>
<tr>
<td>(\text{Cl} + \text{O}_2 \rightarrow \text{ClO} + \text{O}_2) (See Table 2-1)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2)</td>
<td>184–1350</td>
<td>2.3×10^{-11}</td>
<td>200</td>
<td>1.2×10^{-11}</td>
<td>1.15</td>
<td>50</td>
<td>F67</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})$</td>
<td>$\ell(298 \text{ K})$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Cl + H₂ → HCl + H</td>
<td>199–3000</td>
<td>3.05×10⁻¹¹</td>
<td>2270</td>
<td>1.5×10⁻¹⁴</td>
<td>1.1</td>
<td>100</td>
<td>F68</td>
</tr>
<tr>
<td>Cl + H₂O₂ → HCl + HO₂</td>
<td>265–424</td>
<td>1.1×10⁻¹¹</td>
<td>980</td>
<td>4.1×10⁻¹³</td>
<td>1.3</td>
<td>300</td>
<td>F69</td>
</tr>
<tr>
<td>Cl + NO → ClNO</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl + NO₂ → ClONO (ClNO₂)</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl + NO₃ → ClO + NO₂</td>
<td>278–338</td>
<td>2.4×10⁻¹¹</td>
<td>0</td>
<td>2.4×10⁻¹¹</td>
<td>1.5</td>
<td>400</td>
<td>F70</td>
</tr>
<tr>
<td>Cl + N₂O → ClO + N₂</td>
<td>773–1030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(See Note)</td>
</tr>
<tr>
<td>Cl + HNO₃ → products</td>
<td>243–633</td>
<td></td>
<td></td>
<td><2×10⁻¹⁶</td>
<td></td>
<td></td>
<td>F72</td>
</tr>
<tr>
<td>Cl + HO₂NO₂ → products</td>
<td>296–399</td>
<td></td>
<td></td>
<td><1×10⁻¹³</td>
<td></td>
<td></td>
<td>F73</td>
</tr>
<tr>
<td>Cl + CO → ClCO</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl + CH₄ → HCl + CH₃</td>
<td>181–1550</td>
<td>7.1×10⁻¹²</td>
<td>1270</td>
<td>1.0×10⁻¹³</td>
<td>1.05</td>
<td>50</td>
<td>F74</td>
</tr>
<tr>
<td>Cl + CH₃D → products</td>
<td>223–343</td>
<td>7.46×10⁻¹²</td>
<td>1400</td>
<td>6.8×10⁻¹⁴</td>
<td>1.07</td>
<td>50</td>
<td>F75</td>
</tr>
<tr>
<td>Cl + H₂CO → HCl + HCO</td>
<td>200–500</td>
<td>8.1×10⁻¹¹</td>
<td>30</td>
<td>7.3×10⁻¹¹</td>
<td>1.15</td>
<td>100</td>
<td>F76</td>
</tr>
<tr>
<td>Cl + HC(O)OH → products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.0×10⁻¹³</td>
<td>1.5</td>
<td></td>
<td>F77</td>
</tr>
<tr>
<td>Cl + CH₃O₂ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>1.6×10⁻¹⁰</td>
<td>1.5</td>
<td></td>
<td>F78</td>
</tr>
<tr>
<td>Cl + CH₂OH → CH₂OH + HCl</td>
<td>200–573</td>
<td>5.5×10⁻¹¹</td>
<td>0</td>
<td>5.5×10⁻¹¹</td>
<td>1.2</td>
<td>100</td>
<td>F79</td>
</tr>
<tr>
<td>Cl + CH₃OOH → products</td>
<td>295</td>
<td></td>
<td></td>
<td>5.7×10⁻¹¹</td>
<td>2.0</td>
<td></td>
<td>F80</td>
</tr>
<tr>
<td>Cl + CH₃ONO₂ → products</td>
<td>298</td>
<td>1.3×10⁻¹¹</td>
<td>1200</td>
<td>2.3×10⁻¹³</td>
<td>1.5</td>
<td>300</td>
<td>F81</td>
</tr>
<tr>
<td>Cl + C₂H₂ → ClC₂H₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl + C₂H₄ → ClC₂H₄</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl + C₂H₆ → HCl + C₂H₅</td>
<td>48–1400</td>
<td>7.2×10⁻¹¹</td>
<td>70</td>
<td>5.7×10⁻¹¹</td>
<td>1.07</td>
<td>20</td>
<td>F82</td>
</tr>
<tr>
<td>Cl + C₂H₅O₂ → ClO + C₂H₅O</td>
<td>298</td>
<td></td>
<td></td>
<td>7.4×10⁻¹¹</td>
<td>2.0</td>
<td></td>
<td>F83</td>
</tr>
<tr>
<td>→ HCl + C₂H₄O₂</td>
<td>298</td>
<td></td>
<td></td>
<td>7.7×10⁻¹¹</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl + CH₃CH₂OH → products</td>
<td>266–600</td>
<td>9.6×10⁻¹¹</td>
<td>0</td>
<td>9.6×10⁻¹¹</td>
<td>1.2</td>
<td>100</td>
<td>F84</td>
</tr>
<tr>
<td>Cl + CH₃C(O)OH → products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.8×10⁻¹⁴</td>
<td>2.0</td>
<td></td>
<td>F85</td>
</tr>
<tr>
<td>Cl + CH₃CN → products</td>
<td>274–728</td>
<td>1.6×10⁻¹¹</td>
<td>2140</td>
<td>1.2×10⁻¹⁴</td>
<td>2.0</td>
<td>300</td>
<td>F86</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>k(298 K)</td>
<td>f(298 K)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Cl + C2H2ONO2 → products</td>
<td>298</td>
<td>1.5×10^{-11}</td>
<td>400</td>
<td>3.9×10^{-12}</td>
<td>1.5</td>
<td>200</td>
<td>F87</td>
</tr>
<tr>
<td>Cl + CH3CO2NO2 → products</td>
<td>298</td>
<td></td>
<td></td>
<td><1×10^{-14}</td>
<td></td>
<td></td>
<td>F88</td>
</tr>
<tr>
<td>Cl + C3H8 → HCl + CH3CHCH3 → HCl + CH3CH2CH3</td>
<td>48–1400</td>
<td>6.54×10^{-11}</td>
<td>-60</td>
<td>8.0×10^{-11}</td>
<td>1.1</td>
<td>20</td>
<td>F89</td>
</tr>
<tr>
<td>Cl + C3H3(O)CH3 → CH3C(O)CH2 + HCl</td>
<td>210–440</td>
<td>1.63×10^{-11}</td>
<td>610</td>
<td>2.1×10^{-12}</td>
<td>1.07</td>
<td>50</td>
<td>F90</td>
</tr>
<tr>
<td>Cl + CH=C(CH3)CHO → products</td>
<td>296–298</td>
<td>2.2×10^{-10}</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td>F91</td>
</tr>
<tr>
<td>Cl + CH3C(O)CH=CH2 → products</td>
<td>296–298</td>
<td>2.1×10^{-10}</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td>F92</td>
</tr>
<tr>
<td>Cl + Cl2=C(CH3)CH=CH2 → products</td>
<td>233–320</td>
<td>7.6×10^{-11}</td>
<td>-500</td>
<td>4.1×10^{-10}</td>
<td>1.15</td>
<td>100</td>
<td>F93</td>
</tr>
<tr>
<td>Cl + C2H3CO2NO2 → products</td>
<td>295</td>
<td></td>
<td></td>
<td>1.1×10^{-12}</td>
<td>2.0</td>
<td></td>
<td>F94</td>
</tr>
<tr>
<td>Cl + 1-C3H3OONO2 → products</td>
<td>295</td>
<td></td>
<td></td>
<td>2.3×10^{-11}</td>
<td>1.5</td>
<td></td>
<td>F95</td>
</tr>
<tr>
<td>Cl + 2-C3H3OONO2 → products</td>
<td>295</td>
<td></td>
<td></td>
<td>4.0×10^{-12}</td>
<td>2.0</td>
<td></td>
<td>F96</td>
</tr>
<tr>
<td>Cl + OCIO → ClO + ClO</td>
<td>229–588</td>
<td>3.4×10^{-11}</td>
<td>-160</td>
<td>5.8×10^{-11}</td>
<td>1.25</td>
<td>200</td>
<td>F97</td>
</tr>
<tr>
<td>Cl + ClOO → Cl2 + O2 → ClO + ClO</td>
<td>160–306</td>
<td>2.3×10^{-10}</td>
<td>0</td>
<td>2.3×10^{-10}</td>
<td>2.0</td>
<td>200</td>
<td>F98</td>
</tr>
<tr>
<td>Cl + Cl2O → Cl2 + ClO</td>
<td>233–373</td>
<td>6.2×10^{-11}</td>
<td>-130</td>
<td>9.6×10^{-11}</td>
<td>1.2</td>
<td>130</td>
<td>F99</td>
</tr>
<tr>
<td>Cl + ClO2 → products</td>
<td>217–298</td>
<td>7.6×10^{-11}</td>
<td>-65</td>
<td>1.0×10^{-10}</td>
<td>1.2</td>
<td>100</td>
<td>F100</td>
</tr>
<tr>
<td>Cl + HOCl → products</td>
<td>243–365</td>
<td>3.4×10^{-12}</td>
<td>130</td>
<td>2.2×10^{-12}</td>
<td>1.3</td>
<td>200</td>
<td>F101</td>
</tr>
<tr>
<td>Cl + CINO → NO + Cl2</td>
<td>220–450</td>
<td>5.8×10^{-11}</td>
<td>-100</td>
<td>8.1×10^{-11}</td>
<td>1.5</td>
<td>200</td>
<td>F102</td>
</tr>
<tr>
<td>Cl + ClONO2 → products</td>
<td>195–298</td>
<td>6.5×10^{-12}</td>
<td>-135</td>
<td>1.0×10^{-11}</td>
<td>1.1</td>
<td>50</td>
<td>F103</td>
</tr>
<tr>
<td>Cl + CH3Cl → HCl + CH3Cl</td>
<td>233–843</td>
<td>2.03×10^{-11}</td>
<td>1110</td>
<td>4.9×10^{-13}</td>
<td>1.07</td>
<td>50</td>
<td>F104</td>
</tr>
<tr>
<td>Cl + CH2Cl2 → HCl + CHCl2</td>
<td>273–790</td>
<td>7.4×10^{-12}</td>
<td>910</td>
<td>3.5×10^{-13}</td>
<td>1.07</td>
<td>100</td>
<td>F105</td>
</tr>
<tr>
<td>Cl + CHCl3 → HCl + CCl3</td>
<td>220–1010</td>
<td>3.3×10^{-12}</td>
<td>990</td>
<td>1.2×10^{-13}</td>
<td>1.15</td>
<td>100</td>
<td>F106</td>
</tr>
<tr>
<td>Cl + CH2F → HCl + CH2F (HFC-41)</td>
<td>216–368</td>
<td>1.96×10^{-11}</td>
<td>1200</td>
<td>3.5×10^{-13}</td>
<td>1.15</td>
<td>150</td>
<td>F107</td>
</tr>
<tr>
<td>Cl + CH2F2 → HCl + CHF2 (HFC-32)</td>
<td>253–553</td>
<td>7.6×10^{-12}</td>
<td>1630</td>
<td>3.2×10^{-14}</td>
<td>1.08</td>
<td>100</td>
<td>F108</td>
</tr>
<tr>
<td>Cl + CHF3 → HCl + CF3 (HFC-23)</td>
<td>298</td>
<td></td>
<td></td>
<td><5×10^{-16}</td>
<td></td>
<td></td>
<td>F109</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>k(298 K)</td>
<td>f(298 K)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>------------</td>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Cl + CH₂FCl → HCl + CHFCl (HCFC-31)</td>
<td>273–298</td>
<td>5.9×10^{-12}</td>
<td>1200</td>
<td>1.05×10^{-13}</td>
<td>1.1</td>
<td>200</td>
<td>F110</td>
</tr>
<tr>
<td>Cl + CHFCl₂ → HCl + CFCl₂ (HFC-21)</td>
<td>294–433</td>
<td>6.0×10^{-12}</td>
<td>1700</td>
<td>2.0×10^{-14}</td>
<td>1.2</td>
<td>200</td>
<td>F111</td>
</tr>
<tr>
<td>Cl + CH₂Cl → HCl + C₂Cl₂ (HCFC-22)</td>
<td>296–411</td>
<td>5.9×10^{-12}</td>
<td>2430</td>
<td>1.7×10^{-15}</td>
<td>1.1</td>
<td>150</td>
<td>F112</td>
</tr>
<tr>
<td>Cl + CH₃CCl₃ → HCl + CH₂CCl₃</td>
<td>253–423</td>
<td>3.0×10^{-12}</td>
<td>1730</td>
<td>9.0×10^{-15}</td>
<td>1.15</td>
<td>100</td>
<td>F113</td>
</tr>
<tr>
<td>Cl + CH₃CH₂F → HCl + CH₃CHF (HFC-161)</td>
<td>264–368</td>
<td>1.82×10^{-11}</td>
<td>330</td>
<td>6.0×10^{-12}</td>
<td>1.1</td>
<td>100</td>
<td>F114</td>
</tr>
<tr>
<td>Cl + CH₃CH₂F → HCl + CH₃CH₂F</td>
<td>264–368</td>
<td>1.4×10^{-11}</td>
<td>940</td>
<td>6.0×10^{-13}</td>
<td>1.15</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cl + CH₃CH₂F → HCl + CH₃CH₂F (HFC-152a)</td>
<td>264–368</td>
<td>6.0×10^{-12}</td>
<td>950</td>
<td>2.5×10^{-13}</td>
<td>1.1</td>
<td>100</td>
<td>F115</td>
</tr>
<tr>
<td>Cl + CH₂FCH₂F → HCl + CHFCH₂F (HFC-152)</td>
<td>264–368</td>
<td>6.5×10^{-12}</td>
<td>2320</td>
<td>2.7×10^{-15}</td>
<td>1.15</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cl + CH₃CFCl₂ → HCl + CH₃CFCl₂ (HCFC-141b)</td>
<td>276–429</td>
<td>3.5×10^{-12}</td>
<td>2200</td>
<td>2.2×10^{-15}</td>
<td>1.15</td>
<td>200</td>
<td>F117</td>
</tr>
<tr>
<td>Cl + CH₃CF₂Cl → HCl + CH₃CF₂Cl (HCFC-142b)</td>
<td>295–673</td>
<td>1.35×10^{-12}</td>
<td>2400</td>
<td>4.3×10^{-16}</td>
<td>1.15</td>
<td>200</td>
<td>F118</td>
</tr>
<tr>
<td>Cl + CH₃CF₃ → HCl + CH₃CF₃ (HCFC-143a)</td>
<td>281–368</td>
<td>1.64×10^{-11}</td>
<td>3900</td>
<td>3.4×10^{-17}</td>
<td>1.5</td>
<td>300</td>
<td>F119</td>
</tr>
<tr>
<td>Cl + CH₂FCH₂F → HCl + CH₂FCH₂F (HFC-143)</td>
<td>281–368</td>
<td>6.8×10^{-12}</td>
<td>1670</td>
<td>2.5×10^{-14}</td>
<td>1.3</td>
<td>200</td>
<td>F120</td>
</tr>
<tr>
<td>Cl + CH₂FCH₂F → HCl + CH₂FCH₂F</td>
<td>281–368</td>
<td>9.1×10^{-12}</td>
<td>1770</td>
<td>2.4×10^{-14}</td>
<td>1.3</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cl + CH₂CICF₃ → HCl + CH₂CICF₃ (HCFC-133a)</td>
<td>296–500</td>
<td>1.83×10^{-12}</td>
<td>1680</td>
<td>6.5×10^{-15}</td>
<td>1.2</td>
<td>200</td>
<td>F121</td>
</tr>
<tr>
<td>Cl + CH₂FCF₃ → HCl + CH₂FCF₃ (HCFC-134a)</td>
<td>253–423</td>
<td>2.1×10^{-12}</td>
<td>2160</td>
<td>1.5×10^{-15}</td>
<td>1.1</td>
<td>200</td>
<td>F122</td>
</tr>
<tr>
<td>Cl + CHF₂CH₂F → HCl + CHF₂CH₂F (HFC-134)</td>
<td>280–368</td>
<td>7.0×10^{-12}</td>
<td>2430</td>
<td>2.0×10^{-15}</td>
<td>1.2</td>
<td>200</td>
<td>F123</td>
</tr>
<tr>
<td>Cl + CHCl₃CF₃ → HCl + CHCl₃CF₃ (HCFC-123)</td>
<td>276–382</td>
<td>5.0×10^{-12}</td>
<td>1800</td>
<td>1.2×10^{-14}</td>
<td>1.15</td>
<td>200</td>
<td>F124</td>
</tr>
<tr>
<td>Cl + CHFCICF₃ → HCl + CHFCICF₃ (HCFC-124)</td>
<td>276–376</td>
<td>1.13×10^{-12}</td>
<td>1800</td>
<td>2.7×10^{-15}</td>
<td>1.2</td>
<td>200</td>
<td>F125</td>
</tr>
<tr>
<td>Cl + CH₂CF₃ → HCl + CH₂CF₃ (HFC-125)</td>
<td>295–399</td>
<td>1.85×10^{-12}</td>
<td>2600</td>
<td>3.0×10^{-16}</td>
<td>1.5</td>
<td>300</td>
<td>F126</td>
</tr>
<tr>
<td>Cl + C₂Cl₄</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + O₃ → ClOO + O₂</td>
<td>223–413</td>
<td>2×10^{-12}</td>
<td>>3600</td>
<td>$<1.4\times10^{-17}$</td>
<td></td>
<td></td>
<td>F127</td>
</tr>
<tr>
<td>ClO + O₃ → OCIO + O₂</td>
<td>223–413</td>
<td>1×10^{-12}</td>
<td>>4000</td>
<td>$<1.0\times10^{-18}$</td>
<td></td>
<td></td>
<td>F128</td>
</tr>
<tr>
<td>ClO + H₂ → products</td>
<td>294–670</td>
<td>1×10^{-12}</td>
<td>>4800</td>
<td>$<1\times10^{-19}$</td>
<td></td>
<td></td>
<td>F128</td>
</tr>
<tr>
<td>ClO + NO → NO₂ + Cl</td>
<td>202–415</td>
<td>6.4×10^{-12}</td>
<td>-290</td>
<td>1.7×10^{-11}</td>
<td>1.15</td>
<td>100</td>
<td>F129</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})^a$</td>
<td>$f(298 \text{ K})^b$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>ClO + NO₂ \rightarrow ClONO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + NO₃ \rightarrow ClO₂ + NO₂</td>
<td>210–353</td>
<td>4.7×10^{-13}</td>
<td>0</td>
<td>4.7×10^{-13}</td>
<td>1.5</td>
<td>400</td>
<td>F130</td>
</tr>
<tr>
<td>ClO + N₂O \rightarrow products</td>
<td>587</td>
<td>1×10^{-12}</td>
<td>>4300</td>
<td>$<6 \times 10^{-19}$</td>
<td></td>
<td></td>
<td>F131</td>
</tr>
<tr>
<td>ClO + CO \rightarrow products</td>
<td>587</td>
<td>1×10^{-12}</td>
<td>>3700</td>
<td>$<4 \times 10^{-18}$</td>
<td></td>
<td></td>
<td>F132</td>
</tr>
<tr>
<td>ClO + CH₄ \rightarrow products</td>
<td>670</td>
<td>1×10^{-12}</td>
<td>>3700</td>
<td>$<4 \times 10^{-18}$</td>
<td></td>
<td></td>
<td>F133</td>
</tr>
<tr>
<td>ClO + H₂CO \rightarrow products</td>
<td>298</td>
<td>1×10^{-12}</td>
<td>>2100</td>
<td>$<1 \times 10^{-15}$</td>
<td></td>
<td></td>
<td>F134</td>
</tr>
<tr>
<td>ClO + CH₃O₂ \rightarrow products</td>
<td>197–355</td>
<td>1.8×10^{-12}</td>
<td>600</td>
<td>2.4×10^{-12}</td>
<td>1.1</td>
<td>300–20</td>
<td>F135</td>
</tr>
<tr>
<td>ClO + ClO \rightarrow Cl₂ + O₂</td>
<td>260–1250</td>
<td>1.0×10^{-12}</td>
<td>1590</td>
<td>4.8×10^{-15}</td>
<td>1.5</td>
<td>300</td>
<td>F136</td>
</tr>
<tr>
<td>\rightarrow ClOO + Cl</td>
<td>260–710</td>
<td>3.0×10^{-11}</td>
<td>2450</td>
<td>8.0×10^{-15}</td>
<td>1.5</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>\rightarrow OCIO + Cl</td>
<td>254–390</td>
<td>3.5×10^{-13}</td>
<td>1370</td>
<td>3.5×10^{-15}</td>
<td>1.5</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>ClO + ClO \rightarrow Cl₂O₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + OClO \rightarrow Cl₂O₃</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl + ClONO₂ \rightarrow products</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
<td>$<1 \times 10^{-20}$</td>
<td></td>
<td>F137</td>
</tr>
<tr>
<td>CH₂Cl + O₂ \rightarrow CH₂ClO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHCl₂ + O₂ \rightarrow CHCl₂O₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃ + O₂ \rightarrow CCl₃O₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFCl₂ + O₂ \rightarrow CFCl₂O₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂Cl + O₂ \rightarrow CF₂ClO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃O₂ + NO₂ \rightarrow CCl₃O₂NO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFCI₂O₂ + NO₂ \rightarrow CFCI₂O₂NO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂ClO₂ + NO₂ \rightarrow CF₂ClO₂NO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ClO + O₂ \rightarrow CHClO + HO₂</td>
<td>264–336</td>
<td>6×10^{-14}</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>F138</td>
</tr>
<tr>
<td>CH₂ClO₂ + HO₂ \rightarrow CH₂ClO₂H + O₂</td>
<td>251–600</td>
<td>3.3×10^{-13}</td>
<td>-820</td>
<td>5.2×10^{-12}</td>
<td>1.5</td>
<td>200</td>
<td>F139</td>
</tr>
<tr>
<td>CH₂Cl₂O + NO \rightarrow CH₂ClO + NO₂</td>
<td>295</td>
<td>7×10^{-12}</td>
<td>-300</td>
<td>1.9×10^{-11}</td>
<td>1.5</td>
<td>200</td>
<td>F140</td>
</tr>
<tr>
<td>CCl₃O₂ + NO \rightarrow CCl₃O + NO₂ + Cl</td>
<td>228–413</td>
<td>7.3×10^{-12}</td>
<td>-270</td>
<td>1.8×10^{-11}</td>
<td>1.3</td>
<td>200</td>
<td>F141</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298,\text{K})^a$</td>
<td>$f(298,\text{K})^c$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$\text{CCl}_2\text{FO}_2 + \text{NO} \rightarrow \text{CClFO} + \text{NO}_2 + \text{Cl}$</td>
<td>228–413</td>
<td>4.5×10^{-12}</td>
<td>-350</td>
<td>1.5×10^{-11}</td>
<td>1.3</td>
<td>200</td>
<td>F142</td>
</tr>
<tr>
<td>$\text{CCIF}_2\text{O} + \text{NO} \rightarrow \text{CF}_2\text{O} + \text{NO}_2 + \text{Cl}$</td>
<td>228–413</td>
<td>3.8×10^{-12}</td>
<td>-400</td>
<td>1.5×10^{-11}</td>
<td>1.2</td>
<td>200</td>
<td>F143</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6. Italicized blue entries denote estimates.

- Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.
- Units are cm3 molecule$^{-1}$ s$^{-1}$.
- $f(298\,\text{K})$ is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

$$f(T) = f(298\,\text{K})\exp\left|g\left(\frac{1}{T} - \frac{1}{298}\right)\right|$$

Note that the exponent is an absolute value.
1.11.2 Notes: ClOₓ Reactions

F1. O + ClO. There have been six studies of this rate constant over an extended temperature range using a variety of techniques: Leu; Margitan; Schwab et al.; Ongstad and Birks; Nicovich et al.; and Goldfarb et al. The recommended value is based on a least squares fit to the data reported in these studies and in the earlier studies of Zahniser and Kaufman and Ongstad and Birks. Values reported in the early studies of Bemand et al. and Clyne and Nip are significantly higher and were not used in deriving the recommended value. Leu and Yung were unable to detect O₃(1Δ) or O₃(1Σ) and set upper limits to the branching ratios for their production of 4.4 × 10⁻⁴ and 2.5 × 10⁻², respectively. (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

(8) Ongstad, A. P.; Birks, J. W. Studies of reactions of importance in the stratosphere. V. Rate constants for the reactions O + NO₂ → NO + O₂ and O + ClO → Cl + O₂ at 298 K. J. Chem. Phys. 1984, 81, 3922-3930.

F2. O + OCIO. The recommended value is based on results of the DF-RF study of Gleason et al. Over the temperature range from 400 K down to 240 K, their data are well fitted by the recommended Arrhenius expression, but at lower temperatures down to 200 K their data show an abrupt change to a negative temperature dependence. At 200 K, the value measured is a factor of 3 higher than that calculated from the Arrhenius expression. It appears that the earlier experiments of Bemand et al. were complicated by secondary chemistry. The low temperature data of Gleason et al. qualitatively support the results of Colussi and Colussi et al. over an extended pressure range that demonstrate the importance of the termolecular reaction O + OCIO + M → ClO₂ + M (see entry for this reaction in Table 2-1). Mauldin et al. also observed product formation at low temperatures and higher pressures that is consistent with adduct formation. It should be noted that the termolecular rate constants derived by Gleason et al. on the basis of their low temperature data are not consistent with the termolecular rate constant expression recommended in this evaluation (factor of 3 difference). (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F3. O + ClO. The recommended value is based on the results of Stevens and Anderson\(^4\) and Miziolek and Molina,\(^5\) which are in good agreement. The significantly lower values of Wecker et al.\(^3\) are not included, nor are earlier results by Basco and Dogra\(^1\) and Freeman and Phillips\(^2\) due to data analysis difficulties in both studies. (Table: 10-6, Note: 94-26, Evaluated: 10-6) Back to Table

F4. O + HCl. The recommended value is based on the results of Brown and Smith,\(^2\) Wong and Belles,\(^7\) Ravishankara et al.,\(^5\) Hack et al.,\(^3\) Singleton and Cvetanovic,\(^6\) and Mahmud et al.\(^4\) near 300 K, but not on the results reported by Balakhnin et al.\(^1\) which are substantially higher. A large uncertainty is attached to the temperature dependence below room temperature due to the limited number and range (no data below 290 K) of measurements. (Table: 10-6, Note: 94-26, Evaluated: 10-6) Back to Table

(1) Balakhnin, V. P.; Egorov, V. I.; Intezarova, E. I. Kinetics and Catalysis 1971, 12, 299.

F5. O + HOCl. The recommended value is based on results of Schindler et al.\(^1\) In this study the rate constant was found to be practically independent of temperature in the range 213–298 K. Product analysis indicated that Cl atom abstraction is the primary reaction channel, a conclusion that is supported by ab initio studies carried out by Xu and Lin,\(^3\) Wang et al.\(^5\) and Schindler et al. (Table: 97-4, Note: 10-6, Evaluated: 10-6) Back to Table

F6. O + ClONO\(_2\). The recommended values are based on the results reported by Goldfarb et al.,\(^2\) Molina et al.,\(^4\) and Kurylo.\(^3\) The room temperature results of Tyndall et al.\(^6\) and Adler-Golden and Wiesnfeld\(^1\) are in excellent agreement with the recommended value. The value reported by Ravishankara et al.\(^5\) at 245 K is a
factor of 2 greater than the results from the other studies, and this may possibly be attributed to (a) secondary kinetic complications, (b) the presence of NO₂ as a reactive impurity in the ClONO₂, or (c) formation of reactive photolytic products. Goldfarb et al. measured an essentially unit yield (± 30%) of NO₂ from the reaction between the temperatures 248 K and 298 K.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F7. **O₃ + OClO.** The recommended value is based on results over the temperature range 262–296 K reported by Wongdontri-Stuper et al.² The indicated uncertainty limits also encompass the somewhat lower room temperature result of Birks et al.¹

(Table: 90-1, Note: 90-1, Evaluated: 10-6) Back to Table

F8. **O₃ + Cl₂O₂.** The recommended upper limit is taken from the study of DeMore and Tschuikow-Roux¹ measured at 195 K.

(Table: 90-1, Note: 90-1, Evaluated: 10-6) Back to Table

F9. **OH + Cl₂.** The recommended room temperature value is the average of the results reported by Bryokov et al.,² Gilles et al.,³ Boodaghians et al.,¹ Loewenstein and Anderson,⁵ Ravishankara et al.,⁶ and Leu and Lin.⁷ The temperature dependence is based on an error-weighted average of the Gilles et al. and Boodaghians et al. E/R values. Loewenstein and Anderson determined that the exclusive products are Cl + HOCl.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F10. **OH + ClO.** The reaction has two known product channels under atmospheric conditions: OH + ClO → Cl + HO₂ and OH + ClO → HCl + O₂. Most studies measured the rate coefficients for the overall reaction (OH +
ClO → products), which is presumably the sum of the two channels. The assessment of the overall reaction (OH + ClO → products) is based on a fit to the data of Hills and Howard3 (219–373 K), Lipson et al.7 (208–298 K), Kegley-Owen et al.4 (234–356 K), Poulet et al.8 (298 K), Wang and Keyser11 (218–298 K), and Bedjanian et al.1 (230–360 K). Data reported in the studies of Burrows et al.2 Ravishankara et al.9 and Leu and Lin8 were not used in deriving the recommended value because the concentration of ClO was determined by an indirect method. The recommendation for the Cl + HO\textsubscript{2} channel is obtained from the equilibrium constant for this channel, combined with the recommended value for the reverse reaction. The minor reaction channel forming HCl poses significant experimental difficulties due to complications associated with the measurement of the HCl reaction product. Early studies inferred the HCl branching ratio without measuring HCl. These included the 298 K measurements of the yield of the Cl + HO\textsubscript{2} channel by Leu and Lin9 (>0.65), Burrows et al.2 (0.85 ± 0.2), and Hills and Howard3 (0.86 ± 0.14). Poulet et al.8 measured the Cl + HO\textsubscript{2} product yield to be 0.98 ± 0.12 using mass spectrometry, but their HCl sensitivity was marginal. These studies were not considered in the evaluation. Later studies by Lipson et al.7 using mass spectrometry and by Wang and Keyser12 using diode laser spectroscopy improved the precision of the HCl product channel measurements. Lipson et al.6 measured rate constants for the HCl channel over the temperature range 207–298 K and reported a branching ratio of (7 ± 3%), while Wang and Keyser12 measured the HCl yield between 218–298 K, obtaining (9.0 ± 4.8) %, independent of temperature. The Wang and Keyser rate constant was computed from the HCl yield and their overall rate constant.11 Measurements by Tyndall et al.10 and Bedjanian et al.1 were also considered. (Although the values for the HCl channel obtained by Lipson et al. from combining the values obtained in Lipson et al.6,7 and Bedjanian et al.1 are in agreement, their values for the overall reaction differ by 40–70%.) The recommendation for the HCl channel is unchanged from JPL 06-2, and the error limits have been reduced.

(Table: 09-31, Note: 09-31, Evaluated: 09-31) Back to Table

F11. OH + OC\textsubscript{I}O. The recommended value is that reported by Gierczak et al.1 over the range 242–392 K. An earlier study by Poulet et al.2 between 298 K and 473 K is in fair agreement with the recommendation. Differences between the studies may lie in the methods used to determine the OC\textsubscript{I}O concentration. Gierczak et al. used in situ optical measurements of OC\textsubscript{I}O, whereas Poulet et al. relied on measured flows of dilute mixtures. Product HOCl\textsubscript{I}O was detected in the Poulet et al. study by modulated molecular beam mass spectrometry. The branching ratio for the channel to produce HOC\textsubscript{I}O + O\textsubscript{2} was determined to be close to unity, but experimental uncertainty would allow it to be as low as 0.80.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F12. OH + ClO. The reaction has been studied as a function of temperature by Stevens and Anderson 2 and Hansen et al. 2 The results of these two studies are in excellent agreement at temperatures below 300 K. Hansen et al. suggest that data taken above 300 K by Stevens and Anderson were complicated by wall decomposition of ClO. The recommended value of E/R is the average of the individual E/R values from the two studies for data below 300 K. The recommended value for k(298 K) is an average of the results from Stevens and Anderson, Hansen et al., Ennis and Birks, 1 and Leu and Lin. 3

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F13. OH + Cl2O. The recommended value is based on results from the study of Hansen et al. 1 using a discharge flow technique coupled with direct detection of OH and Cl2O via resonance fluorescence and mass spectrometric techniques, respectively. Ab initio calculations by Hansen et al. support the finding of a negative temperature dependence.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F14. OH + HCl. The recommended value is based on a least squares fit to the data over the temperature range 204–300 K reported in the studies of Molina et al., 8 Keyser, 7 Ravishankara et al., 10 Battin-Leclerc et al., 1 and Bryukov et al. 2 In these studies particular attention was paid to the determination of the absolute concentration of HCl by UV and IR spectrophotometry. Earlier studies by Takacs and Glass, 15 Zahniser et al., 16 Smith and Zellner, 17 Ravishankara et al., 18 Hack et al., 19 Husain et al., 20 Cannon et al., 3 Husain et al., 5 and Smith and Williams 12 reported somewhat lower room temperature values. The data of Sharkey and Smith 11 over the temperature range 138–216 K, Battin-Leclerc et al. 1 below 240 K, and Bryukov et al. over the temperature range 298–1015 K, depart from normal Arrhenius behavior. Quantum chemical and transition state calculations performed by Battin-Leclerc et al., 1 Bryukov et al., 2 and Steckler et al. 14 generally support the existence of a weakly bound complex; however, a large tunneling effect is required to explain the low temperature data. Additional work at low temperature is needed to confirm the strong non-Arrhenius behavior.

(Table: 09-31, Note: 09-31, Evaluated: 09-31) Back to Table

Smith, I. W. M.; Williams, M. D. Effects of isotopic substitution and vibrational excitation on reaction rates Kinetics of OH(v = 0, 1) and OD(v = 0, 1) with HCl and DCl. *J. Chem. Soc. Faraday Trans.* **1986**, *82*, 1043-1055.

F15. OH + HOCl. In the only reported study of this system, Ennis and Birks\(^1\) reported the value of this rate constant at room temperature to lie in the range \((1.7–9.5) \times 10^{-13}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). A temperature-dependent expression has been estimated by choosing a pre-exponential factor by analogy with the OH + H2O reaction and selecting the midpoint of the experimental range for the room temperature rate constant. Theoretical calculations by Wang et al.,\(^2\) however, suggest that tunneling may play an important role at lower temperatures and give rise to a significant curvature in the Arrhenius curve. The large uncertainty factor is needed to encompass the entire range.

(Table: 87-41, Note: 10-6, Evaluated: 10-6) [Back to Table](#)

F16. OH + CINO\(_2\). The recommended value is based on results of the direct studies of Ganske et al.,\(^1,2\) using the discharge flow-resonance fluorescence technique. Mass spectrometric studies showed HOCl to be the major chlorine-containing product, with no evidence for a channel to produce HONO\(_2\) + Cl.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) [Back to Table](#)

F17. OH + ClONO\(_2\). The results reported by Zahniser et al.,\(^2\) and Ravishankara et al.,\(^4\) are in good agreement at \(-245\) K (within 25%), considering the difficulties associated with handling ClONO\(_2\). The recommended value is that of Zahniser et al. Neither study reported data on the reaction products.

(Table: 82-57, Note: 82-57, Evaluated: 10-6) [Back to Table](#)

F18. OH + CH\(_2\)Cl. The recommended value for \(k(298\) K) is an average of the values from the relative rate study of Hsu and DeMore\(^6\) (recalculated based on the current recommendation for the rate constant of the OH +
CH$_3$CHF$_2$ reference reaction, as described in the note for that reaction) and the absolute rate studies of Herndon et al.,4 and Orkin et al.8 The recommended value for E/R was obtained from a fit to the data of Herndon et al.4 below room temperature. Data from the earlier studies of Howard and Evenson,5 Perry et al.,10 Davis et al.,3 Paraskevopoulos et al.,9 Jeong and Kaufman,7 and Taylor et al.11 (with the exception of their 298 K data point) are reasonably well encompassed within the 2σ uncertainty limits. The room temperature value from Taylor et al.11 is inconsistent with the higher temperature results in the same study and with the other investigations and lies outside of the 2σ band, as do the higher room temperature values of Cox et al.2 and Brown et al.1 (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F19. OH + CH$_3$Cl. The recommended values for k(298 K) and E/R are derived from a combined fit to the data from the absolute rate studies of Villenave et al.9 and Herndon et al.4 and the relative rate study of Hsu and DeMore8 (two determinations, which have been recalculated based on the current recommendations for the rate constants of the OH + CH$_2$CHF$_2$ and OH + CH$_2$CHF reference reactions). The renormalization procedure is discussed in the note for the OH + CH$_3$CHF$_2$ reaction. The lowest temperature data (219–220 K) of Herndon et al. were not used in the fit since they appear to be systematically higher than expected from the data at 227 K and above, a difference that could possibly be due to the presence of residual reactive stabilizer in the sample of CH$_2$Cl$_2$. The results of Cox et al.1 and Davis et al.2 support the recommendation. The results from Taylor et al.1 Jeong and Kaufman,6 Perry et al.7 and Howard and Evenson4 lie considerably higher than the recommendation and were not used in deriving the recommended parameters. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(7) Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. Rate constants for the reaction of OH radicals with CHFCl₂ and CH₂Cl over the temperature range 298-423 °K, and with CH₂Cl₂ at 298 °K. J. Chem. Phys. 1976, 64, 1618-1620.

F20. OH + CHCl₃. The recommended value for k(298 K) is an average of the values from the relative rate study of Hsu and DeMore³ (which has been recalculated based on the current recommendation for the rate constant of the OH + CH₂Cl₂: reference reaction, as described in the note for that reaction) and the absolute rate studies of Taylor et al., which superseded Taylor et al., Jeong and Kaufman,² Davis et al.,¹ and Howard and Evenson.² The recommended value of E/R is an average of values for this parameter derived in all of the above studies with the exception of Howard and Evenson, which was conducted only at room temperature. (Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

(3) Hsu, K. J.; DeMore, W. B. Rate constants for the reactions of OH with CH₃Cl, CH₂Cl₂, CHCl₃, and CH₃Br. Geophys. Res. Lett. 1994, 21, 805-808.

F21. OH + CCl₄. The recommended value for k(298 K) was obtained by setting the Arrhenius pre-exponential factor (A) to 1 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ and equating the activation energy (E) to the reaction endothermicity reported in this evaluation and in IUPAC. The JPL 10-6 evaluation had been based on upper limits of the rate constant reported by Cox et al.,² by Howard and Evenson,³ and by Clyne and Holt.¹ None of these experimental studies indicated any evidence for reaction between these species. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F22. OH + CH₂FCl(HFCC-31). The recommended value for k(298 K) is an average of the values from the relative rate study of DeMore (which has been recalculated based on the current recommendation for the rate constant of the OH + CH₃Cl₂: reference reaction) and the absolute rate studies of Howard and Evenson,² Paraskevopoulos et al., Watson et al., and Jeong and Kaufman.² The recommended value for E/R is an average of the values for this parameter derived from the data of DeMore, Watson et al., Handwerk and Zellner, and Jeong and Kaufman below 400 K. (Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

F23. **OH + CHFCl₂ (HCFC-21).** The recommended value for k(298 K) is an average of the values from the studies of Howard and Evenson,¹ Paraskevopoulos et al.,⁶ Perry et al.,⁷ Watson et al.,⁸ Chang and Kaufman,¹ Jeong and Kaufman,⁵ and Fang et al.³ The recommended value for E/R is derived from a combined fit to the data from all but the first two studies listed above (which were only conducted at room temperature) after scaling each data set to the recommended value for k(298 K). The rate constants reported by Clyne and Holt² are significantly higher than those from the other seven studies and were not used in deriving the recommended parameters.

(Table: 15-10, Note: 15-10, Evaluated: 02-25) Back to Table

(3) Fang, T. D.; Taylor, P. H.; Dellinger, B. Absolute rate measurements of the reaction of OH radicals with HCFC-21 (CHFCl₂) and HCFC-22 (CH₂F₂Cl) over an extended temperature range. *J. Phys. Chem.* 1996, 100, 4048-4054.
(8) Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. Rate constants for the reaction of OH radicals with CHFCl₂ and CH₃Cl over the temperature range 298-423 °K, and with CH₂Cl₂ at 298 °K. *J. Chem. Phys.* 1976, 64, 1618-1620.

F24. **OH + CHF₂Cl (HCFC-22).** Studies of this reaction show very good agreement among both absolute and relative rate constant measurements. The recommended value for k(298 K) is an average of the values from the relative rate data of Hsu and DeMore⁷ (which has been recalculated based on the current recommendation for the rate constant of the OH + CH₄ reference reaction), and the absolute rate studies of Orkin and Khamaganov⁹, Fang et al.,⁴ Atkinson et al.,¹ Watson et al.,¹¹ Chang and Kaufman,² Paraskevopoulos et al.,¹⁰ and Jeong and Kaufman.⁸ The recommended value for E/R is derived from a combined fit to these same data sets after scaling each one to the recommended value for k(298 K). The more scattered results of Handwerk and Zellner⁵ are in general agreement. The results from the studies of Howard and Evenson⁶ and Clyne and Holt² are significantly different from those of the other studies and were not used in the derivation.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(3) Clyne, M. A. A.; Holt, P. M. Reaction kinetics involving ground \(\text{X}^{2}\Pi \) and excited \(\text{A}^{2}\Sigma^+ \) hydroxyl radicals Part 2.-Rate constants for reactions of OH \(\text{X}^{2}\Pi \) with halogenomethanes and halogenoethanes. *J. Chem. Soc. Faraday Trans.* 2 1979, 75, 582-591.

(4) Fang, T. D.; Taylor, P. H.; Dellinger, B. Absolute rate measurements of the reaction of OH radicals with HCFC-21 (CHFCl₂) and HCFC-22 (CHF₂Cl) over an extended temperature range. *J. Phys. Chem.* 1996, 100, 4048-4054.

F25. OH + CFCl₃ (CFC-11). The recommended value for \(k(298 \text{ K}) \) was obtained by setting the Arrhenius pre-exponential factor (\(A \)) to \(1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) and equating the activation energy (\(E \)) to the reaction endothermicity reported in this evaluation and in IUPAC. The JPL 10-6 recommendation was based on the experimentally determined rate constant upper limits reported by Chang and Kaufman² at about 480 K and by Atkinson et al.,¹ Howard and Evenson,⁴ Cox et al.,⁴ and Clyne and Holt.³ None of the investigators reported any evidence for reaction between these species.
(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(3) Clyne, M. A. A.; Holt, P. M. Reaction kinetics involving ground \(\text{X}^{2}\Pi \) and excited \(\text{A}^{2}\Sigma^+ \) hydroxyl radicals Part 1.-Quenching kinetics of OH \(\text{A}^{2}\Sigma^+ \) and rate constants for reactions of OH \(\text{X}^{2}\Pi \) with CH₂CCl₃ and CO. *J. Chem. Soc. Faraday Trans.* 2 1979, 75, 569-581.

F26. OH + CF₂Cl₂ (CFC-12). The recommended value for \(k(298 \text{ K}) \) was obtained by setting the Arrhenius pre-exponential factor (\(A \)) to \(1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) and equating the activation energy (\(E \)) to the reaction endothermicity reported in this evaluation and in IUPAC. The JPL 10-6 recommendation was based on the experimentally determined rate constant upper limits reported by Chang and Kaufman² at about 480 K and by Atkinson et al.,¹ Howard and Evenson,³ Cox et al.,³ and Clyne and Holt.³ None of the investigators reported any evidence for reaction between these species.
(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Chang, J. S.; Kaufman, F. Upper limits of the rate constants for the reactions of CFCl₃ (F-11), CF₂Cl₂ (F-12), and N₂O with OH. Estimates of corresponding lower limits to their tropospheric lifetimes. Geophys. Res. Lett. 1977, 4, 192-194.

F27. OH + CCl₂FCCIF₂ (CFC-113), CCl₂FCCIF (CFC-114), CF₃CCIF₂ (CFC-115). The recommended kinetic parameters for these reactions are estimated as being approximately the same as presently recommended for OH + CCl₃.

F28. OH + CH₃Cl. The recommended value for k(298 K) is an average of the values reported by Howard and Evenson,² Paraskevopoulos et al.,³ Kasner et al.,³ and Herndon et al.¹ The recommended value for E/R is an average of the values for this parameter determined by Kasner et al. and Herndon et al. Data from the study by Markert and Nielsen⁴ were not used to derive the recommended parameters, as they are somewhat more scattered.

F29. OH + CH₃CCl₂Cl. The recommended value for k(298 K) is an average of the values reported by Howard and Evenson,² Arnts et al.,¹ Taylor et al.,⁴ and Qiu et al.³ The recommended value for E/R is an average of the values determined from fits to the data of Taylor et al.⁴ (T < 400 K) and of Qiu et al.³

F30. OH + CH₃CCl₃. The recommended value for k(298 K) is an average of the values from the absolute rate studies of Talukdar et al.⁸ and Finlayson-Pitts et al.,⁷ and a relative rate study of DeMore⁴ (recalculated based on the current recommendation for the rate constant of the OH + CH₄ reference reaction). The temperature dependence is a fit to the data between 243 K and 379 K of Talukdar et al.⁸ These studies indicate both a lower k(298 K) and E/R than were reported in earlier studies by Nelson et al.,⁶ Jeong and Kaufman,³ and Kurylo et al.⁵ More recent measurements by Jiang et al.⁴ and Lancar et al.⁶ yield rate constants that are slightly higher at 298 K than this recommendation.
F31. OH + CH$_2$CFC$_3$ (HCFC-141b). Studies of this reaction have shown that the presence of reactive impurities can have an appreciable effect on the accurate determination of its small rate constant. The recommended value of k(298 K) is the average of the values derived from the absolute studies of Talukdar et al. (by DF-LMR and LP-LIF, for which only data obtained with the purer sample of HCFC-141b were considered) and Lancar et al. (and from the relative rate study of Huder and DeMore) (two determinations that were recalculated based on the current recommendations for the rate constants for the reference reactions OH + CH$_4$ and OH + CH$_3$CCl$_3$). The recommended value for E/R is derived from a combined Arrhenius fit below 400 K to the data of Talukdar et al. (without their lowest temperature data) and Lancar et al. after scaling each data set to the recommended k(298 K). Huder and DeMore reported only Arrhenius expressions derived from their relative rate measurements (i.e., no actual rate constants were tabulated). Their reported values for E/R are nearly identical to the value recommended here. The results of absolute measurements of Zhang et al. (which supersede those reported in Liu et al.) were complicated by secondary chemistry that may not have been completely accounted for; nevertheless, they are encompassed within the recommended 2σ uncertainty limits. Earlier measurements by Brown et al. yielded significantly higher rate constants at every temperature, most likely due to the presence of very reactive impurities (such as CH$_2$CCl$_2$) in their HCFC-141b sample. Talukdar et al. reported similar problems in their preliminary measurements. The room temperature result of Mörs et al. is 15% smaller than recommended but is encompassed within the recommended 2σ uncertainty limits. The room temperature rate constant reported by Kowalczyk et al. is inexplicably a factor of 8 smaller than recommended. The results reported by these authors for several other halocarbons vary widely (ranging from 10% agreement with recommendations to as much as 3 orders of magnitude disagreement).

F32. OH + CH$_2$CF$_2$Cl (HCFC-142b). The recommended value for k(298 K) is an average of the values from Howard and Evenson,7 Cox et al.,3 Paraskevopoulos et al.,10 Mörs et al.,9 Watson et al.,11 Handwerk and Zellner,8 Liu et al.,5 Gierczak et al.,5 and Fang et al.4 The recommended value of E/R is an average of values for this parameter derived from the last five studies listed above. The data from Brown et al.,1 and Clyne and Holt2 were not used to derive the recommended parameters. The 270 K data of Zhang et al.,6 were not used to derive the recommended parameters. The 270 K data of Zhang et al.,10 are in reasonable agreement with the recommendation.

(Table: 15-10, Note: 02-25, Evaluated: 15-10) Back to Table

(2) Clyne, M. A. A.; Holt, P. M. Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals Part 2.-Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes. J. Chem. Soc. Faraday Trans. 2 1979, 75, 582-591.

(6) Handwerk, V.; Zellner, R. Kinetics of the reactions of OH radicals with some halocarbons (CHCIF$_2$, CH$_2$CIF, CH$_3$CIF$_2$, CH$_3$CICF$_2$, CH$_3$CHF$_2$) in the temperature range 260-370 K. Ber. Bunsenges. Phys. Chem. 1978, 82, 1161-1166.

F33. OH + CH$_3$CICF$_2$Cl (HCFC-132b). The recommended parameters are derived from the data of Watson et al.,2 which were corrected by these authors for the presence of alkene impurities. The data of Jeong et al.,4 indicating faster rate constants, may have been affected by such impurities; hence they were not included in deriving the recommendation.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

F34. **OH + CH₂FCCl₂ (HCFC-132c).** The recommended Arrhenius parameters are derived from the data of Orkin et al.¹ (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F35. **OH + CH₃CICF₃ (HCFC-133a).** The recommended parameters are derived from the data of McGillen et al.⁶ which is the only study to fully cover the lower temperatures of atmospheric interest. The value of the rate constant at room temperature from Howard and Evenson⁵ is in good agreement with the recommended value for k(298 K), while systematic differences exist with the k(298 K) values derived from the absolute measurements of Handwerk and Zellner¹ (~50%) and Fang et al.³ (~60%) and from the relative rate study of DeMore² (~15%) using OH + CH₃CCl₃ as the reference reaction. Despite these systematic differences, the recommended temperature dependences derived from the last three studies listed above are in reasonable agreement with the recommended E/R. The data of Clyne and Holt¹ are quite scattered, and the values above room temperature are considerably higher than those from other studies. Hence, these data were not used in deriving the recommended parameters.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F36. **OH + CHCl₂CF₂Cl (HCFC-122).** The recommended parameters are derived from a combined fit to the data of Orkin and Khamaganov² (below 400 K) and DeMore¹ (two determinations which have been recalculated based on the current recommendations for the rate constants of the OH + CH₂Cl₂ and OH + CHCl₂CF₃ reference reactions).

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

F37. **OH + CHFCICFC₂Cl (HCFC-122a).** The recommended value for k(298 K) is an average of the results from the relative rate study of Hsu and DeMore¹ (recalculated based on the current recommendation for the rate constant for the OH + CH₃CHF₂ reference reaction, as discussed in the note for that reaction) and from the absolute rate study of Orkin et al.² The recommended value for E/R is derived from a combined fit to the data of both studies below 400 K after scaling both data sets to the recommended k(298 K).

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

OH + CHCl₂CF₃ (HCFC-123). The recommended value of $k(298 \text{ K})$ is the average of the values from the absolute studies of Gierczak et al.,³ (two determinations), Liu et al.,⁶ and Yamada et al.,⁸ and from the relative rate study by Hsu and DeMore⁵ (recalculated based on the current recommendation for the rate constant for the OH + CH₃CF₂ reference reaction, as discussed in the note for that reaction). The recommendation for the temperature dependence is derived from a fit to the data of these investigations after scaling each data set to the recommended value for $k(298 \text{ K})$. The temperature dependence data of Nielsen,² Watson et al.,⁸ Clyne and Holt,² and Brown et al.,¹ and the room temperature data of Howard and Evenson¹ were not used in deriving the recommended parameters. (Table: 15-10, Note: 02-25, Evaluated: 02-25) Back to Table

(2) Clyne, M. A. A.; Holt, P. M. Reaction kinetics involving ground $X^3\Pi$ and excited $A^3\Sigma^+$ hydroxyl radicals Part 2.-Rate constants for reactions of OH $X^3\Pi$ with halogenomethanes and halogenoethanes. J. Chem. Soc. Faraday Trans. 2 1979, 75, 582-591.

OH + CHFCICF₃Cl (HCFC-123a). The recommended parameters are derived from the data of Orkin and Khamaganov.¹ (Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

OH + CHFCICF₃ (HCFC-124). The recommended value for $k(298 \text{ K})$ is an average of the values from the studies of Watson et al.,¹ Gierczak et al.,¹ (2 studies), Yamada et al.,³ and Hsu and DeMore¹ (two relative rate determinations, which have been recalculated based on the current recommendations for the rate constants of the OH + CH₄ and OH + CHF₂CF₂ reference reactions). The room temperature rate constant of Howard and Evenson² is considerably higher than these other values and was not included in the average. The recommended temperature dependence is an average of the dependencies derived from these same studies (but using only data below 400 K from Gierczak et al.¹ and Yamada et al.³). (Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

(2) Howard, C. J.; Evenson, K. M. Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K. J. Chem. Phys. 1976, 64, 4303-4306.

(3) Hsu, K. J.; DeMore, W. B. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements. J. Phys. Chem. 1995, 99, 1235-1244.

F41. OH + CH3CH2CH2Cl. The recommended Arrhenius parameters are derived from the data of Yujing and Mellouki. The results from the investigations by Markert and Nielsen and by Donaghey et al. exhibit considerably more scatter but are, to a large part, encompassed within the 2σ confidence limits of this recommendation. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F42. OH + CH3CHCIC3H. The recommended Arrhenius parameters are derived from the data of Yujing and Mellouki. The results from the investigations by Markert and Nielsen and by Donaghey et al. exhibit considerably more scatter but are, to a large part, encompassed within the 2σ confidence limits of this recommendation. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F43. OH + CH3CF2CFCl (HCFC-243cc). The recommended Arrhenius parameters are derived from the data of Nelson et al. The uncertainties have been assigned to reflect the assumption that the rate constant for this reaction should be less than that for OH + CH3CF2Cl. (Table: 02-25, Note: 02-25, Evaluated:02-25) Back to Table

F44. OH + CHCl2CF2CF3 (HCFC-225ca). The recommended value for k(298 K) is an average of the values from Nelson et al. and Zhang et al. The recommendation for E/R is derived from the data of Nelson et al. The temperature-dependence data of Brown et al. were not considered because the relatively large rate constants at and below room temperature and the Arrhenius curvature are suggestive of sample impurities. The temperature dependence results of Zhang et al. are in reasonable agreement with those of Nelson et al. over the temperature range of measurement overlap. However, the complete data set yields a value for E/R much larger than currently recommended for the OH + CHCl2CF3 (HCFC-123) reaction, for which the activation energy should be similar. (Table: 02-25, Note: 02-25, Evaluated:02-25) Back to Table

F45. OH + CF₂ClCF₂CHCl (HCFC-225cb). The recommended parameters are derived from a combined fit to the temperature-dependence data of Nelson et al.¹ and Zhang et al.² which are in excellent agreement. (Table: 15-10, Note: 02-25, Evaluated: 02-25) Back to Table

F46. OH + CF₃CH₂CFCl₂ (HCFC-234fb). The recommended value for k(298 K) is from the relative rate study of Barry et al.¹ The value for E/R is estimated as being slightly less than that for OH + CF₂CH₂CF₂. (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F47. OH + CH₃=CHCl. The recommended value for k(298 K) is an average of the values reported by Howard,¹ Perry et al.,² Liu et al.,² and Yamada et al. The recommended value for E/R is an average of the values for this parameter derived from fits to the data of Perry et al., Liu et al., and Yamada et al. at temperatures below about 400 K. In the 400–500 K region, the rate constant levels off before increasing at higher temperatures, suggesting the stronger importance of an abstraction mechanism at the higher temperatures. As discussed in note for the OH + CH₃=CHF reaction, the recommended rate constant represents the high-pressure limit for this reaction. (Table: 02-25, Note: 10-6, Evaluated: 10-6) Back to Table

F48. OH + (E)-CHCl=CHCl. The recommended value for k(298 K) is an average of the values reported in the absolute rate studies of Abbatt and Anderson,¹ Zhang et al.,² Yamada et al.,³ and Canosa-Mas et al.² The recommended value for E/R is derived from a combined fit to the data below 400 K from the first three studies listed above after scaling to the recommended value for k(298 K). The data from the room temperature relative rate study of Tuazon et al.² are significantly lower than those in the absolute studies and were not included in deriving the recommended value for k(298 K). (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F49. **OH + (Z)-CHCl=CHCl.** The recommended value for $k(298 \, \text{K})$ is an average of the values reported in the absolute rate studies of Abbatt and Anderson,¹ and Zhang et al.³ The recommended value for E/R is derived from a combined fit to the data of these two studies after scaling to the recommended value for $k(298 \, \text{K})$.

The data from the room temperature relative rate study of Tuazon et al.² were not used in deriving the recommended value for $k(298 \, \text{K})$. While in agreement with the recommended value, this same study yielded significantly different results than recommended for the trans isomer.

(Table: 15-10, Note: 15-10, Evaluated: 15-10)
Back to Table

F50. **OH + CH₃=CCL₂.** The recommended value for $k(298 \, \text{K})$ is an average of the values reported by Abbatt and Anderson,¹ Yamada et al.⁶, and Zhang et al.⁷. The room temperature results of Edney et al.³ Tuazon et al.⁵ and Canosa-Mas et al.² lie somewhat outside of the range of the other studies and were not used in deriving the recommendation. The recommended value for E/R is derived from a combined fit to the data of Abbatt and Anderson,¹ Yamada et al.⁶, and Zhang et al.⁷ after scaling each data set to the value recommended for $k(298 \, \text{K})$. The data of Kirchner et al.⁴ were not used in deriving the recommended parameters since they were obtained at very low pressure, and the much stronger temperature dependence obtained may be indicative of a pressure dependence above room temperature. As discussed in the note for the OH + CH₃=CHF reaction, the recommended rate constant represents the high pressure limit for this reaction.

(Table: 15-10, Note: 15-10, Evaluated: 15-10)
Back to Table

F51. **OH + CHCl=CCl₂.** The recommended value for $k(298 \, \text{K})$ is the mean of the values reported by Howard,³ Chang and Kaufman,¹ Kirchner et al.³ Klopffer et al.⁶ Edney et al.² and Tichenor et al.⁷ The recommended value of E/R is an average of values for this parameter derived by Chang and Kaufman,¹ Kirchner et al.³ and Tichenor et al.⁷ The value for $k(298 \, \text{K})$ derived from a relative rate study by Winer et al.⁸ is a factor of ~2 greater than the other values and is not considered in deriving the recommended value. An absolute study by Jiang et al.⁴ yielding a significantly higher value for $k(298 \, \text{K})$, as well as a considerably stronger temperature
dependence \((E/R = -970 \text{ K})\), is assumed to be superseded by Tichenor et al.\(^7\) As discussed in the note for the \(\text{OH} + \text{CH}_2=\text{CHF}\) reaction, the recommended rate constant represents the high pressure limit for this reaction.
(Table: 02-25, Note: 10-6, Evaluated: 10-6) Back to Table

(4) Jiang, Z.; Taylor, P. H.; Dellinger, B. Laser photolysis/laser-induced fluorescence studies of the reaction of OH with 1,1,1,2- and 1,1,2,2-tetrachloroethane over an extended temperature range. J. Phys. Chem. 1993, 97, 5050-5053.

F52. \(\text{OH} + \text{CCl}_2=\text{CCL}_2\). The recommended value for \(k(298 \text{ K})\) is the mean of the values reported by Howard,\(^2\) Chang and Kaufman,\(^1\) and Kirchner et al.\(^3\) The room temperature value reported by Winer et al.\(^5\) is more than a factor of 10 greater and was not used in deriving the recommendation. The recommended value for \(E/R\) is an average of values for this parameter derived by Chang and Kaufman\(^1\) and Kirchner et al.\(^3\) A study by Tichenor et al.\(^4\) yields a value for \(k(298 \text{ K})\) slightly lower than these other studies, but a temperature dependence less than half of that recommended. While the results of Tichenor et al.\(^4\) were not used in deriving the recommendations, they are encompassed within the \(2\sigma\) confidence limits. As discussed in the note for the \(\text{OH} + \text{CH}_2=\text{CHF}\) reaction, the recommended rate constant represents the high pressure limit for this reaction.
(Table: 02-25, Note: 10-6, Evaluated: 10-6) Back to Table

F53. \(\text{OH} + \text{CF}_2=\text{CFCl}\). The recommended Arrhenius parameters are derived from the data of Abbatt and Anderson.\(^1\) The value for \(k(298 \text{ K})\) reported by Howard\(^2\) is in very good agreement with that recommended here.
(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Abbatt, J. P. D.; Anderson, J. G. High-pressure discharge flow kinetics and frontier orbital mechanistic analysis for \(\text{OH} + \text{CH}_3\text{Cl}_2\), cis-\text{CHICICHCl}, trans-\text{CHICICHCl}, \text{CFCICF}_2,\) and \(\text{CF}_2\text{CCl}_2 \rightarrow \text{Products}. J. \text{ Phys. Chem.} 1991, 95, 2382-2390.

1-222
F54. \textbf{OH + (E)-CHCl=CHCF}_3. The recommended value for \(k(298\text{K})\) is an average of the values determined by Orkin et al.2 and Gierczak et al.1 The value reported in the room temperature relative study by Sulbaek-Andersen et al.,3 while only about 15% larger than the recommended value, has much greater uncertainty due to uncertainties in the reference reaction rate constants. The data reported by Orkin et al.2 and Gierczak et al.1 exhibit somewhat different temperature dependences. Orkin et al.2 report significant curvature in the Arrhenius plot over the temperature range 220–370 K that is best fit by a modified three-parameter Arrhenius expression

\[
k(T) = 1.03 \times 10^{-11} \,(T/298)^{2.29}\exp(+384/T).
\]

This curvature is not seen in the data reported by Gierczak et al.1 The recommended value for \(E/R\) is an average of the \(E/R\) values derived from the individual fits to the Orkin et al.2 and Gierczak et al.1 data for T <300 K.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) \(\textit{Back to Table}\)

F55. \textbf{OH + (Z)-CHCl=CHCF}_3. The recommended Arrhenius parameters are derived from a fit to the data of Gierczak et al.1 for T <298 K. Above 298 K, the Arrhenius plot exhibits pronounced curvature such that the entire data set from 213 K–373 K is best fit by a modified three-parameter Arrhenius expression

\[
k(T) = 1.15 \times 10^{-11} \,(T/298)^{1.38}\exp(+628/T).
\]

Below 298 K this expression and the simple Arrhenius parameterization yield nearly identical values for the rate constant.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) \(\textit{Back to Table}\)

F56. \textbf{OH + CHF\(_2\)OCHCICF\(_3\) (Isoflurane)}. The recommended value for \(k(298\text{K})\) is an average of the results from Tokuhashi et al.,3 Langbein et al.,3 and Sulbaek-Andersen et al.4 The recommended value for \(E/R\) is derived from a fit to the two temperature dependent data sets of Tokuhashi et al.3 The room temperature data determined in the discharge-flow experiments by Brown et al.2 and Beach et al.1 lie about 30% higher than recommended here. However, the data from Beach et al.1 above room temperature agree well with those of Tokuhashi et al.3

(Table: 15-10, Note: 15-10, Evaluated: 15-10) \(\textit{Back to Table}\)

(5) Tokuhashi, K.; Takahashi, A.; Kaise, M.; Kondo, S. Rate constants for the reactions of OH radicals with \(\text{CH}_3\text{OCCF}_2\text{CHFCl}, \text{CHF}_2\text{OCCF}_2\text{CHFCl}, \text{CHF}_2\text{OCHClCF}_3, \) and \(\text{CH}_3\text{CH}_2\text{OCCF}_2\text{CHF}_2. \) J. Geophys. Res. 1999, 104, 18681-18688.

F57. \(\text{OH} + \text{CHF}_2\text{OCCF}_2\text{CHFCl} \) (Enflurane). The recommended value for \(k(298 \text{ K}) \) is an average of the values from Tokuhashi et al.\(^4\) and Langbein et al.\(^3\) The recommended value for \(\text{E}/\text{R} \) is derived from a fit to the data below 400 K of Tokuhashi et al.\(^4\) (three absolute studies). The values of \(k \) determined in the discharge-flow experiments by Brown et al.\(^2\) and Brown et al.\(^1\) lie about 30% higher than recommended here. (Table: 15-10, Note: 15-10, Evaluated: 15-10) [Back to Table]

(4) Tokuhashi, K.; Takahashi, A.; Kaise, M.; Kondo, S. Rate constants for the reactions of OH radicals with \(\text{CH}_3\text{OCCF}_2\text{CHFCl}, \text{CHF}_2\text{OCCF}_2\text{CHFCl}, \text{CHF}_2\text{OCHClCF}_3, \) and \(\text{CH}_3\text{CH}_2\text{OCCF}_2\text{CHF}_2. \) J. Geophys. Res. 1999, 104, 18681-18688.

F58. \(\text{OH} + \text{CH}_3\text{OCl} \). The recommended Arrhenius parameters are derived from the data of Crowley et al.,\(^1\) the only reported study of this reaction. (Table: 02-25, Note: 02-25, Evaluated: 02-25) [Back to Table]

F59. \(\text{OH} + \text{CCl}_2\text{CHO} \). The recommended value for \(k(298 \text{ K}) \) is an average of the values reported by Barry et al.\(^2\) (using three independent techniques), Dobe et al.\(^3\) Nelson et al.\(^4\) Ballestra-Garcia et al.\(^1\) and Scollard et al.\(^5\) The temperature dependence is derived from the data of Dobe et al.\(^3\) (Table: 02-25, Note: 02-25, Evaluated: 02-25) [Back to Table]

(1) Ballestra-Garcia, C.; Le Bras, G.; MacLeod, H. Kinetic study of the reactions \(\text{OH} + \text{mono-}, \text{di-}, \) and trichloroacetaldehyde and acetaldehyde by laser photolysis resonance-fluorescence at 298 K. J. Phys. Chem. 1992, 96, 3312-3316.

F60. \(\text{HO}_2 + \text{Cl} \). The recommendations for the two reaction channels are based upon the results of Hickson and Keyser,\(^6\) who measured both channels using the discharge flow-resonance fluorescence technique coupled with infrared diode laser spectroscopy, detecting \(\text{HO}_2, \text{HO}_2, \text{Cl}, \) and \(\text{HCl}; \) by Lee and Howard,\(^6\) who measured the total rate constant and the \(\text{OH} + \text{ClO} \) channel using a discharge flow system with laser magnetic resonance detection of \(\text{HO}_2, \text{OH}, \) and \(\text{ClO} \); and by Riffault et al.\(^9\) who measured the total rate constant and the \(\text{OH} + \text{ClO} \) channel using the discharge flow mass spectrometric technique. The studies of Lee and Howard and Riffault et al. suggest that the total rate constant is temperature independent with a value of \((4.2 \pm 0.7) \times 10^{-11} \) and \((4.4 \pm 0.6) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) over the temperature range 250–420 K and 230–360 K, respectively. The Hickson and Keyser study concludes that the HCl channel may be represented as \((1.4 \pm 0.3) \times 10^{-11} \text{ exp}[-(269 \pm 58)/T] \) for temperatures from 256 to 296 K, while the OH channel is given by \((12.7 \pm 4.1) \times 10^{-11} \text{ exp}[-(801 \pm 94)/T] \) for temperatures of 226–336 K, the sum of which yields \(4.3 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 298 K with a small temperature dependence. These values for the total rate constant are in agreement with the results of indirect studies relative to Cl + \(\text{H}_2\text{O}_2 \) (Leu and DeMore,\(^7\) Poulet et al.,\(^8\) and
Burrows et al.,\(^1\)) or to Cl + H\(_2\) (Cox\(^3\)). The contribution of the reaction channel producing OH + ClO (22% at room temperature) is much higher than the upper limit reported by Burrows et al. (1% of total reaction). Cattell and Cox,\(^2\) using a molecular modulation-UV absorption technique over the pressure range 50–760 Torr, report results in good agreement with those of Lee and Howard both for the overall rate constant and for the relative contribution of the two reaction channels. A study by Dobis and Benson\(^8\) reports a total rate constant in good agreement with this recommendation but a much lower contribution (5 ± 3%) of the channel producing OH + ClO. The equilibrium constant for the channel producing ClO + OH can be calculated with excellent accuracy. The recommended value for this channel comes from the combination of this equilibrium constant and the rate constant for the reverse reaction.

(Table: 09-31, Note: 09-31, Evaluated: 09-31) Back to Table

F61. HO\(_2\) + ClO. The recommended value for k(298 K) is based on studies by Hickson et al.,\(^4\) Nickolaisen et al.,\(^8\) Knight et al.,\(^5\) and Stimpfle et al.,\(^10\) which studied the reaction as a function of temperature. Earlier room temperature measurements by Reimann and Kaufman,\(^9\) Leck et al.,\(^6\) Burrows and Cox,\(^1\) and Cattell and Cox\(^3\) are slightly lower than the current recommendation. The studies of Cattell and Cox and Nickolaisen et al. were performed over extended pressure ranges and did not observe a pressure dependence. The most recent studies find the T-dependence to be characterized by linear Arrhenius behavior over the entire temperature range and do not support the finding of Stimpfle et al. of non-Arrhenius behavior. The recommended value for E/R is based on an average of individual E/R values for each of the first four studies listed above over their entire temperature ranges. The two most probable pairs of reaction products are (1) HOCI + O\(_2\) and (2) HCl + O\(_2\). Finkbeiner et al.,\(^3\) using matrix isolation/ FTIR spectroscopy, studied product formation between 210 and 300 K at 700 Torr. HOCI was observed to be the dominant product (>95% at all temperatures).

Upper limits ranging from 0.3% to 2% have been determined for the channel (2) room temperature branching ratio by Leu,\(^7\) Leck et al.,\(^6\) Knight et al., and Finkbeiner et al. Slightly larger branching ratio (<5%) upper limit values for k(298 K) were determined at temperatures below 250 K by Finkbeiner et al. and Leck et al. However, no direct evidence of product channels other than channel (1) was found. Theoretical calculations are in generally good agreement on the structures and relative energetics of the intermediates in this reaction system (see the summary in Hickson et al.\(^4\)). In particular, Xu et al.\(^11\) reported quantum chemistry and master equation calculations that are in reasonable agreement with the experiments. For atmospheric conditions, their calculations identified only two significant channels: the pressure-independent abstraction reaction to form HOCI + O\(_2\); and pressure-dependent formation of HOOOCl, which has thermal decomposition lifetimes ranging from hours to days under stratospheric conditions. At 250 K and 400 Torr of N\(_2\), they calculate that the abstraction reaction constitutes ~60–70% of the total rate constant for ClO + HO\(_2\), supporting the notion that a significant pressure-dependence exists. Further experimental studies on the formation, lifetime, and atmospheric fate of HOOOCl are warranted.

(Table: 09-31, Note: 10-6, Evaluated: 10-6) Back to Table
F62. H$_2$O + ClONO$_2$. The recommendation is based on the upper limits to the homogeneous bimolecular rate constant reported by Atkinson et al.1 and Hatakeyama and Leu.2 Atkinson et al. observed by FTIR analysis the decay of ClONO$_2$ in the presence of H$_2$O in large-volume (2500 and 5800 liters) Teflon or Teflon-coated chambers. Their observed decay rate gives an upper limit to the homogeneous gas phase rate constant, and they conclude that the decay observed is due to heterogeneous processes. Hatakeyama and Leu, using a static photolysis system with FTIR analysis, derived a similar upper limit. Rowland et al.3 concluded that the decay they observed resulted from rapid heterogeneous processes. The homogeneous reaction is too slow to have any significant effect on atmospheric chemistry.

Table: 87-41, Note: 87-41, Evaluated: 10-6 Back to Table

F63. NO + OCIO. The Arrhenius parameters are estimated based on 298 K data reported by Bemand et al.1 Temperature data by Li et al.2 are in good agreement with Bemand et al. at 298 K and display a negative temperature dependence over the range 220–367 K. However, the Li et al. data appear to be complicated by the secondary reaction of Cl with OCIO.

Table: 82-57, Note: 10-6, Evaluated: 10-6 Back to Table

F64. NO + Cl₂O₂. The recommended upper limit is that determined by Ingham et al.¹ in a study using a DF-MS technique.
(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F65. NO₃ + HCl. The recommended upper limit is that reported by Mellouki et al.³ in a study using DF-EPR techniques. This upper limit shows that this reaction is of negligible importance in stratospheric chemistry. Somewhat lower upper limits have been reported by Cantrell et al.² and Canosa-Mas et al.; the latter study also reports Arrhenius parameters at higher temperatures (333–473 K).
(Table: 90-1, Note: 90-1, Evaluated: 10-6) Back to Table

F66. HO₂NO₂ + HCl. This upper limit is based on results of static photolysis-FTIR experiments reported by Leu et al.¹
(Table: 90-1, Note: 90-1, Evaluated: 10-6) Back to Table

F67. Cl + O₃. The results reported for k(298 K) by Watson et al.,¹³ Zahniser et al.,¹⁴ Kurylo and Braun,⁸ Clyne and Nip,⁴ Nicovich et al.,¹⁰ Seeley et al.,¹¹ and Beach et al.¹ are in good agreement, and have been used to determine the recommended value at this temperature. The values reported by Leu and DeMore⁹ (due to the large reported uncertainties) and Clyne and Watson⁵ (the value is inexplicably high) are not considered. The seven studies used for the k(298 K) recommendation report rate constants that agree to within 30-40% over the temperature range 205–300 K and all report similar values for the Arrhenius activation energy with the exception of Nicovich et al. and Seeley et al. who obtained significantly weaker temperature dependences. Nevertheless, there is no reason to prefer any one set of data over any other; therefore, the recommended E/R is the mean of the seven values for this parameter between 205 and 300 K. DeMore⁶ directly determined the ratio k(Cl + O₃)/k(Cl + CH₄) at 197–217 K to be within 15% of that calculated from the absolute rate constant values recommended here.

Vanderzanden and Birks¹² have interpreted their observation of oxygen atoms in this system as evidence for some production (0.1–0.5%) of O₂⁺(Σ) in this reaction. The possible production of singlet molecular oxygen in this reaction has also been discussed by DeMore,⁶ in connection with the Cl₂ photosensitized decomposition of ozone. However Choo and Leu³ were unable to detect O₂⁺(Σ) or O₃⁺(Δ) in the Cl + O₃ system and set upper limits to the branching ratios for their production of 5 × 10⁻⁴ and 2.5 × 10⁻², respectively. They suggested two possible mechanisms for the observed production of oxygen atoms, involving reactions of vibrationally excited CIO radicals with O₃ or with Cl atoms, respectively. Burkholder et al.,² in a study of infrared line intensities of the CIO radical, present evidence in support of the second mechanism. In their experiments with excess Cl atoms, the vibrationally excited CIO radicals produced in the Cl + O₃ reaction can react with Cl atoms to give Cl₂ and oxygen atoms, which can then remove additional CIO radicals. These authors point out the possibility for systematic error from assuming a 1:1 stoichiometry for [Cl]:[O₃] when using the Cl + O₃ reaction as a quantitative source of CIO radicals for kinetic and spectroscopic studies.
(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F68. Cl + H_2. The recommended value for k(298 K) is an average of the values measured by Westenberg and deHaas,12 Lee et al.,8 Miller and Gordon,3 and Kita and Stedman.8 The value of k(298 K) derived in the flash photolysis - resonance fluorescence study of Davis et al.4 agrees with these studies but was likely overestimated by ~10% (the authors assumed that the fluorescence signal, I_F, was proportional to [Cl])9, whereas a linear relationship between I_F and [Cl] probably held under their experimental conditions. Room temperature determinations by Kumaran et al.7 (from a study that was actually focused primarily on high temperature measurements) and Eberhard et al.5 (focused on obtaining yields of HCl product in different vibrational levels) are both in reasonable agreement with the recommendation, as are the results from the relative rate studies by Su et al.11 and by Rodebush and Klingelhofer.10 The value for E/R is derived from a fit to the data at temperatures below 300 K reported by Westenberg and deHaas,12 Lee et al.,8 and Miller and Gordon.9 The value is in good agreement with that determined by Adusei and Fontijn,1 although these data lie systematically lower than the results from other studies. Extrapolation above room temperature using the recommended Arrhenius parameters is in reasonable agreement with the data of Benson et al.3 and Kita and Stedman.6 For a discussion of the large body of rate data at high temperatures, see the review by Baulch et al.2 Miller and Gordon8 and Kita and Stedman6 also measured the rate of the reverse reaction and found the ratio to be in good agreement with equilibrium constant data.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F69. Cl + H2O2. The absolute rate coefficients determined at ~298 K by Watson et al., Leu and DeMore, Michael et al., Poulet et al., and Keyser range in value from (3.6–6.2) × 10^{-13}. The studies of Michael et al., Keyser, and Poulet et al. are presently considered to be the most reliable. The recommended Arrhenius parameters are those reported by Keyser. The A-factor reported by Michael et al. is considerably lower than that expected from theoretical considerations and may possibly be attributed to decomposition of H2O2 at temperatures above 300 K. The data of Michael et al. at and below 300 K are in good agreement with the Arrhenius expression reported by Keyser. Heneghan and Benson, using mass spectrometry, confirmed that this reaction proceeds only by the abstraction mechanism giving HCl and HO2 as products. (Table: 02-25, Note: 02-25, Evaluated: 10-6) Back to Table

F70. Cl + NO3. The recommended value at room temperature is based on the discharge flow-EPR study of Mellouki et al. and the discharge flow-mass spectrometry study of Becker et al. The results of these direct absolute rate studies are preferred over results of the earlier relative rate studies of Cox et al., Burrows et al., and Cox et al., in all of which NO3 was observed in the photolysis of Cl2-CINO2-N2 mixtures. Complications in the chemistry of the earlier systems probably contributed to the spread in reported values. This radical-radical reaction is expected to have negligible temperature dependence, which is consistent with the results from the study of Cox et al. in which the complications must have been temperature independent. (Table: 94-26, Note: 94-26, Evaluated: 10-6) Back to Table

(2) Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Absorption spectrum of NO3 and kinetics of the reactions of NO3 with NO2, Cl, and several stable atmospheric species at 298 K. *J. Phys. Chem.* 1985, 89, 4848-4856.

F71. **Cl + N₂O.** This rate coefficient has been determined in a study of the halogen-catalyzed decomposition of nitrous oxide at about 1000 K by Kaufman et al. The largest value reported was 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹, with an activation energy of 34 kcal/mol. Extrapolation of these results to low temperature shows that this reaction cannot be of any significance in atmospheric chemistry. Kinetic isotope effects observed by Lesar et al. are consistent with a reaction transition state where the chlorine atom is bonded to the oxygen atom of nitrous oxide with a planar trans arrangement of atoms.

(Table: 87-41, Note: 10-6, Evaluated: 10-6) [Back to Table](#)

F72. **Cl + HNO₃.** The recommended upper limit at room temperature is that reported in the study of Wine et al., in which long-path laser absorption spectroscopy was used to look for the appearance of NO₃ following the pulsed laser photolysis of Cl₂-HNO₃ mixtures, with no evidence for NO₃ production observed. In the same study, a less sensitive upper limit was derived from monitoring Cl atom decay by resonance fluorescence. A less sensitive upper limit was also found in the discharge flow-EPR study of Zagogianni et al. Higher values obtained in earlier studies (Leu and DeMore, Kurylo et al., and Clark et al.), as well as the higher temperature results of Poulet et al. are not used.

(Table: 90-1, Note: 90-1, Evaluated: 10-6) [Back to Table](#)

F73. **Cl + HO₂NO₂.** The only study of this reaction is by Simonaitis and Leu using the low pressure discharge flow technique coupled with resonance fluorescence detection of Cl and mass spectrometric detection of HO₂NO₂ ion fragments. Consistent results were obtained monitoring either Cl or HO₂NO₂ decays and retrieved rate constants were less than 1 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ for all conditions. Impurities in the HO₂NO₂ sample (especially H₂O₂) complicated the measurements. A limited temperature study over the 296–399 K range suggests that E/R is in the range of 500–1500 K. Given the experimental difficulties, only an upper limit is recommended for the reaction rate.

(Table: 02-25, Note: 02-25, Evaluated: 10-6) [Back to Table](#)

F74. **Cl + CH₄.** The recommended value for k(298 K) = 1.0 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ is obtained as an average of the values derived from the absolute rate constant studies of Manning and Kurylo, Whytock et al., Michael and Lee, Lin et al., Zahnis et al., Keyser, Ravishankara and Wine, Heneghan et al. (which is assumed to supersede the results obtained by Baghal-Vayjoee et al.), Dobis and Benson, Sawersyn et al., Lazarou et al., Beichert et al., Seeley et al., Pilgrim et al., Mellouki et al., Wang and Keyser, and Bryukov et al., all of which fall in the range (0.9–1.13) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹. Other absolute studies by Davis et al., Clyne and Walker, Poulet et al., Leu and DeMore, Watson et al., and Schlyer et al. yield rate constant values slightly higher than those of the aforementioned studies. In some cases, this may be due to uncertainties in correcting the data for Cl atom loss via reaction with trace levels of ethane and propane in the methane samples used. Thus, these results were not used in deriving the recommended value for k(298 K). The values derived for k(298 K) from the competitive chlorination studies of Pritchard et al., Pritchard et al., Knox, Knox and Nelson, Lee and Rowland, and Lin et al. are in the range (0.8–1.6) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ when the original data are referenced to the presently recommended rate constant values for the reference reactions of Cl with H₂ and C₂H₆; these studies were not used in deriving the
recommended value for $k(298 \text{ K})$. In particular, the reference reaction $\text{Cl} + \text{C}_{2}\text{H}_6$ has a rate constant more than three orders of magnitude greater than that of $\text{Cl} + \text{CH}_4$, thus making it far from ideal for a competitive chlorination study.

Nine of the aforementioned absolute studies used in the derivation of $k(298 \text{ K})$ were performed at temperatures below 300 K (Manning and Kurylo,15 Whytock et al.,21 Lin et al.,14 Zahniser et al.,29 Keyser,8 Ravishankara and Wine,22 Heneghan et al.,7 Seeley et al.,25 and Wang and Keyser26). The agreement among all studies below 300 K is reasonably good, with values of E/R ranging from 1170 K to 1320 K. The recommended $E/R = 1270 \text{ K}$ is derived from a combined fit to all data below 300 K from these nine studies after scaling each of the individual data sets to the recommended $k(298 \text{ K})$. Systematic differences in activation energies are apparent when calculated using data obtained below 300 K versus data from above 300 K. Three studies have been performed over the temperature region between 200 and 500 K (Whytock et al.,28 Zahniser et al.,29 and Keyser8), and in each case non-linear Arrhenius behavior was observed.

The curvature in the Arrhenius plot over the temperature range from 180 K to 410 K can be fit by the three-parameter expression

$$k(180-410 \text{ K}) = 2.36 \times 10^{-12} (T/298)^{1.37} \exp(-939/T).$$

Below 307 K, this expression yields values for $k(T)$ within 2% of those calculated using the Arrhenius parameters recommended above. The three-parameter expression is recommended for use in calculating the rate constants from the results of relative rate studies conducted both above and below room temperature in which the Cl + CH$_4$ reaction is used as the reference.

Ravishankara and Wine22 observed that at temperatures below 240 K the apparent bimolecular rate constant was dependent on the chemical composition of the reaction mixture. They suggested that the effect was due to a non-equilibration of the $^3\text{P}_{1/2}$ and $^3\text{P}_{3/2}$ states of atomic chlorine when the mixture did not contain an efficient spin equilibrator, and thus the results obtained at lower pressure using the discharge flow and competitive chlorination techniques may be in error at the lower temperatures (<240 K). However, subsequent studies did not reproduce this observation. Therefore, only data obtained by Ravishankara and Wine22 above 240 K were used here in the global fit.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

1-231

F75. Cl + CH₃D. The recommended value for k(298 K) is an average of the relative rate determinations by Feilberg et al.,² Sauer et al.,³ Saueressig et al.,⁴ (two measurements), and Tyler et al.,⁵ all of which are in excellent agreement. The recommended value of E/R is derived from a combined fit to the data reported in the last three papers listed above after scaling each individual data set to the recommended k(298 K). The uncertainty in the data reported by Boone et al.,¹ (both in the measured rate constant ratio and in the temperature of the experiment) significantly exceeds those of other studies. Hence, these data were not used in the evaluation. However, this result is encompassed within the recommended 2σ uncertainty. The result originally reported by Wallington and Hurley⁶ was corrected in a personal communication from the authors as later reported by Saueressig et al.⁴ The corrected value is in excellent agreement with the recommendation at the temperature of the experiment. Note that a three-parameter expression recommended for the reaction Cl + CH₄ was used to derive the rate constants from the rate constant ratios reported in the original papers. The excellent agreement among all of the results reported for the reaction between Cl and CH₃D used in deriving this recommendation could be well encompassed within uncertainty limits calculated with f(298 K) = 1.03 and g = 50. However, all of the above mentioned studies are relative rate measurements that utilize the same reference reaction, Cl + CH₄. Thus, all of these determinations can be affected by the same systematic uncertainty in the reference rate constant. The recommended uncertainty parameters, f(298 K) and g account for this added uncertainty.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F76. **Cl + H$_2$CO.** The results from five of the six published studies (Michael et al., Anderson and Kurylo, Niki et al., Fasano and Nogar, and Poulet et al.) are in good agreement at ~298 K, but are ~50% greater than the value reported by Foon et al. The recommended value at 298 K is obtained by combining the absolute values reported by Michael et al., Anderson and Kurylo, and Fasano and Nogar, with the values obtained by combining the ratio of k(Cl + H$_2$CO)/k(Cl + CH$_4$) reported by Niki et al. (1.3 ± 0.1) and by Poulet et al. (1.16 ± 0.12) with the recommended value of 5.7 × 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$ for k(Cl + CH$_4$) at 298 K. The recommended value of E/R is obtained from a least squares fit to all the data reported in Michael et al. and in Anderson and Kurylo. The A-factor was adjusted to agree with the recommended value at 298 K. (Table: 82-57, Note: 82-57, Evaluated: 82-57) Back to Table

F77. **Cl + HCO(O)OH.** The room temperature kinetics of this reaction have been studied by Wallington et al. and Li et al. Wallington et al. used a relative rate technique at atmospheric pressure, while Li et al. employed flash photolysis at a pressure of 10 Torr. The results of the two studies are in excellent agreement and have been averaged together to derive the recommended value for k(298 K). Reaction products have been investigated by Tyndall et al. at room temperature and 700 Torr pressure. They measured the CO$_2$ yield to be 96 ± 5% and suggested that the HOCO complex reacted with either O$_2$ or Cl$_2$ in their experiment to give the observed product. (Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

F78. **Cl + CH$_3$O$_2$.** The recommended value for k(298 K) is based on results of Maricq et al., Jungkamp et al., and Daële and Poulet. All three studies agree that this overall reaction is very fast. However, there is a discrepancy in the reported values of the branching ratios for the two pathways producing ClO + CH$_3$O (a) and HCl + CH$_3$O$_2$ (b). The branching ratio for the reaction channels producing HCl + CH$_3$O$_2$ (b) was
reported to be 50% by both Maricq et al. and Jungkamp et al. but was reported to be 90% by Daële and Poulet. Because of this large discrepancy no branching ratios are recommended.

F79. Cl + CH₃OH. This recommendation for k(298 K) is based on results of the absolute rate studies of Michael et al.,² Payne et al.,³ Dobre et al.,⁴ Pagsberg et al.,⁵ and Tyndall et al.,⁶ and results obtained in the competitive chlorination studies of Wallington et al.,⁷ Lightfoot et al.,⁸ Nelson et al.,⁹ and Tyndall et al. The temperature independence of the rate constant was reported by Michael et al. in a direct study. This is consistent with the indirect results of Lightfoot et al., who deduced the rate coefficient for this reaction relative to that for methane as a function of temperature. This reaction can have two sets of products: CH₃O + HCl, channel (a) and CH₂O + HCl, channel (b). Product analysis and isotopic substitution have established that the reaction proceeds via channel (a) rather than via channel (b); see Radford,² Radford et al.,² Meier et al.,³ and Payne et al.⁷ This reaction has been used in the laboratory as a source of CH₃OH and as a source of HO₂ by the reaction of CH₃OH with O₂.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

F80. Cl + CH₃OOH. The recommended value for k(298 K) is taken from the only study of this reaction by Wallington et al.,¹ who measured the rate relative to Cl + C₂H₆ at 295 K and atmospheric pressure.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

(1) Wallington, T. J.; Andino, J. M.; Ball, J. C.; Japar, S. M. Fourier transform infrared studies of the reaction of Cl atoms with PAN, PPN, CH₃OOH, HCOOH, CH₃COCH₃ and CH₃COCH₂H₂ at 295 ± 2 K. J. Atmos. Chem. 1990, 10, 301-313.

F81. Cl + CH₃ONO₂. This reaction has been studied at 298 K by Nielsen et al.¹ using a relative rate technique. The reference compound was ethane. The recommended value is adjusted from that given by Nielsen et al.
using the currently recommended value for $k(\text{Cl} + \text{C}_2\text{H}_6)$. The temperature dependence is estimated by assuming an A-factor equal to approximately 20 times that of $\text{OH} + \text{CH}_3\text{ONO}_2$. This is consistent with observed Cl/OH A-factor ratios for primary H-abstraction from alkanes.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

F82. Cl + C$_2$H$_6$. The recommended value for k(298 K) is an average of the absolute rate coefficients reported in the studies of Manning and Kurylo,17 Lewis et al.,15 Dobis and Benson,6 Beichert et al.,3 Pilgrim et al.,19 Tyndall et al.,24 Hitsuda et al.,2 Bryukov et al.,4 and Hickson and Keyser,8 all of which fall in the range (5.3–6.1) × 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$. The value derived by Ray et al.,21 in a study where the primary focus was not the determination of the rate constant for the target reaction, lies in the same range. A somewhat higher value reported by Davis et al.3 was probably overestimated by ~10% (the authors assumed that the fluorescence signal, I_f was proportional to [Cl]$^{0.9}$, whereas a linear relationship between I_f and [Cl] probably held under their experimental conditions). The rate constant reported by Schlyer et al.22 lies significantly lower than those from all other absolute studies, while the values from Mellouki et al.18 and Kaiser et al.11 lie slightly higher. Room temperature rate constants derived from the relative rate experiments of Pritchard et al.,20 Knox and Nelson,13 Atkinson and Aschmann,1 Atkinson and Ashmann,2 Tschukitou-Roux et al.,23 Wallington et al.,25 Beichert et al.,3 Hooshiyar and Niki,10 and Lin et al.16 exhibit considerably more scatter even when recalculated based on the same (current) recommendations for the rate constants of the reference reactions. Nevertheless, most are encompassed within the 2σ uncertainty limits recommended for the value of k(298 K). The relative rate results of Kelly et al.12 and Lee and Rowland14 are significantly lower than other room temperature measurements. The recommended value for E/R is taken from a combined fit to the data of Manning and Kurylo,17 Dobis and Benson,6 and Hickson and Keyser8 after scaling all three data sets to the recommended value of k(298 K). The data from Lewis et al.15 and Lin et al.16 below 300 K are encompassed by the 2σ uncertainty bands. The temperature dependent studies by Pilgrim et al.19 and Bryukov et al. did not extend below room temperature. An extrapolation of the recommended Arrhenius parameters and the 2σ uncertainty bands above room temperature encompasses the data of Pilgrim et al. but not those of Bryukov et al., which are characterized by a much stronger temperature dependence. The data obtained at very low temperatures (167–48 K) in Laval nozzle experiments by Hickson et al.7 strongly support the current recommendations.

(Table: 06-2, Note: 10-6, Evaluated: 10-6) Back to Table

(9) Hitsuda, K.; Takahashi, K.; Matsumi, Y.; Wallington, T. J. Kinetics of the reactions of Cl(3P_1) and Cl(3P_2) atoms with C$_2$H$_6$, C$_2$D$_6$, CH$_3$F, C$_2$H$_5$F, and CH$_3$CF$_3$ at 298 K. J. Phys. Chem. A 2001, 105, 5131-5136, doi:10.1021/jp003222s.

F83. \(\text{Cl} + \text{C}_2\text{H}_5\text{O}_2 \). The recommended values of \(k(298 \text{ K}) \) for the two reaction channels are based on results of Maricq et al.\(^1\)

F84. \(\text{Cl} + \text{CH}_3\text{CH}_2\text{OH} \). The rate coefficient for this reaction has been studied at 298 K by four groups using a relative rate technique: Nelson et al.\(^2\), Wallington et al.,\(^4\) Edelbüttel-Einhaus et al.,\(^1\) and Taatjes et al.\(^3\). Nelson et al. measured this rate constant relative to \(\text{Cl} + \text{cyclohexane} \), while the others used \(\text{Cl} + \text{C}_2\text{H}_6 \) as the reference reaction. Taatjes et al. also measured this rate coefficient by measuring the temporal profile of the HCl product. The agreement between these five measurements is quite good, and the recommendation for \(k(298 \text{ K}) \) is based on the average value. Taatjes et al. studied the temperature dependence of this rate coefficient above 298 K and found it to be essentially independent of temperature. We recommend the same temperature independence at atmospheric temperatures.

This reaction can have three sets of products: \(\text{CH}_3\text{CH}_2\text{OH} + \text{HCl} \) (channel (a)); \(\text{CH}_3\text{CHOH} \) (channel (b)); and \(\text{CH}_3\text{C}_2\text{H}_2\text{O} \) (channel (c)). Taatjes et al. have deduced that channel (c) is negligible and that channel (a) is about 8% at 298 K. Therefore, the majority of reaction is expected to occur via channel (b). It is very unlikely that these branching ratios will change significantly at lower atmospheric temperatures.

(1) Edelbüttel-Einhaus, J.; Hoyermann, K.; Rohde, G.; Seeba, J. The detection of the hydroxymethyl radical by REMPI/mass-spectrometry and the application to the study of the reactions \(\text{CH}_3\text{CHOH} + \text{O} \) and \(\text{CH}_3\text{CHOH} + \text{H} \). *Proc. Combust. Inst.* 1992, 24, 661-668.

F85. Cl + CH$_3$(O)OH. The recommended value for k(298 K) is based on the room temperature study by Koch and Moortgat1 using a relative rate technique. Deuterium substitution of the methyl hydrogens decreased the observed rate by a factor of 3.75. In addition, CO and CO$_2$ reaction products were observed in a stoichiometric ratio of 1:1. These observations were interpreted in terms of methyl hydrogen abstraction from acetic acid to form the CH$_2$(O)OH radical followed by reaction with O$_2$ to form a peroxy radical. Thermal decomposition of the peroxy radical produces HCHO, CO$_2$, and atomic H. In the laboratory system, the HCHO reacts with atomic chlorine to yield CO.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

F86. Cl + CH$_3$CN. The recommended Arrhenius parameters are based on the study by Tyndall et al.4 using both relative and absolute methods over a wide range of experimental conditions. These results are preferred over those of earlier studies by Kurylo and Knable,1 Poulet et al.3 and Olbregts et al.2 Product studies reported by Tyndall et al.4 show that reaction proceeds predominantly, if not exclusively, by hydrogen atom abstraction.

(Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

F87. Cl + C$_2$H$_5$ONO$_2$. Wallington et al.2 and Nielsen et al.1 have measured the rate of this reaction at room temperature relative to atomic chlorine reactions with ethyl chloride and ethane, respectively. The two studies are in excellent agreement, and the recommended value is based on an average of the two. The values given in Wallington et al. and Nielsen et al. were adjusted based on the currently accepted values of the reference rate constants. The temperature dependence is estimated by assuming an A-factor equal to approximately 20 times that of OH + CH$_2$ONO$_2$. This is consistent with observed Cl/OH A-factor ratios for primary H-abstraction from alkanes.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

F88. Cl + CH$_3$(CO)NO$_2$ (PAN). The recommended upper limit for k(298 K) is based on results of the relative rate study of Wallington et al.2 In this study, no reaction of PAN was observed in the presence of Cl atoms. These results are preferred over the results of the direct study of Tsalkani et al.1 using a discharge flow system with EPR detection of Cl atom decay (in which the authors reported a rate constant of (3.7 ± 1.7) × 10$^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$). In both studies, the major impurity in the PAN samples would be the alkane solvent. The presence of 0.1% tridecane in the PAN sample used by Tsalkani et al. could account for the observed Cl atom
decay; however, solvent impurities in the PAN sample would be of no consequence in the relative rate study of Wallington et al.

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

(2) Wallington, T. J.; Andino, J. M.; Ball, J. C.; Japar, S. M. Fourier transform infrared studies of the reaction of Cl atoms with PAN, PPN, CH₃OOH, HCOOH, CH₃COCH₃ and CH₃COClC₃H₅ at 295 ± 2 K. J. Atmos. Chem. 1990, 10, 301-313.

F89. Cl + C₃H₈. The recommended values for k(298 K) and E/R for two individual reaction channels are presented in the Table. The recommended k(298 K) values are the means of the results from the competitive chlorination studies by Knox and Nelson, Kelly et al., Tschuikow-Roux et al., Beichert et al., Hooshiyar and Niki, Tyndall et al., Pilgrim et al., Mellouki, Hitsuda et al., and Choi et al. The recommended E/R values are based on the data of Sarzynski and Sztuba, and the absolute rate studies of Lewis et al., Beichert et al., Pilgrim et al., and the data of Pilgrim et al., extended to higher temperatures (292 K – 700 K), and the measurements by Choi et al. at 298 K and 195 K exhibit no variation with temperature and, thus, support this recommendation.

\[A = 1.45 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]
\[E/R = 0 \]
\[k(298 \text{ K}) = 1.4 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]
\[f(298 \text{ K}) = 1.05 \]
\[g = 0 \]

The sum of the recommended rate constant expressions for the two channels gives the same values as the rate constant expression recommended for the total reaction.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F90. Cl + CH\textsubscript{3}C(O)CH\textsubscript{3}. The recommended value for k(298 K) is an average of the values derived in the relative rate studies by Carr et al.,2 Christensen et al.,3 Martinez et al.,4 Orlando et al.,7 Romanias et al.,8 and Wallington et al.,10 and in the absolute rate studies by Romanias et al.,8 Takahashi et al.,9 and Zhao et al.,11 all of which agree to within 15–20%. Room temperature rate constants reported by Notario et al.5 and Albaladejo et al.4 are about 40–50% greater than the recommended value, whereas the value reported by Olsson et al.8 is approximately 25% lower than recommended. Because of the level of disagreement with eight other studies, the results of the last three investigations listed above were not included in deriving the recommended value for k(298 K). The recommended value for E/R is derived from an Arrhenius fit to the data of Orlando et al.3 and Zhao et al.11 and the absolute rate data of Romanias et al.8 after scaling each data set to the recommended value for k(298 K). The relative rate data from Romanias et al. were not included due to uncertainties in the rate constants for the reference reactions. Nevertheless, the rate constant values derived from these relative rate experiments are in good agreement with the recommended rate expression. Although the data of Orlando et al.3 lie systematically about 13% lower than those of Zhao et al.,11 the E/R values reported in both studies are nearly identical. End product studies clearly show that the products of this reaction are CH\textsubscript{3}C(O)CH\textsubscript{2}I and HCl. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table
F91. **Cl + CH$_2$=C(CH$_3$)CHO (Methacrolein).** The recommendation is based on the relative rate studies of Kaiser et al.3 and Orlando et al.5 with the error limits adjusted to encompass the results of Canosa-Mas et al.1,2 and Wang et al.7 Kaiser et al. report that the 297 K rate coefficient is pressure dependent at P <100 Torr N$_2$, a result that is confirmed theoretically by Sun et al.6 who also calculate a 297 K high pressure limit rate constant in excellent agreement with the recommendation. The available information suggests that the rate constant measured by Canosa-Mas et al. in a low-pressure discharge flow study1 is too fast. Experimental yields of HCl are reported by Canosa-Mas et al.1 (18 ± 2%) and Kaiser et al.2 (27 ± 3%). Additional product studies by Kaiser et al. lead these authors to conclude that ~90% of the HCl production is via abstraction of the aldehydeic hydrogen with the other 10% being attributable to abstraction of a methyl hydrogen. Sun et al. obtain a theoretical HCl yield of 12% with essentially all HCl production resulting from abstraction of the aldehyde hydrogen. Molar yields of carbon-containing products in NO$_x$-free air at P ~1 atm and T ~297 K have been reported by Kaiser et al. (44 ± 5% CICH$_2$C(O)CH$_3$; 27 ± 3% CO$_2$; 14 ± 2% HCHO) and Orlando et al. (52 ± 4% CO; 42 ± 5% CICH$_2$C(O)CH$_3$; 23 ± 2% CO; 18 ± 2% HCHO; ~5% CICO); the significant yield of CICH$_2$C(O)CH$_3$ suggests that addition of Cl to the terminal carbon of the double bond is an important reaction pathway. A turbulent flow reactor study by Hsin and Elrod3 obtains a Cl-methacrolein-OO + NO rate constant of (1.17 ± 0.11) × 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$.

(Table 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F92. **Cl + CH$_3$C(O)(O)CH$_3$ (MVK).** The recommendation is based on the relative rate studies of Canosa-Mas et al.2 Finlayson-Pitts et al.3 Orlando et al.5 and Wang et al.6 all of which were carried out at room temperature using ~1 atm N$_2$$_2$ or air8 bath gas. In a low-pressure flow tube study, Canosa-Mas et al.1 obtain rate constants that are about a factor of two slower than the recommended value. Product yields reported by Orlando et al. in NO$_x$-free air at P = 1 atm and T = 298 K are 75% CICH$_2$CHO, 58 ± 5% CO$_2$, 47 ± 7% HCHO, 8% CH$_3$OH, 7 ± 1% CICO, and 6% CH$_3$C(O)OOH; the large observed yield of CICH$_2$CHO leads to the conclusion that the dominant reaction pathway is addition to the terminal carbon atom of the double bond. A turbulent flow reactor study by Hsin and Elrod3 obtains a Cl-MVK-OO + NO rate constant of (1.14 ± 0.14) × 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$.

(Table 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Canosa-Mas, C. E.; Hutton-Squire, H. R.; King, M. D.; Stewart, D. J.; Thompson, K. C.; Wayne, R. P. Laboratory kinetic studies of the reactions of Cl atoms with species of biogenic origin: Δ3-carene,

F93. \(\text{Cl + CH}_2=\text{C(\text{CH}_3)}\text{CH} = \text{CH}_2 \) (Isoprene). The recommended 298 K rate constant is an average of room temperature results reported by Ragains and Finlayson-Pitts,\(^\text{10}\) Fantechi et al.,\(^\text{4,7}\) Bedjanian et al.,\(^\text{2}\) Stutz et al.,\(^\text{11}\) Finlayson-Pitts et al.,\(^\text{5}\) Canosa-Mas et al.,\(^\text{3}\) Suh and Zhang,\(^\text{12}\) Orlando et al.,\(^\text{8}\) and Xing et al.\(^\text{13}\) The recommended E/R is based on the single temperature dependence study by Bedjanian et al.,\(^\text{2}\) which covered the range 233 – 320 K. Although the atmospheric pressure relative rate studies of Ragains and Finlayson-Pitts, Fantechi et al., Finlayson-Pitts et al., and Canosa-Mas et al. suggest a 298 K rate constant that is nearly 20\% faster than the recommended value, Bedjanian et al. report little or no pressure dependence over the range 0.25 – 3.0 Torr He, and Xing et al. report no pressure dependence at pressures above 1 Torr Ar. A recommended temperature-dependent yield for HCl is given by the expression 1.1 exp(−595/T); the temperature dependence is that reported by Bedjanian et al. while the pre-exponential factor is adjusted to give a 298 K yield of 0.15, the average of values reported by Bedjanian et al., Ragains and Finlayson-Pitts, Fantechi et al., Suh and Zhang, and Xing et al. The reported 298 K HCl yields are in excellent agreement even though they were obtained under very different conditions of pressure and bath gas, i.e., 1 Torr He,\(^\text{2}\) 10 Torr He,\(^\text{12}\) 700 Torr N\(_2\),\(^\text{13}\) 740 Torr Air,\(^\text{4}\) and 760 Torr N\(_2\).\(^\text{10}\) Molar yields of carbon-containing products in NO\(_x\)-free air at P = 1 atm and T = 297 K have been reported by Nordmeyer et al.\(^\text{6}\) (9 ± 5\% CH\(_2\)C(O)CH=CH\(_2\); unquantified but significant yields of CH\(_2\)ClCHO; 1.1 ± 0.8\% HCOOH; 25.7 ± 7.4\% CO), and Orlando et al. (9.5 ± 1.0\% HCHO; 5.1 ± 0.7\% CICH\(_2\); unquantified amount of CH\(_2\)C(O)(CH\(_3\))=CH\(_2\)). A turbulent flow reactor study by Patchen et al.\(^\text{9}\) obtains a Cl-isoprene-OO + NO rate constant of (1.15 ± 0.11) × 10\(^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) (there are six isomers of Cl-isoprene-OO that could be generated, but the distribution in the Patchen et al. study is presumably the same as would be formed in the atmosphere).

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

1-241
From the branching ratio data of Cox et al., Ashford et al., and Nicholas and Norrish the earlier studies did show that the predominant reaction pathway is that yielding Cl

are preferred over the results monitored by UV absorption. In both studies k was found to be independent of temperature. These results are based on an average of the two.

The recommended value for k(298 K) is adjusted from that given by Wallington et al. using the currently recommended value for the reference reaction rate constant.

Wallington et al.\(^1\) have measured this rate constant relative to Cl + CH3Cl. The recommended value of k(298 K) is corrected from that given by Wallington et al. using the currently recommended value for the reference reaction rate constant.

Wallington et al.\(^1\) who measured this rate constant relative to Cl + CH3Cl. The recommended value of k(298 K) is taken from Wallington et al.

F94. Cl + C3H5CO3NO2. Wallington et al.\(^1\) have measured this rate constant relative to Cl + CH3Cl. The recommended value of k(298 K) is adjusted from that given by Wallington et al. using the currently recommended value for the reference reaction rate constant.

Wallington et al.\(^1\) who measured the rate constant at room temperature relative to atomic chlorine reactions with ethyl chloride and ethane, respectively. The two studies are in excellent agreement, and the recommended value is based on an average of the two.

The recommended value of k(298 K) is based on studies by Wallington et al.\(^2\) and Nielsen et al.\(^1\) who measured the rate constant at room temperature relative to atomic chlorine reactions with ethyl chloride and ethane, respectively. The two studies are in excellent agreement, and the recommended value is based on an average of the two.

Wallington et al.\(^1\) who studied the reaction of Cl atoms with a series of alkyl nitrates and nitro alkanes in air at 295 ± 2 K. J. Atmos. Chem. 1990, 10, 301-313.

F95. Cl + 1-C3H6ONO2. The recommended value of k(298 K) is taken from Wallington et al.\(^1\) who studied the reaction at 295 K relative to Cl + C3H5Cl.

The recommended value of k(298 K) is based on studies by Wallington et al.\(^2\) and Nielsen et al.\(^1\) who measured the rate constant at room temperature relative to atomic chlorine reactions with ethyl chloride and ethane, respectively. The two studies are in excellent agreement, and the recommended value is based on an average of the two.

F96. Cl + 2-C3H6ONO2. The recommended value of k(298 K) is taken from Wallington et al.\(^1\) who studied the reaction at 295 K relative to Cl + C3H5Cl.

The recommended value for k(298 K) is the mean of the values reported by Toohey\(^2\) and by Bemand et al.\(^1\), which are in good agreement. The slight negative temperature dependence reported by Toohey\(^2\) is accepted but with error limits that encompass the temperature independence reported in the Bemand et al. study.

The recommended Arrhenius parameters are based on the studies by Mauldin et al.\(^5\) and Baer et al.\(^2\) in which C1O2 was formed by the pulsed photolysis of Cl2/O2 mixtures and its overall loss rate was monitored by UV absorption. In both studies k was found to be independent of temperature. These results are preferred over the results of the earlier, indirect studies of Johnston et al., Cox et al., and Ashford et al. The earlier studies did show that the predominant reaction pathway is that yielding Cl2 + O2 as products. From the branching ratio data of Cox et al., Ashford et al., and Nicholas and Norrish , it can be estimated that
this reaction channel constitutes 95% of the overall reaction with ClO + ClO the products of the minor (5%) reaction channel.

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

F99. Cl + Cl₂O. The recommended parameters are determined from results of the temperature-dependent study of Stevens and Anderson" and the results of two independent absolute rate coefficient studies reported by Ray et al.,° which used the discharge flow-resonance fluorescence and discharge flow-mass spectrometric techniques. The recommended value for k(298 K) is in agreement with the results of Burrows and Cox,2 who determined the ratio k(Cl + Cl₂O)/k(Cl + H₂) = 6900 in modulated photolysis experiments. The earlier value reported by Basco and Dogra° has been rejected.

(Table: 94-26, Note: 94-26, Evaluated: 10-6) Back to Table

F100. Cl + ClO₂. The recommended Arhenius parameters are from Ingham et al.° in a study between 217 K and 298 K using a DF-MS/RF technique. The room temperature value reported by Cox and Hayman° in a study using a static photolysis technique with photodiode array UV spectroscopy is in excellent agreement with the recommended value.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

F101. Cl + HOCl. The recommended parameters are based on results over the temperature range 243–365 K reported by Cook et al.° and the room temperature result of Kukui et al.° The earlier work of Vogt and Schindler° is thought to have been plagued by complexities with the F-atom titration procedure used for HOCl calibration. Ennis and Birks° and Kukui et al. reported that the major reaction channel gives the products Cl₂ + OH with measured yields of 91 ± 6% and 96 ± 5%, respectively. Theoretical calculations by Wang et al.° lend support to the predominance of the Cl₂ + OH channel at all temperatures below 300 K.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table
F102. Cl + CINO. The recommended value for k(298 K) is the mean of the values reported by Abbatt et al.,1 Chasovnikov et al.,2 Nesbitt et al.,8 and Kita and Stedman.6 The room temperature result of Chesnokov3 is in fair agreement with the recommended value. The laser photolysis-LMR study of Chasovnikov et al.2 provides rate data for each CI atom spin state, and they attribute the low value reported by Nelson and Johnston7 in a laser flash photolysis-resonance fluorescence study to reaction of the Cl \(3P_{3/2}\) state. Adsorption and decomposition of CINO on the walls of their static system may account for the very low value of Grimley and Houston.5 The results of Clyne and Cruse4 in a discharge flow-resonance fluorescence study are significantly lower than all of the later studies. The recommended Arrhenius parameters are from the study of Abbatt et al.1

(Table: 90-1, Note: 10-6, Evaluated: 10-6) Back to Table

(3) Chesnokov, E. N. Application of IR-chemiluminescence method for determination of rate constants of bimolecular reactions which are not leading to the formation of excited products. Khim. Fiz. 1991, 10, 204-212.

F103. Cl + CIONO\(_2\). The recommended Arrhenius parameters are based on the results of Yokelson et al.,3 and those of Margitan,2 which are in excellent agreement. The slightly higher values of Kurylo et al.,1 lie just outside the stated uncertainties. Yokelson et al. report that at 298 K, more than 95% of this reaction proceeds by the reaction channel giving Cl\(_2\) + NO\(_3\) as products.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

1-244
F104. \(\text{Cl} + \text{CH}_3\text{Cl} \). The recommended value for \(k(298 \text{ K}) \) is the mean of results of the absolute rate studies of Manning and Kurylo,\(^6\) Beichert et al.,\(^1\) and Bryukov et al.\(^2\) and the relative rate studies of Wallington et al.,\(^11\) Beichert et al.,\(^1\) Orlando\(^7\) (two independent determinations), and Sarzyński et al.\(^9\) The recommended \(E/R \) is derived from a fit to the data below 300 K from Manning and Kurylo\(^6\) and from the two relative rate studies of Orlando\(^7\) after scaling each data set to the recommended value for \(k(298 \text{ K}) \). While the 298 K results reported by Clyne and Walker\(^4\) are in good agreement, the value of the activation energy derived by these researchers is significantly higher than that recommended, similar to the situation encountered for the \(\text{Cl} + \text{CH}_4 \) reaction. Hence, it is assumed that the discharge flow-mass spectrometric studies of these authors were subject to a systematic error. The \(E/R \) obtained between 300 K and 400 K by Bryukov et al.\(^2\) from a study primarily focused at higher temperatures, is in good agreement with that recommended here. The early relative rate studies by Pritchard et al.,\(^5\) Goldfinger et al.,\(^3\) Knox,\(^5\) and Tschuikow-Roux et al.\(^10\) were not used to derive the recommended parameters since they were performed at temperatures above 298 K and, with the exception of Pritchard et al., yield somewhat higher values for \(E/R \).

(3) Clyne, M. A. A.; Walker, R. F. Absolute rate constants for elementary reactions in the chlorination of \(\text{CH}_4, \text{CD}_4, \text{CH}_2\text{Cl}, \text{CH}_2\text{Cl}_2, \text{CHCl}_3, \text{CDCl}_3 \), and \(\text{CBrCl}_3 \). J. Chem. Soc. Faraday Trans. 1 1973, 69, 1547-1567.

(6) Manning, R. G.; Kurylo, M. J. Flash photolysis resonance fluorescence investigation of the temperature dependencies of the reactions of Cl\(^3\text{P} \) atoms with \(\text{CH}_4, \text{CH}_2\text{Cl}, \text{CH}_2\text{F}, \text{CH}_2\text{F}_2, \), and \(\text{C}_2\text{H}_6 \). J. Phys. Chem. 1977, 81, 291-296, doi:10.1021/j100519a003.

(11) Wallington, T. J.; Andino, J. M.; Ball, J. C.; Japar, S. M. Fourier transform infrared studies of the reaction of Cl atoms with PAN, PPN, CH\(_3\)OOH, HCOOH, CH\(_3\)COCH\(_3\) and CH\(_3\)COCH\(_2\)H at 295 ± 2 K. J. Atmos. Chem. 1990, 10, 301-313.

F105. \(\text{Cl} + \text{CH}_3\text{Cl} \). The recommended value for \(k(298 \text{ K}) \) is an average of the values measured in the relative rate studies of Niki et al.,\(^7\) Beichert et al.,\(^1\) Catoire et al.,\(^3\) and Orlando\(^8\) (two independent determinations), and in the absolute rate study of Bryukov et al.\(^2\) For this evaluation, all of the relative rate measurements were recalculated based on the current recommendations for the rate constant of the reference reactions. The recommended value for \(E/R \) is derived from the data of Orlando and agrees with a fit to the data of Bryukov et al. (obtained at room temperature and above) up to 400 K. Above 400 K, these latter data increase more rapidly with temperature. The relative rate studies of Goldfinger et al.,\(^3\) Knox,\(^5\) and Tschuikow-Roux et al.\(^9\) were performed at temperatures above 298 K and yield significantly higher values for \(E/R \), with the exception of one of the Knox et al. determinations (relative to \(\text{CH}_4 \)), which gives a value of \(E/R \) in good agreement with that recommended. The results of Clyne and Walker\(^4\) are higher than those from any other study and were not used in deriving the recommended parameters.

(3) Catoire, V.; Lesclaux, R.; Schneider, W. F.; Wallington, T. J. Kinetics and mechanisms of the self-reactions of CCl\textsubscript{3}O\textsubscript{2} and CHCl\textsubscript{3}O\textsubscript{2} radicals and their reactions with HO\textsubscript{2}. J. Phys. Chem. 1996, 100, 14356-14371.

(4) Clyne, M. A. A.; Walker, R. F. Absolute rate constants for elementary reactions in the chlorination of CH\textsubscript{3}, CD\textsubscript{4}, CH\textsubscript{2}Cl, CH\textsubscript{2}Cl\textsubscript{2}, CHCl\textsubscript{3}, CDCI\textsubscript{3}, and CBrCl\textsubscript{3}. J. Chem. Soc. Faraday Trans. 1 1973, 69, 1547-1567.

F106. Cl + CHCl\textsubscript{3}. The recommended value for k(298 K) is an average of the values measured in the relative rate studies of Beichert et al.,1 Brahan et al.,2 (two independent determinations), Catoire et al.,4 and Orlando9 (two independent determinations). The recommended temperature dependence is derived from a fit to the two determinations by Orlando and agrees with a fit to the absolute rate data of Bryukov et al.3 (obtained at room temperature and above) up to 400 K. Above 400 K, these latter data increase more rapidly with temperature. The room temperature value determined in the relative rate study by Yu and Wijnen5 is a factor of 50 greater than recommended and was not considered in the recommendation. The results of the absolute investigation of Clyne and Walker4 are also higher and more scattered than those from most other studies and were not used, nor was the room temperature value derived from the study by Jeoung et al.,3 which is more than a factor of two lower than recommended. The relative rate study by Goldfinger et al.6 performed near 500 K obtained values higher than those in more recent investigations. The relative rate study of Knox8 yields a similar temperature dependence to that recommended but with rate constant values systematically lower than other studies. The absolute study by Talhaoui et al.10 yielded a 298 K rate constant somewhat lower than recommended and a temperature dependence somewhat higher. For this evaluation, all of the relative rate measurements were recalculated based on the current recommendations for the rate constant of the reference reactions. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(4) Catoire, V.; Lesclaux, R.; Schneider, W. F.; Wallington, T. J. Kinetics and mechanisms of the self-reactions of CCl\textsubscript{3}O\textsubscript{2} and CHCl\textsubscript{3}O\textsubscript{2} radicals and their reactions with HO\textsubscript{2}. J. Phys. Chem. 1996, 100, 14356-14371.

(5) Clyne, M. A. A.; Walker, R. F. Absolute rate constants for elementary reactions in the chlorination of CH\textsubscript{3}, CD\textsubscript{4}, CH\textsubscript{2}Cl, CH\textsubscript{2}Cl\textsubscript{2}, CHCl\textsubscript{3}, CDCI\textsubscript{3}, and CBrCl\textsubscript{3}. J. Chem. Soc. Faraday Trans. 1 1973, 69, 1547-1567.

(10) Talhaoui, A.; Louis, F.; Meriaux, B.; Devolder, P.; Sawersyn, J.-P. Temperature dependence of rate coefficients for the reactions of chlorine atoms with halomethanes of type CHCl\textsubscript{x}F\textsubscript{3} (x = 0, 1, and 2). J. Phys. Chem. 1996, 100, 2107-2113, doi:10.1021/jp951814i.

F107. Cl + CH3F (HFC-41). The recommended value for k(298 K) is an average of the values from the absolute rate studies of Manning and Kurylo and Hitsuda et al. and the relative rate studies of Tschuikow-Roux et al., Tuazon et al., and Wallington et al. The recommended value for E/R is based on the study of Tschuikow-Roux et al. conducted at room temperature and above. However, in formulating this recommendation for E/R, the reported temperature dependence of Tschuikow-Roux et al. was reduced slightly (by approximately 100 K) to account for what appears to be a small systematic difference between the activation energies obtained in their similar investigations of the Cl + CH3Cl and Cl + CH3Br reactions above room temperature and the recommendations that are based on data at 300 K and below. The temperature dependence reported by Manning and Kurylo is significantly lower, seemingly due to a shift in their data below 250 K. This lower value of E/R is not consistent with the recommended values of E/R for Cl + CH3Cl and Cl + CH3Br when compared with those for OH + CH3F, OH + CH3Cl, and OH + CH3Br. Hence, it appears that the Manning and Kurylo data may have been influenced by some systematic error at the lower temperatures.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F108. Cl + CH3F2 (HFC-32). The recommended value for k(298 K) is an average of the values from the relative rate study of Nielsen et al. and from an Arrhenius fit to the relative rate data of Nilsson et al. obtained in two independent studies, all recalculated using the rate constant for the reference reaction (Cl + CH4) recommended in this evaluation. The recommended value for E/R is obtained from a fit to the data of Nilsson et al. below 410 K. The rate constants determined in the relative rate study of Tschuikow-Roux et al. lie systematically higher than those of Nielsen et al. and Nilsson et al. but yield a temperature dependence similar to that recommended here.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F109. Cl + CHF3 (HFC-23). The recommended upper limit for k(298 K) is based on results from the absolute rate study by Jourdain et al. Results from the relative rate study by Coomber and Whittle yield an upper limit that is a factor of 50 smaller.

(Table: 06-2, Note: 15-10, Evaluated: 06-2) Back to Table

F110. Cl + CH₂FCI (HCFC-31). The recommended value for k(298 K) is an average of the room temperature results from the absolute rate study by Jourdain et al.¹ and the relative rate studies by Tuazon et al.³ and Wallington et al.⁴ The temperature dependence is estimated from a comparison among the Cl and OH reactions with CH₂F₂, CH₂Cl₂, and CH₃FCl. The recommended value of E/R (essentially the same as that for the OH + CH₂FCl reaction) is slightly lower than that determined by Tschuikow-Roux et al.,⁵ recalculated based on the current recommendation for the rate constant of the reference reaction (Cl + CH₄). However, as discussed for other Cl + halomethane reactions, there appears to be a small systematic overestimation in the temperature dependences determined by these authors.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F111. Cl + CHFCl₂ (HCFC-21). The recommended value for k(298 K) is the average of the results from the relative rate study of Tuazon et al.⁴ and the absolute rate study of Talhaoui et al.³ These results are preferred over the earlier room temperature results of Glavas and Heicklen.¹ The room temperature value of Jourdain et al.² is approximately 50% higher than the recommendation. The recommended value for E/R is derived from the data of Talhaoui et al.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F112. Cl + CHF₂Cl (HCFC-22). The recommended value for k(298 K) is the mean of the values derived in the relative rate studies of Tuazon et al.² and Sokolov et al.³ and in the absolute rate studies of Jourdain et al.¹ and Talhaoui et al.⁴ (which is assumed to supersede the earlier study by Sawerysyn et al.⁵). The recommended E/R is derived from the data reported by Talhaoui et al.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Sawerysyn, J. P.; Talhaoui, A.; Meriaux, B.; Devolder, P. Absolute rate constants for elementary reactions between chlorine atoms and CHF₂Cl, CH₂CFCl₂, CH₂CF₂Cl and CH₂FCl at 297 ± 2 K. *Chem. Phys. Lett.* 1992, 198, 197-199.

F113. Cl + CH₃CCl₃. The recommended value for \(k(298 \text{ K}) \) is an average of the results from the absolute rate study by Talhaoui et al.⁴ and the relative rate studies of Platz et al.³ and Nilsson et al.,² both recalculated using the rate constant for the reference reaction (Cl + CH₄) recommended in this evaluation. The recommended value for E/R is derived from a combined fit to the data of Talhaoui et al.⁴ and Nilsson et al.³ for T < 400 K after scaling each data set to the recommended value for \(k(298 \text{ K}) \). The results obtained by Cillien et al.¹ in a relative rate study conducted over a very narrow temperature range above room temperature are encompassed by the recommended 2σ uncertainty. The results of the relative rate study of Tschuikow-Roux et al.,⁵ although exhibiting a similar temperature dependence, lie systematically higher than the results of all other investigations.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(3) Platz, J.; Nielsen, O. J.; Sehested, J.; Wallington, T. J. Atmospheric chemistry of 1,1,1-trichloroethane: UV absorption spectra and self-reaction kinetics of Cl⁺CH₂Cl and Cl⁺CH₂Cl₂ radicals, kinetics of the reactions of the Cl⁺CH₂Cl₂: Radical with NO and NO₂, and the fate of the alkoxy radical Cl⁺CH₂O. J. Phys. Chem. 1995, 99, 6570-6579. doi:10.1021/j100017a044.
(4) Talhaoui, A.; Louis, F.; Devolder, P.; Meriaux, B.; Sawerysyn, J. P.; Rayez, M. T.; Rayez, J. C. Rate coefficients of the reactions of chlorine atoms with haloethanes of type CH₃CClₓFₓ (\(x = 0, 1, \text{ and } 2 \)) experimental and ab initio theoretical studies. J. Phys. Chem. 1996, 100, 13531-13538. doi:10.1021/jp9603243.

F114. Cl + CH₃CH₂F (HFC-161). The recommended values for both \(k(298 \text{ K}) \) and E/R for each of the two reaction channels are averages of the individual values derived in the relative rate studies of Cadman et al.,¹ Martens et al.,³ and Tschuikow-Roux et al.,⁵ with each recalculated based on the current recommendation for the rate constant of the reference reaction. The value for \(k(298 \text{ K}) \) of the total reaction obtained from a sum of the two channels is in excellent agreement with the value obtained in the absolute rate study by Hitsuda et al.²

The parameters for the total reaction are:

\[
A = 2.28 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \\
E/R = 370 \text{ K} \\
k(298 \text{ K}) = 6.6 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \\
f(298 \text{ K}) = 1.1 \\
g = 100
\]

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F115. Cl + CH₃CHF₂ (HFC-152a). The recommended values for \(k(298 \text{ K}) \) for each of the two reaction channels are based on an average of the individual values from the relative rate studies of Cadman et al.,¹ Martens et
al., and Yano and Tschuiakow-Roux\(^6\) (with each recalculated based on the current recommendation for the rate constant of the appropriate reference reaction). The sum of these average values of \(k(298\,\text{K})\) for the two channels is \(2.4 \times 10^{-11}\,\text{cm}^3\,\text{molecule}^{-1}\,\text{s}^{-1}\). However, a more reliable value for \(k(298\,\text{K}) = 2.5 \times 10^{-13}\,\text{cm}^3\,\text{molecule}^{-1}\,\text{s}^{-1}\) for the overall reaction can be obtained from an average of the results from the relative rate studies of Wallington and Hurley,\(^5\) Tuazon et al., and Taketani et al.\(^3\) and from the absolute study of Taketani et al.\(^3\). Therefore, for consistency with the total rate constant recommendation, \(k(298\,\text{K})\) for each channel was scaled by a factor 1.04 (i.e., 2.5/2.4) to obtain the recommended values given in Table 1. The recommended value for E/R for each channel is an average of those determined by Cadman et al.,\(^1\) Martens et al.,\(^2\) and Yano and Tschuiakow-Roux.\(^6\) There are no available experimental data on the temperature dependence of the rate constant of the total reaction. A simulated fit to the sum of the rate constants recommended for individual channels yields E/R = 970 K, which is recommended here. Thus, the recommended parameters for the total reaction are:

\[
\begin{align*}
A &= 6.5 \times 10^{-12}\,\text{cm}^3\,\text{molecule}^{-1}\,\text{s}^{-1} \\
E/R &= 970\,\text{K} \\
k(298\,\text{K}) &= 2.5 \times 10^{-13}\,\text{cm}^3\,\text{molecule}^{-1}\,\text{s}^{-1} \\
f(298\,\text{K}) &= 1.1 \\
g &= 100
\end{align*}
\]

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(5) Wallington, T. J.; Hurley, M. D. A kinetic study of the reaction of chlorine atoms with \(\text{CF}_2\text{CHCl}_2\), \(\text{CF}_2\text{CH}_2\text{F}\), \(\text{CFCl}_3\text{CH}_3\), \(\text{CF}_2\text{ClCH}_3\), \(\text{CHF}_2\text{CH}_3\), \(\text{CH}_2\text{D}, \text{CH}_2\text{D}_2\), \(\text{CHD}_3\), \(\text{CD}_4\), and \(\text{CD}_3\text{Cl}\) at 295 ± 2 K. Chem. Phys. Lett. 1992, 189, 437-442.

(6) Yano, T.; Tschuiakow-Roux, E. Competitive photochlorination of the fluoroethanes \(\text{CH}_3\text{CHF}_2\), \(\text{CH}_3\text{FCH}_2\text{F}\) and \(\text{CH}_2\text{FCH}_2\text{F}\). J. Photochem. 1986, 32, 25-37.

F116. \(\text{Cl} + \text{CH}_2\text{FCH}_3\text{F} (\text{HFC-152a})\). The recommended value for \(k(298\,\text{K})\) is an average of the values derived in the relative rate studies of Yano and Tschuiakow-Roux\(^2\) and Wallington et al.\(^1\) (two determinations), after recalculating each one based on the current recommendation for the rate constant of the appropriate reference reaction. The recommended temperature dependence was determined from a fit to the data of Yano and Tschuiakow-Roux, which were obtained at room temperature and above. The temperature dependence may exhibit curvature below room temperature, similar to that for \(\text{OH} + \text{CH}_2\text{FCH}_2\text{F}\). Such curvature is most probably encompassed by the assigned uncertainty parameters. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(2) Yano, T.; Tschuiakow-Roux, E. Competitive photochlorination of the fluoroethanes \(\text{CH}_3\text{CHF}_2\), \(\text{CH}_3\text{FCH}_2\text{F}\) and \(\text{CH}_2\text{FCH}_2\text{F}\). J. Photochem. 1986, 32, 25-37.

F117. \(\text{Cl} + \text{CH}_3\text{CFC}_3\text{H} (\text{HCFC-141b})\). The recommended value for \(k(298\,\text{K})\) is an average of the values derived in the absolute rate studies of Talhaoui et al.\(^2\) and Warren and Ravishankara\(^8\) and in the relative rate studies of Wallington and Hurley\(^4\) and Tuazon et al.\(^3\). The room temperature results of Talhaoui et al. are assumed to supersede those of Sawersyn et al.\(^1\). The recommended \(E/R\) is derived from the data of Talhaoui et al. The data of Warren and Ravishankara\(^8\) above room temperature exhibit considerable scatter, apparently due to Cl atom regeneration from decomposition of the radical product (\(\text{CH}_2\text{CFC}_3\text{H}\)). Hence, this study was not used in deriving the recommended temperature dependence. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table
(1) Sawerysyn, J. P.; Talhaoui, A.; Meriaux, B.; Devolder, P. Absolute rate constants for elementary reactions between chlorine atoms and CHF₃, CH₃CFCI₂, CH₃CF₂Cl and CH₂FCF₃ at 297 ± 2 K. *Chem. Phys. Lett.* 1992, 198, 197-199.

(4) Wallington, T. J.; Hurley, M. D. A kinetic study of the reaction of chlorine atoms with CF₃CHCl₂, CF₃CH₂F, CF₃CH₂Cl, CF₂ClCH₂, CHF₂CH₂, CH₂D₃, CH₃D₂, CHD₃, CD₃, and CD₂Cl at 295 ± 2 K. *Chem. Phys. Lett.* 1992, 189, 437-442.

F118. CI + CH₃CF₂Cl (HFC-142b). The recommended value for k(298 K) is an average of the results of the relative rate studies of Wallington and Hurley³ and Tuazon et al.,¹ both recalculated based on the current recommendation for the rate constant of the reference reaction (Cl + CH₄). The recommended value for E/R is based on an Arrhenius fit of the relative rate data of Tschiukow-Roux et al.,¹ calculated using the three-parameter fit for the Cl + CH₄ reaction given in the current recommendation. An upper limit for k(298 K) derived by Hitsuda et al.¹ is more than two orders of magnitude larger than the recommended value. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(2) Sawerysyn, J. P.; Talhaoui, A.; Meriaux, B.; Devolder, P. Absolute rate constants for elementary reactions between chlorine atoms and CHF₃, CH₃CFCI₂, CH₃CF₂Cl and CH₂FCF₃ at 297 ± 2 K. *Chem. Phys. Lett.* 1992, 198, 197-199.

(5) Wallington, T. J.; Hurley, M. D. A kinetic study of the reaction of chlorine atoms with CF₃CHCl₂, CF₃CH₂F, CF₃CH₂Cl, CF₂ClCH₂, CHF₂CH₂, CH₂D₃, CH₃D₂, CHD₃, CD₃, and CD₂Cl at 295 ± 2 K. *Chem. Phys. Lett.* 1992, 189, 437-442.

F119. Cl + CH₃CF₃ (HFC-143a). The recommended value of k(298 K) is an average of the values from the relative rate studies of Tschiukow-Roux et al.,¹ and Nielsen et al.,² both recalculated based on the current recommendation for the rate constant of the reference reaction (Cl + CH₄). The recommended value for E/R is based on an Arrhenius fit of the relative rate data of Tschiukow-Roux et al.,¹ recalculated using the three-parameter fit for the Cl + CH₄ reaction given in the current recommendation. An upper limit for k(298 K) derived by Hitsuda et al.¹ is more than two orders of magnitude larger than the recommended value. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F120. Cl + CH₃FCHF₂ (HFC-143). The recommended values for k(298 K) and E/R for each of the two reaction channels are based on results of the relative rate study of Tschiukow-Roux et al.,¹ recalculated based on the current recommendation for the rate constant of the reference reaction (Cl + CH₄). The recommended
parameters for the total reaction are derived from the sum of the recommended rate expressions for the two reaction channels. The parameters for the total reaction are:

\[
A = 1.57 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \\
E/R = 1720 \text{ K} \\
k(298 \text{ K}) = 4.9 \times 10^{-14} \\
f(298 \text{ K}) = 1.3 \\
g = 200
\]

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F121. Cl + CH3CICF3 (HCFC-133a). The recommended value for k(298 K) is an average of the results from the absolute rate study of Jourdain et al.\(^1\) and the relative rate study of Mogelberg et al.\(^2\) (two determinations). The recommended value for E/R is derived from the data of Jourdain et al.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F122. Cl + CH3CF3 (HFC-134a). The recommended value for k(298 K) is an average of the results from the relative rate studies of Wallington and Hurley,\(^4\) Tuazon et al.,\(^5\) Kaiser,\(^1\) and Nilsson et al.\(^3\) (all recalculated using the current recommendations for the reference reactions) and from the absolute rate study of Louis et al.,\(^2\) which is assumed to supersede the earlier study by Sawerysyn et al.\(^4\) The recommended value for E/R is derived from a combined fit to the data of Kaiser et al., Louis et al., and Nilsson et al. below 400 K after scaling each data set to the recommended value for k(298 K).

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F123. Cl + CHF2CF3 (HFC-134). The recommended value for k(298 K) is an average of the results from the relative rate studies of Nielsen et al.\(^1\) and Yano and Tschuikow-Roux,\(^2\) each recalculated based on the current recommendation for the rate constant of the appropriate reference reaction. The recommended value of E/R is derived from the data of Yano and Tschuikow-Roux.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F124. Cl + CHCl₂CF₃ (HCFC-123). The recommended value for k(298 K) is an average of the results from the absolute rate study of Warren and Ravishankara¹ and the relative rate studies of Wallington and Hurley² and Tuazon et al.,¹ each recalculated based on the current recommendation for the rate constant of the appropriate reference reaction. The recommended value of E/R is derived from the data of Warren and Ravishankara. (Table: 05-2, Note: 06-2, Evaluated: 06-2) Back to Table

2. Wallington, T. J.; Hurley, M. D. A kinetic study of the reaction of chlorine atoms with CF₃CHCl₂, CF₃CH₂F, CFCl₂CH₃, CF₂ClCH₃, CH₂Cl, CHDCl, CDCl₂, CHD₂, and CD₂Cl at 295 ± 2 K. *Chem. Phys. Lett.* 1989, 189, 437-442.

F125. Cl + CHFClCF₃ (HCFC-124). The recommended value for k(298 K) is an average of the results from the absolute rate study by Warren and Ravishankara¹ and the relative rate study by Tuazon et al.¹ The recommended value for E/R is derived from the data of Warren and Ravishankara. (Table: 05-2, Note: 06-2, Evaluated: 06-2) Back to Table

F126. Cl + CHF₂CF₃ (HFC-125). The recommended value for k(298 K) is an average of the results from the relative rate studies of Tuazon et al.,¹ Sehested et al.,³ Edney and Driscoll,² and Young et al.,³ all conducted only at room temperature and recalculated using the current recommendations for the rate constants of the reference reactions. The temperature dependence is estimated from a comparison among the Cl and OH reactions with CH₃CF₂CF₃, CHF₂CF₂, and CHF₂CF₃. The relative rate study by Coomber and Whittle¹ conducted between 303 K and 399 K corresponds to a value for k(298 K) a factor of 2.5 greater than that recommended. However, the value for E/R derived by these authors is only slightly lower than that estimated. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

2. Edney, E. O.; Driscoll, D. J. Chlorine initiated photooxidation studies of hydrochlorofluorocarbons (HFCFs) and hydrofluorocarbons (HFCs): results for HCFC-22 (CHF₂Cl); HFC-41 (CH₃F); HFC-124 (CCIFCF₃); HFC-125 (CF₃CH₂F); HFC-134a (CF₃CH₂F); HFC-142b (CCIFCH₃); and HFC-152a (CHF₂CF₂). *Int. J. Chem. Kinet.* 1992, 24, 1067-1081.

F127. ClO + O₂. There are two possible channels for this reaction: ClO + O₂ ClOO + O₂ (k₁); and ClO + O₂ OCIO + O₂ (k₂). The recommended upper limit for k₁ at 298 K is based on results of Stevens and Anderson.² These authors also report that k₁ = (4 ± 2)×10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ at 413 K. These data can be combined to derive the recommended Arrhenius parameters, A = 2 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ and E/R > 3600 K. The
upper limit for k_2 is based on results reported by DeMore et al. and Wongdontri-Stuper et al. The Arrhenius parameters for k_2 were estimated.

F128. ClO + H₂. The Arrhenius parameters are estimated based on the ~600 K data of Walker (reported in Clyne and Watson).

F129. ClO + NO. The absolute rate coefficients determined in the four discharge flow-mass spectrometric studies (Clyne and Watson, Leu and DeMore, Ray and Watson and Clyne and MacRobert) and the discharge flow laser magnetic resonance study of Lee et al. are in excellent agreement at room temperature, and are averaged to yield the recommended value for $k(298 \text{ K})$. The value reported by Zahniser and Kaufman from a competitive study is not used in the derivation of the recommended value, as it is about 33% higher. The magnitudes of the temperature dependences reported by Leu and DeMore and Lee et al. are in excellent agreement. Although the E/R value reported by Zahniser and Kaufman is in fair agreement with the other values, it is not considered as it is dependent upon the E/R value assumed for the Cl + O₃ reaction. The Arrhenius expression is derived from a least squares fit to the data reported by Clyne and Watson, Leu and DeMore, Ray and Watson, Clyne and MacRobert, and Lee et al. Theoretical rate calculations by Sayin and McKee give a reaction activation energy (~0.35 kcal/mol) over the temperature range 200–400 K that is supportive of the experimental values.

F130. ClO + NO₃. The recommended parameters are based on results reported by Cox et al., Cox et al., Biggs et al., and Kukui et al. Biggs et al. report the rate constant to be independent of temperature, consistent with the results of Cox et al. The study of Kukui et al. supersedes the earlier study of Becker et al. from the same laboratory, which had indicated the major products to be OCIO + NO₂. There is now agreement among all studies that the major reaction channel forms ClOO + NO₂ (see Biggs et al., Cox et al., and Kukui et al.). From a study of the OCIO/NO₃ system, Friedl et al. conclude that at 220 K the formation of ClOO + NO₂ is favored.

1-254
F131. ClO + N₂O. The Arrhenius parameters are estimated based on the ∼600 K data of Walker (reported in Clyne and Watson¹).
(Table: 82-57, Note: 82-57, Evaluated: 10-6) Back to Table

F132. ClO + CO. The Arrhenius parameters are estimated based on the ∼600 K data of Walker (reported in Clyne and Watson¹).
(Table: 82-57, Note: 82-57, Evaluated: 10-6) Back to Table

F133. ClO + CH₄. The Arrhenius parameters are estimated based on the ∼600 K data of Walker (reported in Clyne and Watson¹).
(Table: 82-57, Note: 82-57) Back to Table

F134. ClO + H₂CO. Poulet et al.¹ have reported an upper limit of 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ for k(298 K) using the discharge flow-EPR technique.
(Table: 81-3, Note: 81-3, Evaluated: 81-3) Back to Table

F135. ClO + CH₃O₂. The recommended value for k(298 K) is an average of values derived from the temperature dependent data of Helleis et al.³ (225–355 K), Kukui et al.⁶ (233–300 K), and Leather et al.⁷ (223–298 K). Two other measurements at only room temperature by Simon et al.⁸ and Kenner et al.⁵ are 30% larger and 20% smaller, respectively, but overlap the recommended value within the reported uncertainties. Helleis et al.³ and Kukui et al.⁶ observed very weak temperature dependences of the rate constant with the reported E/R values of +114 K and −80 K, respectively. The data from these studies differ by less than 40% over the entire temperature range. In contrast, the study by Leather et al.⁷ yielded a much stronger temperature dependence with a reported E/R value of 626 K. Helleis et al.³ and Kukui et al.⁶ used a low pressure discharge flow technique, whereas Leather et al.⁷ employed a turbulent flow reactor with substantially higher pressure. Thus, the data from this latter study should be free from possible interferences due to wall reactions. The combination of lower radical concentrations and higher total pressure in the Leather et al.³ study provides the basis for the temperature dependence recommended here. Thus, the recommended value for E/R is derived from a fit to the data of Leather et al.⁷ Nevertheless, in the absence of a definitive explanation for the difference between the results from the high and low pressure studies (which is as large as a factor of 2 to 3 at T = 200 K) values of the uncertainty parameters, f and g, were assigned to encompass the data from all three temperature dependence studies at the 95% confidence level. Note that asymmetric values for “g” are assigned in the Table. To determine the upper band for f(T) one should use g = 300, whereas g = 20 should be used to determine the lower band of f(T).
There is general agreement that the only important reaction channels are those resulting in the production of ClOO + CH₃O (a) and CH₃ClO + O₂ (b). However, there is disagreement on their relative importance. At room temperature, Helleis et al.,¹ Simon et al.,² Kukui et al.,³ and Helleis et al.⁴ report that reaction channel (a) is the major channel. However it is reported to be the minor channel by Biggs et al.¹ and Daele and Poulet.² Helleis et al.³ (which supersedes the earlier data from Helleis et al.)¹ found that channel (b) increases from 14% at room temperature to 24% at 220 K whereas Kukui et al.⁵ found this value to increase from 19% at room temperature to 43% at 230 K, i.e., indicating that both channels can be significant at the low temperatures of the polar stratosphere. All studies of the branching ratios were performed using a low-pressure discharge flow technique. Leather et al.⁶ provided no branching ratio information from their higher pressure studies. Given the possibility of the influence of wall processes in the low-pressure studies, no recommendation on the branching ratio is made. Nevertheless, channel (a) appears to play a significant role. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F136. ClO + ClO. There are three bimolecular channels for this reaction:

ClO + ClO → Cl₂ + O₂ (k₁)
ClO + ClO → ClOO + Cl (k₂)
ClO + ClO → OCIO + Cl (k₃)

The recommended values for the individual reaction channels are from the study of Nickolaisen et al.⁸ This study, using a flash photolysis/long path ultraviolet absorption technique, is the most comprehensive study of this system, covering a wide range of temperature and pressure. These results are preferred over the results of earlier studies of the total bimolecular rate coefficient at low pressures by Clyne and Coxon,¹ Clyne and White,² and Clyne et al.,³ and those of other studies reported by Hayman et al.,³² Cox and Derwent,³² Simon et al.,³¹ Horowitz et al.,³² and Horowitz et al.³³ The room temperature branching ratios are k₁:k₂:k₃ = 0.29:0.50:0.21. The reaction exhibits both bimolecular and termolecular reaction channels (see entry in Table 2-1). The termolecular reaction dominates at pressures higher than about 10 Torr. The equilibrium constant for formation of the ClO dimer, ClOOCl, is given in Table 3. (Table: 94-26, Note: 97-4, Evaluated: 10-6) Back to Table

F137. HCl + ClONO2. Five studies of the kinetics of this system have been published, in which the following upper limits to the homogeneous bimolecular rate constant were reported: 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} by a static wall-less long-path UV absorption technique and a steady-state flow FTIR technique (Molina et al.5); 5 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} using a flow reactor with FTIR analysis (Friedl et al.2); 8.4 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} using a static photolysis system with FTIR analysis (Hatakeyama and Leu4 and Leu et al.5); and 1.5 \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} by FTIR analysis of the decay of ClONO2 in the presence of HCl in large-volume (2500 and 5800 liters) Teflon or Teflon-coated chambers (Atkinson et al.1). Earlier, Birks et al.2 had reported a higher upper limit. All studies found this reaction to be catalyzed by surfaces. The differences in the reported upper limits can be accounted for in terms of the very different reactor characteristics and detection sensitivities of the various studies. The recommended upper limit for k(298 K) is based on the studies of Hatakeyama and Leu4 and Leu et al.5, which apparently are the most sensitive. The homogeneous reaction is too slow to have any significant effect on atmospheric chemistry.

(Table: 87-41, Note: 87-41, Evaluated: 10-6) [Back to Table]

F138. CH2ClO + O2. The CH2ClO radical is reported to be resistant to unimolecular dissociation into Cl + CH2O products, according to chain reaction/product analysis studies by Sanhueza and Heicklen3 and Niki et al.,4 and kinetics studies by Catoire et al.2 The recommended value for k(298 K) is based on the work of Kaiser and Wallington,3 in which the competition between reaction with O2 and HCl elimination in a complex photochemical reaction system using FTIR detection of stable products was studied. The recommendation is a factor of 5 higher than estimated using the empirical relationship given by Atkinson and Carter.1 The fate of CH2ClO in the atmosphere is reaction with O2.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) [Back to Table]

F139. CH$_2$ClO$_2$ + HO$_2$. The recommended Arrhenius parameters are derived from the measurements of Catoire et al.,1 in which pulsed photolysis with UV absorption detection was used at 1 atm pressure and 251–588 K. (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

F140. CH$_2$ClO$_2$ + NO. The recommended value for k(298 K) is from Sehested et al.,1 who used pulsed radiolysis and UV absorption detection of NO$_2$ to measure the rate coefficient. The temperature dependence is estimated by analogy to similar RO$_2$ + NO reactions. (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

F141. CCl$_2$O$_2$ + NO. The recommended value for k(298 K) is an average of the values from Ryan and Plumb3 and Dognon et al.,1 which are in good agreement. The temperature dependence is derived from the data of Dognon et al., which covered the temperature range 228–413 K. The CCl$_2$O primary product of the reaction of CCl$_2$O$_2$ with NO decomposes rapidly to eliminate Cl, according to Lesclaux et al.2

F142. CCl$_3$FO$_2$ + NO. The recommended Arrhenius parameters are based on the measurements made by Dognon et al.1 using pulsed photolysis with mass spectrometry detection at 1–10 Torr and 228–413 K. These results supersede the earlier study of Lesclaux and Caralp.2 The CCl$_3$FO radical primary product of the CCl$_3$FO$_2$ + NO reaction is reported by Lesclaux et al.3 and Wu and Carr4 to rapidly decompose to eliminate Cl and to give the products indicated.

F143. CClF$_2$O$_2$ + NO. The recommended value for k(298 K) is an average of the determinations reported by Dognon et al.,1 who used pulsed photolysis with mass spectrometry detection at 1–10 Torr and 228–413 K, and Sehested et al.,2 who used pulsed radiolysis with UV absorption detection of the NO$_2$ product at 1 atm and 298 K. The recommended value for E/R is derived from the data of Dognon et al.1 Wu and Carr3 observed the CClF$_2$O radical primary product to rapidly dissociate to CF$_2$O and Cl.

(1) Dognon, A. M.; Caralp, F.; Lesclaux, R. Réactions des radicaux chlorofluorométhyl péroxydes avec
82, 349-352.

(2) Sehested, J.; Nielsen, O. J.; Wallington, T. J. Absolute rate constants for the reaction of NO with a

(3) Wu, F.; Carr, R. W. Time-resolved observation of the formation of CF₂O and CFClO in the CF₂Cl + O₂
and CFCl₂ + O₂ reactions. The unimolecular elimination of Cl atoms from CF₂ClO and CFCl₂O
1.11.3 Bibliography – ClO₃ Reactions

Balakhnin, V. P.; Egorov, V. I.; Intezarova, E. I. *Kinetics and Catalysis* 1971, 12, 299.

Beach, S. D.; Hickson, K. M.; Smith, I. W. M.; Tuckett, R. P. Rate constants and Arrhenius parameters for the reactions of OH radicals and Cl atoms with CF₂CH₂OCHF₂, CF₃CHClOCHF₂ and CF₃CH₂OCClF₂, using

Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Absorption spectrum of NO\textsubscript{3} and kinetics of the reactions of NO\textsubscript{3} with NO\textsubscript{2}, Cl, and several stable atmospheric species at 298 K. *J. Phys. Chem.* 1985, 89, 4848-4856.
Catoire, V.; Lesclaux, R.; Schneider, W. F.; Wallington, T. J. Kinetics and mechanisms of the self-reactions of CCl\textsubscript{3}O\textsubscript{2} and CHCl\textsubscript{2}O\textsubscript{2} radicals and their reactions with HO\textsubscript{2}. *J. Phys. Chem.* 1996, 100, 14356-14371.
Chang, J. S.; Kaufman, F. Kinetics of the reactions of hydroxyl radicals with some halocarbons: CHFCl\textsubscript{3}, CHF\textsubscript{2}Cl, CH\textsubscript{2}Cl\textsubscript{2}, C\textsubscript{2}H\textsubscript{5}Cl, and C\textsubscript{2}Cl\textsubscript{2}. *J. Chem. Phys.* 1977, 66, 4989-4994.
Chang, J. S.; Kaufman, F. Upper limits of the rate constants for the reactions of CFC\textsubscript{1} (F-11), CF\textsubscript{2}Cl\textsubscript{2} (F-12), and N\textsubscript{2}O with OH. Estimation of corresponding lower limits to their tropospheric lifetimes. *Geophys. Res. Lett.* 1977, 4, 192-194.
Chasovnikov, S. A.; Chichinin, A. I.; Krasnoperov, L. N. Time-resolved LMR study on the reactions of CI atoms in the ground (3P\textsubscript{1/2}) and excited (3P\textsubscript{3/2}) spin-orbital states with CINO. *Chem. Phys.* 1987, 116, 91-99.
Chesnokov, E. N. Application of IR-chemiluminescence method for determination of rate constants of bimolecular reactions which are not leading to the formation of excited products. *Khim. Fiz.* 1991, 10, 204-212.
Choo, K. Y.; Leu, M. T. Determination of O\textsubscript{3}(3Σ+*) and O\textsubscript{3}(1Δ\textsubscript{g}) yields in Cl + O\textsubscript{2} and Cl + O\textsubscript{3} reactions. *J. Phys. Chem.* 1985, 89, 4832-4837, doi:10.1021/j100268a035.
Clark, R. H.; Husain, D.; Jezequel, J. Y. The reaction of chlorine atoms, CI(3 2P\textsubscript{1}), with nitric acid in the gas phase. *J. Photochem.* 1982, 18, 39-46.

Edney, E. O.; Driscoll, D. J. Chlorine initiated photooxidation studies of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs): results for HCFC-22 (CHClF₂); HFC-41 (CH₃F); HCFC-124 (CClF₂CH₃); HFC-125 (CF₂CHF₂); HFC-134a (CF₃CH₂F); HCFC-142b (CClF₂CH₃); and HFC-152a (CHF₂CH₃). Int. J. Chem. Kinet. 1992, 24, 1067-1081.

Fang, T. D.; Taylor, P. H.; Berry, R. J. Kinetics of the reaction of OH radicals with CH₂CICF₂Cl and CH₂CICF₃ over an extended temperature range. J. Phys. Chem. A 1999, 103, 2700-2704.

Fang, T. D.; Taylor, P. H.; Delligser, B. Absolute rate measurements of the reaction of OH radicals with HCFC-21 (CHFCI₂) and HCFC-22 (CHF₂Cl) over an extended temperature range. J. Phys. Chem. 1996, 100, 4048-4054.

Leu, M.-T.; DeMore, W. B. Rate constant for the reaction ClO + NO → Cl + NO₂. J. Phys. Chem. 1978, 82, 2049-2052, doi:10.1021/j100508a001.

Leu, M.-T.; Yung, Y. L. Determination of O₂(a′Δg) and O₂(b′Σg⁺) yields in the reaction O + ClO → Cl + O₂: Implications for photochemistry in the atmosphere of Venus. Geophys. Res. Lett. 1987, 14, 949-952.

Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. Rate constants for the reaction of OH radicals with CHFCl2 and CH3Cl over the temperature range 298-423 °K, and with CH2Cl2 at 298 °K. J. Chem. Phys. 1976, 64, 1618-1620.

Sawerysyn, J. P.; Talhaoui, A.; Meriaux, B.; Devolder, P. Absolute rate constants for elementary reactions between chlorine atoms and CHF₂Cl, CH₃CFCl₂, CH₂CF₂Cl and CH₂FCl₃ at 297 ± 2 K. *Chem. Phys. Lett.* 1992, 198, 197-199.

Smith, I. W. M.; Williams, M. D. Effects of isotopic substitution and vibrational excitation on reaction rates Kinetics of OH(v = 0,1) and OD(v = 0,1) with HCl and DCl. *J. Chem. Soc. Faraday Trans. 2* 1986, 82, 1043-1055.

Talukdar, R.; Mellouki, A.; Gierczak, T.; Burkholder, J. B.; McKeen, S. A.; Ravishankara, A. R. Atmospheric fate of CF₃H₂, CH₂CF₂, CH₂CF₃, and CH₂CFCF₂: Rate coefficients for reactions with OH and UV absorption cross sections of CH₂CFCF₂. J. Phys. Chem. 1991, 95, 5815-5821.

Tokuhashi, K.; Takahashi, A.; Kaise, M.; Kondo, S. Rate constants for the reactions of OH radicals with CH₃OCF₂CHClI, CHF₂OCF₂CHClI, CHF₂OCFCICF₃, and CH₃CH₂OCF₂CHF₂. J. Geophys. Res. 1999, 104, 18681-18688.

Wallington, T. J.; Andino, J. M.; Ball, J. C.; Japar, S. M. Fourier transform infrared studies of the reaction of CI atoms with PAN, PPN, CH2OOH, HCOOH, CH3COCH3 and CH3COCH2H at 295 ± 2 K. *J. Atmos. Chem.* 1990, 10, 301-313.

Zhang, Z.; Huie, R. E.; Kurylo, M. J. Rate constants for the reactions of OH with CH₃CFCl₂ (HFCF-141b), CH₃CF₂Cl (HFCF-142b), and CH₂FCF₃ (HFC-134a). *J. Phys. Chem.* **1992**, *96*, 1533-1535.

1.12 BrO$_x$ Reactions

1.12.1 Table 1G: BrO$_x$ Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K)</th>
<th>A-Factor</th>
<th>E/R</th>
<th>k(298 K)b</th>
<th>f(298 K)c</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O + BrO → Br + O$_2$</td>
<td>231–328</td>
<td>1.9×10$^{-11}$</td>
<td>−230</td>
<td>4.1×10$^{-11}$</td>
<td>1.5</td>
<td>150</td>
<td>G 1</td>
</tr>
<tr>
<td>O + HBr → OH + Br</td>
<td>221–554</td>
<td>5.8×10$^{-12}$</td>
<td>1500</td>
<td>3.8×10$^{-14}$</td>
<td>1.3</td>
<td>200</td>
<td>G 2</td>
</tr>
<tr>
<td>O + HOOBr → OH + BrO</td>
<td>233–423</td>
<td>1.2×10$^{-10}$</td>
<td>430</td>
<td>2.8×10$^{-11}$</td>
<td>3.0</td>
<td>300</td>
<td>G 3</td>
</tr>
<tr>
<td>O + BrONO$_2$ → NO$_3$ + BrO</td>
<td>227–339</td>
<td>1.9×10$^{-11}$</td>
<td>−215</td>
<td>3.9×10$^{-11}$</td>
<td>1.25</td>
<td>40</td>
<td>G 4</td>
</tr>
<tr>
<td>OH + Br$_2$ → HOBr + Br</td>
<td>230–360</td>
<td>2.1×10$^{-11}$</td>
<td>−240</td>
<td>4.6×10$^{-11}$</td>
<td>1.1</td>
<td>50</td>
<td>G 5</td>
</tr>
<tr>
<td>OH + BrO → products</td>
<td>230–355</td>
<td>1.7×10$^{-11}$</td>
<td>−250</td>
<td>3.9×10$^{-11}$</td>
<td>1.4</td>
<td>100</td>
<td>G 6</td>
</tr>
<tr>
<td>OH + HBr → H$_2$O + Br</td>
<td>230–360</td>
<td>5.5×10$^{-12}$</td>
<td>−200</td>
<td>1.1×10$^{-11}$</td>
<td>1.1</td>
<td>100</td>
<td>G 7</td>
</tr>
<tr>
<td>OH + CH$_3$Br → CH$_2$Br + H$_2$O</td>
<td>233–400</td>
<td>1.42×10$^{-12}$</td>
<td>1150</td>
<td>3.0×10$^{-14}$</td>
<td>1.07</td>
<td>100</td>
<td>G 8</td>
</tr>
<tr>
<td>OH + CH$_2$Br$_2$ → CHBr$_2$ + H$_2$O</td>
<td>244–375</td>
<td>2.0×10$^{-12}$</td>
<td>840</td>
<td>1.2×10$^{-13}$</td>
<td>1.1</td>
<td>100</td>
<td>G 9</td>
</tr>
<tr>
<td>OH + CHBr$_3$ → CBr$_3$ + H$_2$O</td>
<td>230–370</td>
<td>9.0×10$^{-13}$</td>
<td>360</td>
<td>2.7×10$^{-13}$</td>
<td>1.05</td>
<td>20</td>
<td>G 10</td>
</tr>
<tr>
<td>OH + CH$_3$ClBr → CHClBr + H$_2$O</td>
<td>230–376</td>
<td>2.1×10$^{-12}$</td>
<td>880</td>
<td>1.1×10$^{-13}$</td>
<td>1.07</td>
<td>100</td>
<td>G 11</td>
</tr>
<tr>
<td>OH + CHClBr$_2$ → CClBr$_2$ + H$_2$O</td>
<td>230–330</td>
<td>9.0×10$^{-13}$</td>
<td>420</td>
<td>2.2×10$^{-13}$</td>
<td>1.07</td>
<td>20</td>
<td>G 12</td>
</tr>
<tr>
<td>OH + CHCl$_2$Br → CCl$_2$Br + H$_2$O</td>
<td>230–330</td>
<td>9.4×10$^{-13}$</td>
<td>510</td>
<td>1.7×10$^{-13}$</td>
<td>1.07</td>
<td>20</td>
<td>G 13</td>
</tr>
<tr>
<td>OH + CHF$_2$Br → CF$_2$Br + H$_2$O</td>
<td>233–460</td>
<td>7.85×10$^{-13}$</td>
<td>1300</td>
<td>1.0×10$^{-14}$</td>
<td>1.07</td>
<td>100</td>
<td>G 14</td>
</tr>
<tr>
<td>OH + CF$_2$Br$_2$ → products (Halon-1202)</td>
<td>298</td>
<td>1×10$^{-12}$</td>
<td>>2200</td>
<td>5×10$^{-16}$</td>
<td></td>
<td></td>
<td>G 15</td>
</tr>
<tr>
<td>OH + CF$_3$Br → products (Halon-1301)</td>
<td>460</td>
<td>1×10$^{-12}$</td>
<td>>3600</td>
<td><6×10$^{-18}$</td>
<td></td>
<td></td>
<td>G 16</td>
</tr>
<tr>
<td>OH + CF$_2$ClBr → products (Halon-1211)</td>
<td>373</td>
<td>1×10$^{-12}$</td>
<td>>3500</td>
<td><8×10$^{-18}$</td>
<td></td>
<td></td>
<td>G 17</td>
</tr>
<tr>
<td>OH + CH$_3$CH$_2$Br → products</td>
<td>233–422</td>
<td>2.9×10$^{-12}$</td>
<td>640</td>
<td>3.4×10$^{-13}$</td>
<td>1.2</td>
<td>150</td>
<td>G 18</td>
</tr>
<tr>
<td>OH + CH$_3$CH$_2$Br → products</td>
<td>292–366</td>
<td>1.75×10$^{-11}$</td>
<td>1290</td>
<td>2.3×10$^{-13}$</td>
<td>1.15</td>
<td>200</td>
<td>G 19</td>
</tr>
<tr>
<td>OH + CH$_3$BrCF$_3$ → CHBrCF$_3$ + H$_2$O (Halon-2301)</td>
<td>280–460</td>
<td>9.5×10$^{-13}$</td>
<td>1200</td>
<td>1.7×10$^{-14}$</td>
<td>1.2</td>
<td>150</td>
<td>G 20</td>
</tr>
<tr>
<td>OH + CHFBrCF$_3$ → CFBrCF$_3$ + H$_2$O (Halon-2401)</td>
<td>279–460</td>
<td>7.3×10$^{-13}$</td>
<td>1120</td>
<td>1.7×10$^{-14}$</td>
<td>1.2</td>
<td>100</td>
<td>G 21</td>
</tr>
<tr>
<td>OH + CHClBrCF$_3$ → CClBrCF$_3$ + H$_2$O (Halon, Halon-2311)</td>
<td>298–460</td>
<td>1.1×10$^{-12}$</td>
<td>940</td>
<td>4.7×10$^{-14}$</td>
<td>1.2</td>
<td>150</td>
<td>G 22</td>
</tr>
<tr>
<td>OH + CHFClCF$_2$Br → CFCICF$_2$Br + H$_2$O</td>
<td>315–372</td>
<td>8.4×10$^{-13}$</td>
<td>1220</td>
<td>1.4×10$^{-14}$</td>
<td>1.3</td>
<td>200</td>
<td>G 23</td>
</tr>
<tr>
<td>OH + CF$_2$BrCF$_2$Br → products (Halon-2402)</td>
<td>460</td>
<td>1×10$^{-12}$</td>
<td>>3600</td>
<td><6×10$^{-18}$</td>
<td></td>
<td></td>
<td>G 24</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})$</td>
<td>$l(298 \text{ K})$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>OH + CH₂BrCH₂CH₃ → products</td>
<td>210–480</td>
<td>3.0×10⁻¹²</td>
<td>330</td>
<td>1.0×10⁻¹²</td>
<td>1.05</td>
<td>50</td>
<td>G25</td>
</tr>
<tr>
<td>OH + CH₂CHBrCH₃ → products</td>
<td>210–480</td>
<td>1.85×10⁻¹²</td>
<td>270</td>
<td>7.5×10⁻¹³</td>
<td>1.05</td>
<td>50</td>
<td>G26</td>
</tr>
<tr>
<td>OH + CHBr=CF₂ → products</td>
<td>250–370</td>
<td>1.3×10⁻¹²</td>
<td>-370</td>
<td>4.5×10⁻¹²</td>
<td>1.1</td>
<td>20</td>
<td>G27</td>
</tr>
<tr>
<td>OH + CFBr=CF₂ → products</td>
<td>250–370</td>
<td>2.0×10⁻¹²</td>
<td>-400</td>
<td>7.6×10⁻¹²</td>
<td>1.1</td>
<td>20</td>
<td>G28</td>
</tr>
<tr>
<td>OH + CH₂=CBrCF₃ → products</td>
<td>220–370</td>
<td>1.06×10⁻¹²</td>
<td>-380</td>
<td>3.8×10⁻¹²</td>
<td>1.05</td>
<td>20</td>
<td>G29</td>
</tr>
<tr>
<td>OH + CH₂=CBrCF₂CF₃ → products</td>
<td>250–370</td>
<td>9.5×10⁻¹²</td>
<td>-370</td>
<td>3.3×10⁻¹²</td>
<td>1.05</td>
<td>20</td>
<td>G30</td>
</tr>
<tr>
<td>OH + CH₂=CHCF₂CF₂Br → products</td>
<td>250–370</td>
<td>8.7×10⁻¹²</td>
<td>-200</td>
<td>1.7×10⁻¹²</td>
<td>1.1</td>
<td>20</td>
<td>G31</td>
</tr>
<tr>
<td>HO₂ + Br → HBr + O₂</td>
<td>230–355</td>
<td>4.8×10⁻¹²</td>
<td>310</td>
<td>1.7×10⁻¹²</td>
<td>1.3</td>
<td>150</td>
<td>G32</td>
</tr>
<tr>
<td>HO₂ + BrO → products</td>
<td>210–360</td>
<td>4.5×10⁻¹²</td>
<td>-460</td>
<td>2.1×10⁻¹¹</td>
<td>1.15</td>
<td>100</td>
<td>G33</td>
</tr>
<tr>
<td>NO₃ + HBr → HNO₃ + Br</td>
<td>298</td>
<td><1.0×10⁻¹⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G34</td>
</tr>
<tr>
<td>Cl + CH₃Br → HCl + CH₃Br</td>
<td>210–700</td>
<td>1.46×10⁻¹¹</td>
<td>1040</td>
<td>4.45×10⁻¹³</td>
<td>1.03</td>
<td>50</td>
<td>G35</td>
</tr>
<tr>
<td>Cl + CH₂Br₂ → HCl + CHBr₂</td>
<td>222–395</td>
<td>6.3×10⁻¹²</td>
<td>800</td>
<td>4.3×10⁻¹³</td>
<td>1.1</td>
<td>50</td>
<td>G36</td>
</tr>
<tr>
<td>Cl + CHBr₃ → CBr₃ + HCl</td>
<td>273–363</td>
<td>4.85×10⁻¹²</td>
<td>850</td>
<td>2.8×10⁻¹³</td>
<td>1.3</td>
<td>200</td>
<td>G37</td>
</tr>
<tr>
<td>Cl + CH₂ClBr → HCl + CHClBr</td>
<td>298</td>
<td>6.8×10⁻¹²</td>
<td>870</td>
<td>3.7×10⁻¹³</td>
<td>1.2</td>
<td>100</td>
<td>G38</td>
</tr>
<tr>
<td>Br + O₃ → BrO + O₂</td>
<td>195–422</td>
<td>1.6×10⁻¹¹</td>
<td>780</td>
<td>1.2×10⁻¹²</td>
<td>1.15</td>
<td>100</td>
<td>G39</td>
</tr>
<tr>
<td>Br + H₂O₂ → HBr + HO₂</td>
<td>298–378</td>
<td>1×10⁻¹¹</td>
<td>>3000</td>
<td><5×10⁻¹⁶</td>
<td></td>
<td></td>
<td>G40</td>
</tr>
<tr>
<td>Br + NO₂ $\overset{\text{M}}{\longrightarrow}$ BrNO₂</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br + NO₃ → BrO + NO₂</td>
<td>298</td>
<td>1.6×10⁻¹¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G41</td>
</tr>
<tr>
<td>Br + H₂CO → HBr + HCO</td>
<td>223–480</td>
<td>1.7×10⁻¹¹</td>
<td>800</td>
<td>1.1×10⁻¹²</td>
<td>1.2</td>
<td>125</td>
<td>G42</td>
</tr>
<tr>
<td>Br + CH₂=C(CH₃)CHO → products</td>
<td>301</td>
<td>2.3×10⁻¹¹</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td>G43</td>
</tr>
<tr>
<td>Br + CH₃C(O)CH=CH₂ → products</td>
<td>301</td>
<td>1.9×10⁻¹¹ (1 atm air)</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td>G44</td>
</tr>
<tr>
<td>Br + CH₂=C(CH₃)CH=CH₂ + O₂ $\overset{\text{M}}{\longrightarrow}$ X \leftrightarrow products</td>
<td>210–298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G45</td>
</tr>
<tr>
<td>Br + CH₂=C(CH₃)CH=CH₂ → CH₂=C(CH₃)CH=CH₂ + HBr</td>
<td>526–673</td>
<td>1.2×10⁻¹¹</td>
<td>2100</td>
<td>1.0×10⁻¹⁴</td>
<td>2.0</td>
<td>200</td>
<td>G46</td>
</tr>
<tr>
<td>Br+CH₂=C(CH₃)CH=CH₂ + O₂ → products</td>
<td>297</td>
<td>3.2×10⁻¹³</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td>G47</td>
</tr>
<tr>
<td>Br + OClO → BrO + ClO</td>
<td>267–423</td>
<td>2.6×10⁻¹¹</td>
<td>1300</td>
<td>3.4×10⁻¹³</td>
<td>2.0</td>
<td>300</td>
<td>G48</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})$</td>
<td>$f(298 \text{ K})$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>------</td>
<td>------------------</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>$\text{Br} + \text{Cl}_2\text{O} \rightarrow \text{BrCl} + \text{ClO}$</td>
<td>220–402</td>
<td>2.1×10^{-11}</td>
<td>470</td>
<td>4.3×10^{-12}</td>
<td>1.3</td>
<td>150</td>
<td>G49</td>
</tr>
<tr>
<td>$\text{Br} + \text{Cl}_2\text{O}_2 \rightarrow \text{products}$</td>
<td>223–298</td>
<td>5.9×10^{-12}</td>
<td>170</td>
<td>3.3×10^{-12}</td>
<td>1.3</td>
<td>200</td>
<td>G50</td>
</tr>
<tr>
<td>$\text{BrO} + \text{O}_3 \rightarrow \text{products}$</td>
<td>298</td>
<td>1×10^{-12}</td>
<td>>3200</td>
<td><2$\times 10^{-17}$</td>
<td></td>
<td></td>
<td>G51</td>
</tr>
<tr>
<td>$\text{BrO} + \text{NO} \rightarrow \text{NO}_2 + \text{Br}$</td>
<td>224–425</td>
<td>8.8×10^{-12}</td>
<td>−260</td>
<td>2.1×10^{-11}</td>
<td>1.15</td>
<td>130</td>
<td>G52</td>
</tr>
<tr>
<td>$\text{BrO} + \text{NO}_2 \rightarrow \text{BrONO}_2$</td>
<td>298</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{BrO} + \text{NO}_3 \rightarrow \text{products}$</td>
<td>298</td>
<td>1.0×10^{-12}</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td>G53</td>
</tr>
<tr>
<td>$\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{OCIO}$</td>
<td>200–400</td>
<td>9.5×10^{-13}</td>
<td>−550</td>
<td>6.0×10^{-12}</td>
<td>1.2</td>
<td>100</td>
<td>G54</td>
</tr>
<tr>
<td>$\rightarrow \text{Br} + \text{ClOO}$</td>
<td>2.3$\times 10^{-12}$</td>
<td>−260</td>
<td>5.5×10^{-12}</td>
<td>1.2</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rightarrow \text{BrCl} + \text{O}_2$</td>
<td>4.1$\times 10^{-13}$</td>
<td>−290</td>
<td>1.1×10^{-12}</td>
<td>1.2</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{BrO} + \text{BrO} \rightarrow \text{products}$</td>
<td>220–348</td>
<td>1.5×10^{-12}</td>
<td>−230</td>
<td>3.2×10^{-12}</td>
<td>1.15</td>
<td>150</td>
<td>G55</td>
</tr>
<tr>
<td>$\text{OBrO} + \text{O}_3 \rightarrow \text{products}$</td>
<td>298</td>
<td><1.5$\times 10^{-15}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G56</td>
</tr>
<tr>
<td>$\text{OBrO} + \text{NO} \rightarrow \text{products}$</td>
<td>240–350</td>
<td>2.4×10^{-13}</td>
<td>−610</td>
<td>1.8×10^{-12}</td>
<td>3</td>
<td>200</td>
<td>G57</td>
</tr>
<tr>
<td>$\text{CH}_2\text{BrO}_2 + \text{NO} \rightarrow \text{CH}_2\text{O} + \text{NO}_2 + \text{Br}$</td>
<td>298</td>
<td>4×10^{-12}</td>
<td>−300</td>
<td>1.1×10^{-11}</td>
<td>1.5</td>
<td>200</td>
<td>G58</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6. Italicized blue text denote estimates.

- **Temperature range of available experimental data.** This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.
- **Units are cm3 molecule$^{-1}$ s$^{-1}$.**
- **$f(298 \text{ K})$ is the uncertainty factor at 298 K.** To calculate the uncertainty at other temperatures, use the expression:

$$ f(T) = f(298 \text{ K}) \exp \left[g \left(\frac{1}{T} - \frac{1}{298} \right) \right] $$

Note that the exponent is an absolute value.
1.12.2 Notes: BrOₓ Reactions

G1. O + BrO. The preferred value is based on the value reported by Thorn et al.² using a dual laser flash photolysis-long path absorption-resonance fluorescence technique. Clyne et al.¹ reported a value approximately 40% lower.

(Table: 97-4, Note: 97-4, Evaluated: 10-6) Back to Table

G2. O + HBr. Results of the flash photolysis-resonance fluorescence study of Nava et al.² for 221–455 K and the laser flash photolysis-resonance fluorescence study of Nicovich and Wine³ for 250–402 K provide the only data at stratospheric temperatures. Results reported include those of Singleton and Cvetanovic for 298–554 K by a phase-shift technique, and discharge flow results of Brown and Smith¹ for 267–430 K and Takacs and Glass³ at 298 K. The recommended parameters are based on the results of Nava et al., Nicovich and Wine, and Singleton and Cvetanovic over the same temperature range, since these results are less subject to complications due to secondary chemistry than are the results using discharge flow techniques. The uncertainty at 298 K has been set to encompass these latter results.

(Table: 90-1, Note: 90-1, Evaluated: 10-6) Back to Table

(2) Nava, D. F.; Bosco, S. R.; Stief, L. J. Rate constant for the reaction of O(³P) with HBr from 221 to 455 K. J. Chem. Phys. 1983, 78, 2443-2448.

G3. O + HOBr. The recommended value for k(298 K) is the mean of results of Monks et al.² and Kukui et al.¹ The temperature dependence is from Nesbitt et al.³ The A-factor from that study has been adjusted to fit the recommended room temperature value. Kukui et al. determined that the Br atom abstraction channel is the only pathway at room temperature.

(Table: 97-4, Note: 97-4, Evaluated: 10-6) Back to Table

G4. O + BrONO₂. The recommendation is based on the study of Soller et al.² using a laser flash photolysis–resonance fluorescence technique over the temperature range 227–339 K. The recommended uncertainty parameters are larger than those reported by Soller et al. pending independent confirmation of their results. Burkholder¹ has coupled laser flash photolysis with detection of NO₂ by long path absorption spectroscopy to show that the NO₂ yield is >0.85 at 298 K.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

1-281
G5. \(\text{OH} + \text{Br}_2 \). The recommended value for \(k(298 \text{ K})\) is the average of the values reported by Poulet et al.\(^5\) Loewenstein and Anderson,\(^4\) Gilles et al.,\(^3\) and Bedjanian et al.\(^1\) The temperature dependence is an average of the E/R values of Gilles et al. and Bedjanian et al. The room temperature results of Boodaghians et al.\(^2\) are 40\% lower than the recommended value for \(k(298 \text{ K})\) and were not considered due to their large experimental uncertainty. Loewenstein and Anderson determined that the exclusive products are \(\text{Br} + \text{HOBr}\).

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

G6. \(\text{OH} + \text{BrO} \). The recommended value of \(k(298 \text{ K})\) is an average of the results of Gilles et al.\(^2\) and Bedjanian et al.\(^1\) The only temperature-dependent study is from Bedjanian et al. The recommendation for E/R is based on their results. The likely products of this reaction are \(\text{Br} + \text{HO}_2\). Bedjanian et al. attempted to measure the branching ratio for \(\text{HBr}\) formation, but there were significant problems from secondary chemistry. An upper limit of 3\% was reported for the \(\text{HBr}\) yield.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

G7. \(\text{OH} + \text{HBr} \). The recommended value for \(k(298 \text{ K})\) is the average of the values reported by Ravishankara et al.\(^7\) using FP-RF, Jourdain et al.\(^6\) using DF-EPR, Cannon et al.\(^5\) using FP-LIF, Ravishankara et al.\(^9\) using LFP-RF and LFP-LIF, and Bedjanian et al.\(^2\) using DF-MS. Values reported by Takacs and Glass\(^14\) and Husain et al.\(^4\) as well as the preliminary value of Smith and Zellner\(^19\) are a factor of 2 lower and were not included in the derivation of the recommended value. The recommendation for the temperature dependence is derived from the data of Bedjanian et al.\(^2\) This study obtained a small negative temperature dependence that is in qualitative agreement with the Laval nozzle studies of Sims et al.\(^9\) Atkinson et al.,\(^1\) and Jaramillo et al.\(^5\) over the 200–300 K temperature range. The data of Ravishankara et al.\(^7\) show no dependence on temperature over the range 249–416 K.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

3. Cannon, B. D.; Robertshaw, J. S.; Smith, I. W. M.; Williams, M. D. A time-resolved LIF study of the kinetics of \(\text{OH}(v=0)\) and \(\text{OH}(v=1)\) with \(\text{HCl}\) and \(\text{HBr}\). Chem. Phys. Lett. 1984, 105, 380-385.

4. Husain, D.; Plane, J. M. C.; Slater, N. K. H. Kinetic investigation of the reactions of \(\text{OH}(\Sigma^\Pi)\) with the hydrogen halides, \(\text{HCl}\), \(\text{DCl}\), \(\text{HBr}\) and \(\text{DBr}\) by time-resolved resonance fluorescence \((\Sigma^\Pi - \Sigma^\Pi)\). J. Chem. Soc. Faraday Trans. 2 1981, 77, 1949-1962.

7. Ravishankara, A. R.; Wine, P. H.; Langford, A. O. Absolute rate constant for the reaction \(\text{OH} + \text{HBr} \rightarrow \text{H}_2\text{O} + \text{Br}\). Chem. Phys. Lett. 1979, 63, 479-484.
G8. **OH + CH$_3$Br.** There are four studies of this reaction using different techniques that report 298 K rate constant values agreeing to within 10% and data that agree to better than 30% over a broad range of temperatures. The recommended value for k(298 K) was obtained from an average of the data from these four studies: the relative rate study of Hsu and DeMore4 (recalculated based on the recommendation for the rate constant for the OH + CH$_3$CHF$_2$ reference reaction given in the present evaluation and as discussed in the note for that reaction) and the absolute determinations by Chichinin et al.,1 Mellouki et al.,5 and Zhang et al.7 The results of these extensive studies are preferred over the higher values reported in the earlier studies of Davis et al.2 and Howard and Evenson.3 Although the room temperature value reported by Howard and Evenson3 is ~20% larger, it overlaps the recommended value within the reported experimental uncertainty. The data from Davis et al.2 yield a k(298 K) value that is more than 30% larger than recommended, with the difference between their measured rate constants and those recommended increasing at lower temperatures. This is suggestive of the presence of reactive impurities in the sample of methyl bromide. Also considered, but not used in deriving the recommended Arrhenius parameters are data from the relative rate and absolute studies of Nilsson et al.6 These data lie higher than the results from almost all of the previous measurements, and exceed the recommended value of k(298 K) by ~38% and 60%, respectively. The relative rate results barely overlap the recommended k(298 K) value within the combined 95% confidence limits when the uncertainties in the reference rate constants are included. While the high rate constants obtained in the absolute measurements of Nilsson et al. cannot be explained, significantly higher rate constant values were also previously obtained using the same apparatus for the OH reactions with HFC-152a and HCFC-123. The recommended value for E/R was derived from a fit to the data of Mellouki et al.5 below 300 K. The somewhat more scattered low temperature data of Chichinin et al.1 and Zhang et al.7 are encompassed within the recommended uncertainties.

G9. **OH + CH$_3$Br$_2$.** The recommended value for k(298 K) is an average of the values from the absolute studies of Mellouki et al.2 and Zhang et al.7 and from the relative rate measurements of DeMore4 (recalculated based on the recommendation for the rate constant for the OH + CH$_3$Cl$_2$ reference reaction given in this evaluation) and Orlando et al.3 (recalculated based on the recommendation for the rate constant for the OH + CH$_3$C(O)CH$_3$ reference reaction given in this evaluation). The recommended value of E/R is derived from an Arrhenius fit to the data of Mellouki et al.2 The uncertainty parameters reflect the latest understanding of the reactivities of this and similar compounds.

G10. OH + CHBr$_3$. The recommended Arrhenius parameters are derived from the data from the absolute rate study of Orkin et al.2 The results from the relative rate study of DeMore1 (recalculated based on the recommendation for the rate constant for the OH + CH$_2$Cl$_2$ reference reaction given in this evaluation) lie systematically lower and exhibit a stronger temperature dependence. The results of the Orkin et al.2 investigation have been used in the rate constant recommendations for the OH reactions with CHBr$_3$, CHClBr$_2$, and CHCl$_3$Br. The observed systematic changes in the rate constants and temperature dependences found in this study are consistent with expectations based on increasing Cl atom substitution.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G11. OH + CHClBr. The recommended value for k(298 K) is an average of the values from two relative rate studies by DeMore2 (recalculated based on the recommended rate constant for the OH + CH$_2$Cl$_2$ reference reaction) and Bilde et al.1 (recalculated using the recommended rate constant for the OH + CH$_2$Br$_2$ reference reaction) and two absolute determinations by Orkin et al.2 all of which are in good agreement. The recommended E/R is obtained from a fit to the data of DeMore and Orkin et al. after scaling each data set to the recommended k(298 K).

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G12. OH + CHClBr$_2$. The recommended Arrhenius parameters are derived from the data from the absolute rate study of Orkin et al.1 As discussed in the note for the reaction of OH with CHBr$_3$, the observed systematic changes in the rate constants for the OH reactions with CHBr$_3$, CHClBr$_2$, and CHCl$_3$Br and the temperature dependences found in this study are consistent with expectations based on increasing Cl atom substitution and provide the basis for the assignment of the uncertainty parameters.

(Table: 15-10, Note: 15-10, Evaluated 15-10) Back to Table

G13. OH + CHCl$_3$Br. The recommended Arrhenius parameters are derived from the data from the absolute rate study of Orkin et al.2 As discussed in the note for the reaction of OH with CHBr$_3$, the observed systematic changes in the rate constants for the OH reactions with CHBr$_3$, CHClBr$_2$, and CHCl$_3$Br and the temperature dependences found in this study are consistent with expectations based on increasing Cl atom substitution and provide the basis for the assignment of the uncertainty parameters. The room temperature rate constants determined in the relative rate study by Bilde et al.1 (recalculated using the recommended rate constants for
the OH + CH₂Br₂ and CH₂ClBr reference reactions) lie approximately 20% and 50% lower respectively than recommended.

(Table: 15-10, Note: 15-10, Evaluated 15-10) Back to Table

G14. OH + CHF₂Br (Halon-1201). There are very consistent results from four studies of this reaction: Talukdar et al.⁵ (using two different measurement techniques, DF-LMR and PLP-LIF), Orkin and Khamaganov⁵ (using DF-EPR), and Hsu and DeMore³ (relative rate measurements recalculated using the recommended rate constant for the OH + CH₄ reference reaction). Talukdar et al.⁵ noted a slight curvature in the Arrhenius plot at the higher temperatures, which is also supported by the data from Orkin and Khamaganov.³ Below 400 K, all four data sets exhibit nearly identical temperature dependences with E/R values ranging from 1271 to 1338 K⁻¹. The recommended value for k(298 K) is an average of the rate constants derived from each of the four studies. The recommended value for E/R is derived from a combined fit to the data from these four studies below 400 K after each data set was scaled to the recommended k(298 K). These data are prefered over the consistently higher results reported by Brown et al.¹

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Hsu, K. J.; DeMore, W. B. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements. J. Phys. Chem. 1995, 99, 1235-1244.

G15. OH + CF₂Br₂ (Halon-1202). The A factor was estimated and a lower limit for E/R was derived using the upper limit for the 298 K rate constant reported by Burkholder et al.¹ in a study using pulsed photolysis-LIF and DF-LMR techniques.

(Table: 02-25, Note: 02-25, Evaluated: 15-10) Back to Table

G16. OH + CF₃Br (Halon-1301). The A-factor was estimated and a lower limit for E/R was derived using the upper limit for the 460 K rate constant reported by Orkin and Khamaganov.³ These parameters were then used to calculate an upper limit for k(298 K). The upper limit for k(298 K) determined by Burkholder et al.¹ using pulsed photolysis-LIF and DF-LMR techniques at room temperature is understandably higher. A less sensitive upper limit was also reported by Le Bras and Combourie.²

(Table: 02-25, Note: 02-25, Evaluated: 15-10) Back to Table

G17. OH + CF₂ClBr (Halon-1211). A lower limit for E/R was derived using an estimated A factor of 1 × 10⁻¹² and the upper limit for the 373 K rate constant reported by Burkholder et al.¹ in a study using pulsed photolysis-LIF and DF-LMR techniques. A less sensitive upper limit was reported by Clyne and Holt.²
G18. OH + CH$_3$CH$_2$Br. The recommended values for k(298 K) and E/R are derived from a fit to the data (T ≤300 K) of Herndon et al. These data suggest a curvature of the Arrhenius plot similar to that found for the OH reaction with CH$_2$CF$_2$. The data of Qiu et al. which include earlier data reported by the same research group in Xing et al.) were not used because they were obtained mainly above room temperature and exhibit a very steep temperature dependence resulting in a value for E/R that is larger than the E/R value obtained from data at T >298 K for the OH reaction with CH$_2$CF$_2$. The k(300 K) value reported by Donaghy et al. seems too low for this reaction when compared with the recommendation for the presumably slower (and better studied) OH reaction with CH$_2$CF$_2$.

G19. OH + CH$_3$BrCH$_3$Br. The recommended value for k(298 K) is an average of the values reported by Howard and Evenson, Arnts et al. and Qiu et al. The recommended value for E/R is taken from the data of Qiu et al.

G20. OH + CH$_2$BrCF$_3$ (Halon-2301). The recommended value for k(298 K) is an average of the 298 K rate constants obtained from Arrhenius fits to the data of Nelson et al. and Orkin and Khamaganov. The recommended value of E/R was derived from a combined fit to both data sets (for T <400 K) after scaling each one to the recommended value of k(298 K).

G21. OH + CHFBrCF$_3$ (Halon-2401). The recommended Arrhenius parameters are derived from a combined fit to the data (below 400 K) of Orkin and Khamaganov and Brown et al., which are in good agreement.
G22. \(\text{OH} + \text{CHClBrCF}_3 \) (Halothane, Halon-2311). The recommended Arrhenius parameters are derived from a fit to the data of Orkin and Khamaganov\(^2\) (for \(T \leq 400 \text{ K} \)). The room temperature value measured by Brown et al.\(^1\) lies somewhat higher than this recommendation but is encompassed within the 2\(\sigma \) confidence limits. (Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

G23. \(\text{OH} + \text{CHFClCF}_2\text{Br} \). The recommended Arrhenius parameters are derived from a fit to the data from the relative rate study of DeMore\(^1\) (recalculated based on the recommended rate constant for the \(\text{OH} + \text{CH}_3\text{CCl}_3 \) reference reaction). (Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

G24. \(\text{OH} + \text{CF}_2\text{BrCF}_2\text{Br} \) (Halon-2402). The A-factor was estimated and a lower limit for E/R was derived by using the upper limit for the rate constant at 460 K reported by Orkin and Khamaganov.\(^2\) These parameters were then used to calculate a recommended upper limit for k(298 K). The upper limit for k(298 K) determined by Burkholder et al.\(^1\) in a study using pulsed photolysis-LIF and DF-LMR techniques at room temperature is understandably higher. (Table: 02-25, Note: 02-25, Evaluated: 15-10) Back to Table

G25. \(\text{OH} + \text{CH}_3\text{BrCH}_2\text{CH}_3 \). The recommended value for k(298 K) is an average of k(298 K) values derived from Arrhenius fits to the data from Donaghy et al.\(^1\) (using cyclopropane as the reference reactant), Teton et al.,\(^6\) Nelson et al.,\(^3\) Herndon et al.,\(^3\) Gilles et al.,\(^2\) and Kozlov et al.\(^4\) Significant curvature in the Arrhenius plot has been observed over the 480 K to 210 K temperature range, due to the three different hydrogen-abstraction reaction channels. These channels have been quantified in the study of Gilles et al. In spite of the noticeable Arrhenius curvature, the data below 300 K can be reasonably well represented by a two-parameter Arrhenius expression. The recommended value of E/R is an average of the E/R values obtained from fits to the data (for \(T \leq 300 \text{ K} \)) from Gilles et al.\(^2\) and Kozlov et al.\(^4\) The data over the complete temperature range (210–480 K) can be represented by the three-parameter equation from Kozlov et al.\(^4\)

\[
k(T) = 3.0 \times 10^{-13} \text{ (T/298)}^{2.8} \exp(+369/T)
\]

(Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

G26. OH + CH₃CHBrCH₃. The recommendation for k(298 K) is an average of the values derived from the absolute rate studies of Herndon et al., Kozlov et al., and Bryukov et al. and from the relative rate study of Donaghy et al. (using cyclopropane as the reference reactant). Significant curvature in the Arrhenius plot has been observed over the 480 K to 210 K temperature range, presumably due to the existence of two different hydrogen-abstraction channels. In spite of the noticeable Arrhenius curvature, the data below 300 K can be reasonably well represented by a two-parameter Arrhenius fit. The recommended value for E/R is an average of the parameters derived from Arrhenius fits to the data (T ≤300 K) of Herndon et al. and Kozlov et al., which are in excellent agreement. The absolute temperature-dependent data of Teton et al. lie systematically higher than those from the three more recent studies. The data over the complete temperature range (210 K – 480 K) can be represented by the three-parameter equation from Kozlov et al.

\[k(T) = 1.66 \times 10^{-13} (T/298)^{2.95} \exp(461/T) \]

(Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

G27. OH + CHBr=CF₂. The recommended Arrhenius parameters are derived from the data of Orkin et al. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G28. OH + CFB=CF₂. The recommended Arrhenius parameters are derived from the data of Orkin et al. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G29. OH + CH₂=CBrCF₃. The recommended Arrhenius parameters are derived from a fit to the data (T <300 K) of Patten et al. Earlier, less extensive data from the same laboratory (Orkin et al.) are in excellent agreement. The room temperature data from the relative rate study of Sulbaek-Andersen et al. are also in very good agreement after recalculation using the latest recommended values for the reference reactions. While a standard Arrhenius parameterization provides a very good representation of the rate constants below room temperature, a pronounced curvature can be seen in the data over the full temperature range. Thus, the data over the complete temperature range (220–370 K) can be represented by the three-parameter equation

\[k(T) = 4.85 \times 10^{-13} (T/298)^{0.92} \exp(613/T) \]

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G30. OH + CH₂=CBrCF₂CF₃. The recommended value for k(298 K) is an average of the values from the absolute rate study of Orkin et al.¹ and the relative rate study of Sulbaek-Andersen et al.² after recalculation using the latest recommended values for the reference reactions. The recommended value for E/R is derived from the data of Orkin et al.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G31. OH + CH₂=CHCF₃CF₂Br. The recommended Arrhenius parameters are derived from the data of Orkin et al.¹

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G32. HO₂ + Br. The recommended value for k(298 K) was obtained from an average of the results of Laverdet et al.,² Toohey et al.,³ and Bedjanian et al.¹ The results of Posey et al.³ were not considered because of problems with the experimental method. The results of Poulet et al.⁴ were also not considered because of complications associated with secondary reactions. The recommendation for the temperature dependence is based on the results of Bedjanian et al.¹

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

G33. HO₂ + BrO. The recommendation for E/R is based on results of the temperature-dependent studies of Elrod et al.,⁵ Li et al.,⁷ and Bedjanian et al.¹ It is assumed that the Bedjanian et al. results supersede those of Larichev et al.⁶ since the same experimental technique was used, and the same research group was involved in both studies. The recommended value of k(298 K) is the mean of the values reported in these studies, as well as those of Cronkhite et al.⁴ and Bloss et al.² The room temperature value of Bridier et al.,³ which was not obtained under pseudo–first-order decay conditions, was not included in derivation of the recommendation. Bedjanian et al. have determined an upper limit of 0.4% for production of HBr and O₃ at 298 K. From a study of the reverse reaction above room temperature, Mellouki et al.⁸ determined by extrapolation that the yield of HBr + O₃ is an insignificant fraction (<0.01%) of the total reaction down to 200 K.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

G34. NO₃ + HBr. The recommendation accepts the upper limit reported by Mellouki et al.² in a study using DF-EPR techniques. This upper limit shows that this reaction is of negligible importance in stratospheric chemistry. Canosa-Mas et al.¹ reported a value that is consistent, within experimental error, with the upper limit of Mellouki et al.

(Table: 90-1, Note: 92-20, Evaluated: 10-6) Back to Table

G35. Cl + CH₃Br. The recommended value for k(298 K) is an average of the results from the absolute rate studies of Gierczak et al.,¹ Kambanis et al.,³ and Piety et al.,⁵ and from the relative rate study of Orlando et al.⁴ The recommended value for E/R is derived from a combined fit to the data from these same four studies restricted to temperatures of 400 K and below after scaling of each data set to the recommended value of k(298 K). Results of the relative rate study of Tschuikow-Roux et al.⁶ were not used in the derivation of the recommended values since they appear to be systematically higher than the results of the other investigations. The products of this reaction are expected to primarily be CH₂Br and HCl. The possible production of CH₃Cl + Br is very small in the atmosphere.² While a standard Arrhenius parameterization provides a very good representation of the rate constants below 400 K, a pronounced curvature can be seen in the data of Piety et al.² particularly above 400 K. The data over the complete temperature range (210–700 K) can be represented by the three-parameter equation

\[k(T) = 4.60 \times 10^{-12} (T/298)^{1.2} \exp(-700/T) \]

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G36. Cl + CH₂Br₂. The recommended value for k(298 K) is an average of the results from the absolute rate studies of Gierczak et al.,¹ and Kambanis et al.,³ and from the three relative rate experiments of Orlando et al.³ The recommended value for E/R is based on a combined fit to the data (T < 300 K) from these same studies after scaling each one to the recommended value for k(298 K). Results of the relative rate study of Tschuikow-Roux et al.⁴ were not used in derivation of the recommended parameters since they are
significantly greater at 298 K and correspond to a temperature dependence substantially stronger than derived from the data of other investigations.

G37. Cl + CHBr₃. The recommended parameters are based on the only reported study of this reaction by Kambanis et al.,¹ which employed a very low pressure reactor and monitored reactants and products using mass spectrometry.

G38. Cl + CH₂CBr. The recommended value for k(298 K) is an average of two relative rate determinations by Bilde et al.¹ (recalculated based on the recommended rate constants for the reference reactions). The temperature dependence is estimated from a comparison with the reactions of Cl with CH₂Cl₂ and CH₂Br₂.

G39. Br + O₃. The results reported for k(298 K) by Clyne and Watson,¹ Leu and DeMore,² Michael et al.,³ Michael and Payne,⁴ Toohey et al.,⁵ Nicovich et al.,⁶ and Ninomiya et al.⁷ are in excellent agreement. The recommended value at 298 K is derived as the mean of these seven values. There is less agreement among reported temperature dependences, with E/R values ranging from ~900 K⁻¹ (Leu and DeMore and Toohey et al.) to ~600 K⁻¹ (Michael et al. and Michael and Payne). The recommended value of E/R is an average of the E/R values from the five temperature-dependent studies (not including Clyne and Watson and Ninomiya et al., which were room temperature only).

G40. Br + H₂O₂. The recommended upper limit for k(298 K) is based on results reported by Toohey et al.² using a discharge flow-resonance fluorescence-laser magnetic resonance technique. Their upper limit determined over the temperature range 298–378 K is consistent with less sensitive upper limits determined by Leu³ and Posey et al.,⁴ using a discharge flow-mass spectrometric technique. The much higher value reported by Heneghan and Benson¹ may result from the presence of excited Br atoms in their very low pressure reactor. The pre-exponential factor was estimated to be consistent with that for the Cl + H₂O₂ rate constant, and the E/R value was fit to the upper limit at 298 K. Mellouki et al.³ have measured the rate of the reverse reaction. (Table: 87-41, Note: 94-26, Evaluated: 10-6) Back to Table

G41. Br + NO₃. The recommended value of k(298 K) is that reported by Mellouki et al.¹ in a study using DF-EPR techniques. (Table: 90-1, Note: 92-20, Evaluated: 10-6) Back to Table

G42. Br + H₂CO. There have been two direct studies of this rate constant as a function of temperature: Nava et al.² using a flash photolysis–resonance fluorescence technique, and Poulet et al.³ using a discharge flow-mass spectrometric technique. These results are in reasonably good agreement. The recommended Arrhenius parameters were derived from a least squares fit to the data reported in these two studies. The higher room temperature value of Le Bras et al.¹ using a discharge flow–EPR technique, has been shown to be in error due to secondary chemistry (Poulet et al.). The relative rate study of Ramacher et al.⁴ is in good agreement with the recommendation. (Table: 09-31, Note: 09-31, Evaluated: 09-31) Back to Table

G43. Br + CH₃=C(CH₃)CHO. A single relative rate study by Sauer et al.² which employed air as the bath gas at P = 1 atm and T = 301 K, has been reported. The process studied by Sauer et al. is not an elementary reaction. The overall rate constant for loss of methacrolein (CH₃=C(CH₃)CHO) via a multi-reaction sequence was measured relative to the overall rate constant for loss of trans-2-butene via a similar multi-reaction sequence. The multi-reaction sequence involves addition of Br to the alkenes to form bromo-alkyl radicals that react with O₃ in competition with decomposition back to Br + alkene reactants. The rate constant for the reference reaction (Br + trans-2-butene) was measured relative to Br + propene, and the relative rate constants...
were put on an absolute scale by measuring the Br + propene rate constant relative to that of the well-studied H-abstraction reaction Br + CH₂CHO.¹ A complicated dependence of the overall rate constant on temperature, pressure, and [O₂] is likely, so the recommended rate constant and associated uncertainty are only appropriate for temperatures close to 301 K, pressures close to 1 atm, and O₂ mixing ratios close to those present in air. Sauer et al. report that, at P = 1 atm N₂ + O₂ and T = 301 K, the observed rate constant increases by nearly a factor of 4 as the O₂ partial pressure increases from 0.027 to 1.00 atm. In 900 mbar of synthetic air at 296 K, the following molar product yields are reported by Sauer et al.: HBr, ~0; CH₂Br, 0.60 ± 0.09; CO, 0.68 ± 0.08; CO₂, 0.10 ± 0.03; H₂CO, 0.08 ± 0.03. Small yields of CH₂OH and CH₂OOH are also reported. Sauer et al. conclude that the dominant reaction pathway is addition of Br to the terminal carbon atom of the double bond. (Table 15-10; Note: 15-10; Evaluated: 15-10) Back to Table

G44. Br + CH₃C(O)CH=CH₂. A single relative rate study by Sauer et al.,² which employed air as the bath gas at P = 1 atm and T = 301 K, has been reported. The process studied by Sauer et al. is not an elementary reaction. The overall rate constant for loss of MVK (CH₃C(O)CH=CH₂) via a multi-reaction sequence was measured relative to the overall rate constant for loss of trans-2-butene via a similar multi-reaction sequence. The multi-reaction sequence involves addition of Br to the alkenes to form bromo-alkyl radicals that react with O₂ in competition with decomposition back to Br + alkene reactants. The rate constant for the reference reaction (Br + trans-2-butene) was measured relative to Br + propene, and the relative rate constants were put on an absolute scale by measuring the Br + propene rate constant relative to that of the well-studied H-abstraction reaction Br + CH₃CHO.¹ A complicated dependence of the overall rate constant on temperature, pressure, and [O₂] is likely, so the recommended rate constant and associated uncertainty are only appropriate for temperatures close to 301 K, pressures close to 1 atm, and O₂ mixing ratios close to those present in air. Sauer et al. report that, at P = 1 atm N₂ + O₂ and T = 301 K, the observed rate constant increases by about a factor of 2.5 as the O₂ partial pressure increases from 0.027 to 0.395 atm. In 900 mbar of synthetic air at 296 K, the following molar product yields are reported by Sauer et al.: HBr, ~0; CH₂Br, 0.61 ± 0.09; H₂CO, 0.39 ± 0.05. Small yields of CH₂OH, CH₂OOH, CH₃C(O)OH, and CH₃C(O)OOH are also reported. Sauer et al. conclude that the dominant reaction pathway is addition of Br to the terminal carbon atom of the double bond. (Table 15-10; Note: 15-10; Evaluated: 15-10) Back to Table

G45. Br + CH₂=CH(CH₂)CH=CH₂ ↔ adduct ↔ products. One relative rate study by Bierbach et al.,¹ which employed air as the bath gas at P = 1 bar and T = 298 K, has been reported. The process studied by Bierbach et al. is not an elementary reaction. The overall rate constant for loss of isoprene via the above multi-reaction sequence was measured relative to the overall rate constant for loss of 1,3-butadiene via a similar multi-reaction sequence; a sequence of relative rate studies were carried out using progressively less reactive reference compounds (2,3-dimethyl-2-butene, trans-2-butene, propene, and acetaldehyde (CH₂CHO)), with all relative rate constants being put on an absolute scale using the well-known rate constant for the elementary H-abstraction reaction of Br with CH₂CHO. A Br + CH₂=CH(CH₂)CH=CH₂ rate constant of 7.4 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹, about a factor of three smaller than the gas kinetic collision rate constant, is reported by Bierbach et al. The uncertainty in the rate constant reported by Bierbach et al. is substantial because (i) five rate constant ratios had to be measured to extract the desired rate constant and (ii) all reactions studied except Br + CH₂CHO occurred via complex reaction sequences. Laine et al.,² have reported a laser flash photolysis–resonance fluorescence study where monitoring of Br kinetics as a function of temperature, pressure, [CH₂=CH(CH₂)CH=CH₂], and [O₂] has allowed elementary rate constants for H abstraction, Br addition, adduct decomposition, and adduct reaction with O₂ to be deduced; these authors also estimated the
temperature dependence of the adduct-O₂ unimolecular decomposition rate constant. The results of Laine et al. suggest that in the atmosphere CH₂=CH(CH₂)CH₂=CH₂ is lost irreversibly on essentially every collision with Br at temperatures below 275 K. At higher temperatures, Laine et al. suggest that Br + CH₂=CH(CH₂)CH₂=CH₂ may be regenerated via unimolecular reactions rapidly enough to compete with bimolecular reactions of the peroxo radical(s) both in the atmosphere and in environmental chambers. Until additional information becomes available, a recommendation that would prove useful for atmospheric modeling, particularly in warmer environments, cannot be made.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G46. Br + CH₂=CH(CH₂)CH₂=CH₂ → CH₂=CH(C=CH₂)CH₂=CH₂ + HBr. The recommendation is based on the results of Laine et al. at temperatures (526–673 K) where adduct decomposition is so rapid that the adduct represents a negligible reservoir for Br. The estimated uncertainty is large because data are only available from a single study and because the long extrapolation to the atmospherically relevant temperature regime (200–300 K) is based on the assumption of Arrhenius behavior. The recommended uncertainty spans all values consistent with the 2σ error limits for A and E/R reported by Laine et al.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G47. Br–CH₂=C(CH₃)CH₂+O₂ → products. The recommendation is based on the results of Laine et al., who extracted kinetic information from observation of the effect of added O₂ on the kinetics of Br equilibration with Br–CH₂=C(CH₃)CH₂=CH₂ following laser flash photolysis of CF₃Br/CH₂=C(CH₃)CH₂/N₂/O₂ mixtures. The obtained rate constant at T = 297 K was found to be independent of pressure over the range 50 to 700 Torr (mostly N₂). There are several possible isomers of Br–CH₂=C(CH₃)CH₂=CH₂; calculations (G4 method) reported by Laine et al. show that the energetically most stable isomer is CH₂BrC≡C(CH₃)CH₂, but there is no experimental information concerning the distribution of isomers formed via Br addition to CH₂=C(CH₃)CH₂=CH₂. The rather large recommended uncertainty results from the somewhat indirect nature of the rate constant determination and the lack of a confirming study.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G48. Br + OClO. The recommended value for k(298 K) is the mean of the values reported by Clyne and Watson and Toohey. In the study of Clyne and Watson, correction for the effect of the rapid reverse reaction was required. The temperature dependence reported by Toohey is accepted but with increased error limits.

(Table: 90-1, Note: 90-1, Evaluated: 10-6) Back to Table

G49. Br + Cl₂O. The recommended Arrhenius parameters are based on results reported by Stevens and Anderson and by Sander and Friedel, which are in good agreement.

(Table: 94-26, Note: 94-26, Evaluated: 10-6) Back to Table

G50. Br + ClO₂. The recommended Arrhenius parameters are those determined in a study by Ingham et al.¹ between 223 K and 298 K using a DF-MS/RF technique. Ingham et al. found that BrCl was the only major Br-containing product from the reaction.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

G51. BrO + O₃. The A factor was estimated and a lower limit for E/R was calculated using an upper limit for $k(298 \text{ K})$ of 2×10^{-17} cm3 molecule$^{-1}$ s$^{-1}$ based on the studies of Rattigan et al.² and Rowley et al.³ The recommended upper limit for $k(298 \text{ K})$ is a factor of 2.5 less than the upper limit of 5×10^{-17} derived by Mauldin et al.¹ Both Rattigan et al.² and Rowley et al.³ report a value of $\sim 2 \times 10^{-18}$ cm3 molecule$^{-1}$ s$^{-1}$ at room temperature for the channel to produce OBrO + O₂.

(Table: 97-4, Note: 15-10, Evaluated: 10-6) Back to Table

G52. BrO + NO. The results of three low pressure mass spectrometric studies (Clyne and Watson,² Ray and Watson,³ and Leu⁴) and a high pressure UV absorption study (Watson et al.⁵), which all used pseudo-first-order conditions, are in excellent agreement at 298 K and are thought to be much more reliable than an earlier low pressure UV absorption study (Clyne and Cruse⁶). The results of the two temperature-dependent studies (Leu and Watson et al.) are in good agreement and both show a small negative temperature dependence. The preferred Arrhenius expression was derived from a least squares fit to all the data reported in the four studies mentioned above. By combining the data reported by Watson et al. with those from the three mass spectrometric studies, it can be shown that this reaction does not exhibit any observable pressure dependence between 1 and 700 Torr total pressure. The temperature dependences of k for the analogous ClO and HO₂ reactions are also negative and are similar in magnitude.

(Table: 82-57, Note: 82-57, Evaluated: 10-6) Back to Table

G53. BrO + NO₃. The recommended value for k(298 K) is the geometric mean of the lower and upper limits reported by Mellouki et al.¹ in a study using DF-EPR techniques. These reported limits are encompassed within the indicated uncertainty limits.

(Table: 90-1, Note: 92-20, Evaluated: 10-6) Back to Table

G54. **BrO + ClO**. Friedl and Sander,\(^4\) using DF/MS techniques, measured the overall rate constant over the temperature range 220–400 K and also over this temperature range determined branching ratios for the reaction channels producing BrCl and OCIO. The same authors in a separate study using flash photolysis–ultraviolet absorption techniques (Sander and Friedl\(^7\)) determined the overall rate constant over the temperature range 220–400 K and pressure range 50–750 Torr and also determined the branching ratio for OCIO production at 220 K and 298 K. The results by these two independent techniques are in excellent agreement, with the overall rate constant showing a negative temperature dependence. Turnipseed et al.\(^9\) using DF/MS techniques also found a negative temperature dependence, reporting measurements of the overall rate constant and direct measurements of the branching ratios for the BrCl and OCIO channels. Several other studies have reported only room temperature values: Tooley and Anderson\(^8\) using DF/RF/LMR techniques, reported room temperature values of the overall rate constant and the branching ratio for OCIO production. They also found evidence for the direct production of BrCl in a vibrationally excited state. Poulet et al.\(^6\) using DF/MS techniques, reported room temperature values of the overall rate constant and branching ratios for OCIO and BrCl production. Overall room temperature rate constant values reported also include a result from the DF/MS study of Clyne and Watson\(^2\) and a very low value derived in the flash photolysis study of Basco and Dogra.\(^1\) The recommended Arrhenius expressions for the individual reaction channels are taken from the studies of Friedl and Sander\(^1\) and Turnipseed et al.\(^9\). These studies contain the most comprehensive sets of rate constant and branching ratio data. The overall rate constants reported in these two studies are in good agreement (20%) at room temperature and in excellent agreement at stratospheric temperatures. Both studies report that OCIO production by channel (1) accounts for 60% of the overall reaction at 200 K and that the BrCl yield by channel (3) is about 8%, relatively independent of temperature. The recommended expressions are consistent with the body of data from all older studies except those of Hills et al.\(^5\) and Basco and Dogra.\(^1\) Recent results from Ferracci and Rowley\(^4\) using laser flash photolysis–absorption spectroscopy to measure the overall rate constant and branching ratio of the OCIO channel are substantially higher than the recommended values and include a positive temperature dependence for the branching ratio of the OCIO channel, in disagreement with past studies. Secondary chemistry is likely the cause of the discrepancies.

(Table:09-31, Note: 15-10, Evaluated: 09-31) **Back to Table**

G55. **BrO + BrO**. Measurements of the overall rate constant can be divided into categories—those in which BrO was monitored by UV absorption and those in which BrO was monitored by mass spectrometry. Gilles et al.\(^3\) re-analyzed the results of the UV absorption studies and scaled the reported values of the rate constant to the UV absorption cross sections reported in their paper. When scaled in this manner, the room temperature rate constant values reported in the UV absorption studies (Sander and Watson,\(^11\) Mauldin et al., Bridier et al.,\(^1\) Rowley et al.,\(^10\) Laszlo et al.,\(^8\) and Gilles et al.) come into very good agreement among themselves and also with results of the mass spectrometric studies of Clyne and Watson\(^2\) and Lancar et al.\(^7\) This provides the basis for the recommended value for k(298 K). The temperature dependence is based on results of Sander...
and Watson, Turnipseed et al.12 and Gilles et al. The results of Harwood et al.5 are in good agreement with the recommendation.

There are two possible bimolecular channels for this reaction: \(\text{BrO} + \text{BrO} \rightarrow 2\text{Br} + \text{O}_2 \) (k\textsubscript{1}) and \(\text{BrO} + \text{BrO} \rightarrow \text{Br}_2 + \text{O}_2 \) (k\textsubscript{2}). The partitioning of the total rate constant into these two components, k\textsubscript{1} and k\textsubscript{2}, has been determined at room temperature by Sander and Watson.11 Turnipseed et al.12 and Lancar et al.7 by Jaffe and Mainquist6 from 258 to 333 K, by Cox et al.3 from 278 to 348 K, and by Mauldin et al.6 from 220 to 298 K. All are in agreement that k\textsubscript{1}/k\textsubscript{2} = 0.85 ± 0.03 at 298 K. From the values of k\textsubscript{1}/k\textsubscript{2} = 0.85 at 298 K (all studies) and 0.68 at 220 K (Mauldin et al. and Cox et al. extrapolated), one can derive the temperature-dependent expression k\textsubscript{1}/k\textsubscript{2} = 1.60 \exp(-190/T). From the recommended Arrhenius expression for the overall rate constant k = k\textsubscript{1} + k\textsubscript{2} and the expression for the branching ratio k\textsubscript{1}/k\textsubscript{2}, one can derive the following Arrhenius expressions for the individual reaction channels:

\[
\begin{align*}
k_1 &= 2.4 \times 10^{-12} \exp(40/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \\
k_2 &= 2.8 \times 10^{-14} \exp(860/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}
\end{align*}
\]

\textbf{(Table: 97-4, Note: 97-4, Evaluated: 10-6) Back to Table}

G56. OBrO + O\textsubscript{3} The upper limit for k(298 K) was determined by Li et al.1 using DF/MS.

\textbf{(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table}

G57. OBrO + NO The recommended Arrhenius parameters are those determined by Li et al.1 using DF/MS to monitor the decay of OBrO in excess NO. A possible complication in these experiments exists from the secondary reaction of Br with BrO.

\textbf{(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table}

G58. CH\textsubscript{3}BrO\textsubscript{2} + NO The recommended value for k(298 K) is based on the 298 K measurement of Sehested et al.,4 who used pulsed radiolysis with UV absorption detection of the NO\textsubscript{2} product formation rate. The temperature dependence is estimated based on analogy to similar RO\textsubscript{2} + NO reactions. The CH\textsubscript{3}BrO product
has been shown to undergo rapid unimolecular decomposition to yield \(\text{CH}_2\text{O} + \text{Br} \) by Chen et al.\(^1\) and Orlando et al.\(^3\) The domination of this channel over the reaction of \(\text{CH}_2\text{BrO} \) with \(\text{O}_2 \) is consistent with the fate of other alkoxy radicals (Chen et al. and Orlando et al.), but contradicts the earlier result of Nielson et al.\(^2\)

(Table: 94-26, Note: 97-4, Evaluated: 97-4) Back to Table

1.12.3 Bibliography – BrOx Reactions

1-299

1-300

Kukui, A.; Kirchner, U.; Benter, T.; Schindler, R. N. A kinetic investigation of HOBr reactions with Cl²(P), O¹(P) and OH(P'). The reaction of BrCl with OH(P'). *Ber. Bunsenges. Phys. Chem.* **1996**, *100*, 455-461.

1.13 \[\text{IO}_x \text{ Reactions} \]

1.13.1 Table 1H: \(\text{IO}_x \) Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K) (^{a})</th>
<th>A-Factor</th>
<th>(E/R)</th>
<th>(k(298 \text{ K})^{b})</th>
<th>(f(298 \text{ K})^{c})</th>
<th>(g)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O} + \text{I}_2 \rightarrow \text{IO} + \text{I})</td>
<td>298</td>
<td>(1.4 \times 10^{-10})</td>
<td>0</td>
<td>(1.4 \times 10^{-10})</td>
<td>1.4</td>
<td>250</td>
<td>H1</td>
</tr>
<tr>
<td>(\text{O} + \text{IO} \rightarrow \text{O}_2 + \text{I})</td>
<td>298</td>
<td>(1.2 \times 10^{-10})</td>
<td>2.0</td>
<td>(1.4 \times 10^{-10})</td>
<td>2.0</td>
<td>H2</td>
<td></td>
</tr>
<tr>
<td>(\text{OH} + \text{I}_2 \rightarrow \text{HOI} + \text{I})</td>
<td>294–298</td>
<td>(1.8 \times 10^{-10})</td>
<td>2.0</td>
<td>(1.8 \times 10^{-10})</td>
<td>2.0</td>
<td>H3</td>
<td></td>
</tr>
<tr>
<td>(\text{OH} + \text{HI} \rightarrow \text{H}_2\text{O} + \text{I})</td>
<td>298</td>
<td>(3.0 \times 10^{-11})</td>
<td>2.0</td>
<td>(3.0 \times 10^{-11})</td>
<td>2.0</td>
<td>H4</td>
<td></td>
</tr>
<tr>
<td>(\text{OH} + \text{CH}_3\text{I} \rightarrow \text{H}_2\text{O} + \text{CH}_3\text{I})</td>
<td>271–423</td>
<td>(2.9 \times 10^{-12})</td>
<td>1100</td>
<td>(7.2 \times 10^{-14})</td>
<td>1.5</td>
<td>300</td>
<td>H5</td>
</tr>
<tr>
<td>(\text{OH} + \text{CF}_3\text{I} \rightarrow \text{HOI} + \text{CF}_3)</td>
<td>271–450</td>
<td>(2.5 \times 10^{-11})</td>
<td>2070</td>
<td>(2.4 \times 10^{-14})</td>
<td>1.3</td>
<td>200</td>
<td>H6</td>
</tr>
<tr>
<td>(\text{HO}_2 \rightarrow \text{HI} + \text{O}_2)</td>
<td>283–353</td>
<td>(1.5 \times 10^{-11})</td>
<td>1090</td>
<td>(3.8 \times 10^{-13})</td>
<td>2.0</td>
<td>500</td>
<td>H7</td>
</tr>
<tr>
<td>(\text{HO}_2 + \text{IO} \rightarrow \text{products})</td>
<td>273–373</td>
<td>(1.3 \times 10^{-11})</td>
<td>–570</td>
<td>(8.8 \times 10^{-11})</td>
<td>1.15</td>
<td>100</td>
<td>H8</td>
</tr>
<tr>
<td>(\text{NO}_3 + \text{HI} \rightarrow \text{HNO}_3 + \text{I})</td>
<td>(See Note)</td>
<td>840</td>
<td>(1.2 \times 10^{12})</td>
<td>2.0</td>
<td>200</td>
<td>H9</td>
<td></td>
</tr>
<tr>
<td>(\text{Cl} + \text{IO} \rightarrow \text{Cl} + \text{HCl})</td>
<td>273–363</td>
<td>(2.9 \times 10^{11})</td>
<td>1000</td>
<td>(1.0 \times 10^{12})</td>
<td>1.5</td>
<td>250</td>
<td>H10</td>
</tr>
<tr>
<td>(\text{I} + \text{O}_2 \rightarrow \text{IO} + \text{O}_2)</td>
<td>231–337</td>
<td>(2.3 \times 10^{11})</td>
<td>870</td>
<td>(1.2 \times 10^{12})</td>
<td>1.2</td>
<td>200</td>
<td>H11</td>
</tr>
<tr>
<td>(\text{I} + \text{NO} \rightarrow \text{INO})</td>
<td>(See Table 2-1)</td>
<td>870</td>
<td>(1.2 \times 10^{12})</td>
<td>1.2</td>
<td>200</td>
<td>H11</td>
<td></td>
</tr>
<tr>
<td>(\text{I} + \text{NO}_2 \rightarrow \text{INO}_2)</td>
<td>(See Table 2-1)</td>
<td>870</td>
<td>(1.2 \times 10^{12})</td>
<td>1.2</td>
<td>200</td>
<td>H11</td>
<td></td>
</tr>
<tr>
<td>(\text{I} + \text{BrO} \rightarrow \text{IO} + \text{Br})</td>
<td>298</td>
<td>(1.2 \times 10^{-11})</td>
<td>2.0</td>
<td>(1.2 \times 10^{-11})</td>
<td>2.0</td>
<td>H12</td>
<td></td>
</tr>
<tr>
<td>(\text{IO} + \text{NO} \rightarrow \text{I} + \text{NO}_2)</td>
<td>240–370</td>
<td>(9.1 \times 10^{-12})</td>
<td>–240</td>
<td>(2.0 \times 10^{-11})</td>
<td>1.2</td>
<td>150</td>
<td>H13</td>
</tr>
<tr>
<td>(\text{IO} + \text{NO}_2 \rightarrow \text{IONO}_2)</td>
<td>(See Table 2-1)</td>
<td>870</td>
<td>(1.2 \times 10^{12})</td>
<td>1.2</td>
<td>200</td>
<td>H11</td>
<td></td>
</tr>
<tr>
<td>(\text{IO} + \text{ClO} \rightarrow \text{products})</td>
<td>200–362</td>
<td>(5.1 \times 10^{-12})</td>
<td>–280</td>
<td>(1.3 \times 10^{-11})</td>
<td>2.0</td>
<td>200</td>
<td>H14</td>
</tr>
<tr>
<td>(\text{IO} + \text{BrO} \rightarrow \text{products})</td>
<td>204–388</td>
<td>(6.9 \times 10^{-11})</td>
<td>1.5</td>
<td>(6.9 \times 10^{-11})</td>
<td>1.5</td>
<td>200</td>
<td>H15</td>
</tr>
<tr>
<td>(\text{IO} + \text{IO} \rightarrow \text{products})</td>
<td>250–373</td>
<td>(1.5 \times 10^{-11})</td>
<td>–500</td>
<td>(8.0 \times 10^{-11})</td>
<td>1.5</td>
<td>500</td>
<td>H16</td>
</tr>
<tr>
<td>(\text{INO} + \text{INO} \rightarrow \text{I}_2 + 2\text{NO})</td>
<td>320–450</td>
<td>(8.4 \times 10^{-11})</td>
<td>2620</td>
<td>(1.3 \times 10^{-14})</td>
<td>2.5</td>
<td>600</td>
<td>H17</td>
</tr>
<tr>
<td>(\text{INO}_2 + \text{INO}_2 \rightarrow \text{I}_2 + 2\text{NO}_2)</td>
<td>320–450</td>
<td>(2.9 \times 10^{-11})</td>
<td>2600</td>
<td>(4.7 \times 10^{-15})</td>
<td>3.0</td>
<td>1000</td>
<td>H18</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6.

\(^{a} \) Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.

\(^{b} \) Units are cm\(^3\) molecule\(^{-1}\) s\(^{-1}\).

\(^{c} \) \(f(298 \text{ K}) \) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

\[
\text{Uncertainty at temperature } T = f(T) = f(298 \text{ K}) \times \left(\frac{T}{298} \right)^{m},
\]

where \(m \) is the slope of the Arrhenius plot.
\[
f(T) = f(298 \text{ K}) \exp \left| g \left(\frac{1}{T} - \frac{1}{298} \right) \right|
\]

Note that the exponent is an absolute value.
1.13.2 Notes: IO\textsubscript{x} Reactions

H1. O + I\textsubscript{2}. Based on the room temperature data of Ray and Watson1 and Laszlo et al.,1 The molecular beam study of Parrish and Herschbach2 suggests a zero activation energy, consistent with the near gas kinetic value of k at 298 K.

(Table: 97-4, Note: 97-4, Evaluated: 97-4) \[\text{Back to Table} \]

H2. O + IO. Based on results of Laszlo et al.,1 the only reported study of this rate constant. This value was derived from modeling a system in which the concentrations of I\textsubscript{2} and IO were monitored simultaneously. This rate constant is a factor of 4 greater than the values for the corresponding reactions of O with CIO and BrO.

(Table: 97-4, Note: 97-4, Evaluated: 97-4) \[\text{Back to Table} \]

H3. OH + I\textsubscript{2}. Based on the data of Loewenstein and Anderson2 and Jenkin et al.,1 \[\text{Back to Table} \]

H4. OH + HI. Based on the data of Lancar et al.,1 and MacLeod et al.,2 \[\text{Back to Table} \]

H5. OH + CH\textsubscript{3}I. The recommended rate expression is derived from a fit to the data of Brown et al.,1 the only reported study of this reaction.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) \[\text{Back to Table} \]

H6. OH + CF\textsubscript{3}I. The recommended rate expression is derived from a fit to the data of Gilles et al.,4 \[\text{Back to Table} \]

H7. HO₂ + I. Based on the data of Jenkin et al., the only reported study of this reaction.

H8. HO₂ + IO. The recommended value for k(298 K) is the average of values obtained from the Arrhenius expressions reported by Cronkhit et al. (274–373 K) and Knight and Crowley (273–353 K). The recommended room temperature uncertainty limits encompass the results of Maguin et al. and Canosa-Mas et al. and overlap with the uncertainty interval reported by Jenkin et al. The recommended E/R is obtained from a weighted fit (1/k² weighting factors) of the combined data of Cronkithe et al. and Knight and Crowley (one average rate constant per temperature studied) to the Arrhenius equation after scaling each individual set of rate constants by a constant factor so that the Arrhenius expressions describing the individual data sets each give the recommended k(298 K). In low pressure (~1 Torr He) flow tube studies, both Knight and Crowley and Maguin et al. observe HOI as a reaction product, but a quantitative HOI yield has not been reported. Computational results by Drougas and Kosmas confirm the existence of energetically favorable pathways to HOI + O₂(²Σg) products via both HOOIO and HOOII intermediates. Drougas and Kosmas also predict that HOOIO can isomerize to the very stable HOIO₂ species (bound by ~220 kJ mol⁻¹ relative to IO + HO₂). The predicted transition states for HOOIO isomerization and dissociation are approximately equal in energy to each other and to the HO₂ + IO reactants.

H9. NO₃ + HI. No recommendation is given, based on the potential for severe complications resulting from secondary chemistry in the only reported study of the reaction (Lancer et al.).

H10. Cl + CH₃I. This reaction, thought to be a simple H abstraction reaction, has been shown by Ayhens et al. to be quite complex. At low temperatures, Cl atom reversibly adds to CH₃I to form CH₃ICl. Thus, there are at least two channels for this reaction,

Cl + CH₃I → CH₃I + HCl
Cl + CH₃I ↔ CH₃ICl

The rate coefficient for channel (a) has been measured by Ayhens et al. above 364 K, Kambanis et al. between 273 and 363 K, Bilde and Wallington at 298 K, and Cotter et al. at 298 K. The recommendation is based on these studies.

Under atmospheric conditions reaction (b) to form the adduct is about two orders of magnitude faster than reaction (a). However, the fate of the CH₃ICl adduct in the atmosphere is unclear. Its lifetime, based on the
studies of Ayhens et al., can be as long as a few seconds at 200 K and a few hundred Torr pressure. Therefore, it is possible that it could react with O$_3$ or be photolyzed. At 298 K, in one atmosphere of O$_2$, it appears that the overall fate of the CH$_3$I is to decompose back to the reactants, based on the work of Bilde and Wallington.2 Therefore, if O$_2$ were to react with CH$_3$I, this rate coefficient has to be less than about 10$^{-17}$ cm3 molecule$^{-1}$ s$^{-1}$, using the rate coefficient for its decomposition measured by Ayhens et al. If the rate coefficient for CH$_3$I + O$_2$ were to remain approximately the same, i.e., 10$^{-17}$ cm3 molecule$^{-1}$ s$^{-1}$, at lower temperatures, the possible loss of CH$_3$I via reaction with O$_2$ cannot be ignored. Further, the possible atmospheric photolysis of CH$_3$I may be important if it has a J-value greater than 0.1 s$^{-1}$.

There is a third possible product channel for this reaction to yield CH$_3$Cl + I (Goliff and Rowlandd). Based on the results of Bilde and Wallington and Goliff and Rowland, we recommend that the rate coefficient for the Cl + CH$_3$I → CH$_3$Cl + I reaction to be less than 0.2 k$_a$ at 298 K. Since such a reaction is likely to have a significant barrier in the gas phase, even though it is exothermic by ~14 kcal mol$^{-1}$ at 298 K, the branching ratio for the production of CH$_3$I and I in the atmosphere will be likely less than that at 298 K.

H11. I + O$_3$. Based on the room temperature data of Jenkin and Cox2 and Sander,3 and the temperature dependent data of Buben et al.1 and Turnipseed et al.4 (Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

H12. I + BrO. Based on results of Laszlo et al.,1 the only reported study of this rate constant. This value was derived from modeling the simultaneous decay of BrO and IO in a Br$_2$/I$_2$/N$_2$O system. (Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

H13. IO + NO. Based on the data of Ray and Watson,2 Daykin and Wine,1 and Turnipseed et al.3 (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

H14. IO + ClO. Based on results of Turnipseed et al., the only reported study of this reaction. These authors also reported the product yield for channel(s) yielding an I atom to be 0.8 ± 0.2.

H15. IO + BrO. Based primarily on results of Laszlo et al. Gilles et al. reported the following Arrhenius expression for non-iodine atom producing channels: 2.5 × 10^-11 exp(260/T) cm^3 molecule^-1 s^-1. They also reported a branching ratio of <0.35 for channels producing I atoms. From their data they could constrain the value of the overall rate constant to be: 6 × 10^-11 < k < 10 × 10^-11 cm^3 molecule^-1 s^-1, the range of which is consistent with the results of Laszlo et al.

H16. IO + IO. Sander reported a negative temperature dependence over the temperature range 250–373 K for the overall rate constant and for the absorption cross section at 427.2 nm. Harwood et al. reported that the overall rate constant and the absorption cross section to be independent of temperature from 253 to 320 K. The recommended room temperature value is the average of the values reported by Sander, Harwood et al., and Laszlo et al. The recommended temperature dependence is the average of the values reported by Sander and by Harwood et al., with an uncertainty sufficient to encompass the two reported values. The A-factor has been fitted to the recommended room temperature rate constant and the recommended temperature dependence. The overall rate constant for the decay of IO in the absence of ozone has been found to be independent of pressure by Sander, Laszlo et al., and Harwood et al. A comparison of the overall rate observed in excess ozone to that in the absence of ozone was interpreted by Sander and by Harwood et al. to imply that formation of the dimer I_2O_2 is the dominant reaction channel in the IO self-reaction.

H17. INO + INO. Based on the data of Van den Bergh and Troe.

H18. INO_2 + INO_2. Based on the data of van den Bergh and Troe.

1.13.3 Bibliography – IOx Reactions

1-310

1.14 SO$_x$ Reactions

1.14.1 Table II: SO$_x$ Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K) a</th>
<th>A-Factor</th>
<th>E/R</th>
<th>$k(298 \text{ K})^b$</th>
<th>$f(298 \text{ K})^c$</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O + SH \rightarrow SO + H</td>
<td>295</td>
<td></td>
<td></td>
<td>1.6×10$^{-10}$</td>
<td>5.0</td>
<td></td>
<td>I1</td>
</tr>
<tr>
<td>O + CS \rightarrow CO + S</td>
<td>150–305</td>
<td>2.7×10$^{-10}$</td>
<td>760</td>
<td>2.1×10$^{-11}$</td>
<td>1.1</td>
<td>250</td>
<td>I2</td>
</tr>
<tr>
<td>O + H$_2$S \rightarrow OH + SH</td>
<td>205–502</td>
<td>9.2×10$^{-12}$</td>
<td>1800</td>
<td>2.2×10$^{-14}$</td>
<td>1.7</td>
<td>550</td>
<td>I3</td>
</tr>
<tr>
<td>O + OCS \rightarrow CO + SO</td>
<td>239–808</td>
<td>2.1×10$^{-11}$</td>
<td>2200</td>
<td>1.3×10$^{-14}$</td>
<td>1.15</td>
<td>150</td>
<td>I4</td>
</tr>
<tr>
<td>O + CS$_2$ \rightarrow CS + SO</td>
<td>218–543</td>
<td>3.2×10$^{-11}$</td>
<td>650</td>
<td>3.6×10$^{-12}$</td>
<td>1.2</td>
<td>150</td>
<td>I5</td>
</tr>
<tr>
<td>O + SO$_2$ M \rightarrow SO$_3$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O + CH$_3$SCH$_3$ \rightarrow CH$_3$SO + CH$_3$</td>
<td>252–557</td>
<td>1.3×10$^{-11}$</td>
<td>−410</td>
<td>5.0×10$^{-11}$</td>
<td>1.1</td>
<td>100</td>
<td>I6</td>
</tr>
<tr>
<td>O + CH$_3$SSCH$_3$ \rightarrow CH$_3$SO + CH$_3$S</td>
<td>270–571</td>
<td>3.9×10$^{-11}$</td>
<td>−290</td>
<td>1.03×10$^{-10}$</td>
<td>1.1</td>
<td>100</td>
<td>I7</td>
</tr>
<tr>
<td>O + CH$_3$S(O)CH$_3$ \rightarrow products</td>
<td>266–383</td>
<td>2.0×10$^{-12}$</td>
<td>−440</td>
<td>8.8×10$^{-12}$</td>
<td>1.2</td>
<td>200</td>
<td>I8</td>
</tr>
<tr>
<td>O$_3$ \rightarrow H$_2$S \rightarrow products</td>
<td>~298</td>
<td></td>
<td></td>
<td><2.0×10$^{-20}$</td>
<td></td>
<td></td>
<td>I9</td>
</tr>
<tr>
<td>O$_3$ \rightarrow CH$_3$SCH$_3$ \rightarrow products</td>
<td>301</td>
<td></td>
<td></td>
<td><1.5×10$^{-19}$</td>
<td></td>
<td></td>
<td>I10</td>
</tr>
<tr>
<td>O$_3$ \rightarrow SO$_2$ \rightarrow SO$_3$ + O$_2$</td>
<td>300</td>
<td>3.0×10$^{-12}$</td>
<td>>7000</td>
<td><2.0×10$^{-22}$</td>
<td></td>
<td></td>
<td>I11</td>
</tr>
<tr>
<td>O$_3$ \rightarrow SO$_2$F$_2$ \rightarrow products</td>
<td>294–296</td>
<td></td>
<td></td>
<td><1.0×10$^{-23}$</td>
<td></td>
<td></td>
<td>I12</td>
</tr>
<tr>
<td>OH + H$_2$S \rightarrow SH + H$_2$O</td>
<td>228–518</td>
<td>6.1×10$^{-12}$</td>
<td>75</td>
<td>4.7×10$^{-12}$</td>
<td>1.1</td>
<td>75</td>
<td>I13</td>
</tr>
<tr>
<td>OH + OCS \rightarrow products</td>
<td>255–517</td>
<td>7.2×10$^{-14}$</td>
<td>1070</td>
<td>2.0×10$^{-15}$</td>
<td>1.5</td>
<td>200</td>
<td>I14</td>
</tr>
<tr>
<td>OH + CS$_2$ \rightarrow SH + OCS</td>
<td>251–520</td>
<td></td>
<td></td>
<td><2.0×10$^{-15}$</td>
<td></td>
<td></td>
<td>I15</td>
</tr>
<tr>
<td>OH + CS$_2$ \rightarrow CS$_2$OH + O$_2$ \rightarrow products</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td>1.2×10$^{-12}$ at P$_{air}$ = 1 atm</td>
<td>1.25</td>
<td></td>
<td>I16</td>
</tr>
<tr>
<td>CS$_2$OH + O$_2$ \rightarrow products</td>
<td>249–348</td>
<td>2.8×10$^{-14}$</td>
<td>0</td>
<td>2.8×10$^{-14}$</td>
<td>1.2</td>
<td>100</td>
<td>I17</td>
</tr>
<tr>
<td>OH + CH$_3$SH \rightarrow CH$_3$S + H$_2$O</td>
<td>244–430</td>
<td>9.9×10$^{-12}$</td>
<td>−360</td>
<td>3.3×10$^{-11}$</td>
<td>1.07</td>
<td>75</td>
<td>I18</td>
</tr>
<tr>
<td>OH + CH$_3$SCH$_3$ \rightarrow H$_2$O + CH$_3$SCH$_3$</td>
<td>248–573</td>
<td>1.2×10$^{-11}$</td>
<td>280</td>
<td>4.7×10$^{-12}$</td>
<td>1.1</td>
<td>100</td>
<td>I19</td>
</tr>
<tr>
<td>OH + CH$_3$SCH$_3$ \leftrightarrow (CH$_3$)$_2$SOH + O$_2$ \rightarrow products</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td>2.0×10$^{-12}$ at P$_{air}$ = 1 atm</td>
<td>1.2</td>
<td></td>
<td>I20</td>
</tr>
<tr>
<td>(CH$_3$)$_2$SOH + O$_2$ \rightarrow products</td>
<td>222–297</td>
<td>8.5×10$^{-13}$</td>
<td>0</td>
<td>8.5×10$^{-13}$</td>
<td>1.25</td>
<td>0</td>
<td>I21</td>
</tr>
<tr>
<td>OH + CH$_3$SCH$_2$Cl \rightarrow products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.5×10$^{-12}$</td>
<td>2.0</td>
<td></td>
<td>I22</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})$</td>
<td>$f(298 \text{ K})$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>OH + CH$_3$SSCH$_3$ \rightarrow products</td>
<td>249–368</td>
<td>6.0\times10$^{-11}$</td>
<td>-400</td>
<td>2.3\times10$^{-10}$</td>
<td>1.2</td>
<td>200</td>
<td>![123]</td>
</tr>
<tr>
<td>OH + CH$_3$S(O)CH$_3$ \rightarrow products</td>
<td>298–401</td>
<td>6.1\times10$^{-12}$</td>
<td>-800</td>
<td>8.9\times10$^{-11}$</td>
<td>1.2</td>
<td>500</td>
<td>![124]</td>
</tr>
<tr>
<td>OH + CH$_3$S(O)OH \rightarrow products</td>
<td>298</td>
<td>9.0\times10$^{-11}$</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td>![125]</td>
</tr>
<tr>
<td>OH + CH$_3$SO$_3$H \rightarrow CH$_3$SO$_3$ + H$_2$O</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>![126]</td>
</tr>
<tr>
<td>OH + CH$_3$SC$_2$H$_5$ \rightarrow H-abstraction rxns.</td>
<td>242–299</td>
<td>8.0\times10$^{-12}$</td>
<td>0</td>
<td>8.0\times10$^{-12}$</td>
<td>1.1</td>
<td>50</td>
<td>![127]</td>
</tr>
<tr>
<td>OH + CH$_3$SCH$_3$ \rightarrow CH$_3$S(OH)C$_2$H$_5$ \rightarrow O$_2$ products</td>
<td>242–346</td>
<td>(See Note)</td>
<td></td>
<td>2.3\times10$^{-12}$ at $P_{\text{air}} = 1$ atm</td>
<td>1.3</td>
<td></td>
<td>![128]</td>
</tr>
<tr>
<td>CH$_3$S(OH)C$_2$H$_5$ + O$_2$ \rightarrow products</td>
<td>242–296</td>
<td>1.0\times10$^{-12}$</td>
<td>0</td>
<td>1.0\times10$^{-12}$</td>
<td>1.5</td>
<td>0</td>
<td>![129]</td>
</tr>
<tr>
<td>OH + S \rightarrow H + SO</td>
<td>298</td>
<td></td>
<td></td>
<td>6.6\times10$^{-11}$</td>
<td>3.0</td>
<td></td>
<td>![130]</td>
</tr>
<tr>
<td>OH + SO \rightarrow H + SO$_2$</td>
<td>295–703</td>
<td></td>
<td></td>
<td>2.7\times10$^{-11}$</td>
<td>8.3\times10$^{-11}$</td>
<td>1.2</td>
<td>150</td>
</tr>
<tr>
<td>OH + SO$_2$ \rightarrow HOSO$_2$ (See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + SO$_2$F$_2$ \rightarrow products</td>
<td>294–333</td>
<td></td>
<td></td>
<td><1.0\times10$^{-16}$</td>
<td></td>
<td></td>
<td>![132]</td>
</tr>
<tr>
<td>HO$_2$ + H$_2$S \rightarrow products</td>
<td>298</td>
<td></td>
<td></td>
<td><3.0\times10$^{-15}$</td>
<td></td>
<td></td>
<td>![133]</td>
</tr>
<tr>
<td>HO$_2$ + CH$_3$SH \rightarrow products</td>
<td>298</td>
<td></td>
<td></td>
<td><4.0\times10$^{-15}$</td>
<td></td>
<td></td>
<td>![133]</td>
</tr>
<tr>
<td>HO$_2$ + CH$_3$SCH$_3$ \rightarrow products</td>
<td>298</td>
<td></td>
<td></td>
<td><5.0\times10$^{-15}$</td>
<td></td>
<td></td>
<td>![133]</td>
</tr>
<tr>
<td>HO$_2$ + SO$_2$ \rightarrow products</td>
<td>295–300</td>
<td></td>
<td></td>
<td><1.0\times10$^{-18}$</td>
<td></td>
<td></td>
<td>![134]</td>
</tr>
<tr>
<td>NO$_2$ + SO$_2$ \rightarrow products</td>
<td>298</td>
<td></td>
<td></td>
<td><2.0\times10$^{-26}$</td>
<td></td>
<td></td>
<td>![135]</td>
</tr>
<tr>
<td>NO$_3$ + H$_2$S \rightarrow products</td>
<td>298</td>
<td></td>
<td></td>
<td><8.0\times10$^{-16}$</td>
<td></td>
<td></td>
<td>![136]</td>
</tr>
<tr>
<td>NO$_3$ + OCS \rightarrow products</td>
<td>297</td>
<td></td>
<td></td>
<td><1.0\times10$^{-16}$</td>
<td></td>
<td></td>
<td>![137]</td>
</tr>
<tr>
<td>NO$_3$ + CS$_2$ \rightarrow products</td>
<td>297–298</td>
<td></td>
<td></td>
<td><4.0\times10$^{-16}$</td>
<td></td>
<td></td>
<td>![138]</td>
</tr>
<tr>
<td>NO$_3$ + CH$_3$SH \rightarrow products</td>
<td>254–367</td>
<td></td>
<td></td>
<td>4.4\times10$^{-13}$</td>
<td>−210</td>
<td>8.9\times10$^{-13}$</td>
<td>1.25</td>
</tr>
<tr>
<td>NO$_3$ + CH$_3$SCH$_3$ \rightarrow CH$_3$SCH$_2$ + HNO$_3$</td>
<td>256–376</td>
<td></td>
<td></td>
<td>1.9\times10$^{-13}$</td>
<td>−530</td>
<td>1.1\times10$^{-12}$</td>
<td>1.1</td>
</tr>
<tr>
<td>NO$_3$ + CH$_3$SSCH$_3$ \rightarrow products</td>
<td>280–382</td>
<td></td>
<td></td>
<td>5.0\times10$^{-13}$</td>
<td>−60</td>
<td>6.1\times10$^{-13}$</td>
<td>1.25</td>
</tr>
<tr>
<td>NO$_3$ + CH$_3$S(O)CH$_3$ \rightarrow products</td>
<td>295–298</td>
<td></td>
<td></td>
<td>2.9\times10$^{-13}$</td>
<td>1.6</td>
<td></td>
<td>![142]</td>
</tr>
<tr>
<td>NO$_3$ + CH$_3$SC$_2$H$_5$ \rightarrow products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.5\times10$^{-12}$</td>
<td>1.5</td>
<td></td>
<td>![143]</td>
</tr>
<tr>
<td>NO$_3$ + SO$_2$ \rightarrow products</td>
<td>298–303</td>
<td></td>
<td></td>
<td><7.0\times10$^{-21}$</td>
<td></td>
<td></td>
<td>![144]</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})^a$</td>
<td>$f(298 \text{ K})^c$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>$\text{N}_2\text{O}_5 + \text{CH}_3\text{SCH}_3 \rightarrow \text{products}$</td>
<td>296</td>
<td></td>
<td></td>
<td>$<1.0 \times 10^{-17}$</td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>$\text{CH}_3\text{O}_2 + \text{SO}_2 \rightarrow \text{products}$</td>
<td>298–423</td>
<td></td>
<td></td>
<td>$<5.0 \times 10^{-17}$</td>
<td></td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>$\text{CH}_2\text{OO} + \text{SO}_2 \rightarrow \text{products}$</td>
<td>293–298</td>
<td></td>
<td></td>
<td>3.8×10^{-11}</td>
<td>1.1</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>anti-CH$_3$CHOO + SO$_2$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.2×10^{-10}</td>
<td>1.2</td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>syn-CH$_3$CHOO + SO$_2$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.65×10^{-11}</td>
<td>1.1</td>
<td></td>
<td>149</td>
</tr>
<tr>
<td>F + CH$_3$SCH$_3$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.4×10^{-10}</td>
<td>2.0</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Cl + H$_2$S → HCl + SH</td>
<td>202–430</td>
<td>3.7×10^{-11}</td>
<td>-210</td>
<td>7.4×10^{-11}</td>
<td>1.2</td>
<td>100</td>
<td>151</td>
</tr>
<tr>
<td>Cl + SO$_2$F$_2$ → products</td>
<td>296–333</td>
<td></td>
<td></td>
<td>$<1.5 \times 10^{-18}$</td>
<td></td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Cl + OCS → products</td>
<td>298</td>
<td></td>
<td></td>
<td>$<1.0 \times 10^{-16}$</td>
<td></td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>Cl + CS$_2$ → products</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS$_2$Cl + O$_2$ → products</td>
<td>230–298</td>
<td></td>
<td></td>
<td>$<2.5 \times 10^{-16}$</td>
<td></td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>Cl + CH$_3$SH → CH$_3$S + HCl</td>
<td>193–430</td>
<td>1.2×10^{-10}</td>
<td>-150</td>
<td>2.0×10^{-10}</td>
<td>1.1</td>
<td>100</td>
<td>155</td>
</tr>
<tr>
<td>Cl + CH$_3$SCH$_3$ → CH$_3$SCH$_2$ + HCl</td>
<td>240–421</td>
<td>9.4×10^{-11}</td>
<td>-190</td>
<td>1.8×10^{-10}</td>
<td>$+1.2/-2.5$</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Cl + CH$_3$SCH$_3$ → products (P = 1 atm)</td>
<td>240–356</td>
<td>3.5×10^{-10}</td>
<td>0</td>
<td>3.5×10^{-10}</td>
<td>1.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$SCl + O$_2$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>$<4.0 \times 10^{-18}$</td>
<td></td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>(CH$_3$)$_2$SCl + NO → products</td>
<td>298</td>
<td></td>
<td></td>
<td>1.2×10^{-11}</td>
<td>1.25</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>(CH$_3$)$_2$SCl + NO$_2$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.7×10^{-11}</td>
<td>1.25</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>Cl + CH$_3$(O)CH$_3$ → CH$_3$S(O)CH$_2$ + HCl</td>
<td>270–571</td>
<td>1.4×10^{-11}</td>
<td>0</td>
<td>1.4×10^{-11}</td>
<td>1.2</td>
<td>150</td>
<td>158</td>
</tr>
<tr>
<td>Cl + CH$_3$(O)CH$_3$ M → CH$_3$(Cl)S(O)CH$_3$</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>CH$_3$(Cl)S(O)CH$_3$ + O$_2$ → products</td>
<td>296</td>
<td></td>
<td></td>
<td>$<3.0 \times 10^{-18}$</td>
<td></td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>CH$_3$(Cl)S(O)CH$_3$ + NO → products</td>
<td>296</td>
<td></td>
<td></td>
<td>1.2×10^{-11}</td>
<td>1.5</td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>CH$_3$(Cl)S(O)CH$_3$ + NO$_2$ → products</td>
<td>296</td>
<td></td>
<td></td>
<td>2.1×10^{-11}</td>
<td>1.5</td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>Cl + CH$_3$SC$_2$H$_5$ → products (P = 1 atm)</td>
<td>298</td>
<td></td>
<td></td>
<td>3.8×10^{-10}</td>
<td>1.2</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>Cl$_2$ + CH$_3$SCH$_3$ → products</td>
<td>294–298</td>
<td></td>
<td></td>
<td>$<5.0 \times 10^{-14}$</td>
<td></td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>ClO + OCS → products</td>
<td>298</td>
<td></td>
<td></td>
<td>$<2.0 \times 10^{-16}$</td>
<td></td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>h(298 K)</td>
<td>f(298 K)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>ClO + CH₃SCH₃ → products</td>
<td>259–335</td>
<td>2.1×10⁻¹⁵</td>
<td>-340</td>
<td>6.6×10⁻¹⁵</td>
<td>1.5</td>
<td>300</td>
<td>I63</td>
</tr>
<tr>
<td>ClO + CH₃S(O)CH₃ → products</td>
<td>298</td>
<td><2.0×10⁻¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I64</td>
</tr>
<tr>
<td>ClO + SO → Cl + SO₂</td>
<td>248–363</td>
<td>2.8×10⁻¹¹</td>
<td>0</td>
<td>2.8×10⁻¹¹</td>
<td>1.3</td>
<td>50</td>
<td>I65</td>
</tr>
<tr>
<td>ClO + SO₂ → Cl + SO₃</td>
<td>298</td>
<td><4.0×10⁻¹⁸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I62</td>
</tr>
<tr>
<td>Br + H₂S → HBr + SH</td>
<td>319–431</td>
<td>1.4×10⁻¹¹</td>
<td>2750</td>
<td>1.4×10⁻¹⁵</td>
<td>2.0</td>
<td>300</td>
<td>I66</td>
</tr>
<tr>
<td>Br + CH₃SH → CH₃S + HBr</td>
<td>273–431</td>
<td>9.2×10⁻¹²</td>
<td>390</td>
<td>2.5×10⁻¹²</td>
<td>2.0</td>
<td>100</td>
<td>I66</td>
</tr>
<tr>
<td>Br + CH₃SCH₃ → CH₃SCH₂ + HBr</td>
<td>386–604</td>
<td>9.0×10⁻¹¹</td>
<td>2390</td>
<td>3.0×10⁻¹⁴</td>
<td>1.4</td>
<td>150</td>
<td>I67</td>
</tr>
<tr>
<td>Br + CH₃SCH₃ → (CH₃)₂SBr</td>
<td>(See Table 2-1)</td>
<td>1.2×10⁻¹⁴</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>I68</td>
</tr>
<tr>
<td>BrO + CH₃S(O)CH₃ → products</td>
<td>298</td>
<td>1.2×10⁻¹⁴</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>I69</td>
</tr>
<tr>
<td>BrO + CH₃SH → products</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrO + CH₃SCH₃ → products</td>
<td>233–333</td>
<td>1.4×10⁻¹⁴</td>
<td>-950</td>
<td>3.4×10⁻¹³</td>
<td>1.25</td>
<td>200</td>
<td>I70</td>
</tr>
<tr>
<td>BrO + CH₃SSCH₃ → products</td>
<td>296</td>
<td>1.5×10⁻¹⁴</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>I71</td>
</tr>
<tr>
<td>BrO + CH₃S(O)CH₃ → products</td>
<td>296–298</td>
<td>1.0×10⁻¹⁴</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>I72</td>
</tr>
<tr>
<td>BrO + SO → Br + SO₂</td>
<td>298</td>
<td>5.7×10⁻¹¹</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td>I73</td>
</tr>
<tr>
<td>IO + CH₃SH → products</td>
<td>298</td>
<td>6.6×10⁻¹⁶</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>I74</td>
</tr>
<tr>
<td>IO + CH₃SCH₃ → products</td>
<td>256–468</td>
<td>2.5×10⁻¹²</td>
<td>1500</td>
<td>1.6×10⁻¹⁴</td>
<td>1.5</td>
<td>400</td>
<td>I75</td>
</tr>
<tr>
<td>S + O₂ → SO + O</td>
<td>252–878</td>
<td>1.6×10⁻¹²</td>
<td>-100</td>
<td>2.2×10⁻¹²</td>
<td>1.2</td>
<td>100</td>
<td>I76</td>
</tr>
<tr>
<td>S + O₃ → SO + O₂</td>
<td>298</td>
<td>1.2×10⁻¹¹</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>I77</td>
</tr>
<tr>
<td>SO + O₂ → SO₂ + O</td>
<td>230–585</td>
<td>1.6×10⁻¹³</td>
<td>2280</td>
<td>7.6×10⁻¹⁷</td>
<td>1.2</td>
<td>200</td>
<td>I78</td>
</tr>
<tr>
<td>SO + O₃ → SO₂ + O₂</td>
<td>230–420</td>
<td>3.4×10⁻¹²</td>
<td>1100</td>
<td>8.4×10⁻¹⁴</td>
<td>1.1</td>
<td>150</td>
<td>I79</td>
</tr>
<tr>
<td>SO + NO₂ → SO₂ + NO</td>
<td>210–363</td>
<td>1.4×10⁻¹¹</td>
<td>0</td>
<td>1.4×10⁻¹¹</td>
<td>1.2</td>
<td>50</td>
<td>I80</td>
</tr>
<tr>
<td>SO + OCIO → SO₂ + ClO</td>
<td>298</td>
<td>1.9×10⁻¹²</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td>I81</td>
</tr>
<tr>
<td>SO₃ + 2 H₂O → products</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>200</td>
<td>I82</td>
</tr>
<tr>
<td>SO₃ + NH₃ → products</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₃ + NO₂ → products</td>
<td>298</td>
<td>1.0×10⁻¹⁹</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td>I83</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>k(298 K)</td>
<td>f(298 K)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>SH + O₂ → OH + SO</td>
<td>295–298</td>
<td></td>
<td></td>
<td><4.0×10⁻¹⁹</td>
<td></td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>SH + O₃ → HSO + O₂</td>
<td>296–431</td>
<td>9.0×10⁻¹²</td>
<td>280</td>
<td>3.5×10⁻¹²</td>
<td>1.2</td>
<td>200</td>
<td>185</td>
</tr>
<tr>
<td>SH + H₂O₂ → products</td>
<td>298</td>
<td></td>
<td></td>
<td><5.0×10⁻¹⁵</td>
<td></td>
<td></td>
<td>186</td>
</tr>
<tr>
<td>SH + NO → HSNNO</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH + NO₂ → HSO + NO</td>
<td>221–415</td>
<td>2.9×10⁻¹¹</td>
<td>−250</td>
<td>6.7×10⁻¹¹</td>
<td>1.1</td>
<td>50</td>
<td>187</td>
</tr>
<tr>
<td>SH + N₂O → HSO + N₂</td>
<td>298</td>
<td></td>
<td></td>
<td><5.0×10⁻¹⁶</td>
<td></td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>SH + Cl₂ → ClSH + Cl</td>
<td>273–373</td>
<td>1.4×10⁻¹¹</td>
<td>690</td>
<td>1.4×10⁻¹²</td>
<td>1.15</td>
<td>200</td>
<td>189</td>
</tr>
<tr>
<td>SH + BrCl → products</td>
<td>296–373</td>
<td>2.3×10⁻¹¹</td>
<td>−350</td>
<td>7.4×10⁻¹¹</td>
<td>2.0</td>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>SH + Br₂ → BrSH + Br</td>
<td>273–373</td>
<td>6.0×10⁻¹¹</td>
<td>−160</td>
<td>1.0×10⁻¹⁰</td>
<td>2.0</td>
<td>160</td>
<td>190</td>
</tr>
<tr>
<td>SH + F₂ → FSH + F</td>
<td>298–373</td>
<td>4.3×10⁻¹¹</td>
<td>1390</td>
<td>4.0×10⁻¹³</td>
<td>2.0</td>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>HSO + O₂ → products</td>
<td>296</td>
<td></td>
<td></td>
<td><2.0×10⁻¹⁷</td>
<td></td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>HSO + O₃ → products</td>
<td>273–423</td>
<td></td>
<td></td>
<td>1.0×10⁻¹³</td>
<td>1.3</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>HSO + NO → products</td>
<td>293–298</td>
<td></td>
<td></td>
<td><1.0×10⁻¹⁵</td>
<td></td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>HSO + NO₂ → HSO₂ + NO</td>
<td>293–298</td>
<td></td>
<td></td>
<td>9.6×10⁻¹²</td>
<td>2.0</td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>HSO₂ + O₂ → HO₂ + SO₂</td>
<td>296</td>
<td></td>
<td></td>
<td>3.0×10⁻¹³</td>
<td>3.0</td>
<td></td>
<td>194</td>
</tr>
<tr>
<td>HOSO₂ + O₂ → HO₂ + SO₃</td>
<td>297–423</td>
<td>1.3×10⁻¹²</td>
<td>330</td>
<td>4.3×10⁻¹³</td>
<td>1.15</td>
<td>200</td>
<td>195</td>
</tr>
<tr>
<td>CS + O₂ → OCS + O</td>
<td>293–495</td>
<td></td>
<td></td>
<td>2.9×10⁻¹⁹</td>
<td>2.0</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>CS + O₃ → OCS + O₂</td>
<td>298</td>
<td></td>
<td></td>
<td>3.0×10⁻¹⁶</td>
<td>3.0</td>
<td></td>
<td>197</td>
</tr>
<tr>
<td>CS + NO₂ → OCS + NO</td>
<td>298</td>
<td></td>
<td></td>
<td>7.6×10⁻¹⁷</td>
<td>3.0</td>
<td></td>
<td>197</td>
</tr>
<tr>
<td>CH₃S + O₂ → products</td>
<td>298</td>
<td></td>
<td></td>
<td><3.0×10⁻¹⁸</td>
<td></td>
<td></td>
<td>198</td>
</tr>
<tr>
<td>CH₃S + O₃ → products</td>
<td>259–381</td>
<td>1.5×10⁻¹²</td>
<td>−360</td>
<td>5.0×10⁻¹²</td>
<td>1.15</td>
<td>100</td>
<td>199</td>
</tr>
<tr>
<td>CH₃S + NO → products</td>
<td>295–503</td>
<td></td>
<td></td>
<td><1.0×10⁻¹³</td>
<td></td>
<td></td>
<td>1100</td>
</tr>
<tr>
<td>CH₃S + NO → products</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃S + NO₂ → CH₃SO + NO</td>
<td>222–511</td>
<td>3.0×10⁻¹¹</td>
<td>−240</td>
<td>6.7×10⁻¹¹</td>
<td>1.2</td>
<td>150</td>
<td>1101</td>
</tr>
<tr>
<td>CH₃S + CO → products</td>
<td>208–295</td>
<td></td>
<td></td>
<td><1.4×10⁻¹⁶ at all temps.</td>
<td></td>
<td></td>
<td>1102</td>
</tr>
<tr>
<td>Reaction</td>
<td>Temperature Range of Exp. Data (K)</td>
<td>A-Factor</td>
<td>E/R</td>
<td>$k(298 \text{ K})^b$</td>
<td>$f(298 \text{ K})^c$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>CH$_3$S + Br$_2$ → CH$_3$SBr + Br</td>
<td>298</td>
<td></td>
<td></td>
<td>1.7×10$^{-10}$</td>
<td>1.5</td>
<td></td>
<td>I103</td>
</tr>
<tr>
<td>CH$_2$SH + O$_2$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>6.5×10$^{-12}$</td>
<td>2.0</td>
<td></td>
<td>I104</td>
</tr>
<tr>
<td>CH$_2$SH + O$_3$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>3.5×10$^{-11}$</td>
<td>2.0</td>
<td></td>
<td>I105</td>
</tr>
<tr>
<td>CH$_2$SH + NO → products</td>
<td>298</td>
<td></td>
<td></td>
<td>1.9×10$^{-11}$</td>
<td>2.0</td>
<td></td>
<td>I106</td>
</tr>
<tr>
<td>CH$_2$SH + NO$_2$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>5.2×10$^{-11}$</td>
<td>2.0</td>
<td></td>
<td>I107</td>
</tr>
<tr>
<td>CH$_3$SO + O$_3$ → products</td>
<td>300</td>
<td></td>
<td></td>
<td>4.0×10$^{-13}$</td>
<td>1.5</td>
<td></td>
<td>I108</td>
</tr>
<tr>
<td>CH$_3$SO + NO$_2$ → CH$_3$SO$_2$ + NO</td>
<td>297–300</td>
<td></td>
<td></td>
<td>1.2×10$^{-11}$</td>
<td>1.2</td>
<td></td>
<td>I109</td>
</tr>
<tr>
<td>CH$_3$SO + O$_3$ → products</td>
<td>227</td>
<td></td>
<td></td>
<td><8.0×10$^{-13}$</td>
<td></td>
<td></td>
<td>I110</td>
</tr>
<tr>
<td>CH$_3$SO + NO → products</td>
<td>227–256</td>
<td>1.1×10$^{-11}$</td>
<td>0</td>
<td>1.1×10$^{-11}$</td>
<td>2.0</td>
<td>100</td>
<td>I110</td>
</tr>
<tr>
<td>CH$_3$SO + NO$_2$ → products</td>
<td>227–246</td>
<td>2.2×10$^{-11}$</td>
<td>0</td>
<td>2.2×10$^{-11}$</td>
<td>2.0</td>
<td>100</td>
<td>I110</td>
</tr>
<tr>
<td>CH$_3$SO + NO$_2$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>2.2×10$^{-12}$</td>
<td>2.0</td>
<td></td>
<td>I111</td>
</tr>
<tr>
<td>CH$_3$SCH$_2$ + O$_2$ → CH$_3$SCH$_2$O$_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$SCH$_2$ + NO$_3$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>3.0×10$^{-10}$</td>
<td>2.0</td>
<td></td>
<td>I112</td>
</tr>
<tr>
<td>CH$_3$SCH$_2$O$_2$ + NO → CH$_3$S + CH$_2$O + NO$_2$</td>
<td>261–400</td>
<td>4.9×10$^{-12}$</td>
<td>–260</td>
<td>1.2×10$^{-11}$</td>
<td>1.3</td>
<td>200</td>
<td>I113</td>
</tr>
<tr>
<td>CH$_3$SCH$_2$O$_2$ + CH$_3$SCH$_2$O$_2$ → products</td>
<td>298</td>
<td></td>
<td></td>
<td>1.0×10$^{-11}$</td>
<td>1.25</td>
<td></td>
<td>I114</td>
</tr>
<tr>
<td>CH$_3$SS + O$_3$ → products</td>
<td>300</td>
<td></td>
<td></td>
<td>4.6×10$^{-13}$</td>
<td>2.0</td>
<td></td>
<td>I115</td>
</tr>
<tr>
<td>CH$_3$SS + NO$_2$ → products</td>
<td>297</td>
<td></td>
<td></td>
<td>1.8×10$^{-11}$</td>
<td>2.0</td>
<td></td>
<td>I116</td>
</tr>
<tr>
<td>CH$_3$SSO + NO$_2$ → products</td>
<td>297</td>
<td></td>
<td></td>
<td>4.5×10$^{-12}$</td>
<td>2.0</td>
<td></td>
<td>I116</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6.

a Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.

b Units are cm3 molecule$^{-1}$ s$^{-1}$.

c $f(298 \text{ K})$ is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

\[
f(T) = f(298 \text{ K}) \exp \left[g \left(\frac{1}{T} - \frac{1}{298} \right) \right]
\]

Note that the exponent is an absolute value.
1.14.2 Notes: SO₂ Reactions

II. O + SH. This recommendation accepts the results of Cupitt and Glass.¹ The large uncertainty reflects the absence of any confirming investigation.
(Table: 82-57, Note: 82-57, Evaluated: 82-57) Back to Table

II. O + CS. The room temperature recommendation is an average of the rate constants determined by Slagle et al.,² Bida et al.,¹ Lilenfeld and Richardson,³ and Hancock and Smith.² The temperature dependence is that of Lilenfeld and Richardson, with the A-factor adjusted to yield the recommended value of k(298 K).
(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

III. O + H₂S. This recommendation is derived from an un-weighted least-squares fit of the data of Singleton et al.⁴ and Whytock et al.⁸ The results of Slagle et al.⁸ show very good agreement for E/R in the temperature region of overlap (300–500 K) but lie systematically higher at every temperature. The uncertainty factor at 298 K has been chosen to encompass the room temperature rate constant values of Slagle et al.⁶ and Hollinden et al.³ Other than the 263 K data point of Whytock et al. and the 281 K point of Slagle et al., the main body of rate constant data below 298 K comes from the study of Hollinden et al., which indicates a dramatic change in E/R in this temperature region. Thus, the parameter g was set to account for these observations. Such a non-linearity in the Arrhenius plot might indicate a change in the reaction mechanism from abstraction (as written) to addition. An addition channel (resulting in H atom displacement) has been proposed by Slagle et al.,⁵ Singleton et al.,⁴ and Singleton et al.⁵ In the latter two studies, an upper limit of 20% was placed on the displacement channel. Direct observations of product HSO were made in the reactive scattering experiments of Clemo et al.¹ and Davidson et al.² A threshold energy of 3.3 kcal/mole was observed (similar to the activation energy measured in earlier studies), suggesting the importance of this direct displacement channel. Addition products from this reaction have been seen in a matrix by Smardzewski and Lin.⁷ Further kinetic studies in the 200–300 K temperature range, as well as quantitative direct mechanistic information, could clarify these issues.
(Table: 82-57, Note: 82-57, Evaluated: 82-57) Back to Table

14. O + OCS. The value of k(298 K) is the average of the determinations by Westenberg and de Haas,10 Klemm and Stief,3 Wei and Timmons,9 Manning et al.,9 and Breckenridge and Miller.1 The recommended value of E/R is the average value taken from the first three listed studies. Hsu et al.4 report that this reaction proceeds exclusively by a stripping mechanism. The vibrational and rotational state distributions in the SO and CO products have been reported by Chen et al.2 and Nickolaisen et al.,7 respectively. The kinetic isotope effect k([32S]/k([34S]) was reported by Hattori et al.5 to be 0.9783 ± 0.0062 at 298 K. A theoretical calculation of potential energy surfaces and T-dependent rate coefficients (200–2500 K) has been reported by Saheb et al.8 (Table: 06-2, Note: 15-10, Evaluated: 06-2) Back to Table

15. O + CS2. The value of k(298 K) is an average of the rate constants determined by Wei and Timmons,9 Westenberg and de Haas,10 Slagle et al.8 Callear and Smith,3 Callear and Hedges,2 Homann et al.,6 Borissenko et al.,1 and Graham and Gutman.5 The E/R value is an average of the determinations by Wei and Timmons and Graham and Gutman. The g value has been set to encompass the temperature-dependent data of Westenberg and de Haas. The principal reaction products are thought to be CS + SO. However, Hsu et al.7 report that 1.4% of the reaction at 298 K proceeds through a channel yielding CO + S2 and calculate a rate constant for the overall process in agreement with that recommended. Graham and Gutman3 have found that 9.6% of the reaction proceeds to yield OCS + S at room temperature. Using time-resolved diode laser spectroscopy, Cooper and Hershberger4 determined the branching ratios for the CO- and OCS-producing channels to be (3.0 ± 1.0)% and (8.5 ± 1.0)%, respectively. (Table: 82-57, Note: 82-57, Evaluated: 82-57) Back to Table

16. **O + CH₃SCH₅**. This recommendation is based on a fit of the data from Nip et al., Lee et al., and Lee et al. Product studies by Cvetanovic et al.¹ indicate that the reaction proceeds almost entirely by addition followed by rapid fragmentation to the products as written. Pavanaja et al.³ examined the pressure and reactant ratio dependencies of OH(A²Σ⁺) and SO₂(B, ²B) emissions in this reaction system. Their observations are consistent with initial product formation as written, followed by secondary generation of both OH and SO₂.

(Table: 94-26, Note: 97-4, Evaluated: 94-26) [Back to Table]

17. **O + CH₃SSCH₅**. This recommendation averages the 298 K rate constants of Nip et al. and Borissenko et al.¹ which are in good agreement with each other, but are about a factor of 2 slower than the value reported by Lee et al.³ The recommendation for E/R has been obtained from an un-weighted Arrhenius fit that employs all available data, but scales the data of Lee et al. downward by a factor of 2.04 to bring their data into agreement with the other data at room temperature. Product studies by Cvetanovic et al.² indicate that the reaction proceeds mainly by addition followed by rapid fragmentation to the products as written. Pavanaja et al.³ examined the pressure and reactant ratio dependencies of OH(A²Σ⁺) and SO₂(B, ²B) emissions in this reaction system. Their observations are consistent with initial product formation as written, followed by secondary generation of both OH and SO₂.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table]

18. **O + CH₃Si(O)CH₅**. The recommended 298 K rate constant is the average of values reported from a laser flash photolysis – resonance fluorescence study by Pope et al.² and from a discharge flow – mass spectrometry study by Riffault et al.³ A rate constant reported by Barnes et al.¹ (with no details about how the rate constant was obtained) is somewhat faster than the recommendation, but in agreement to within the recommended uncertainty factor. The recommended value for E/R is from Pope et al. The recommended value for the parameter g is larger than the value reported by Pope et al. to reflect the fact that only a single
temperature dependence study has been reported. In their study at one Torr total pressure, Riffault et al. found that the products SO2 + 2 CH3 are produced with near unit yield. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I9. O3 + H2S. This upper limit was determined by Becker et al.1 based on measurements of the rates of SO2 production and O3 consumption. The heterogeneous reaction between H2S and O3 occurs more rapidly than the gas phase reaction in most laboratory systems. A detailed potential energy surface for H2S + 1O3 has been reported by Mousavipour et al.2 (Table: 92-20, Note: 15-10, Evaluated: 92-20) Back to Table

I10. O3 + CH3SCH3. The recommendation is based on the study of Du et al.1 which gives a more sensitive upper limit than an earlier study by Martinez and Herron.2 Du et al. used cyclohexane to scavenge OH radicals and high levels of O3 to scavenge oxygen atoms and convert more reactive carbon-centered radicals to less reactive peroxy radicals. Their reported rate constant is (1.04 ± 0.21) × 10^-13 cm^3 molecule^-1 s^-1. Because of the potential for interference from wall reaction or reactions involving radicals generated via secondary chemistry, the recommendation is an upper limit equal to the rate constant reported by Du et al. plus twice its reported uncertainty. (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

I11. O3 + SO2. This recommendation is based on the limited data of Davis et al.1 at 300 K and 360 K in a stopped flow investigation using mass spectrometric and UV spectorscopic detection. (Table: 85-37, Note: 85-37, Evaluated: 85-37) Back to Table

I12 O3 + SO2F2. The recommended upper limit is based on the results of Dillon et al.1 and Sulbaek-Andersen et al.2 (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

I13. OH + H2S. The values of k(298 K) and E/R are derived from a composite un-weighted least-squares fit to the individual data points of Perry et al.,10 Cox and Sheppard,9 Wine et al.,16 Leu and Smith,6 Michael et al.,9 Lin,7 Lin et al.,8 Wang and Lee,15 Barnes et al.,1 Lafage et al.,5 and Wang et al.12 The studies of Leu and Smith,6 Lin et al.,8 Lin,7 and Lafage et al.5 show a slight parabolic temperature dependence of k with a minimum occurring near room temperature. However, with the error limits stated in this evaluation, all data are fit reasonably well by an Arrhenius expression. Lafage et al. and Michael et al. discuss the results in

1-321
terms of a two-channel reaction scheme involving direct H atom abstraction and complex (adduct) formation. Lafage et al. analyzed their results above room temperature to yield an apparent E/R = 400 K for the abstraction channel, in good agreement with the E/R value determined above room temperature by Westenberg and de Haas.14,15 The results of these latter workers lie systematically higher (by about 70%), presumably due to secondary reactions. The room temperature value measured by Stuhl11 lies just outside the 2σ error limit set for k(298 K). Theoretical work by Ellingson and Truhlar8 supports the non-Arrhenius temperature dependence reported by some investigators (see above); they attribute the unusual temperature dependence to “a dynamical bottleneck at an energy below reactants, following an addition complex on the reaction path with a classical binding energy of 4.4 kcal/mol.” Butkovskaya and Setser7 have observed infrared emission from vibrationally excited levels of the expected reaction product H\textsubscript{2}O.

(Back to Table)

2. Butkovskaya, N. I.; Setser, D. W. Chemical dynamics of the OH and OD radical reactions with H\textsubscript{2}S, CH\textsubscript{3}SCH\textsubscript{3}, and CH\textsubscript{3}SH studied by infrared chemiluminescence. *J. Phys. Chem. A* 1998, 102, 6395-6405.

10. Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. Rate constants for the reactions OH + H\textsubscript{2}S → H\textsubscript{2}O + SH and OH + NH\textsubscript{3} → H\textsubscript{2}O + NH\textsubscript{2} over the temperature range 297-427 °K. *J. Chem. Phys.* 1976, 64, 3237-3239.

16. Wine, P. H.; Kreutter, N. M.; Gump, C. A.; Ravishankara, A. R. Kinetics of OH reactions with the atmospheric sulfur compounds H\textsubscript{2}S, CH\textsubscript{3}SH, CH\textsubscript{3}SCH\textsubscript{3}, and CH\textsubscript{3}SSCH\textsubscript{3}. *J. Phys. Chem.* 1981, 85, 2660-2665, doi:10.1021/j150618a019.

14. **OH + OCS**. The recommendation is based on the 298 K study of Wahner and Ravishankara10 and the temperature dependent (255–483 K) study of Cheng and Lee.2 Because the data of Cheng and Lee suggest slight curvature in the Arrhenius plot, only their data at T ≤ 423 K were used to arrive at the recommended Arrhenius parameters. The room temperature rate constants from the above-mentioned studies are a factor of 3 higher than the earlier determination by Leu and Smith.7 As discussed in the later studies, this difference may be due to an overcorrection of the Leu and Smith data to account for OH reaction with H\textsubscript{2}S impurities and also to possible regeneration of OH. The work by Wahner and Ravishankara10 supersedes the study of Ravishankara et al.8 The Wahner and Ravishankara study minimized complications due to secondary and/or excited state reactions that presumably were interfering with the experiments of Atkinson et al.1 and Kurylo.3
The upper limit for $k(298 \text{ K})$ reported by Cox and Sheppard is too insensitive to permit comparison with the more recent studies. The room temperature measurements of Wahner and Ravishankara demonstrate the lack of an effect of total pressure (or O$_2$ partial pressure) on the rate constant and are supported by the more limited pressure- and O$_2$-dependent studies of Cheng and Lee. A theoretical calculation of potential energy surfaces and T-dependent rate coefficients (200–2500 K) has been reported by Saheb et al.9

Product observations by Leu and Smith indicate that SH is a primary product of this reaction and tentatively confirm the suggestion of Kurylo and Laufer4 that the predominant reaction pathway is to produce SH + CO$_2$ through a complex (adduct) mechanism similar to that observed for the OH + CS$_2$ reaction. However, the absence of an O$_2$/pressure effect for OH + OCS is in marked contrast with the strong dependence seen in studies of OH + CS$_2$ (see note for the latter reaction).

Experiments by Greenblatt and Howard4 have shown that oxygen atom exchange in the reaction of 18OH with OCS is relatively unimportant, leading to an upper limit of 10^{-15} cm3 molecule$^{-1}$ s$^{-1}$ for the rate constant of the exchange reaction.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) \textbf{Back to Table}

115. \textbf{OH + CS$_2$ → SH + OCS.} There is a consensus of experimental evidence that this reaction proceeds very slowly as a direct bimolecular process. Wine et al.8 set an upper limit on k(298 K) of 1.5×10^{-15} cm3 molecule$^{-1}$ s$^{-1}$. A consistent upper limit is also reported by Iyer and Rowland4 for the rate of direct production of OCS, suggesting that OCS and SH are primary products of the bimolecular process. This mechanistic interpretation is further supported by the studies of Leu and Smith6 and Biermann et al.2 which set somewhat higher upper limits on k(298 K). The more rapid reaction rates measured by Atkinson et al.1 Kurylo,3 and Cox and Sheppard4 may be attributable to severe complications arising from excited state and secondary chemistry in their photolytic systems. The Cox and Sheppard study in particular may have been affected by the reaction of electronically excited CS$_2$ (produced via the 350 nm photolysis) with O$_2$ (in the 1-atm synthetic air mixture) as well as by the accelerating effect of O$_2$ on the OH + CS$_2$ reaction itself, which has been observed by other workers as summarized below. The possible importance of electronically excited CS$_2$ reactions in the tropospheric oxidation of CS$_2$ to OCS has been discussed by Wine et al.7

(Table: 06-2, Note: 06-2, Evaluated: 06-2) \textbf{Back to Table}

I16. OH + CS₂ → CS₂OH + O₂ products. An accelerating effect of O₂ on the OH + CS₂ reaction rate has been observed by Jones et al., Barnes et al., and Hynes et al., along with a near unity product yield for SO₂ and OCS. In the latter two studies the effective bimolecular rate constant was found to be a function of total pressure (O₂ + N₂), and exhibited an appreciably negative temperature dependence. These observations are consistent with the formation of a long-lived adduct as postulated by Kurylo and Kurylo and Laufer followed by its reaction with O₂:

\[
\text{OH + CS}_2 + \text{M} \xrightleftharpoons[k_a]{k_b} \text{CS}_2\text{OH} + \text{M}
\]

\[
\text{CS}_2\text{OH} + \text{O}_2 \rightarrow \text{Products}
\]

The effective second order rate constant for CS₂ or OH removal in the above reaction scheme can be expressed as

\[
1/k_{\text{eff}} = (k_a/k_b)(1/P_{\text{O}_2}) + (1/k_a)(1/P_{\text{M}})
\]

where \(P_{\text{O}_2}\) is the partial pressure of O₂ and \(P_{\text{M}}\) equals \(P_{\text{O}_2} + P_{\text{N}_2}\). The validity of this expression requires that \(k_a\) and \(k_b\) are invariant with the \(P_{\text{O}_2}/P_{\text{N}_2}\) ratio. A \(1/k\) vs \(1/P_{\text{O}_2}\) plot of the data of Jones et al. taken at atmospheric pressure exhibits marked curvature, suggesting a more complex mechanistic involvement of O₂, whereas the data of Barnes et al. and Hynes et al. are more satisfactorily represented by this analytical expression. Nevertheless, while the qualitative features of the data from all three laboratories agree, there are some quantitative inconsistencies. First, under similar conditions of O₂ and N₂ pressures, the Barnes et al. rate constants lie approximately 60% higher than those of Jones et al. and up to a factor of 2 higher than those derived by Hynes et al. Secondly, two fits each of both the Barnes et al. and Hynes et al. data can be made: one at fixed \(P_{\text{M}}\) and varying \(P_{\text{O}_2}\), and the other at fixed \(P_{\text{O}_2}\) and varying \(P_{\text{M}}\) (i.e., varying added N₂). Within each data set, rate constants calculated from both fits agree reasonbly well for mole fractions of O₂ near 0.2 (equivalent to air) but disagree by more than a factor of 2 for measurements in a pure O₂ system. Finally, the temperature dependence (from 264–293 K) of the \(k_{\text{eff}}\) values from Barnes et al. varies systematically from an E/R of ~1300 K for experiments in pure O₂ (at 700 Torr total pressure) to ~2900 K for experiments in a 50 Torr O₂ plus 650 Torr N₂ mixture. An Arrhenius fit of the Hynes et al. data (from 251–348 K) recorded in synthetic air at 690 Torr yields an E/R = ~3300 K, although the data show marked curvature over the temperature range of study. These observations suggest that \(k_a\) and \(k_b\) may not be independent of the identity of M. For this reason, we limit our recommendation to air mixtures (i.e., \(P_{\text{O}_2}/P_{\text{N}_2} = 0.25\)) at atmospheric pressure. Since most CS₂ is oxidized within the atmospheric boundary layer, such restriction does not limit the applicability of this recommendation in atmospheric modeling.

The present recommendation accepts the measurements of Hynes et al., which appear to be the most sensitive of the three investigations. Thus, \(k(298\text{ K})\) is derived from the Arrhenius fit of the data near room temperature.

\[
k(298\text{ K}) = 1.2 \times 10^{-12} \text{ cm}^3\text{ molecule}^{-1}\text{ s}^{-1}
\]

To compute values of \(k\) below 298 K, we have accepted the analysis of Hynes et al.:

\[
k(T) = (1.25 \times 10^{-16} \exp(4550/T))/(T + 1.81 \times 10^{-3} \exp(3400/T)) \text{ cm}^3\text{ molecule}^{-1}\text{ s}^{-1}.
\]

This recommendation is only valid for one atmosphere pressure of air. It is interesting to note that measurements by Hynes et al. at approximately 250 K and 700 Torr total pressure result in \(k_{\text{eff}}\) values that are independent of the amount of O₂ for partial pressures between 145 and 680 Torr. This suggests that the adduct is quite stable with respect to dissociation into the reactants (OH + CS₂) at this low temperature and that the effective rate constant for reactant removal approaches the elementary rate constant for adduct formation.

(Back to Table: 06-2, Note: 06-2, Evaluated: 06-2)
I17. CS₂OH + O₂. Three groups have obtained kinetic information about this reaction by observing either the perturbation of OH/CS₂OH equilibration kinetics upon addition of O₂, or by modeling the dependence of the observed rate constant for OH loss on [O₂]. Hynes et al.,2 Murrells et al.,1 and Diau and Lee1 agree quite well on the value of k, with an average value of 2.8 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ independent of temperature and pressure being recommended. Diau and Lee also report rate constants for the reactions of the adduct (CS₂OH) with NO and NO₂ to be 7.3 × 10⁻¹³ and 4.2 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹, respectively.

From a mechanistic viewpoint, the primary products of this reaction determine the products of CS₂ oxidation in air. Lovejoy et al.⁴ have shown that the yields of HO₂ and SO₂ are equal and near unity. Further insight is provided by the mechanistic study of Stickel et al.,⁵ who observe OCS and CO product yields of (0.83 ± 0.08) and (0.16 ± 0.03), respectively. The results from this study are interpreted to imply that OCS and CO are formed either as primary products of the CS₂OH + O₂ reaction or as products of a secondary reaction between a primary product and O₂. These same authors report an SO₂ yield of (1.15 ± 0.10), with the results suggesting that only about 75% of the SO₂ is formed as a prompt product, with the remainder generated via a slow reaction of SO (generated as a prompt product of the CS₂OH + O₂ reaction) with O₂. Insight into the specific reaction pathways can be gleaned from the study of Lovejoy et al.,⁵ in which the rate constant for the reaction of CS₂OD + O₂ was found to be the same as that for CS₂OH + O₂, indicating that simple H atom abstraction is not the likely process. Rather, HO₂ production most likely involves complex formation followed by HO₂ elimination. Lovejoy et al.⁶ found that the ¹⁸O atom in the ¹⁸OH reactant is transferred predominantly (90 ± 20)% to the SO₂ product. These findings are consistent with an S–O-bonded CS₂–OH adduct and preservation of the S–O bond in the steps leading to SO₂ formation.

Theoretical studies by Zhang and Qin⁹ and by McKee and Wine⁶ have provided further insight into the reaction mechanism. The initial step is, indeed, formation of SCS−OH followed by addition of O₂ to the carbon atom. A key subsequent step appears to be an O atom transfer to the sulfur bearing the hydroxyl group which leads directly to HOSO + OCS. The reaction HOSO + O₂ → HO₂ + SO₂ is expected to occur rapidly under atmospheric conditions. One remaining problem is identification of the pathway for generation of CO, which is observed as a minor product.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I18. **OH + CH₃SH.** This recommendation is based on a composite fit to the data of Atkinson et al.,¹ Wine et al.,¹⁰ Wine et al.,¹¹ and Hynes and Wine,³ which are in excellent agreement. The results from the relative rate study of Barnes et al.² are in agreement with this recommendation and indicate that the higher value of Cox⁵ and Lee and Tang⁶ obtained rate constants at 298 K approximately 50% lower than recommended here. These authors also obtained lower values for the ethanethiol reaction in comparison with results from studies upon which the methanethiol recommendation is made. Wine et al.,¹¹ present evidence that this reaction proceeds via adduct formation to produce a species that is thermally stable over the temperature range and time scales of the kinetic measurements. Tyndall and Ravishankara⁹ have determined the yield of CH₃(S) using laser-induced fluorescence to be unity, indicating that any adduct must be short lived (less than 100 µs). Longer lifetimes would have led to anomalies in the OH decay kinetics used for the rate constant determinations. Butkovskaya and Setser,¹ based on observations of IR emissions from the products of the reactions of OH and OD with CH₃SH and CH₃SD, conclude that H-abstraction from the methyl group occurs with a yield of 24 ± 8% for the OH reactions and 11 ± 4% for the OD reactions. Hynes and Wine⁵ observed that the rate constant is independent of O₂ partial pressure. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I19. **OH + CH₃SCH₃ → H₂O + CH₂SCH₃.** The OH + CH₃SCH₃ reaction is complex, proceeding by both H-abstraction and reversible addition pathways. In the presence of atmospheric levels of O₂, adduct reaction with O₂ makes the addition pathway partially irreversible. Only kinetic data obtained in the absence of O₂ and at low enough CH₃SCH₃ concentrations for the adduct to be a negligible reservoir for OH are considered in evaluation of the H-abstraction rate constant. Thus, this recommendation is based on the results of Hynes et al., Wine et al.,¹² Hsu et al.,⁷ Abbatt et al.,¹ Barone et al.,⁶ Turnipseed et al.,¹⁵ Williams et al.,¹⁹ and Wang et al.¹⁸ The earlier larger rate constant values of Atkinson et al.¹³ and Kurylo¹⁰ are presumably due to reactive impurities, while those of MacLeod et al.¹¹ were most likely overestimated because of heterogeneous reactions. Unlike other temperature dependence studies, the rate constants reported by Albu et al.² (at T = 250–299 K) suggest a significant negative activation energy, leading to suspicion of an interference from adduct reaction with impurity O₂. Absolute determinations lower than those recommended were obtained by Martin et al.,¹² Wallington et al.,¹⁷ and Nielsen et al.¹³ The reasons for these differences are not readily apparent. Confirmation that H-abstraction is the dominant pathway under the experimental conditions specified above comes from the studies of Stickel et al.¹⁴ and Turnipseed et al.¹⁵ Stickel et al. used tunable diode laser spectroscopy to measure an HDO product yield of 0.84 ± 0.15 for the OD + CH₃SCH₃ reaction in 10–30 Torr N₂, while Turnipseed et al. used laser induced fluorescence observations of CH₃S production from OH + CH₃SCH₃ to show that the branching ratio for the CH₃S elimination channel is <0.04 and the direct H-abstraction yield is 0.84 ± 0.26. Further support for the dominance of the H-abstraction pathway.
comes from the work of Zhao et al., who obtained an upper limit yield of 0.07 for the methyl elimination channel in the OD + CH₃SCH₃ reaction. Barnes et al., Turnipseed et al., and Urbanski et al. report that the abstraction product CH₃SCH₃ is converted predominantly to CH₃S under atmospheric conditions. Barnes et al. measure a 0.7% yield of OCS under low NOₓ conditions, which they attribute to further oxidation of CH₃S. A theoretical study by Jorgensen and Kjaergaard suggests that complexation of CH₃SCH₃ with a single water molecule can speed up the reaction by lowering the energy of the transition state relative to the energy of the reactants.9

(Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

120. \(\text{OH} + \text{CH}_3\text{SCH}_3 \rightarrow (\text{CH}_3)_2\text{SOH} \rightarrow \text{products.} \) The \(\text{OH} + \text{CH}_3\text{SCH}_3 \) reaction is complex, proceeding by both direct H-abstraction and reversible addition pathways. A recommendation for the direct reaction is given separately in Table 1 (see above). The product of the reversible addition pathway reacts with \(\text{O}_2 \) creating an irreversible path as well. Mechanistically, this pathway is described by combining the rate constants \(k_i \) for the addition step, \(k_f \) for the reverse dissociation step, and \(k_{O2} \) for the adduct reaction with \(\text{O}_2 \). The equilibrium constant for the reversible addition process is \(K_e = k_f/k_i \). Recommendations for \(K_e, k_i, \) and \(k_{O2} \) are found in Tables 3, 2, and 1, respectively. Subtracting the temperature-dependent H-abstraction rate constant from the overall irreversible rate constant (which depends on \(T, \text{P}, \) and \(P_{O2} \)) yields the rate constant for irreversible addition (\(k_{ir} \), which can be expressed as

\[
k_{ir} = K_e k_{O2} [\text{O}_2] / (1 + (K_e k_{O2} [\text{O}_2] / k_i)).
\]

Much of the kinetic data available for evaluating this reaction were obtained for \(\text{OH} + \text{CD}_3\text{SCD}_3 \). Although the methyl hydrogens are not directly involved in the reaction, the rate constants for OH addition reactions with CH3SCH3 and CD3SCD3 differ somewhat as they are in the low pressure limit where the value depends on the density of states, which are different for the two isotopomers. The recommended expression (units are \(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \))

\[
k_{ir}(T,[\text{O}_2],[\text{M}]) = 8.2 \times 10^{-39} [\text{O}_2] \exp(+5376/T) / (1 + 1.05 \times 10^{-5} ([\text{O}_2] / [\text{M}]) \exp(+3644/T)),
\]

is based on the recommendations for \(K_e, k_i, \) and \(k_{O2} \) given elsewhere in this evaluation. It reproduces the data of Hynes et al., Williams et al., and Albu et al. quite well for both isotopomers and for all mole fractions of \(\text{O}_2 \) in \(\text{N}_2 / \text{O}_2 \) mixtures; however, it should be used with caution at temperatures below 240 K (where no data are available) or above 310 K (where \(k_i \) is very small). The 298 K relative rate study of Wang et al. suggests rate constants in air and pure \(\text{O}_2 \) at atmospheric pressure that are about a factor of two faster than those predicted by the above expression. Since the kinetic data of Hynes et al. and Williams et al. were obtained by monitoring OH loss, the overall rate constant for removal of CH3SCH3 would be underestimated if the adduct + \(\text{O}_2 \) reaction generated \(\text{OH} + \text{dimethylsulfone} (\text{CH}_3\text{O})\text{S(O)}\text{CH}_3 \) with a significant yield; the available data cannot rule out a small but significant branching ratio for this channel.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

I21. (CH₃)₂SOH + O₂. All available kinetic data for this reaction were obtained by measuring kₐbs for the OH + CH₃SCH₃ reaction as a function of O₂ partial pressure (kₐbs = the sum of the rate constants for H-abstraction and irreversible addition). Much of the available data were obtained for OH + CD₃SCD₃. Since the methyl hydrogens are not directly involved in the reaction, the rate constant is expected to be virtually the same for CH₃SCH₃ as for CD₃SCD₃; hence, data for both reactants are used in the evaluation. The recommendation is based on the data of Hynes et al., Barone et al., and Williams et al. The Hynes et al. study superseded an earlier report of a considerably faster rate constant. Over the range of experimental conditions where data are available (222–267 K and 30–200 Torr), the rate constant appears to be independent of temperature and pressure. By monitoring the regeneration of OH in the presence of NO, Hynes et al. and Turnipseed et al. have determined the yield for the HO₂ + CH₃S(O)CH₃ (DMSO) channel to be ~0.5. A theoretical study by Ramírez-Anguita et al. suggests possible pathways for generating CH₃SOH + CH₃OO/CH₂OOH. A second theoretical study by the same authors supports the experimental finding that the rate constant has little temperature or pressure dependence.

I22. OH + CH₃SCH₂Cl. The recommendation is based on the low-pressure discharge flow resonance fluorescence study of Shallcross et al. The uncertainty reflects the fact that only one study performed under a limited range of experimental conditions has been reported. Shallcross et al. suggest that the likely reaction pathway is H-abstraction under the low pressure conditions of their experiments. However, further experimental and/or theoretical research is needed before an addition-elimination pathway involving C−S bond cleavage can be ruled out. If H-abstraction dominates at low pressure, then under atmospheric conditions the rate constant could be significantly faster than reported by Shallcross et al. due to the occurrence of an irreversible addition channel at higher pressure and in the presence of O₂.

I23. **OH + CH₃SSCH₃.** This recommendation is based on the temperature-dependent studies of Wine et al.⁷ and Abbatt et al.⁵ and the room temperature relative rate study of Cox and Sheppard.⁵ Domine and Ravishankara⁶ have observed both CH₃S (via laser-induced fluorescence) and CH₃SOH (via photo-ionization mass spectrometry) as products of this reaction. At 298 K, the yield of CH₃S alone was quantified at approximately 30%. An FTIR product study of the photooxidation of dimethyl disulfide by Barnes et al.² presents evidence that oxidation of the CH₃SOH product is the principal source of the methane sulfonic acid observed. Butkovskaya and Setser¹ have observed that HDO and D₂O are produced from OD + CH₃SSCH₃ in the same proportion and with the same vibrational state distributions as the products observed by the same investigators in a similar study of the OD + CH₃SD reaction,⁴ leading these authors to suggest that the major product channel for OD + CH₃SSCH₃ is CH₃SD + CH₃SOH.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

I24. **OH + CH₃S(O)CH₃.** The recommended 298 K rate constant is the average of the direct studies of Hynes and Wine,⁴ Urbanski et al.,⁵ and Kukui et al.,⁶ which employed three different experimental approaches and are in excellent agreement. Competitive kinetics studies by Barnes et al.² and Falbe-Hansen et al.³ report rate constants in 1 atm. of air about a factor of 1.5 slower than those obtained in the direct studies. The recommended value for E/R is based on the only study of the temperature dependence,⁶ where a significant negative activation energy was observed. The large uncertainty in E/R reflects the availability of very limited data (none below room temperature). The experimental studies of Urbanski et al., Kukui et al., and Arsene et al.,¹ as well as the theoretical study of Wang and Zhang,⁸ provide strong evidence that the dominant reaction channel is production of CH₃ + CH₃S(O)OH (MSIA, methanesulfinic acid). Arsene et al. attribute the failure to observe MSIA production in the chamber study of Sorensen et al.³ to loss via secondary gas phase and condensed phase oxidation before sampling. A theoretical study by Jørgensen and Kjaergaard suggests that the H-abstraction may be more important under atmospheric conditions than previously thought because (i) complexation of CH₃S(O)CH₃ with a single water molecule can speed up the H-abstraction reaction by lowering the energy of the transition state relative to the energy of the reactants and (ii) under atmospheric conditions a significant fraction of CH₃S(O)CH₃ is complexed with H₂O.⁷ However, as mentioned above, experimental information suggests that methyl elimination, not H-abstraction, is the dominant reaction pathway.

(Table: 06-2, Note: 15-10, Evaluated: 06-2) Back to Table

I25. OH + CH$_3$S(O)OH. The recommendation is based on a turbulent flow reactor – chemical ionization mass spectrometry study by Kukui et al., which was carried out with OH in excess over CH$_3$S(O)OH at total pressures of 200–400 Torr N$_2$. The large uncertainty factor results from the facts that (1) only a single room temperature study is reported in the literature and (2) CH$_3$S(O)OH is a difficult species to study in the gas phase because of its low vapor pressure. Kukui et al. found that SO$_2$ was produced as a reaction product with near unit yield, suggesting that the dominant reaction channel (at least in the absence of O$_2$) is production of CH$_3$ + SO$_2$ + H$_2$O. Theoretical studies by Gonzalez-Garcia et al. and Tian et al. provide strong evidence that the CH$_3$S(O)OH – OH adduct is too short-lived to react with O$_2$ under atmospheric conditions. (Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table]

I26. OH + CH$_3$SO$_3$H. No gas-phase experimental data are available for this reaction, but a detailed theoretical study has been reported by Jorgensen et al. Equilibrium and transition state structures were optimized using B3LYP density functional theory with the aug-cc-pV(T+d)Z basis set. Energies of stable species and transition states were refined using CCSD(T)-F12A theory with the VDZ-F12 basis set. Two different mechanisms were identified for producing CH$_3$SO$_3$ + H$_2$O, hydrogen atom transfer and proton coupled electron transfer. The 298 K rate constant was calculated using conventional transition state theory and found to be 8.3×10^{-15} cm3 molecule$^{-1}$ s$^{-1}$. Given that a 5 kJ mol$^{-1}$ error in a transition state energy can cause a factor of ten error in a calculated rate constant, the uncertainty in the theoretical rate constant is estimated to be around one order of magnitude. The role of water complexation with both reactants was examined theoretically and found to have no effect on the predicted rate constant under tropospheric conditions. (New Entry) [Back to Table]

I27. OH + CH$_3$SCCH$_3$ → H-abstraction products. The recommendation is based on the 299 K study of Hynes et al. and the temperature dependent (242–296 K) study of Williams et al. obtained a 298 K rate constant from a relative rate study that is 40% faster than the recommended value. A theoretical study by Cao et al. suggests that abstraction of the secondary hydrogen is dominant (92% at 200 K and 85% at 300 K), with abstraction of the methyl hydrogen accounting for 7% of overall reactivity at 200 K and 12% at 300 K. (New Entry) [Back to Table]

I28. OH + CH₃SC₂H₅ ⇌ CH₃S(OH)C₂H₅ + O₂ → products. The OH + CH₃SC₂H₅ reaction is complex, proceeding by both direct H-abstraction and reversible addition pathways. A recommendation for the H-abstraction reaction is given separately in Table 1 (see above). The product of the reversible addition pathway reacts with O₂ creating an irreversible addition adduct as well. Mechanistically, this pathway is described by combining the rate constants kᵣ for the addition step, kᵥ for the reverse dissociation step, and kₒ for the adduct reaction with O₂. The equilibrium constant for the reversible addition process is Kₑ = kᵣ/kᵥ. Subtracting the H-abstraction rate constant (which depends only on T) from the overall observed rate constant (which depends on T, P, and Pᵥ), yields the rate constant for irreversible addition (kₒ), which can be expressed as

\[kₒ = kₑkₒ[O₂] / (1 + (Kₑ kₒ[O₂] / kᵣ)). \]

The expression given below (units are cm³ molecule⁻¹ s⁻¹) is obtained by substituting values for Kₑ, kᵣ, and kₒ that are derived from the results of Williams et al.² into the expression given above. Because data are available only over a limited range of experimental conditions, the expression below should be used only for air bath gas at P = 680 ± 80 Torr and T > 240 K.

\[kₒ(T, 680 ± 80 \text{ Torr air}) = 1.17 \times 10^{-38} \exp(+5290/T) / (7.25 \times 10^{-22} T + 3.59 \times 10^{-26} \exp(+4170/T)). \]

The expression reproduces the laser flash photolysis data of Williams et al.² and the relative rate data of Oksdath-Mansilla et al.¹ quite well. The relative rate study of Wang et al.³ suggests values for k_abstraction + kᵣ in 760 Torr air at T = (297–346 K) that are faster than suggested by the above expression and are inconsistent with the results of the other available studies. Oksdath-Mansilla et al. report the following product yields in NOₓ-free air at P = 760 Torr and T = 298 K (where irreversible addition is a minor but significant reaction pathway): SO₂, 51 ± 2%; CH₃CHO, 57 ± 3%; HCHO, 46 ± 4%.³

I29. CH₃S(OH)C₂H₅ + O₂. The recommendation is based on the results of Williams et al.,¹ who extracted rate constants from measurements of kₐbs for the OH + CH₃SC₂H₅ reaction as a function of O₂ partial pressure (kₐbs = the sum of the rate constants for H-abstraction and irreversible addition). The derived rate constants were found to be independent of temperature (242–296 K) and pressure (200–600 Torr N₂ + O₂).

1-332
I30. **OH + S.** This recommendation is based on the study by Jourdain et al.\(^1\) Their measured value for k(298 K) compares favorably with the recommended value of k(O + OH) when one considers the slightly greater exothermicity of the present reaction. (Table: 82-57, Note: 82-57, Evaluated: 82-57) [Back to Table]

I31. **OH + SO.** The value recommended for k(298 K) is an average of the determinations by Fair and Thrush.\(^2\) Jourdain et al.\(^3\) and Blitz et al.\(^1\) The result reported by Fair and Thrush was corrected using the present recommendation for the O + OH reaction. The recommended value for E/R is taken from the temperature dependent data of Blitz et al. over the range 295–453 K. Higher temperature data of Blitz et al. are not used because significant curvature in the Arrhenius plot is observed at T > 500 K. The recommended value for g is conservative because only one temperature dependence study has been reported. (Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table]

I32. **OH + SO\(_2\)F\(_2\).** The recommended upper limit is based on the relative rate experiments of Papadimitriou et al.\(^2\) Less sensitive upper limits are reported by Dillon et al.\(^4\) and Sulbaek-Andersen et al.\(^3\) (Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table]

I33. **HO\(_2\) + H\(_2\)S, HO\(_2\) + CH\(_3\)SH, HO\(_2\) + CH\(_3\)SCH\(_3\).** These upper limits are taken from the discharge flow laser magnetic resonance study of Mellouki and Ravishankara.\(^3\) The H\(_2\)S value disagrees with the rate constant reported by Bulatov et al.\(^2\) by approximately three orders of magnitude. The reason for this difference is not readily apparent. However, the recommended upper limit is consistent with the values for CH\(_3\)SH and CH\(_3\)SCH\(_3\), which respectively agree with upper limits from the work of Barnes et al.\(^4\) and Niki (reported as a private communication in the Mellouki and Ravishankara paper). (Table: 94-26, Note: 94-26, Evaluated: 94-26) [Back to Table]

I34. **HO\(_2\) + SO\(_2\).** This upper limit is based on the atmospheric pressure study of Graham et al.\(^2\) A low pressure laser magnetic resonance study by Burrows et al.\(^1\) places a somewhat higher upper limit on k(298 K) of 4 × 10\(^{-17}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) (determined relative to OH + H\(_2\)O\(_2\)). Their limit is based on the assumption that the products are OH and SO\(_2\). The weight of evidence from both studies suggests an error in the earlier determination by Payne et al.\(^2\) (Table: 82-57, Note: 82-57, Evaluated: 82-57) [Back to Table]
I35. \(\text{NO}_2 + \text{SO}_2 \). This recommendation is based on the study of Penzhorn and Canosa\(^2\) using second derivative UV spectroscopy. While these authors actually report a measured value for \(k(298 \text{ K})\), their observations of strong heterogeneous and water vapor catalyzed effects prompt us to accept their measurement as an upper limit. This value is approximately two orders of magnitude lower than that for a dark reaction observed by Jaffe and Klein,\(^3\) much of which may have been due to heterogeneous processes. Penzhorn and Canosa suggest that the products of this reaction are \(\text{NO} + \text{SO}_3 \).

(Table: 85-37, Note: 85-37, Evaluated: 85-37) Back to Table

I36. \(\text{NO}_3 + \text{H}_2\text{S} \). This recommendation accepts the upper limit set by Dlugokencky and Howard\(^2\) based on experiments in which \(\text{NO}_3 \) loss was followed in the presence of large concentrations of \(\text{H}_2\text{S} \). Less sensitive upper limits for the rate constant have been reported by Wallington et al.\(^3\) and Cantrell et al.\(^1\).

(Table: 90-1, Note: 90-1, Evaluated: 90-1) Back to Table

I37. \(\text{NO}_3 + \text{OCS} \). This upper limit is based on the relative rate data of MacLeod et al.\(^1\)

(Table: 90-1, Note: 90-1, Evaluated: 90-1) Back to Table

I38. \(\text{NO}_3 + \text{CS}_2 \). This upper limit is based on the study of Burrows et al.\(^1\) A somewhat higher upper limit was derived in the relative rate study of MacLeod et al.\(^2\)

(Table: 90-1, Note: 90-1, Evaluated: 90-1) Back to Table

I39. \(\text{NO}_3 + \text{CH}_3\text{SH} \). The recommended values are derived from a composite fit to the data of Wallington et al.,\(^5\) Rahman et al.,\(^4\) and Dlugokencky and Howard.\(^1\) The room temperature rate constant derived in the relative rate experiments of MacLeod et al.\(^3\) is in good agreement with the recommended value. The suite of investigations shows the rate constant to be pressure independent over the range 1–700 Torr. Dlugokencky and Howard place an upper limit of 5% on the production of \(\text{NO}_3 \) via this reaction at low pressure. Based on the product distribution observed in their investigation, Jensen et al.\(^2\) propose a reaction mechanism initiated
by abstraction of the hydrogen atom from the SH group, possibly after formation of an initial adduct as suggested by Wallington et al. and Dlugokencky and Howard.

(Table: 15-10, Note: 94-26, Evaluated: 90-1) Back to Table

I40. NO₃ + CH₃SCH₃. The recommended value for k(298 K) is obtained by averaging the rate constants reported by Tyndall et al.,¹¹ Dlugokencky and Howard,¹ and Daykin and Wine.⁵ The recommended value of E/R is that reported by Dlugokencky and Howard. Tyndall et al. and Nakano et al.⁶ report data over rather narrow temperature ranges that are consistent with the Dlugokencky and Howard result. The relative rate study of Atkinson et al.¹ yields a rate constant at room temperature that is about a factor two lower than the recommended value. Wallington et al.¹²,¹³ also report rate constants that are somewhat lower than the recommended values; their results are suspect because their reaction mixtures contained F₂ in ten-fold excess over CH₃SCH₃, and it is now well-established that F₂ and CH₃SCH₃ react with each other rapidly.⁷,⁸,¹⁰ The results of Nakano et al. are suspect because of the likely presence of background NO₃ associated with the use of N₂O₅ + hv as the NO₃ source. The experimental data from all investigations demonstrate the pressure independence of the rate constant over the range 1–740 Torr. Jensen et al.⁵ propose a mechanism that involves hydrogen abstraction as the first step to explain their observed product distribution. In a later study, Jensen et al.⁶ measured a kinetic isotope effect for the rate constant for CH₃SCH₃ vs. that for CD₃SCD₃ of k₉/k₁₀ = (3.8 ± 0.6), in agreement with the kinetic isotope effect reported by Daykin and Wine; this provides further confirmation of the H-abstraction mechanism. Butkovskaya and Le Bras² utilized chemical titration of the primary radical produced from NO₃ + CH₃SCH₃ in a discharge flow mass spectrometry system to show that the reaction produces predominantly CH₃SCH₂ + HNO₃. An upper limit of 2% was placed on the reaction channel yielding CH₃ + CH₃SONO₂.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

I41. NO₃ + CH₃SSCH₃. The recommendation is based on the temperature dependent studies of Wallington et al.⁵ and Dlugokencky and Howard.⁶ All data points in each temperature dependent study were scaled by a factor equal to the ratio k(298 K)ₜₐₐ/k(298 K)ₜₑᵥₑ where k(298 K)ₜₐₐ is the 298 K rate constant obtained from Arrhenius expression describing the individual T-dependent data set and k(298 K)ₜₑᵥₑ is the average of the two k(298 K)ₜₐₐ values. The best fit of the scaled data to ln k = ln A – E/RT is recommended. The investigation by Atkinson et al.¹ indicates that the relative rate technique cannot be considered as yielding reliable rate data for this reaction due to chemical complexities. Thus, the much lower room temperature results from the study of MacLeod et al.² can be considered to be erroneous. Based on their observations of intermediate and end products, Jensen et al.³ proposed a reaction mechanism in which the initial addition of NO₃ to one of the sulfur atoms results in formation of CH₃S + CH₃SO + NO₂. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

I42. NO₃ + CH₃S(O)CH₃. The recommended value for k(298 K) is the geometric mean of the rate constants reported by Barnes et al.¹ and Falbe-Hansen et al.² from similar competitive kinetics studies; the reported rate constants and associated 2σ uncertainties in units of 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ are 1.7 ± 0.6 (Barnes et al.) and 5.0 ± 3.8 (Falbe-Hansen et al.). In both studies, the only observed sulfur-containing end-product was dimethylsulfone (CH₃(O)(S)(O)CH₃). Barnes et al. suggest that reaction proceeds via formation of an adduct that rapidly decomposes to NO₂ + CH₃(O)(S)(O)CH₃. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I43. NO₃ + CH₃SC₂H₅. The geometric mean of rate constants for NO₃ reactions with CH₃SCH₃ (k₁) and C₂H₅SC₂H₅ (k₂) reported by Daykin and Wine,¹ while the recommended uncertainty is large enough to include both k₁ and k₂ within its limits. Observation of the trend in rate constants for reactions of NO₃ radicals with CH₃SCH₃, CD₂SCD₂, and C₂H₅SC₂H₅ suggests that H-transfer is the dominant pathway for these reactions.¹ Products of the NO₃ + CH₃SC₂H₅ reaction measured in an environmental chamber by Jensen et al.² using a combination of FTIR and ion chromatographic detection also supports H-transfer as the dominant pathway and suggests that yields of the H-transfer products CH₃SCH₂CH₃ and CH₃SC₂H₅ are approximately equal. (New Entry) Back to Table

I44. NO\textsubscript{3} + SO\textsubscript{2}

This recommended upper limit for k(298 K) is based on the study by Daubendiek and Calvert.3 Considerably higher upper limits have been derived by Burrows et al.,1 Wallington et al.,5 Canosa–Mas et al.,2 and Dlugokencky and Howard.4 (Table: 87-41, Note: 90-1, Evaluated: 90-1) Back to Table

(1) Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Absorption spectrum of NO\textsubscript{3} and kinetics of the reactions of NO\textsubscript{3} with NO\textsubscript{2}, Cl, and several stable atmospheric species at 298 K. *J. Phys. Chem.* 1985, 89, 4848-4856.

(3) Daubendiek, R. L.; Calvert, J. G. Study of N\textsubscript{2}O\textsubscript{5}-SO\textsubscript{2}-O\textsubscript{3} reaction system. *Environ. Lett.* 1975, 8, 103-116.

(5) Wallington, T. J.; Atkinson, R.; Winer, A. M.; Pitts, J. N., Jr. Absolute rate constants for the gas-phase reactions of the NO\textsubscript{3} radical with CH\textsubscript{3}SH, CH\textsubscript{3}SCH\textsubscript{3}, CH\textsubscript{3}SSCH\textsubscript{3}, H\textsubscript{2}S, SO\textsubscript{2}, and CH\textsubscript{3}OCH\textsubscript{3} over the temperature range 280-350 K. *J. Phys. Chem.* 1986, 90, 5393-5396, doi:10.1021/j100412a099.

I45. N\textsubscript{2}O\textsubscript{5} + CH\textsubscript{3}SCH\textsubscript{3}

This recommendation is based on the value estimated by Tyndall and Ravishankara2 from the study by Atkinson et al.1 (Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

I46. CH\textsubscript{3}O\textsubscript{2} + SO\textsubscript{2}

This recommendation accepts the results from the study of Sander and Watson.4 These authors conducted experiments using much lower CH\textsubscript{3}O\textsubscript{2} concentrations than employed in the earlier investigations of Sanhueza et al.3 and Kan et al.,5 both of which resulted in k(298 K) values approximately 100 times greater. A later report by Kan et al.5 postulates that these differences are due to the reactive removal of the CH\textsubscript{3}O\textsubscript{2}SO\textsubscript{2} aduct at high CH\textsubscript{3}O\textsubscript{2} concentrations prior to its reversible decomposition into CH\textsubscript{3}O\textsubscript{2} and SO\textsubscript{2}. They suggest that such behavior of CH\textsubscript{3}O\textsubscript{2}SO\textsubscript{2} or its equilibrated adduct with O\textsubscript{3} (CH\textsubscript{3}O\textsubscript{2}SO\textsubscript{2}O\textsubscript{3}) would be expected in the studies yielding high k values, while decomposition of CH\textsubscript{3}O\textsubscript{2}SO\textsubscript{2} into reactants would dominate in the Sander and Watson experiments. It does not appear likely that such secondary reactions involving CH\textsubscript{3}O\textsubscript{2}, NO, or other radical species would be rapid enough, if they occur under normal atmospheric conditions to compete with the adduct decomposition. This interpretation, however, does not explain the high rate constant derived by Cocks et al.1 under conditions of low [CH\textsubscript{3}O\textsubscript{2}]. (Table: 81-3, Note: 81-3, Evaluated: 81-3) Back to Table

(3) Kan, C. S.; McQuigg, R. D.; Whitbeck, M. R.; Calvert, J. G. Kinetic flash spectroscopic study of the CH\textsubscript{3}O\textsubscript{2}-CH\textsubscript{3}O and CH\textsubscript{3}O\textsubscript{2}-SO\textsubscript{2} reactions. *Int. J. Chem. Kinet.* 1979, 11, 921-933.

I47. CH\textsubscript{3}OO + SO\textsubscript{2}

The recommendation is the average of rate constants reported in the experimental studies of Chhantyal-Pun et al.,1 Liu et al.,2 Sheps,3 Stone et al.,4 and Welz et al.,5 with equal weighting given to each of the five studies (independent of the number of rate constants reported in each study). In all five studies

1-337
CH$_2$OO was produced by laser flash photolysis of CH$_3$I/O$_2$, while kinetic information was obtained by (i) monitoring reactant CH$_2$OO using photoionization mass spectrometry,1,9 cavity ring down spectroscopy,1 or broadband cavity-enhanced spectrometry,6 (ii) product H$_2$CO using laser induced fluorescence (LIF),7 or (iii) OH, deduced to be a tracer for CH$_2$OO kinetics, using LIF.5 The available data suggest that the rate constant is independent of pressure over the range 1.5–450 Torr N$_2$ + O$_2$, and the average rate constants reported in the five studies all fall within the range (3.4 – 4.1) × 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$. A theoretical kinetic analysis predicts a rate constant in qualitative agreement with the experimental value.4 An early mechanistic study by Hatakeyama et al.2 suggested that, under the laboratory conditions employed, an initially formed CH$_2$OO–SO$_2$ adduct either decomposes to HCOOH + SO$_2$ or reacts with a second SO$_2$, leading to production of H$_2$CO + SO$_3$. A theoretical study by Jiang et al.3 suggests that reaction proceeds via formation of a cyclic adduct that is bound by 117 kJ mol$^{-1}$ and dissociates over barriers that are lower in energy than reactants to produce H$_2$CO + SO$_3$ and HCOOH + SO$_2$; the barrier to formation of the more stable products (HCOOH + SO$_3$) is predicted to be larger than the barrier to formation of the less stable products (H$_2$CO + SO$_3$).

Vereecken et al.8 have theoretically considered the role of singlet biradicals in the reaction mechanism and concluded that it is substantial; their master equation analysis suggests that, under atmospheric conditions, reaction is in the low pressure regime and the energized cyclic adduct fragments to 68% H$_2$CO + SO$_3$, 15% HCHO(=O)–OS(=O)OH (formyl sulfinic ester), and 17% SO + >C(O•)O• (singlet bisoxy diradical).

(Entry) Back to Table

I48. \textit{anti-CH$_3$CHOO + SO$_2$}. Experimental measurements of k(298 K) have been reported by Taatjes et al.2 and Sheps et al.2 In both studies CH$_3$CHOO was produced by UV laser flash photolysis of CH$_3$I/O$_2$. Taatjes et al. monitored CH$_3$CHOO using time-resolved photoionization mass spectrometry; the \textit{anti} and \textit{syn} conformers could be differentiated in the detection scheme because they have different ionization potentials. Sheps et al. used time-resolved broadband (300-450 nm) cavity-enhanced spectrometry to monitor both conformers simultaneously; they determined spectra of the individual conformers based on their very different reactivities toward H$_2$O and SO$_2$. The rate constant reported by Sheps et al. is more than a factor of three faster than the one reported by Taatjes et al. The Sheps et al. rate constant is recommended because their approach appears to provide better sensitivity and selectivity for detection of the \textit{anti} conformer in the presence of the less reactive \textit{syn} conformer. The recommended uncertainty is somewhat larger than reported by Sheps et al. pending independent verification of their result. Theoretical analysis by Kuwata et al.1 suggests that the \textit{anti} conformer is 14 kJ mol$^{-1}$ higher in energy than the \textit{syn} conformer. Theoretical analysis by Vereecken et al.3 suggests that (unlike CH$_3$OO–SO$_2$) nearly all energized CH$_3$CHCOO–SO$_2$ adduct is stabilized under atmospheric conditions.

(New Entry) Back to Table
I49. syn-CH$_2$CHOO + SO$_2$. Experimental measurements of k(298 K) have been reported by Taatjes et al.2 and Sheps et al.2 In both studies CH$_2$CHOO was produced by UV laser flash photolysis of CH$_3$CH$_2$O$_2$. Taatjes et al. monitored CH$_2$CHOO using time-resolved photoionization mass spectrometry; the anti and syn conformers could be differentiated in the detection scheme because they have different ionization potentials. Sheps et al. used time-resolved photoionization mass spectrometry to monitor both conformers simultaneously; they determined spectra of the individual conformers based on their very different reactivities toward H$_2$O and SO$_2$. The rate constants reported by the two groups are in good agreement, and the average of the two reported rate constants is recommended. Theoretical analysis by Kuwata et al.1 suggests that the syn conformer is 14 kJ mol$^{-1}$ lower in energy than the anti conformer. Theoretical analysis by Vereecken et al.3 suggests that (unlike CH$_2$OO−SO$_2$) nearly all energized CH$_2$CHCOO−SO$_2$ adduct is stabilized under atmospheric conditions. (New Entry) Back to Table

I50. F + CH$_3$SCH$_3$. This recommendation is based on the discharge flow mass spectrometric study by Butkovskaya et al.1 The uncertainty placed on this recommendation has been increased over that estimated by the authors to reflect the lack of confirming investigations. Titration of the primary organic radical products indicated that the reaction proceeds via two channels to produce HF + CH$_3$SCH$_2$ and CH$_3$ + CH$_3$SF with a branching ratio of approximately 0.8/0.2 respectively. (Table: 97-4, Note: 97-4, Evaluated: 97-4) Back to Table

I51. Cl + H$_2$S. This recommendation is based on the study by Nicovich et al.,9 who conducted an elaborate study with attention to sources of possible systematic error. The rate constant at 298 K is in good agreement with that determined by Nesbitt and Leone,8 who refined the data of Braithwaite and Leone,7 but is significantly greater than the values reported by Clyne and Ono,4 Clyne et al.3 Nava et al.7 and Chen et al.2 The small, but clearly observed, negative activation energy determined by Nicovich et al. contrasts with the lack of a temperature dependence observed by Nava et al. In fact, at the lowest temperature of overlap, the results from these two studies differ by 50%. Nevertheless, the Nicovich et al. study yields consistent results for both H$_2$S and CH$_3$SH as well as for D$_2$S and CD$_3$SD. In addition, Hossenlopp et al.5 report a room temperature rate constant for Cl + D$_2$S that is in excellent agreement with the value reported by Nicovich et al. While the reason for these differences remains to be determined, the full range of reported values is encompassed within the 2σ error limits recommended. Lu et al.6 also measured a temperature–independent rate constant but report a value at 298 K that is about 40% greater than that of Nicovich et al. However, the presence of 4000 Torr of CF$_3$Cl bath gas in the Lu et al. study may suggest a slight pressure dependence of the reaction, although Nicovich et al. observed no pressure dependence for pressures ranging up to 600 Torr N$_2$. A theoretical study by Wilson and Hirsh10 suggests the dominance of an addition-elimination pathway with a small but significant fraction of reactive events occurring via a direct hydrogen abstraction mechanism. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table
I52. Cl + SO₂F₂ → products. The recommended upper limit is a factor of 3 higher than that reported in the relative rate experiments of Sulbaek-Andersen et al.² to account for a large uncertainty in the rate constant for the reference reaction they employed (Cl + CF₃CH₃). A less sensitive upper limit is reported by Papadimitriou et al.¹.

I53. Cl + OCS. This upper limit is based on the minimum detectable decrease in atomic chlorine measured by Eibling and Kaufman.² Based on the observation of product SCI, these authors set a lower limit on k(298 K) of 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ for the SCI + CO reaction channel. Considerably higher upper limits on k(298 K) were determined in the studies of Clyne et al.¹ and Nava et al.³.

I54. CS₂Cl + O₂. This recommendation is based on the study of Nicovich et al.² who employed a laser flash photolysis resonance fluorescence technique to observe the effect of added O₂ on the kinetics of the Cl + CS₂ ↔ CS₂Cl equilibration reactions. Martin et al.¹ report competitive kinetics results which they interpret as suggesting a fast CS₂Cl + O₂ reaction, but Wallington et al.³ have suggested that secondary production of OH in the photochemical system employed by Martin et al. is responsible for the observed dependence of the CS₂ loss rate on [O₂].

I55. Cl + CH3SH. This recommendation is based on the results of Nicovich et al., who used laser flash photolysis with resonance fluorescence detection to study the reactions of Cl with H2S, D2S, CH3SH, and CD3SD. The room temperature determination by Nesbitt and Leone is in good agreement with the recommended value. However, the low sensitivity of EPR detection of Cl atoms did not permit these latter authors to conduct a precise determination of k under pseudo first-order conditions, and a more complex analysis of experiments conducted under second-order conditions was required. Nesbitt and Leone report that 2 ± 1% of the reaction occurs via abstraction of an H atom from the CH3 group. A theoretical study by Wang et al. supports abstraction of H from the SH group as the dominant reaction pathway at atmospheric temperatures, but predicts that abstraction of H from the CH3 group becomes important at higher temperatures. A theoretical study by Wilson and Hirst predicts a Cl−S adduct bond strength (298 K) of 57 kJ mol−1, but is unable to deduce the relative importance of addition-elimination vs. direct hydrogen abstraction pathways.

(Table: 06-2, Note: 15-10, Evaluated: 06-2) Back to Table

I56. Cl + CH3SCH3. Stickel et al. have used laser flash photolysis resonance fluorescence to measure the rate constant between 240 and 421 K, over the pressure range 3–700 Torr. The rate constant is near the gas-kinetic collision limit but increases with increasing pressure from a low pressure limit of 1.8 × 10−10 to a value of 3.3 × 10−10 cm3 molecule−1 s−1 at 700 Torr. The yield of HCl at 297 K, measured by diode laser spectroscopy, decreased from near unity at low pressure to a value of approximately 0.5 at 203 Torr, suggesting that stabilization of a (CH3)2SCl adduct becomes competitive with hydrogen atom abstraction with increasing pressure. These investigators also observed a negative temperature dependence for the reaction at low pressure. Butkovskaya et al.2 conducted a discharge flow mass spectrometry study at 298 K, in which they determined that the reaction proceeds to form HCl + CH3SCH3 almost exclusively at 1 Torr total pressure. The sum of all other possible channels was estimated at less than 3%. Zhao et al.15 used laser photolysis coupled with CH3 detection by time–resolved tunable diode laser absorption spectroscopy to determine an upper limit yield of 0.02 for CH3 elimination at 298 K and pressures in the range 10–30 Torr. Langer et al.6 coupled cw photolysis with gas chromatographic detection of products to show that the yield of CH3Cl is (1.34 ± 0.07) × 10−3. Theoretical studies by Wilson and Hirst,12 Resende and De Almeida,8 and Thompson et al.10 support the experimentally observed dominance of the H-abstraction pathway at low pressure. Diaz-de-Mera et al.3 have employed a discharge flow mass spectrometry technique to measure rate constants at pressures of 0.5–1.0 Torr He over the temperature range 259–364 K. The 298 K rate constant reported by Diaz-de-Mera et al. is nearly a factor of 3 slower than the low-temperature limit value reported by Stickel et al. Furthermore, Diaz-de-Mera et al. report a small positive activation energy whereas Stickel et al. report a small negative activation energy. The present recommendation for the H-abstraction pathway is based on an extrapolated low pressure limit rate constant obtained from the data of Stickel et al., with the uncertainty adjusted to encompass the result of Diaz-de-Mera et al. The data of Stickel et al. suggest that a high pressure limit is reached at P ~150 Torr. Urbanski and Wine11 have observed the UV-visible absorption spectrum of (CH3)2SCl in 155 Torr O2 and used absorbance rise–time data to derive a rate constant that agrees well with those measured by Stickel et al. at pressures of 150–750 Torr N2. Enami et al.4 have observed the kinetics of adduct formation using cavity ring down spectroscopy, and derived rate constants over the temperature and pressure ranges 278–318 K and 20–300 Torr N2 that also agree well with those.
reported by Stickel et al. Room temperature competitive kinetics measurements by Nielsen et al.\(^7\) at 740 Torr, Kinnison et al.\(^5\) at 760 Torr, and Arsene et al.\(^1\) at 750 Torr agree quite well with the results of Stickel et al., Urbanski and Wine, and Enami et al. Kinnison et al. and Arsene et al. report that the rate constant at atmospheric pressure is \(<20\%\) faster in synthetic air than in \(N_2\) bath gas, suggesting that the \((CH_3)_2SCl\) adduct reacts with \(O_2\); however, the results of Urbanski and Wine, and Enami et al. argue against the occurrence of such a reaction. Stickel et al. report that the high-pressure rate constant in \(N_2\) is independent of temperature whereas Arsene et al. report large negative activation energies in both \(N_2\) and synthetic air bath gases. The large negative activation energies reported by Arsene et al. seem unlikely to result from a two-channel elementary reaction (H-abstraction and addition); hence, the recommended E/R is that reported by Stickel et al.

(Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

I57. \((CH_3)_2SCl + O_2, NO, NO_2\). The recommended values for \(k(298 \text{ K})\) are based on the study of Urbanski and Wine\(^2\) which combined laser flash photolytic production of \((CH_3)_2SCl\) with kinetic observations by time-resolved absorption spectroscopy. The recommended uncertainties for the NO and NO\(_2\) reactions are larger than those reported by Urbanski and Wine pending independent confirmation of their results. As in the Urbanski and Wine study, Enami et al.\(^1\) report no observable reaction between \((CH_3)_2SCl\) and \(O_2\).

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I58. \(\text{Cl} + \text{CH}_3\text{S(O)}\text{CH}_3 \rightarrow \text{CH}_3\text{S(O)}\text{CH}_2 + \text{HCl} \). The recommended value of \(k(298 \text{ K}) \) for H-abstraction is based on the analysis of Nicovich et al.,\(^4\) who fit the combined room temperature data of Nicovich et al., Martinez et al.,\(^3\) and Riffault et al.,\(^5\) which spanned an effective \(N_2 \) pressure range of 0.3-505 Torr, to the sum of a pressure-dependent component and a pressure-independent component and attributed the pressure-independent component to H-abstraction. The temperature dependence studies of Martinez et al. (273–335 K) and Nicovich et al. (438–571 K) suggest the possibility of curvature in the Arrhenius plot. The recommended E/R (= 0) is appropriate for the 200–300 K temperature regime but not for higher temperatures. Vandresen and Resende\(^7\) report a theoretical rate constant of \(1.2 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \), i.e., a factor of seven faster than the value suggested by experimental results. A theoretical study by Mao et al. suggests that DMSO complexation with water affects the rate constant for the H-abstraction reaction.\(^2\) It has been predicted theoretically by Asatryan and Bozzelli\(^1\) and confirmed experimentally by Taatjes et al.\(^6\) that the peroxo radical formed via reaction of product \(+\text{CH}_3\text{S(O)}\text{CH}_3 \) with \(\text{O}_2 \) rapidly dissociates to produce the Criegee intermediate, \(\text{CH}_2\text{OO} \).

(Table: 10-6, Note: 15-10, Evaluated: 10-6) Back to Table

I59. \(\text{CH}_3(\text{Cl})\text{S(O)}\text{CH}_3 + \text{O}_2, \text{NO}, \text{NO}_2 \). The recommendations are based on the study of Kleissas et al.\(^1\) which combined laser flash photolytic production of \(\text{CH}_3(\text{Cl})\text{S(O)}\text{CH}_3 \) with kinetic observations by time-resolved absorption spectroscopy. The recommended uncertainties for the NO and \(\text{NO}_2 \) reactions are larger than those reported by Kleissas et al. pending independent confirmation of their results.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

I60. \(\text{Cl} + \text{CH}_3\text{S}2\text{H}_2 \). The recommendation for \(k(298 \text{ K}) \) is the average of rate constants reported in two relative rate studies that employed a total of five different reference compounds;\(^1,2\) all data were obtained at \(T = 298 \text{ K} \) and \(P = 760 \text{ Torr air} \). Since both pressure independent H-abstraction pathways and a pressure dependent addition pathway are likely to be important, the recommended rate coefficient is only valid for \(P > 1 \text{ atm} \text{ N}_2 + \text{ O}_2 \). The following product yields are reported in 760 Torr of NOx-free air: \(43\% \) for HCl, \(55\% \) for \(\text{SO}_2 \), \(58\% \) for \(\text{CH}_3\text{CHO} \), and \(58\% \) for \(\text{H}_2\text{CO} \).

(2) Oksdath-Mansilla, G.; Penenory, A. B.; Albu, M.; Barnes, I.; Wiesen, P.; Teruel, M. A. FTIR relative kinetic study of the reactions of \(\text{CH}_3\text{Cl} + \text{CH}_3\text{SC}2\text{H}_2 \) and \(\text{CH}_3\text{CH}_2\text{SC}2\text{H}_2 \) with \(\text{OH} \) radicals and Cl atoms at atmospheric pressure. Chem. Phys. Lett. 2009, 477, 22-27, doi:10.1016/j.cplett.2009.06.035.

I61. \(\text{Cl}_2 + \text{CH}_3\text{SCH}_3 \). Dyke et al.\(^1\) have employed a flow tube technique with reactant and product detection by photoelectron spectroscopy to obtain a rate constant of \((3.4 \pm 0.7) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 294 K and 1.6–3.0 Torr helium bath gas (the reported uncertainty is 1\(\sigma \), precision); this rate constant is consistent with an upper limit value of \(8 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 298 K in 1 Torr helium reported by Butkovskaya et al.\(^1\) Dyke et al.\(^2\) have obtained the photoelectron spectrum of a reaction intermediate that they assign as \((\text{CH}_3)_2\text{S}–\text{Cl}_2\) (each Cl bound to S). A theoretical analysis suggests that the observed intermediate is stable by 26.3 kcal mol\(^{-1}\) relative to reactants and dissociates over a 29.0 kcal mol\(^{-1}\) barrier to the end products HCl + CH\(_3\)SCH\(_2\)Cl, both of which were observed by photoelectron spectroscopy.\(^2\) Because it is not clear how Dyke et al. differentiated gas phase reaction of Cl\(_2\) with CH\(_3\)SCH\(_3\) from reaction on the flow tube walls in their investigation,\(^2\) the recommendation treats their result plus two standard deviations as an upper limit for the gas phase rate constant.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

I62. \(\text{ClO} + \text{OCS} ; \text{ClO} + \text{SO}_2 \). These recommendations are based on the discharge flow mass spectrometric data of Eibling and Kaufman.\(^1\) The upper limit on \(k(298 \text{ K})\) for ClO + OCS was set from the minimum detectable decrease in ClO. No products were observed. The upper limit on \(k(298 \text{ K})\) for ClO + SO\(_2\) is based on the authors’ estimate of their SO\(_2\) detection limit. The upper limit for this same reaction based on the minimum detectable decrease in ClO was not used due to the potential problem of ClO reformation from the Cl + O\(_3\) source reaction.

(Table: 83-62, Note: 83-62, Evaluated: 83-62) Back to Table

I63. \(\text{ClO} + \text{CH}_3\text{SCH}_3 \). The 298 K recommendation is the average of the values reported in discharge flow mass spectrometry studies by Barnes et al.\(^1\) and Diaz-de-Mera et al.\(^2\) Barnes et al. prefer their more recent rate constant to one a factor of 4 higher that they determined using an earlier version of their apparatus. The recommendation for \(E/R\) is based on the temperature dependence observed by Diaz-de-Mera et al. over the range 259–335 K. The uncertainty factors reflect the fact that the two reported values for \(k(298 \text{ K})\) differ by more than a factor of two and that the activation energy is defined by data from a single study over a moderately narrow temperature range.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I64. \(\text{ClO} + \text{CH}_3\text{S(O)}\text{CH}_3 \). The recommendation is based on the results of a low-pressure discharge flow mass spectrometry study by Riffault et al.\(^1\) These investigators were also able to establish an even lower upper limit of \(2 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) for the channel that produces Cl atoms.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I65. ClO + SO. The value of k(298 K) is an average of the determinations by Clyne and MacRobert\(^2\) and Brunning and Stief.\(^1\) The temperature independence is taken from the latter study with the A–factor recalculated to fit the k(298 K) recommendation. (Table: 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

(1) Brunning, J.; Stief, L. J. Kinetic studies of the reaction of the SO radical with NO\(_2\) and ClO from 210 to 363 K. J. Chem. Phys. 1986, 84, 4371-4377.

I66. Br + H\(_2\)S, Br + CH\(_3\)SH. These recommendations are based on the study by Nicovich et al.\(^1\) who measured both the forward and reverse reactions by time–resolved resonance fluorescence detection of Br atoms. The uncertainties placed on these recommendations have been increased over those estimated by the authors to reflect the absence of any confirming investigations. (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

I67. Br + CH\(_3\)SCH\(_3\). It is well-established based on studies by Wine et al.,\(^6\) Ingham et al.,\(^2\) and Nakano et al.\(^5\) that, under atmospheric conditions, attack of Br on CH\(_3\)SCH\(_3\) occurs predominantly by addition to the sulfur atom. Above 375 K, adduct decomposition is so rapid that the addition channel is effectively negligible. Jefferson et al.\(^3\) report high temperature experiments where the individual hydrogen transfer reactions Br + CH\(_3\)SCH\(_3\) \(\rightarrow\) CH\(_3\)SCH\(_2\) + HBr (forward reaction) and CH\(_3\)SCH\(_2\) + HBr \(\rightarrow\) Br + CH\(_3\)SCH\(_3\) (reverse reaction) were isolated in a laser flash photolysis resonance fluorescence system, and their kinetics were separately studied over the temperature range 386–604 K. These investigators determined Arrhenius expressions for the forward and reverse reactions to be 9.0 \(\times\) 10\(^{-14}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) and 8.6 \(\times\) 10\(^{-13}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\), respectively. Analysis of the equilibrium data also permitted determination of the heat of formation of CH\(_3\)SCH\(_3\) (see Appendix 1). Extrapolation of the Jefferson et al. Arrhenius expression to 298 K gives a rate constant for the non-adduct-forming part of the Br + CH\(_3\)SCH\(_3\) reaction (presumably direct hydrogen abstraction) of 3.0 \(\times\) 10\(^{-14}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). This estimated rate constant agrees quite well with the value of (4.9 \(\pm\) 2.0) \(\times\) 10\(^{-14}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) obtained in a competitive kinetics study at atmospheric pressure in air by Ballesteros et al.,\(^1\) and is consistent with an upper limit of 1 \(\times\) 10\(^{-13}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) reported in a similar study by Maurer et al.\(^4\) Direct comparison of the Jefferson et al. and Ballesteros et al. kinetic data is warranted only if essentially all adduct formation is reversible in the Ballesteros et al. experiment, which is possible based on the apparent absence of an adduct + O\(_2\) pathway,\(^5\) but is not yet well-established. The recommendation for the pressure-independent bimolecular reaction is based on extrapolation of the Arrhenius expression of Jefferson et al. to the atmospheric temperature regime. The large uncertainty reflects the need for a rather long extrapolation. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I68. \(\text{Br} + \text{CH}_3\text{S}(\text{O})\text{CH}_3 \). The recommendation is based on the results of a low-pressure discharge flow mass spectrometry study by Riffault et al.\(^2\) These authors obtained an upper limit for the total rate constant of \(1.5 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \), and also report channel-specific rate constants in units of \(10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \) of \(11 \pm 3 \) for the H-abstractation channel and \(1.2 \pm 0.3 \) for the methyl elimination channel. A competitive kinetics study in 740 Torr air by Ballesteros et al.\(^1\) reports a less sensitive upper limit rate constant of \(6 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \).

\((\text{Table: 06, Note: 06-2, Evaluated: 06-2}) \quad \text{Back to Table}\)

I69. \(\text{BrO} + \text{CH}_3\text{SH} \). The recommendation is based on the low-pressure discharge flow mass spectrometry study of Aranda et al.\(^1\) A significant negative activation energy of \(-6.9 \pm 2.0 \text{ kJ/mol} \) was observed at \(P = 1.0 \) Torr He over the temperature range 259–333 K. At \(T = 298 \) K, reported rate coefficients in units of \(10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \) increase with increasing helium pressure from \(2.7 \pm 0.5 \) at \(P = 0.5 \) Torr to \(4.9 \pm 0.4 \) at \(P = 3.0 \) Torr. HOBBr was observed as a reaction product suggesting that an important reaction pathway is addition of BrO to CH3SH followed by dissociation to HOBBr + CH3S in competition with dissociation to reactants. Until kinetic data are reported at higher pressures, no recommendation of appropriate rate constants for atmospheric modeling is made.

\((\text{Table: 10-6, Note: 10-6, Evaluated: 10-6}) \quad \text{Back to Table}\)

I70. \(\text{BrO} + \text{CH}_3\text{SCH}_3 \). This recommendation is an average of results obtained in the discharge flow studies of Barnes et al.\(^2\) and Bedjanian et al.\(^3\) and the flash photolysis studies of Ingham et al.\(^4\) and Nakano et al.\(^5\) The flash photolysis studies were carried out at pressures of 60–200 Torr and give rate constants that are almost a factor of two greater than those obtained in the discharge flow studies at \(P \sim 1 \) Torr. The error limits in the present evaluation are adjusted to include all available data. A new study to investigate the pressure dependence of the rate constant is needed. Both Bedjanian et al. and Ingham et al. have shown that DMSO (CH3S(O)CH3) is produced with near unit yield. Ballesteros et al.\(^1\) report that the rate constants for BrO + CH3SCH3 and BrO + CD3SCD3 are identical, a result that is consistent with reaction proceeding via formation of a short-lived adduct that rapidly decomposes to Br + DMSO.

\((\text{Table: 06-2, Note: 06-2, Evaluated: 06-2}) \quad \text{Back to Table}\)

I71. \(\text{BrO} + \text{CH}_3\text{SSCH}_3 \). The recommendation is based on a competitive kinetics study in 740 Torr air by Ballesteros et al.\(^1\) The large uncertainty factor results from the fact that the reported rate constant is measured relative to an assumed value of \(3.2 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \) for the BrO + CH3SCH3 rate constant, which has an uncertain pressure dependence (see above), and from the fact that there is only a single study upon which to base a recommendation.

\((\text{Table: 06-2, Note: 06-2, Evaluated: 06-2}) \quad \text{Back to Table}\)
I72. BrO + CH₃S(O)CH₃. The recommendation is based on a competitive kinetics study in 740 Torr air by Ballesteros et al.¹ A low-pressure discharge flow mass spectrometry study by Riffault et al.² gives an upper limit that is consistent with the recommendation. The large uncertainty factor results primarily from the fact that the reported rate constant is obtained from a series of competitive kinetics experiments that are referenced to an assumed value of 3.2 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ for the BrO + CH₃SCH₃ rate constant, which has an uncertain pressure dependence (see above).

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I73. BrO + SO. This recommendation is based on the measurements of Brunning and Stief¹ performed under both excess BrO and excess SO conditions. The rate constant is supported by the lower limit assigned by Clyne and MacRobert² from measurements of SO₂ production.

(Table: 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

I74. IO + CH₃SH. The value of k(298 K) comes from the study by Maguin et al.¹ using discharge flow mass spectrometry. The investigators establish a branching ratio near unity for the production of HOI. The uncertainty factor reflects the absence of confirming investigations.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

I75. IO + CH₃SCH₃. The recommendation is based on the temperature-dependent studies of Gravestock et al.⁵ and Dillon et al.⁶ and the 298 K studies of Maguin et al.,¹ Barnes et al.,¹ and Knight et al.⁸ All data points in each temperature dependent study were scaled by a factor equal to the ratio k(298 K)ₜₐₚ/k(298 K)ₐₑₜ where k(298 K)ₜₐₚ is the 298 K rate constant obtained from the best fit Arrhenius expression describing the individual T-dependent data set and k(298 K)ₐₑₜ is the average of all reported 298 K rate constants (using k(298 K)ₜₐₚ from the T-dependent studies). The best fit of the scaled data to ln k = ln A − E/RT is recommended. The studies of Maguin et al. and Barnes et al. supersede earlier, less direct measurements by the same groups,²,⁸ which reported much greater rate constants. Nakano et al.⁹ employed a laser flash photolysis cavity ring down spectroscopy technique to investigate the temperature and pressure dependence of the rate constant. These investigators report that the 298 K rate constant increases from 1 to 25 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ as pressure increases from 5 to 100 Torr N₂, then levels off at higher pressure. Nakano et al. also investigated the temperature dependence of the rate constant at P = 100 Torr and observed a very strong negative temperature dependence, i.e., E/RT = −2230 ± 460 K. The pressure dependence reported by Nakano et al. is in conflict with the results of Daykin and Wine,³ Gravestock et al., and Dillon et al. (no observed P dependence at 297±1 K) while the temperature dependence reported by Nakano et al. is in conflict with the results of Gravestock et al. and Dillon et al.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

I76. S + O$_2$

The recommended value for k(298 K) is the average of values reported by Fair and Thrush, Fair et al., Donovan and Little, Davis et al., Clyne and Townsend, Clyne and Whitefield, Miyoshi et al., and Lu et al. The recommended value for E/R is the average of E/R values obtained from the data sets of Davis et al. (25 Torr CO$_2$, 252–423 K, E/R = +1 K), Davis et al. (20–200 Torr He, 298–422 K, E/R = −204 K), Clyne and Whitefield (~1 Torr Ar, 296–393 K, E/R = −129 K), and Lu et al. (50 Torr Ar, 298–505 K, E/R = −66 K). Lu et al. report non-Arrhenius behavior at T > 505 K. A theoretical analysis by Lu et al. suggests that reaction occurs almost exclusively via a SOO($^3A'$) intermediate at T < 500 K, whereas other channels involving SOO($^2A'$) as an intermediate and formation of SOO($^2A'$) followed by isomerization to SO$_2$ before dissociation, become important at higher temperatures and account for the observed rapid increase of the rate constant with increasing temperature above 500 K. High temperature kinetic data reported by Saito et al. (1900–2200 K), Tsuchiya et al. (980–1610 K), and Woiki and Roth (1200–3500 K) are reasonably consistent with the rate constants predicted theoretically by Lu et al.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) [Back to Table]

I77. \(\text{S} + \text{O}_3 \). This recommendation accepts the only available experimental data of Clyne and Townsend.\(^1\) In this study the authors measure a value of the rate constant for \(\text{S} + \text{O}_3 \) in reasonable agreement with that recommended above.

(Table: 82-57, Note: 82-57, Evaluated: 82-57) Back to Table

I78. \(\text{SO} + \text{O}_2 \). The recommended E/R is the average of values reported by Black et al. \(\text{(E/R} = 2370 \text{ K, } 250-420 \text{ K}) \)\(^1\) and Schurath and Goede \(\text{(E/R} = 2180 \text{ K, } 262-363 \text{ K}) \)\(^5\), while the recommended \(\text{k(298 K)} \) is the average of values computed from the Arrhenius expressions reported in the same two studies. The room temperature rate constant obtained from the Black et al. study\(^1\) supersedes an earlier value\(^1\) as recommended by the authors. The recommended values for \(\text{k(T)} \) lie significantly higher than an extrapolation of the higher temperature data of Homann et al.,\(^3\) but are consistent with the more recent high temperature study of Garland.\(^3\) A room temperature upper limit on \(\text{k} \) set by Breckenridge and Miller\(^2\) is consistent with the recommendation.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Black, G.; Sharpless, R. L.; Slangar, T. G. Rate coefficients for \(\text{SO} \) reactions with \(\text{O}_2 \) and \(\text{O}_3 \) over the temperature range 230 to 420 K. \textit{Chem. Phys. Lett.} \textbf{1982}, 93, 598-602.
(2) Breckenridge, W. H.; Miller, T. A. Kinetic study by EPR of the production and decay of \(\text{SO}^+(1\Delta_g) \) in the reaction of \(\text{O}_3(1\Delta_g) \) with \(\text{SO}^+(1\Sigma_g^+) \). \textit{J. Chem. Phys.} \textbf{1972}, 56, 465-474.
(5) Schurath, U.; Goede, H.-J. Temperature Dependence of the Reactions \(\text{SO} + \text{O}_3(1) \) and \(\text{SO} + \text{O}_2(2) \). \textit{Physico-Chemical Behaviour of Atmospheric Pollutants, Proc. 3rd European Symposium, Varese, Italy} \textbf{1984}, 227 - 239.

I79. \(\text{SO} + \text{O}_3 \). The value of \(\text{k(298 K)} \) is an average of the determinations by Halstead and Thrush,\(^3\) Robertshaw and Smith,\(^4\) Schurath and Goede,\(^5\) and Black et al.\(^1,2\) The value of E/R is an average of the values reported by Halstead and Thrush, Schurath and Goede, and Black et al.\(^3\), with the A-factor recalculated to fit the recommendation for \(\text{k(298 K)} \).

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(2) Black, G.; Sharpless, R. L.; Slangar, T. G. Rate coefficients for \(\text{SO} \) reactions with \(\text{O}_2 \) and \(\text{O}_3 \) over the temperature range 230 to 420 K. \textit{Chem. Phys. Lett.} \textbf{1982}, 93, 598-602.
(4) Robertshaw, J. S.; Smith, I. W. M. Rate data for \(\text{O} + \text{OCS} \rightarrow \text{SO} + \text{CO} \) and \(\text{SO} + \text{O} \rightarrow \text{SO}_2 + \text{O}_2 \) by a new time-resolved technique. \textit{Int. J. Chem. Kinet.} \textbf{1980}, \textit{12}, 729-739.
(5) Schurath, U.; Goede, H.-J. Temperature Dependence of the Reactions \(\text{SO} + \text{O}_3(1) \) and \(\text{SO} + \text{O}_2(2) \). \textit{Physico-Chemical Behaviour of Atmospheric Pollutants, Proc. 3rd European Symposium, Varese, Italy} \textbf{1984}, 227 - 239.

I80. \(\text{SO} + \text{NO}_2 \). The value of \(\text{k(298 K)} \) is an average of the determinations by Clyne and MacRobert,\(^4\) Black et al.,\(^1\) and Brunning and Stief,\(^2\) which agree quite well with the rate constant calculated from the relative rate measurements of Clyne et al.\(^3\) The recommended value for E/R is taken from Brunning and Stief.

(Table: 82-57, Note: 82-57, Evaluated: 82-57) Back to Table

(2) Brunning, J.; Stief, L. J. Kinetic studies of the reaction of the SO radical with \(\text{NO}_2 \) and \(\text{ClO} \) from 210 to 363 K. \textit{J. Chem. Phys.} \textbf{1986}, \textit{84}, 4371-4377.

I81. SO + OCIO. This recommendation is based on the room temperature study by Clyne and MacRobert.¹ The uncertainty reflects the absence of any confirming investigation. (Table: 82-57, Note: 82-57, Evaluated: 82-57) Back to Table

I82. SO₃ + 2 H₂O. Several research groups have attempted to quantify the rate of sulfuric acid formation via this reaction in the gas phase. Reiner and Arnold⁶ placed an upper limit of 2.4 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ on the rate constant, slightly lower than that determined by Wang et al.⁵ The inability to cite the results as other than an upper limit is due to the difficulty in excluding all heterogeneous effects from the experiments. The higher rate constant reported earlier by Castleman et al.¹ may have resulted from an underestimation of the effects of such heterogeneous reactions. Subsequently, Reiner and Arnold⁷ sought to improve their rate constant determination by more detailed quantification of heterogeneous contributions. They derived a value of 1.2 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹, independent of pressure (from 31–260 mbar of synthetic air). Evidence was also obtained that H₂SO₄ was, indeed, the product of the reaction.

Kolb et al.³ attempted to measure the gas phase rate constant using a turbulent flow reactor designed to minimize wall effects. Their results, when analyzed as representing a bimolecular reaction, support a rate constant in the range (1–7) × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹. However, a more detailed analysis of the data indicated that the gas phase reaction was second order in water vapor. The reaction rate was also observed to increase as the temperature was lowered from 333 K to 243 K. These observations, together with calculations by Morokuma and Mugurama,³ led the latter authors to suggest that SO₃ consumption likely involved its reaction with the water dimer or the reaction SO₃–H₂O + H₂O, leading to the formation of sulfuric acid.

A laminar flow reactor study by Lovejoy et al.⁴ over the temperature range 250 to 360 K also revealed SO₃ loss to be second order in water concentration and independent of pressure (from 20 to 80 Torr of N₂ at 300 K). These latter authors measured a strong negative temperature dependence for the rate constant and a significant kinetic isotope effect (kH₂O ≈ 2kD₂O), leading them to describe the reaction as proceeding via the rapid association between SO₃ and H₂O followed by a slower reaction between the adduct and water to form sulfuric acid. Lovejoy at al.’s measurement of a ~54 kJ mol⁻¹ “activation” energy was viewed as energetically inconsistent with a SO₃ + water dimer reaction mechanism since it would require a large negative activation energy for the SO₃ + (H₂O)₂ step. Jayne et al.² have carried out a turbulent flow reactor study over the temperature range 283 to 370 K and the pressure range 100 to 760 Torr N₂. Their results provide further support for a mechanism involving formation of an SO₃–H₂O adduct that reacts with a second H₂O to form H₂SO₄, and the rate constants they report agree quite well with those reported by Lovejoy et al. The recommended expression for first order loss of SO₃,

$$k_1 = 8.5 \times 10^{-41} \times (H_2O)^2 \times s^{-1} \quad ([H_2O] \text{ in molecules cm}^{-3})$$

is the best fit of the combined data of Lovejoy et al. and Jayne et al. to an Arrhenius form. (Table: 06-02, Note: 06-02, Evaluated: 06-2) Back to Table

1-350

I83. \(\text{SO}_3 + \text{NO}_2 \). This recommendation is based on the study of Penzhorn and Canosa\(^1\) using second derivative UV spectroscopy. These authors observe the production of a white aerosol, which they interpret to be the adduct \(\text{NO}_3\text{S} \). This claim is supported by ESCA spectra.

(Table: 85-37, Note: 85-37, Evaluated: 85-37) [Back to Table]

I84. \(\text{SH} + \text{O}_2 \). This upper limit for \(k(298 \text{ K}) \) is based on the study by Stachnik and Molina\(^6\) utilizing experiments sensitive to the production of \(\text{OH} \). Somewhat higher upper limits of \(1.0 \times 10^{-17} \) and \(1.5 \times 10^{-17} \text{ cm}^{-1} \text{ molecule}^{-1} \text{ s}^{-1} \) were assigned by Friedl et al.\(^3\) and Wang et al.\(^4\) respectively from the sensitivities for \(\text{OH} \) detection and \(\text{SH} \) decay respectively. An even higher upper limit by Black,\(^2\) based on the lack of \(\text{SH} \) decay, may have been complicated by \(\text{SH} \) regeneration. Much less sensitive upper limits have been calculated by Tiee et al.\(^7\) \(1.8 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) for the rate constant for the sum of the two \(\text{SH} + \text{O}_2 \) reaction channels (producing \(\text{OH} + \text{SO} \) and \(\text{H} + \text{SO}_2 \)). The \(\text{H}_2\text{SO}_4 \) potential energy surface has been studied theoretically by Ballester and Varandas,\(^1\) Garrido et al.,\(^4\) Resende and Ornellas,\(^3\) and Zhou, et al.\(^9\) Resende and Ornellas and Zhou et al. predict that at atmospheric temperatures (i) \(\text{OH} + \text{SO} \) are the dominant bimolecular products and (ii) the rate constant is orders of magnitude slower than the upper limit reported by Stachnik and Molina.

(Table: 85-37, Note: 15-10, Evaluated: 15-10) [Back to Table]

(2) Black, G. Reactions of \(\text{HS} \) with \(\text{NO} \) and \(\text{NO}_2 \) at 298 K. *J. Chem. Phys.* 1984, *80*, 1103-1107.

I85. \(\text{SH} + \text{O}_3 \). The value for \(k(298 \text{ K}) \) is an average of the determinations by Friedl et al.\(^1\) (laser induced fluorescence detection of \(\text{SH} \)), Schonle et al.\(^4\) (mass spectrometric detection of reactant \(\text{SH} \) and product \(\text{HSO} \)) as revised by Schindler and Benter,\(^2\) and Wang and Howard\(^4\) (laser magnetic resonance detection of \(\text{SH} \)). The temperature dependence is from Wang and Howard with the \(A \)-factor calculated to agree with the recommended value for \(k(298 \text{ K}) \). The recommendation for \(g \) reflects the fact that the temperature dependence comes from measurements above room temperature and, thus, extrapolation to lower temperatures may be subject to additional uncertainties. Wang and Howard report observing a minor reaction channel that produces \(\text{H} + \text{SO} + \text{O}_2 \). A theoretical study by Resende and Ornellas\(^2\) concludes that if reaction occurs on the ground state potential energy surface, the rate constant should be several orders of magnitude slower than the experimental value.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table]

I86. SH + H₂O₂. This recommended upper limit for k(298 K) is based on the study of Friedl et al.¹ Their value is calculated from the lack of SH decay (measured by laser induced fluorescence) and the lack of OH production (measured by resonance fluorescence). The three possible product channels are H₂S + HO₂, HSOH + OH, and HSO + H₂O.

(Table: 85-37, Note: 85-37, Evaluated: 85-37) Back to Table

I87. SH + NO₂. The recommendation is based on the temperature-dependent measurements of Wang et al.¹⁰ and Herndon and Ravishankara.⁵ All data points in each study were scaled by a factor equal to the ratio k(298 K)ᵣᵣ/k(298 K)ₑₑₑₑ, where k(298 K)ᵣᵣ is the 298 K rate constant obtained from the best fit Arrhenius expression describing the individual T-dependent data set and k(298 K)ₑₑₑₑ is the average of the k(298 K)ᵣᵣ values from the two studies. The best fit of the scaled data to ln k = ln A – E/RT is recommended. Wang et al. suggest that the lower values of k(298 K) reported by Black,¹ Friedl et al.,⁴ and Bulatov et al.² are due to SH regeneration from the H₂S source compound. Herndon and Ravishankara suggest that simultaneous detection of SH and SO may have corrupted earlier studies where laser induced fluorescence was employed as the detection technique.¹⁴ In the study by Stachnik and Molina,⁹ attempts were made at minimizing SH regeneration, and the reported value of k(298 K) was significantly greater than that from the earlier studies, but still 30% less than that measured by Wang et al., who used two independent SH source reactions. A slightly larger rate constant measured by Schonle et al.,⁸ as revised by Schindler and Benter,⁷ is not recommended due to the somewhat more limited database for their determination. The reaction as written represents the most exothermic channel. In fact, HSO has been detected as a product by Leu and Smith.⁶ Bulatov et al.,² Schonle et al.,⁸ and Wang et al. The absence of a primary deuterium isotope effect, as observed by both Wang et al. and Herndon and Ravishankara, coupled with the large magnitude of the rate constant suggests that the (four-center intermediate) channels producing SO + HNO and OH + SNO are of minor importance. No evidence for a three-body combination reaction was found by either Black or Friedl et al. Based on a pressure independence of the rate constant between 30 and 300 Torr, Black set an upper limit of 7.0 x 10⁻³¹ cm⁶ molecule⁻² s⁻¹ for the termolecular rate constant. Similarly, Stachnik and Molina⁹ observed no change in decay rate between 100 and 730 Torr with O₂ (although these O₂ experiments were designed primarily to limit SH regeneration). The recommendation given here is supported by the discharge flow laser induced fluorescence study of the SD + NO₂ reaction by Fenter and Anderson.⁷ These investigators report a 298 K rate constant of 6.8 x 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹, which compares favorably with the values of 7.3 x 10⁻¹¹ and 6.6 x 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ determined by Wang et al. and Herndon and Ravishankara, respectively, in studies of the same reaction. Fenter and Anderson also obtained an E/R value of ≈ 210 K, very similar to the -279 K value derived by Herndon and Ravishankara for the SD reaction and the values ~240 K and ~270 K derived by Wang et al. and Herndon and Ravishankara, respectively, for the SH reaction.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(2) Bulatov, V. P.; Kozliner, M. Z.; Sarkisov, O. M. Determination of rate constants for the reactions of SH + NO₂ → HSO + NO and HSO + NO₂ → products. Khim. Fiz. 1984, 3, 1300-1305.

I88. SH + N2O. The recommendation is the upper limit rate constant reported by Herndon et al.1 As discussed by Herndon et al., the much greater (four orders of magnitude) rate constant reported by Ravichandran et al.2 appears to result from mis-interpretation of the source of electronically excited HSO, chemiluminescence from which was employed by Ravichandran et al. to follow the reaction kinetics.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I89. SH + Cl2. The recommended 298 K rate constant is based on the work of Nesbitt and Leone,2 who studied the kinetics of the Cl + H2S → SH + HCl, SH + Cl2 → ClISH + Cl chain reaction. Fenter and Anderson1 employed a discharge flow laser induced fluorescence technique to study the SD + Cl2 reaction over the temperature range 273–373 K. The 298 K rate constant reported by Fenter and Anderson is about 20% greater than the one reported by Nesbitt and Leone, which is consistent with the expected secondary kinetic isotope effect. The recommended value of E/R is taken from the work of Fenter and Anderson; the recommended value for the parameter g reflects the absence of confirming studies and uncertainty in the isotope effect on E/R.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I90. SH + BrCl; SH + Br2; SH + F2. The recommendations for these reactions are derived from the data of Fenter and Anderson1 for the SD radical. The uncertainties have been increased over those estimated by the investigators to reflect the absence of any confirming investigations and the influence of the secondary isotope effect. For the BrCl reaction, the channel producing ClSD + Br was found to be described by the rate expression \(k = 2.3 \times 10^{-11} \exp(100/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \).

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

I91. HSO + O2. This recommendation is based on the study by Lovejoy et al.,2 who employed laser magnetic resonance monitoring of HSO in a discharge flow system. The upper limit thus derived for \(k(298 \text{ K}) \) is nearly two orders of magnitude smaller than measured by Bulatov et al.1

(Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

I92. HSO + O3. This recommended value for \(k(298 \text{ K}) \) is based on the determinations by Friedl et al.1 and Wang and Howard.3 In the first study, performed at higher O3 concentrations, greater quantities of HSO were produced in the flow tube and SH approached a steady state due to its generation via HSO + O3. The rate constant for this reaction was thus determined relative to SH + O3 from measurements of the steady state SH concentration as a function of the initial SH concentration. In the second study, the rate constant and its branching ratio were measured at two temperatures. At room temperature, the overall rate constant is in excellent agreement with that of Friedl et al. More recently, Lee et al.2 determined a room temperature rate constant of \(4.7 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) for the sum of all reaction channels not producing HS. This value is approximately 30% greater than that measured by Wang and Howard for the same channels. Lee et al. derive
an Arrhenius activation energy of 1120 K for these channels from data between 273 and 423 K, in agreement with the more limited temperature-dependent data of Wang and Howard.

The lack of an isotope effect when SD was employed in the Friedl et al. study suggests that the products of the HSO + O2 reaction are SH + 2O2 (analogous to those for HO2 + O3). However, Wang and Howard found that only 70% of the reaction leads to HS formation. In addition, their observations of HO2 production in the presence of O2 suggests the existence of a reaction channel producing HSO2 + O2 followed by HSO2 + O2 → HO2 + SO2. At the present time, no recommendation is given for the product channels. Further mechanistic work is suggested, since it is important to understand whether this reaction in the atmosphere leads to HS regeneration or to oxidation of the sulfur.

(Table: 92-20, Note: 94-26, Evaluated: 92-20) Back to Table

I93. HSO + NO2; HSO + NO2. The recommendations for these reactions are based on the study by Lovejoy et al.3 in which laser magnetic resonance was used to monitor HSO in a discharge flow system. Their upper limit for the NO reaction is a factor of 25 smaller than the rate constant measured by Bulatov et al.2 using intracavity laser absorption at pressures between 10 and 100 Torr. Since it is unlikely that this reaction rate undergoes a factor of 25 increase between 1 Torr (the pressure of the Lovejoy et al. work) and 10 Torr, the higher rate constant may be due to secondary chemistry associated with the HSO production methods employed.

The recommendation for the NO reaction is a factor of 2 higher than the rate constant reported by Bulatov et al.3 Lovejoy et al. have attributed this difference to HSO regeneration under the experimental conditions used by Bulatov et al. The product assignment for this reaction is discussed in the note for the HSO2 + O2 reaction.

(Table 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

I94. HSO2 + O2. This recommendation is based on the rate of HO2 formation measured by Lovejoy et al.3 upon addition of O2 to the HSO + NO2 reaction system. While HO2 was not observed directly, a consideration of the mechanistic possibilities for HSO + NO2, coupled with measurements of the HO2 production rate at various O2 pressures, led these authors to suggest that HSO2 is both a major product of the HSO + NO2 reaction and a precursor for HO2 via reaction with O2.

(Table: 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

I95. HOSO2 + O2. This recommendation is based on the studies of Gleason et al.3 and Gleason and Howard2 in which the HOSO2 reactant was monitored using a chemical ionization mass spectrometric technique. Gleason and Howard conducted their measurements over the 297-423 K temperature range in the only temperature dependence investigation, and these authors report the same 297 K rate coefficient as the one reported by Gleason et al. The recommended uncertainty parameter g is increased from the E/R error limits quoted by Gleason and Howard to account for potential uncertainties in extrapolating their data to sub-ambient temperatures. The recommended value of k(298 K) derives further support from the studies of Margitan3 and Martin et al.6 both of whom used modeling fits of OH radical decays in the OH + SO2 + M reaction system in the presence of O2 and NO. In this latter analysis, the HOSO2 reacts with O2 yielding HO2, which subsequently regenerates OH through its reaction with NO. The infrared spectrum of HOSO2 has been recorded in low temperature matrix isolation experiments by Hashimoto et al.4 and Nagase et al.7 Mass spectrometric detection of HOSO2 in the gas phase has also been reported by Egsgaard et al.3
I96. \(\text{CS} + \text{O}_2 \). The recommendation given for \(k(298 \text{ K}) \) is based on the work of Black et al.\(^1\) using laser induced fluorescence to monitor CS. This value agrees with the somewhat less precise determination by Richardson \(^2\) using OCS formation rates. The latter author presents evidence that this reaction channel dominates over the one producing SO + CO by more than a factor of 10. Measurements by Richardson at 293 K and 495 K yield an E/R of 1860 K. However, use of this activation energy with the recommended value of \(k(298 \text{ K}) \) results in an unusually low Arrhenius \(A \) factor of \(1.5 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \). In view of this, no recommendation is given for the temperature dependence.

\[(\text{Table}: \text{06-2}, \text{Note}: 85-37, \text{Evaluated}: 85-37) \text{ Back to Table}\]

I97. \(\text{CS} + \text{O}_3; \text{CS} + \text{NO}_2 \). The \(k(298 \text{ K}) \) recommendations for both reactions accept the results of Black et al.,\(^1\) who used laser–induced fluorescence to monitor the CS reactant in a room temperature experiment. The uncertainty factors reflect the absence of any confirming measurements.

\[(\text{Table}: \text{85-37, Note}: 85-37, \text{Evaluated}: 85-37) \text{ Back to Table}\]

I98. \(\text{CH}_3\text{S} + \text{O}_2 \). This upper limit is based on the study by Tyndall and Ravishankara.\(^3\) Somewhat higher upper limits were derived in the earlier studies of Balla et al.\(^2\) and Black and Jusinski.\(^2\)

\[(\text{Table}: \text{90-1, Note}: 90-1, \text{Evaluated}: 90-1) \text{ Back to Table}\]

I99. \(\text{CH}_3\text{S} + \text{O}_3 \). The recommendation for \(k(298 \text{ K}) \) is the average of room temperature rate constants reported by Tyndall and Ravishankara,\(^3\) Domine et al.,\(^2\) Turnipseed et al.,\(^4\) and Martinez et al.\(^3\) The recommendation for E/R is the average of values obtained from least squares fits of the temperature-dependent data of Turnipseed et al. and Martinez et al. using only rate constants at temperatures below 345 K. A failure to observe significant reaction in the study by Black and Jusinski\(^2\) is interpreted as due to rapid regeneration of \(\text{CH}_3\text{S} \) in their system. Tyndall and Ravishankara\(^5\) corrected their measured 298 K rate constant downward by ~20% to account for \(\text{CH}_3\text{S} \) regeneration via the \(\text{CH}_3\text{SO} + \text{O}_3 \) reaction, but the magnitude of the correction is now highly uncertain in light of the results of Domine et al. and Turnipseed et al. Domine et al. measured the yield of \(\text{CH}_3\text{SO} \) to be 15%.

\[(\text{Table}: \text{06-2, Note}: 06-2, \text{Evaluated}: 06-2) \text{ Back to Table}\]
I100. CH₃S + NO. The upper limit for the bimolecular reaction between CH₃S and NO is based on estimates by Balla et al.,¹ who conducted a temperature dependence study of the termolecular reaction. (Table: 92-20, Note: 92-20, Evaluated: 92-20) Back to Table

I101. CH₃S + NO₂. The recommendation for k(298 K) is the average of room temperature rate constants reported by Tyndall and Ravishankara,⁶ Domine et al.,³ Turnipseed et al.,⁵ Martinez et al.,⁴ and Chang et al.² The recommendation for E/R is the average of values reported by Turnipseed et al., Martinez et al., and Chang et al. An earlier study by Balla et al.¹ appears to have been affected by secondary reactions resulting from high radical concentrations. Tyndall and Ravishankara determined the NO yield to be (80 ± 20)%. Together with the unity yield of CH₃SO obtained by Domine et al., this implies that the primary reaction channel is as written. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I102. CH₃S + CO. The recommendation is based on the study of Koch et al.,¹ who generated CH₃S by laser flash photolysis of CH₃SSCH₃ and monitored the loss of CH₃S by laser induced fluorescence. The rate of loss of CH₃S was found to be independent of [CO] up to levels of approximately 10¹⁷ molecules cm⁻³. No enhancement of the CH₃S loss rate was observed when O₂ was added to the reaction mixture, confirming that CH₃SOO is also unreactive toward CO. Electronic structure calculations are consistent with experimental observations, suggesting that there is a significant barrier (~12 kJ mol⁻¹) to formation of a very weakly bound (~9 kJ mol⁻¹) CH₃S–CO adduct. (New Entry) Back to Table

I103. CH₃S + Br₂. The recommendation is based on the study of Nicovich et al.,¹ who coupled laser flash photolysis of Br₂/CH₃SH/He/N₂ mixtures with resonance fluorescence detection of Br atoms to monitor the kinetics of Br approach to steady state (Br + CH₃SH → CH₃S + HBr; CH₃S + Br₂ → CH₃SBr₂ + Br). The recommended uncertainty is larger than estimated by Nicovich et al. to reflect the slightly indirect nature of the rate constant determination and the lack of a confirming study. (New Entry) Back to Table
I104. CH$_2$SH + O$_2$. This recommended value for k(298 K) is the average of the rate constants obtained by Rahman et al.2 in a fast flow mass spectrometry system and Anastasi et al.1 using a pulse radiolysis – kinetic absorption apparatus. The value of Anastasi et al. is nearly twice that of Rahman et al. It is difficult at present to indicate a preference for the results of one study over the other, and the value of f(298 K) has been chosen to reflect this uncertainty. Since this is a fast bimolecular reaction, one would expect the products to be HO$_2$ + CH$_3$S, by analogy with the reaction between CH$_3$OH and O$_2$.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

I105. CH$_2$SH + O$_3$. The recommended value of k(298 K) comes from the study by Rahman et al.1 using fast flow mass spectrometry. The uncertainty factor reflects the absence of any confirming investigations.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

I106. CH$_3$SH + NO. The recommended value of k(298 K) comes from the study by Anastasi et al.1 using a pulse radiolysis kinetic absorption apparatus. The uncertainty factor reflects the absence of any confirming investigations.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

I107. CH$_3$SH + NO$_2$. The recommended value for k(298 K) is an average of the rate constants obtained by Rahman et al.2 in a fast flow mass spectrometry system and by Anastasi et al.1 using a pulse radiolysis kinetic absorption apparatus. The value of Rahman et al. is nearly twice that of Anastasi et al. It is difficult to indicate a preference for the results of one study over the other, and the value of f(298 K) has been chosen to reflect this uncertainty.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

I108. CH$_3$SO + O$_3$. The recommended value for k(298 K) is an average of values reported by Domine et al.2 and Borissenko et al.1. It is supported by the study of Tyndall and Ravishankara,3 in which the rate constant was derived from a complex analysis of the CH$_3$S + O$_3$ reaction system. Borissenko et al. measured the rate constant relative to the rate constant for the CH$_3$SO + NO$_2$ reaction; they report that the CH$_3$SO + NO$_2$ rate constant is greater by a factor of 47. Domine et al. place the direct yield of CH$_3$SO at approximately 10% and that of CH$_3$S at 13% at low pressure. Borissenko et al. report that the SO$_2$ yield is near unity in 100–600 Torr N$_2$.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I109. CH$_3$SO + NO$_2$. This recommendation is based on the direct measurements of Domine et al.2 The results are supported by somewhat less direct measurements of Tyndall and Ravishankara.6 Mellouki et al.5 and Kukui et al.3 The results of Kukui et al. suggest a small negative activation energy, but their data set is not extensive enough to warrant a recommendation for E/R without independent confirmation. Borissenko et al.4 report that the SO$_2$ yield drops from ~0.4 in 100 Torr N$_2$ to ~0.25 in 660 Torr N$_2$. A detailed theoretical singlet potential energy surface has been reported by Lesar.4

I110. CH$_3$SOO + O$_3$, CH$_3$SOO + NO, CH$_3$SOO + NO$_2$. These recommendations are based on the experiments of Turnipseed et al.1 in which CH$_3$S was monitored by laser induced fluorescence in equilibrium with CH$_3$SOO. The upper limit for the O$_3$ reaction was determined from experiments at 227 K. The results for the NO and NO$_2$ reactions were independent of temperature over the ranges 227–266 K and 227–246 K, respectively. The uncertainties placed on these recommendations have been increased over those estimated by the authors to reflect the absence of any confirming investigations.

I111. CH$_3$SO$_2$ + NO$_2$. This recommendation is based on the study by Ray et al.1 using a discharge flow reactor equipped with laser induced fluorescence and mass spectrometric detection. The CH$_3$SO$_2$ was produced by the sequential oxidation of CH$_3$S and CH$_3$SO by NO$_2$ and is to be differentiated from the weakly bound adduct, CH$_3$SOO, formed by the reaction of CH$_3$S with O$_2$ at low temperature (Turnipseed et al.2). The uncertainty limit on the rate constant has been increased over that given by the authors to reflect the absence of any confirming investigation. However, some additional support for this recommendation does come from the study of the CH$_3$S + NO$_2$ reaction by Tyndall and Ravishankara.3 These authors observed fluorescence from a product species tentatively identified as CH$_3$SO$_2$, produced by the reaction of CH$_3$SO with NO$_2$. Computer simulation of the rise and fall of the fluorescence signal yielded an approximate rate constant value for the reaction CH$_3$SO$_2$ + NO$_2$ of 7.0×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$. However, an unambiguous differentiation between the production and disappearance rate constants was not possible.

I112. CH$_3$SCH$_2$ + NO$_x$. The recommended value for k(298 K) is based on the experiments of Butkovskaya and Le Bras.1 The uncertainty factor reflects the absence of any confirming investigation.
I113. CH₃SCH₂O₂ + NO. The recommended 298 K rate constant is based on the experiments of Urbanski et al.,² which are less impacted by secondary chemistry complications than the experiments of Wallington et al.³ or Turnipseed et al.;¹ the error limits are chosen to encompass the rate constants reported in all three studies. The E/R value is taken from Urbanski et al., who report the only available temperature dependence data. The recommended value for the parameter g is larger than reported by Urbanski et al. pending independent confirmation of their result. Theoretical work by Wu et al.⁴ suggests that isomerization of CH₃SCH₂O₂ to CH₃CH₂OONO can compete with CH₃SCH₂O₃ bimolecular reactions with NO, HO₂, and RO₂ under tropospheric conditions. Urbanski et al. observed that the reaction produces formaldehyde (H₂CO) with unit yield, suggesting that the CH₃SCH₂O₂ product rapidly decomposes to CH₃S + H₂CO.

Table: 92

I114. CH₃SCH₂O₂ + CH₃SCH₂O₂. The recommended 298 K rate constant is the average of values reported by Wallington et al.² using a pulse radiolysis UV absorption technique and Urbanski et al.¹ using a laser flash photolysis tunable diode laser absorption technique. Urbanski et al. observed that the reaction produces formaldehyde with unit yield, suggesting that the dominant reaction pathway is 2 CH₃SCH₂O₂ → 2 CH₃SCH₂O + O₂ (CH₃SCH₂O rapidly decomposes to CH₃S + H₂CO).

Table: 92

I115. CH₃SS + O₃. The recommended rate constant for reactions of CH₃SS with O₃ and NO₂ is consistent with the rate constant ratio for the corresponding CH₃S reactions.

Table: 92

I116. CH₃SS + NO₂; CH₃SSO + NO₂. The recommended values for k(298 K) are based on the discharge flow photodissociation mass spectrometry study by Domine et al.¹ The assigned uncertainties reflect the absence of any confirming investigations. The assigned uncertainties reflect the absence of any confirming investigation. In the Domine et al. study, CH₃SSO was produced by reacting away all CH₃SS with high NO₂ concentrations. Thus, as expected, O atom transfer may be the primary channel in the CH₃SS reaction.

Table: 92
1.14.3 Bibliography – SOx Reactions

Atkinson, R.; Perry, R. A.; Pitts, J. N., Jr. Rate constants for the reaction of the \(\text{OH} \) radical with \(\text{CH}_3\text{SH} \) and \(\text{CH}_3\text{NH}_2 \) over the temperature range 299-426 K. *J. Chem. Phys.* 1977, 66, 1578-1581.

Atkinson, R.; Perry, R. A.; Pitts Jr., J. N. Rate constants for the reaction of \(\text{OH} \) radicals with \(\text{COS}, \text{CS}_2 \), and \(\text{CH}_3\text{SCCH}_3 \) over the temperature range 299-430 K. *Chem. Phys. Lett.* 1978, 54, 14-18.

Balla, R. J.; Nelson, H. H.; McDonald, J. R. Kientics of the reaction of \(\text{CH}_3\text{S} \) with \(\text{NO}, \text{NO}_2 \) and \(\text{O}_2 \). *Chem. Phys.* 1986, 109, 101-107.

Barone, S. B.; Turnipseed, A. A.; Ravishankara, A. R. Reaction of \(\text{OH} \) with dimethyl sulfide (\(\text{DMS} \)). I. Equilibrium constant for \(\text{OH} + \text{DMS} \) reaction and the kinetics of the \(\text{OH} + \text{DMS} + \text{O}_2 \) reaction. *J. Phys. Chem.* 1996, 100, 14694-14702.

Brunning, J.; Stief, L. J. Kinetic studies of the reaction of the SO radical with NO2 and ClO from 210 to 363 K. J. Chem. Phys. 1986, 84, 4371-4377.

Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Absorption spectrum of NO3 and kinetics of the reactions of NO3 with NO2, Cl, and several stable atmospheric species at 298 K. J. Phys. Chem. 1985, 89, 4848-4856.

1-363

Ellingson, B. A.; Truhlar, D. G. Explanation of the unusual temperature dependence of the atmospherically important OH + H$_2$S \rightarrow H$_2$O + HS reaction and prediction of the rate constant at combustion temperatures. J. Am. Chem. Soc. 2007, 129, 12765-12771, doi:10.1021/ja072538b.

Martin, D.; Jourdain, J. L.; Le Bras, G. Discharge flow measurements of the rate constants for the reactions \(\text{OH} + \) \(\text{SO}_2 \) + \(\text{He} \) and \(\text{HOSO}_2 \) + \(\text{O}_2 \) in relation with the atmospheric oxidation of \(\text{SO}_2 \). *J. Phys. Chem.* 1986, 90, 4143-4147, doi:10.1021/j100408a061.

Mellouki, A.; Jourdain, J. L.; Le Bras, G. Discharge flow study of the \(\text{CH}_3\text{S} + \text{NO}_2 \) reaction mechanism using \(\text{Cl} + \text{CH}_3\text{SH} \) as the \(\text{CH}_3\text{S} \) source. *Chem. Phys. Lett.* 1988, 148, 231-236.

Murrells, T. P.; Lovejoy, E. J.; Ravishankara, A. R. Oxidation of \(\text{CS}_2 \) by reaction with \(\text{OH} \). 1. Equilibrium constant for the reaction \(\text{OH} + \text{CS}_2 \rightarrow \text{CS}_2\text{OH} \) and the kinetics of the \(\text{CS}_2\text{OH} + \text{O}_2 \) reaction. *J. Phys. Chem.* 1990, 94, 2381-2386.

Nava, D. F.; Brobst, W. D.; Stief, L. J. Temperature study of the rates of the reactions of atomic chlorine with \(\text{H}_2\text{S} \) and \(\text{CH}_2\text{H}_3\text{S} \). *J. Phys. Chem.* 1985, 89, 4703-4707, doi:10.1021/j100268a012.

Nickolaisen, S. L.; Veney, D. W.; Cartland, H. E. \(\text{CO}(v,J) \) product state distributions from the reaction \(\text{O}(^3\text{P}) + \text{OCS} \rightarrow \text{CO} + \text{SO} \). *J. Chem. Phys.* 1994, 100, 4925-4931.

Nicovich, J. M.; Kreutter, K. D.; van Dijk, C. A.; Wine, P. H. Temperature dependent kinetics studies of the reactions \(\text{Br}(^3\text{P}_2) + \text{H}_2\text{S} \rightarrow \text{SH} + \text{HBr} \) and \(\text{Br}(^3\text{P}_2) + \text{CH}_3\text{SH} \rightarrow \text{CH}_3\text{S} + \text{HBr} \). Heats of formation of \(\text{SH} \) and \(\text{CH}_3\text{S} \) radicals. *J. Phys. Chem.* 1992, 96, 2518-2528.

Schurath, U.; Goede, H.-J. Temperature Dependence of the Reactions SO + O₂ (1) and SO + O₃ (2). *Physico-Chemical Behaviour of Atmospheric Pollutants, Proc. 3rd European Symposium, Varese, Italy 1984, 227-239.

Wallington, T. J.; Ellermann, T.; Nielsen, O. J. Atmospheric chemistry of dimethyl sulfide: UV spectra and self-reaction kinetics of CH₃SCH₂ and CH₃SCH₃ radicals and kinetics of the reactions CH₃SCH₂ + O₂ → CH₃SCH₂O₂ + NO and CH₃SCH₃ + O₂ → CH₃SCH₃O + NO₂. *J. Phys. Chem.* **1993**, *97*, 8442-8449.

1.15 Metal Reactions

1.15.1 Table 1J: Metal Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature Range of Exp. Data (K)</th>
<th>A-Factor</th>
<th>E/R</th>
<th>$k(298\text{ K})$</th>
<th>$f(298\text{ K})$</th>
<th>g</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Na} + \text{O}_2 \rightarrow \text{NaO}_2$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Na} + \text{O}_3 \rightarrow \text{NaO} + \text{O}_2 \rightarrow \text{NaO}_2 + \text{O}$</td>
<td>208–377</td>
<td>1.0×10^{-9}</td>
<td>95</td>
<td>7.3×10^{-10}</td>
<td>1.2</td>
<td>50</td>
<td>J_1</td>
</tr>
<tr>
<td>$\text{Na} + \text{N}_2\text{O} \rightarrow \text{NaO} + \text{N}_2$</td>
<td>240–850</td>
<td>2.8×10^{-10}</td>
<td>1600</td>
<td>1.3×10^{-12}</td>
<td>1.2</td>
<td>400</td>
<td>J_2</td>
</tr>
<tr>
<td>$\text{Na} + \text{Cl}_2 \rightarrow \text{NaCl} + \text{Cl}$</td>
<td>294</td>
<td>7.3×10^{-10}</td>
<td>0</td>
<td>7.3×10^{-10}</td>
<td>1.3</td>
<td>200</td>
<td>J_3</td>
</tr>
<tr>
<td>$\text{NaO} + \text{O} \rightarrow \text{Na} + \text{O}_2$</td>
<td>290–573</td>
<td>4.4×10^{-10}</td>
<td>0</td>
<td>4.4×10^{-10}</td>
<td>1.5</td>
<td>200</td>
<td>J_4</td>
</tr>
<tr>
<td>$\text{NaO} + \text{O}_2 \rightarrow \text{NaO}_3$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{NaO} + \text{O}_3 \rightarrow \text{NaO}_2 + \text{O}_2 \rightarrow \text{Na} + 2\text{O}_2$</td>
<td>207–377</td>
<td>1.1×10^{-9}</td>
<td>570</td>
<td>1.6×10^{-10}</td>
<td>1.5</td>
<td>300</td>
<td>J_5</td>
</tr>
<tr>
<td>$\text{NaO} + \text{H}_2 \rightarrow \text{NaOH} + \text{H}$</td>
<td>296</td>
<td>6.0×10^{-11}</td>
<td>0</td>
<td>6.0×10^{-11}</td>
<td>3.0</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>$\text{NaO} + \text{H}_2\text{O} \rightarrow \text{NaOH} + \text{OH}$</td>
<td>260–716</td>
<td>2.6×10^{-11}</td>
<td>0</td>
<td>2.6×10^{-11}</td>
<td>2.0</td>
<td>600</td>
<td>J_6</td>
</tr>
<tr>
<td>$\text{NaO} + \text{NO} \rightarrow \text{Na} + \text{NO}_2$</td>
<td>296</td>
<td>1.5×10^{-10}</td>
<td>0</td>
<td>1.5×10^{-10}</td>
<td>4.0</td>
<td>400</td>
<td>J_8</td>
</tr>
<tr>
<td>$\text{NaO} + \text{CO}_2 \rightarrow \text{NaCO}_3$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{NaO} + \text{HCl} \rightarrow \text{products}$</td>
<td>308</td>
<td>2.8×10^{-10}</td>
<td>0</td>
<td>2.8×10^{-10}</td>
<td>3.0</td>
<td>400</td>
<td>J_9</td>
</tr>
<tr>
<td>$\text{NaO}_2 + \text{O} \rightarrow \text{NaO} + \text{O}_2$</td>
<td>300</td>
<td>2.2×10^{-11}</td>
<td>0</td>
<td>2.2×10^{-11}</td>
<td>5.0</td>
<td>600</td>
<td>J_{10}</td>
</tr>
<tr>
<td>$\text{NaO}_2 + \text{NO} \rightarrow \text{NaO} + \text{NO}_2$</td>
<td>296</td>
<td><10$^{-14}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{NaO}_2 + \text{HCl} \rightarrow \text{products}$</td>
<td>295</td>
<td>2.3×10^{-10}</td>
<td>0</td>
<td>2.3×10^{-10}</td>
<td>3.0</td>
<td>400</td>
<td>J_{12}</td>
</tr>
<tr>
<td>$\text{NaOH} + \text{HCl} \rightarrow \text{NaCl} + \text{H}_2\text{O}$</td>
<td>308</td>
<td>2.8×10^{-10}</td>
<td>0</td>
<td>2.8×10^{-10}</td>
<td>3.0</td>
<td>400</td>
<td>J_{13}</td>
</tr>
<tr>
<td>$\text{NaHCO}_3 + \text{H} \rightarrow \text{Na} + \text{H}_2\text{O} + \text{CO}_2$</td>
<td>227–307</td>
<td>1.4×10^{-11}</td>
<td>1000</td>
<td>5×10^{-13}</td>
<td>2.0</td>
<td>100</td>
<td>J_{14}</td>
</tr>
<tr>
<td>$\text{NaOH} + \text{CO}_2 \rightarrow \text{NaHCO}_3$</td>
<td>(See Table 2-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL10-6. Italicized entries in blue denote estimates.

- **a** Temperature range of available experimental data. This is not necessarily the range of temperature over which the recommended Arrhenius parameters are applicable. See the corresponding note for each reaction for such information.
- **b** Units are cm3 molecule$^{-1}$ s$^{-1}$.
- **c** $f(298\text{ K})$ is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

$$f(T) = f(298\text{ K})\exp\left[g\left(\frac{1}{T} - \frac{1}{298}\right)\right],$$

note that the exponent is an absolute value.
1.15.2 Notes: Metal Reactions

J1. Na + O₂. The recommendation is based on the measurements of Ager et al.,¹ Worsnop et al.,⁶ as corrected in Worsnop et al.,⁷ and Plane et al. The data of Worsnop et al. supersede earlier work from that laboratory (Silver and Kolb).⁵ Measurements made by Husain et al.² at 500 K are somewhat lower, probably because they did not recognize that secondary chemistry, NaO + O₂ → Na + 2O₂, interferes with the rate coefficient measurement. The temperature dependence is from results of Worsnop et al.⁷ (214–294 K) and Plane et al.³ (208–377 K). Ager et al.¹ estimate that the NaO + O product channel is ≤5%. Evidence that the NaO product is in the ²Σ⁺ excited electronic state was reported by Shi et al.⁴ and Wright et al.⁸

(Table: 94–26, Note: 94–26, Evaluated: 94–26) Back to Table

J2. Na + N₂O. The recommendation incorporates the data of Husain and Marshall,³ Ager et al.,¹ Plane and Rajasekhar,⁴ and Worsnop et al.⁶ Silver and Kolb⁵ measured a rate coefficient at 295 K that is lower and is superseded by Worsnop et al. Helmer and Plane⁴ report a measurement at 300 K in excellent agreement with the recommendation. Earlier, less direct studies are discussed by Ager et al.¹ The NaO product does not react significantly with N₂O at room temperature [k (for Na + N₂ + O₂ products) ≤ 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ and k (for NaO + N₂ products) ≤ 2 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹ (Ager et al.). Wright et al.⁷ used UV photoelectron spectroscopy to determine the product NaO is formed predominantly in the excited ²Σ⁺ state.

(Table: 92-20, Note: 94-26, Evaluated: 94-26) Back to Table

3. Husain, D.; Marshall, P. Kinetic study of the absolute rate constant for the reaction between Na + N₂O in the temperature range 349-917 K by time-resolved atomic resonance absorption spectroscopy at lambda = 589 nm (Na(3P) - Na(3Σ₁(2))) following pulsed irradiation. Combust. and Flame 1985, 60, 81-87.
J3. Na + Cl₂. Two measurements of the rate coefficient for this reaction are in excellent agreement: Silver¹ and Talcott et al.² The recommended value is the average of these room temperature results.

(Table 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

J4. NaO + O. The recommendation is based on measurements by Plane and Husain³ and Griffin et al.¹ The Na + O₂ reaction produces NaO predominately in the low lying A 2Σ⁺ state which can radiatively and collisionally decay slowly to the X 2Π ground state. The Plane and Husain³ experiment was configured so the predominant reactant was NaO X 2Π while the Griffin et al.¹ experiment was designed to maximize NaO A 2Σ⁺ concentrations. While the two states may not have identical reaction rate constants, their energy difference is small compared to reaction exothermicity and both states show reaction rate constants near the collisional limit. Since this reaction in the atmosphere will probably proceed through a mixture of the two lowest NaO electronic states and data are available at only one temperature for each state, the recommended rate constant is an average of the two measurements. Plane and Husain³ reported that ~0.01 of the Na product is in the 3P excited state, while Griffin et al.¹ report a Na 3P product branching ratio of 0.14 ± 0.04. This difference is consistent with the orbital correlation predictions of products for reaction of each NaO state as presented by Herschbach et al.²

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

J5. NaO + O₃. This reaction was studied by Silver and Kolb,³ Ager et al.,¹ and Plane et al.,² who agree on the rate coefficient and branching ratio. This agreement may be fortuitous because Silver and Kolb used an indirect method and an analysis based on their rate coefficient for the Na + O₃ reaction, which is about 1/2 of the recommended value. Ager et al. employed a somewhat more direct measurement, but the study is complicated by a chain reaction mechanism in the NaO₃ system. Plane et al. reported rate coefficient measurements for the NaO₂ + O product channel over the temperature range 207–377 K using pulsed photolysis LIF methods. The recommendation for that channel is based on all three studies, and the recommendation for the Na + 2O₂ channel is based upon the results of Silver and Kolb and Ager et al. The latter reaction channel may also have a significant temperature dependence.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

J6. NaO + H₂. The recommendation is based on a measurement by Ager and Howard.¹ They also reported a significant Na + H₂O product channel and that a small fraction of the Na from this channel is in the 3P excited state.

(Table 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

J7. NaO + H₂O. The recommendation is based on a room temperature measurement by Ager and Howard¹ and a temperature dependent measurement by Cox and Plane² with the more extensive temperature dependent data favored.

1-376
J8. NaO + NO. The recommendation is based on an indirect measurement reported by Ager et al.\(^1\)
(Table: 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

J9. NaO + HCl. There is only one indirect measurement of the rate coefficient for this reaction, that from the study by Silver et al.\(^1\) They indicate that the products are NaCl and OH, although some NaOH and Cl production is not ruled out.
(Table: 85-37, Note: 85-37, Evaluated: 85-37) Back to Table

J10. NaO\(_2\) + O. The recommendation is based on a flow tube study at 300 K by Helmer and Plane.\(^1\)
(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

J11. NaO\(_2\) + NO. This reaction is endothermic. The upper limit recommended is from an experimental study by Ager et al.\(^1\)
(Table 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

J12. NaO\(_2\) + HCl. The recommendation is based on a measurement reported by Silver and Kolb.\(^1\) They indicated that the products are NaCl + HO\(_2\), but NaOOH + Cl may be possible products.
(Table 87-41, Note: 87-41, Evaluated: 87-41) Back to Table

J13. NaOH + HCl. The recommendation is based on the study by Silver et al.,\(^1\) which is the only published study of this reaction.
(Table: 85-37, Note: 85-37, Evaluated: 85-37) Back to Table

J14. NaHCO\(_3\) + H. The recommendation is based on measurements at 307 and 227 K by Cox et al.\(^2\) It is consistent with an upper limit reported by Ager and Howard.\(^1\)
(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

1-377
1.15.3 Bibliography – Metal Reactions

Cox, R. M.; Plane, J. M. C.; A study of the reaction rate of sodium superoxide with hydrochloric acid. *Combusand Flame* 1985, 60, 81-87.

Husain, D.; Marshall, P. Determination of the absolute rate constant for the reaction O + NaO → Na + O₂ by time-resolved atomic resonance absorption spectroscopy over an extended temperature range 349-917 K by time-resolved atomic resonance absorption spectroscopy at lambda = 589 nm (Na(3 P₁) → Na(3 S₁/2)) following pulsed irradiation. *Combust. and Flame* 1985, 60, 81-87.

SECTION 2. TERMOLECUlar REACTIONS

Table of Contents

SECTION 2. TERMOLECUlar REACTIONS... 2-1
2.1 Introduction .. 2-1
2.2 Low-Pressure-Limiting Rate Constant, $k_o(T)$... 2-2
2.3 Temperature Dependence of Low–Pressure Limiting Rate Constants: T^n 2-2
2.4 High-Pressure-Limit Rate Constants, $k_o(T)$... 2-3
2.5 Temperature Dependence of High-Pressure-Limiting Rate Constants: T^m 2-3
2.6 Uncertainty Estimates .. 2-3
2.7 Notes to Table 2 .. 2-9
2.8 Bibliography – Termolecular Reactions .. 2-48

Tables

Table 2-1. Rate Constants for Termolecular Reactions .. 2-4

2.1 Introduction

Rate constants for association reactions (Table 2) of the type $A + B \leftrightarrow [AB]^* \rightarrow AB$ can be pressure dependent. The low-pressure-limiting rate constants are given in the form:

$$k_o(T) = k_o^{300} \left(\frac{T}{300} \right)^n \text{cm}^6 \text{molecule}^{-2} \text{s}^{-1},$$

(Where k_o^{300} has been adjusted for air as the third body). The limiting high-pressure rate constant is given in a similar form:

$$k_\infty(T) = k_\infty^{300} \left(\frac{T}{300} \right)^m \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}.$$

To obtain the effective second-order rate constant for a given condition of temperature and pressure (altitude), the following formula is used:

$$k_f([M],T) = \frac{k_o(T)[M]}{1 + \frac{k_o(T)[M]}{k_\infty(T)}} 0.6^{1 + \log_{10}\left(\frac{k_o(T)[M]}{k_\infty(T)}\right)}^{-1}.$$

The fixed value 0.6 that appears in this formula fits the data for all listed reactions adequately, although in principle this quantity may be different for each reaction, and also temperature dependent. There are rarely sufficient data to accommodate another parameter.

Some reactions that appear to be simple bimolecular processes proceed via bound intermediates. For example, the reaction between HO and CO to yield H + CO$_2$ takes place on a potential energy surface that contains the radical HOCO. The yield of H and CO$_2$ is diminished as the pressure rises. The loss of reactants is thus the sum of two processes, an association to yield HOCO and the chemical activation process yielding H and CO$_2$. The total rate
constant for loss of reactants is fit by the equation above for the association added to the chemical activation rate constant which can be represented by a similar looking equation:

\[
 k_f^o ([M], T) = \frac{k_o (T)}{1 + \frac{k_o (T)}{k_x (T)/[M]}} \left(\frac{k_x (T)}{k_o (T)} \right) \left(\frac{1}{n} \right) \left(\log_{10} \left(\frac{k_o (T)}{k_x (T)/[M]} \right) \right)^{-1}
\]

Thus, a compilation of rate constants requires the stipulation of the four parameters, \(k_o(300) \), \(n \), \(k_x(300) \), and \(m \). These can be found in Table 2. The discussion that follows outlines the general methods we have used in establishing this table, and the notes to the table discuss specific data sources. Recent advances in theory have allowed direct calculation of rate constants for some reactions using RRKM/Master Equation methods.

When sufficient and precise data exist for a given reaction, we have fit the data to the four parameter expression above. We have used theory as a guide whenever possible.

2.2 Low-Pressure-Limiting Rate Constant, \(k^x_o(T) \)

Troe \(^1\text{7}\) has described a simple method for obtaining low-pressure-limiting rate constants. In essence this method depends on the definition:

\[
 k^x_o (T) = \beta_x k_x^{o,sc}
\]

Here \(sc \) signifies “strong” collisions, \(x \) denotes the bath gas, and \(\beta_x \) is an efficiency parameter \((0 < \beta_x < 1)\), which provides a measure of energy transfer. The strong collision rate constant can be calculated with some accuracy from knowledge of molecular parameters available from experiment and more and more from theory.

The coefficient \(\beta_x \) is related to the average energy transferred in a collision with gas \(x \), \(\langle \Delta E \rangle_x \), via:

\[
 \beta_x = \frac{\langle \Delta E \rangle_x}{kT}\frac{1}{1 - \sqrt{\beta_x}}
\]

Notice that \(\langle \Delta E \rangle \) is quite sensitive to \(\beta \). \(F_E \) is the correction factor of the energy dependence of the density of states (a quantity of the order of 1.1 for most species of stratospheric interest).

For some of the reactions of possible stratospheric interest reviewed here, there exist data in the low-pressure limit (or very close thereto), and we have chosen to evaluate and unify this data by calculating \(k^x_o(T) \) for the appropriate bath gas \(x \) and computing the value of \(\beta_x \) corresponding to the experimental value \(^1\text{7}\). A compilation \(^1\text{3}\) gives details for many of the reactions considered here.

From the \(\beta_x \) values (most of which are for \(N_2 \), i.e., \(\beta_{N2} \)), we compute \(\langle \Delta E \rangle_{N2} \) according to the above equation. Values of \(\langle \Delta E \rangle_{N2} \) of approximately 0.3–1 kcal mole\(^{-1}\) are generally expected. If multiple data exist, we average the values of \(\langle \Delta E \rangle_{N2} \) and recommend a rate constant corresponding to the \(\beta_{N2} \) computed in the equation above.

Master equation calculations allow direct calculation of low pressure rate constants and of \(\beta_x \).

Where no data exist we have sometimes estimated the low-pressure rate constant by taking \(\beta_{N2} = 0.3 \) at \(T = 300 \text{ K} \), a value based on those cases where data exist.

2.3 Temperature Dependence of Low-Pressure Limiting Rate Constants: \(T^n \)

The value of \(n \) recommended here comes from measurements or, in some cases, a calculation of \(\langle \Delta E \rangle_{N2} \) from the data at 300 K, and a computation of \(\beta_{N2} \) (200 K) assuming that \(\Delta E \) is independent of temperature in this range. This \(\beta_{N2} \) (200 K) value is combined with the computed value of \(k^x_o \) (200 K) to give the expected value of the actual rate constant at 200 K. This latter, in combination with the value at 300 K, yields the value of \(n \).
This procedure can be directly compared with measured values of \(k_o \) (200 K) when those exist. Unfortunately, very few values at 200 K are available. There are often temperature-dependent studies, but some ambiguity exists when one attempts to extrapolate these down to 200 K. If data are to be extrapolated beyond the measured temperature range, a choice must be made as to the functional form of the temperature dependence.

There are two general ways of expressing the temperature dependence of rate constants. Either the Arrhenius expression

\[
k_o(T) = A \exp(-E/RT)
\]

or the form

\[
k_o(T) = A' T^n
\]

is employed. Neither of these extrapolation techniques is soundly based, and since they often yield values that differ substantially, we have used the power law expression above as the basis of our recommendations.

2.4 High-Pressure-Limit Rate Constants, \(k_\infty(T) \)

High-pressure rate constants can often be obtained experimentally, but those for the relatively small species of atmospheric importance usually reach the high-pressure limit at inaccessibly high pressures. This leaves two sources of these numbers, the first being estimates based upon theory, and the second being extrapolation of fall-off data up to higher pressures.

Stratospheric conditions generally render reactions of interest much closer to the low-pressure limit and thus are fairly insensitive to the high-pressure value. This means that while the extrapolation is long, and the value of \(k_o(T) \) is often not very accurate, a “reasonable guess” of \(k_\infty(T) \) will then suffice. In a few cases we have declined to guess since the low-pressure limit is effective over the entire range of stratospheric conditions.

2.5 Temperature Dependence of High-Pressure-Limiting Rate Constants: \(T^m \)

There are very few data upon which to base a recommendation for values of \(m \). Values in Table 2 are often estimated, based on models for the transition state of bond-association reactions and whatever data are available. In general the temperature dependence of these rate constants is expected to be small.

2.6 Uncertainty Estimates

For three-body reactions (Table 2) uncertainties are assigned using a procedure that is analogous to that employed for bimolecular reactions in Table 1-1. Values of \(f(298 \text{K}) \) are given for these rate constants at room temperature and assumed to be valid at all pressures. The additional uncertainty arising from the temperature extrapolation is expressed with a g-factor as in Table 1-1. Given that uncertainties for an expression with four parameters are expressed with only two parameters, a certain amount of arbitrariness is involved in their choice. In general we have tried to have the “two sigma” range incorporate most of the data.
Table 2-1. Rate Constants for Termolecular Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Low-Pressure Limit<sup>a</sup></th>
<th>High-Pressure Limit<sup>b</sup></th>
<th>f(298 K)</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$k_o(T) = k_o^{300}(T/300)^{-n}$</td>
<td>$k_{\infty}(T) = k_{\infty}^{300}(T/300)^{-m}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O<sub>x</sub> Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O + O<sub>2</sub> → O<sub>3</sub></td>
<td>(6.0) (–34) 2.4 – –</td>
<td>1.1 50</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(′D) Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(′D) + N<sub>2</sub> → N<sub>2</sub>O</td>
<td>(2.8) (–36) 0.9 – –</td>
<td>1.3 75</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO<sub>x</sub> Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H + O<sub>2</sub> → HO<sub>2</sub></td>
<td>(4.4) (–32) 1.3 (7.5) (–11) –0.2</td>
<td>1.3 50</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + OH → H<sub>2</sub>O<sub>2</sub></td>
<td>(6.9) (–31) 1.0 (2.6) (–11) 0</td>
<td>1.5 100</td>
<td>B2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO<sub>x</sub> Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O + NO → NO<sub>2</sub></td>
<td>(9.0) (–32) 1.5 (3.0) (–11) 0.0</td>
<td>1.2 100</td>
<td>C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O + NO<sub>2</sub> → NO<sub>3</sub></td>
<td>(2.5) (–31) 1.8 (2.2) (–11) 0.7</td>
<td>1.3 100</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + NO → HONO</td>
<td>(7.0) (–31) 2.6 (3.6) (–11) 0.1</td>
<td>1.2 50</td>
<td>C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + NO<sub>2</sub> → HONO<sub>2</sub></td>
<td>(1.8) (–30) 3.0 (2.8) (–11) 0</td>
<td>1.3 100</td>
<td>C4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M → HOONO</td>
<td>(9.1) (–32) 3.9 (4.2) (–11) 0.5</td>
<td>1.5 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO<sub>2</sub> + NO → HONO<sub>2</sub></td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO<sub>2</sub> + NO<sub>2</sub> → HO<sub>2</sub>NO<sub>2</sub></td>
<td>(1.9) (–31) 3.4 (4.0) (–12) 0.3</td>
<td>1.06 400</td>
<td>C6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO<sub>2</sub> + NO<sub>3</sub> → N<sub>2</sub>O<sub>5</sub></td>
<td>(2.4) (–30) 3.0 (1.6) (–12) –0.1</td>
<td>1.1 100</td>
<td>C7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO<sub>3</sub> → NO + O<sub>2</sub></td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocarbon Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + CO → HOCO</td>
<td>(5.9) (–33) 1.0 (1.1) (–12) –1.3</td>
<td>1.1 50</td>
<td>D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M → H + CO<sub>2</sub> (See Note)</td>
<td>(1.5) (–13) 0 (2.1) (9) –6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub> + O<sub>2</sub> → CH<sub>3</sub>O<sub>2</sub></td>
<td>(4.0) (–31) 3.6 (1.2) (–12) –1.1</td>
<td>1.1 50</td>
<td>D2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C<sub>2</sub>H<sub>5</sub> + O<sub>2</sub> → C<sub>2</sub>H<sub>5</sub>O<sub>2</sub></td>
<td>(1.5) (–28) 3.0 (8.0) (–12) 0</td>
<td>1.2 50</td>
<td>D3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + C<sub>2</sub>H<sub>2</sub> → HOCHCH</td>
<td>(5.5) (–30) 0.0 (8.3) (–13) –2</td>
<td>1.1 50</td>
<td>D4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + C<sub>2</sub>H<sub>4</sub> → HOCH<sub>2</sub>CH<sub>2</sub></td>
<td>(1.1) (–28) 3.5 (8.4) (–12) 1.75</td>
<td>1.15 90</td>
<td>D5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction</td>
<td>Low-Pressure Limit<sup>a</sup></td>
<td>High-Pressure Limit<sup>b</sup></td>
<td>f(298 K)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>$k_0(T) = k_0^{300}(T/300)^{-n}$</td>
<td>$k_0(T) = k_0^{300}(T/300)^{-m}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + CH$_2$=CHCH$_3$ \rightarrow HOClH$_6$</td>
<td>(4.6) (-27)</td>
<td>4</td>
<td>(2.6) (-11)</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>OH + iso-Butene \rightarrow Products</td>
<td>–</td>
<td>–</td>
<td>(5.4) (-11)</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>OH + 1-Butene \rightarrow Products</td>
<td>–</td>
<td>–</td>
<td>(3.2) (-11)</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>OH + cis-2-Butene \rightarrow Products</td>
<td>–</td>
<td>–</td>
<td>(5.5) (-11)</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>OH + trans-2-Butene \rightarrow Products</td>
<td>–</td>
<td>–</td>
<td>(6.9) (-11)</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>CH$_3$O + NO \rightarrow CH$_3$ONO</td>
<td>(2.3) (-29)</td>
<td>2.8</td>
<td>(3.8) (-11)</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>CH$_3$O + NO$_2$ \rightarrow CH$_3$ONO$_2$</td>
<td>(5.3) (-29)</td>
<td>4.4</td>
<td>(1.9) (-11)</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>C$_2$H$_5$O + NO \rightarrow C$_2$H$_5$ONO</td>
<td>(2.8) (-27)</td>
<td>4.0</td>
<td>(5.0) (-11)</td>
<td>0.2</td>
<td>1.2</td>
</tr>
<tr>
<td>C$_2$H$_5$O + NO$_2$ \rightarrow C$_2$H$_5$ONO$_2$</td>
<td>(2.0) (-27)</td>
<td>4.0</td>
<td>(2.8) (-11)</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>CH$_3$O$_2$ + NO$_2$ \rightarrow CH$_3$O$_2$NO$_2$</td>
<td>(1.0) (-30)</td>
<td>4.8</td>
<td>(7.2) (-12)</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>C$_2$H$_5$O$_2$ + NO$_2$ \rightarrow C$_2$H$_5$O$_2$NO$_2$</td>
<td>(1.2) (-29)</td>
<td>4.0</td>
<td>(9.0) (-12)</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td>CH$_3$C(O)O$_2$ + NO$_2$ \rightarrow CH$_3$C(O)O$_2$NO$_2$</td>
<td>(9.7) (-29)</td>
<td>5.6</td>
<td>(9.3) (-12)</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>CH$_3$CH$_2$C(O)O$_2$ + NO$_2$ \rightarrow CH$_3$CH$_2$C(O)O$_2$NO$_2$</td>
<td>(9.0) (-28)</td>
<td>8.9</td>
<td>(7.7) (-12)</td>
<td>0.2</td>
<td>2.0</td>
</tr>
<tr>
<td>CH$_3$C(O)CH$_2$ + O$_2$ \rightarrow CH$_3$C(O)CH$_2$O$_2$</td>
<td>(3) (-29)</td>
<td>1.0</td>
<td>(1.0) (-12)</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>CH$_3$OO + CH$_3$O \rightarrow Products (See Note) (Criegee intermediate)</td>
<td>0</td>
<td>0</td>
<td>(7) (-11)</td>
<td>0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

FO_x Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Low-Pressure Limit<sup>a</sup></th>
<th>High-Pressure Limit<sup>b</sup></th>
<th>f(298 K)</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$k_0(T) = k_0^{300}(T/300)^{-n}$</td>
<td>$k_0(T) = k_0^{300}(T/300)^{-m}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F + O$_2$ \rightarrow FO$_2$</td>
<td>(5.8) (-33)</td>
<td>1.7</td>
<td>(1) (-10)</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>F + NO \rightarrow FNO</td>
<td>(1.2) (-31)</td>
<td>0.5</td>
<td>(2.8) (-10)</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>F + NO$_2$ \rightarrow FNO$_2$</td>
<td>(1.5) (-30)</td>
<td>2.0</td>
<td>(1.0) (-11)</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td>FO + NO$_2$ \rightarrow FONO$_2$</td>
<td>(2.6) (-31)</td>
<td>1.3</td>
<td>(2.0) (-11)</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>CF$_3$ + O$_2$ \rightarrow CF$_3$O$_2$</td>
<td>(3.0) (-29)</td>
<td>4.0</td>
<td>(3.0) (-12)</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>CF$_3$O + NO$_2$ \rightarrow CF$_3$ONO$_2$</td>
<td>(1.7) (-28)</td>
<td>6.9</td>
<td>(1.1) (-11)</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>CF$_3$O$_2$ + NO$_2$ \rightarrow CF$_3$O$_2$NO$_2$</td>
<td>(1.5) (-29)</td>
<td>2.2</td>
<td>(9.6) (-12)</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>CF$_3$O + CO \rightarrow CF$_3$OCO</td>
<td>(2.5) (-31)</td>
<td>2</td>
<td>(6.8) (-14)</td>
<td>-1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Reaction</td>
<td>Low-Pressure Limit $k_o(T) = k_o^{300}(T/300)^{-n}$</td>
<td>High-Pressure Limit $k_o(T) = k_o^{300}(T/300)^{-m}$</td>
<td>$f(298 \text{ K})$</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>CFCl$_2$ + O$_2$ \rightarrow CFCl$_2$O$_2$</td>
<td>(1.5) (-30)</td>
<td>(2.9) (-12)</td>
<td>1.4</td>
<td>1.1</td>
<td>125</td>
</tr>
<tr>
<td>CIF + C$_2$H$_4$ \rightarrow CICF$_3$</td>
<td>(5.2) (-30)</td>
<td>(2.2) (-10)</td>
<td>0.7</td>
<td>1.1</td>
<td>50</td>
</tr>
<tr>
<td>Cl + NO \rightarrow ClNO</td>
<td>(1.3) (-30)</td>
<td>(1.8) (-10)</td>
<td>1.2</td>
<td>100</td>
<td>F3</td>
</tr>
<tr>
<td>Cl + O$_2$ \rightarrow ClOO</td>
<td>(2.2) (-33)</td>
<td>(1.8) (-10)</td>
<td>0</td>
<td>1.1</td>
<td>50</td>
</tr>
<tr>
<td>Cl + CO \rightarrow CICO</td>
<td>(1.3) (-33)</td>
<td>(3.7) (-12)</td>
<td>1.6</td>
<td>1.15</td>
<td>0</td>
</tr>
<tr>
<td>Cl + NO$_2$ \rightarrow ClONO$_2$</td>
<td>(1.3) (-31)</td>
<td>(1.5) (-11)</td>
<td>1.9</td>
<td>1.3</td>
<td>50</td>
</tr>
<tr>
<td>Cl + NO \rightarrow ClNO</td>
<td>(1.8) (-31)</td>
<td>(1.5) (-11)</td>
<td>1.9</td>
<td>1.3</td>
<td>50</td>
</tr>
<tr>
<td>Cl + C$_2$Cl$_4$ \rightarrow CCl$_3$Cl</td>
<td>(5.2) (-30)</td>
<td>(2.2) (-10)</td>
<td>0.7</td>
<td>1.1</td>
<td>50</td>
</tr>
<tr>
<td>Cl + CO \rightarrow ClCO</td>
<td>(1.3) (-33)</td>
<td>(3.7) (-12)</td>
<td>1.6</td>
<td>1.15</td>
<td>0</td>
</tr>
<tr>
<td>Cl + C$_2$H$_2$ \rightarrow ClC$_2$H$_2$</td>
<td>(5.2) (-30)</td>
<td>(2.2) (-10)</td>
<td>0.7</td>
<td>1.1</td>
<td>50</td>
</tr>
<tr>
<td>Cl + C$_2$Cl$_4$ \rightarrow ClCl$_2$Cl$_2$</td>
<td>(1.4) (-28)</td>
<td>(4.0) (-11)</td>
<td>1.2</td>
<td>1.2</td>
<td>50</td>
</tr>
<tr>
<td>Cl + CO \rightarrow ClCO</td>
<td>(1.3) (-33)</td>
<td>(3.7) (-12)</td>
<td>1.6</td>
<td>1.15</td>
<td>0</td>
</tr>
<tr>
<td>Cl + NO \rightarrow ClNO</td>
<td>(1.8) (-31)</td>
<td>(1.5) (-11)</td>
<td>1.9</td>
<td>1.3</td>
<td>50</td>
</tr>
<tr>
<td>OCIO + NO$_2$ \rightarrow O$_2$ClONO$_2$</td>
<td>(See Note)</td>
<td>(See Note)</td>
<td>(See Note)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl + ClO \rightarrow ClO$_2$</td>
<td>(1.9) (-32)</td>
<td>(3.7) (-12)</td>
<td>1.6</td>
<td>1.15</td>
<td>0</td>
</tr>
<tr>
<td>Cl + OCIO \rightarrow Cl$_2$O$_3$</td>
<td>(6.2) (-32)</td>
<td>(2.4) (-11)</td>
<td>0</td>
<td>1.1</td>
<td>25</td>
</tr>
<tr>
<td>OCIO + O \rightarrow ClO$_2$</td>
<td>(2.9) (-31)</td>
<td>(8.3) (-12)</td>
<td>0</td>
<td>1.1</td>
<td>100</td>
</tr>
<tr>
<td>CH$_2$Cl + O$_2$ \rightarrow CH$_3$ClO$_2$</td>
<td>(1.9) (-30)</td>
<td>(2.9) (-12)</td>
<td>1.2</td>
<td>1.1</td>
<td>125</td>
</tr>
<tr>
<td>CHCl$_2$ + O$_2$ \rightarrow CHCl$_2$O$_2$</td>
<td>(1.3) (-30)</td>
<td>(2.8) (-12)</td>
<td>1.4</td>
<td>1.1</td>
<td>125</td>
</tr>
<tr>
<td>CCl$_3$ + O$_2$ \rightarrow CCl$_3$O$_2$</td>
<td>(8) (-31)</td>
<td>(3.5) (-12)</td>
<td>1</td>
<td>1.2</td>
<td>50</td>
</tr>
<tr>
<td>CFCI$_2$ + O$_2$ \rightarrow CFCI$_2$O$_2$</td>
<td>(5.0) (-30)</td>
<td>(6.0) (-12)</td>
<td>1.0</td>
<td>1.3</td>
<td>200</td>
</tr>
<tr>
<td>CFCI$_2$ + O$_2$ \rightarrow CFCI$_2$O$_2$</td>
<td>(5.2) (-29)</td>
<td>(1.0) (-11)</td>
<td>0.8</td>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>CFCI$_2$ + NO$_2$ \rightarrow CFCI$_2$NO$_2$</td>
<td>(2.9) (-29)</td>
<td>(1.3) (-11)</td>
<td>1</td>
<td>1.1</td>
<td>50</td>
</tr>
<tr>
<td>CFCI$_2$O + NO$_2$ \rightarrow CFCI$_2$O$_2$NO$_2$</td>
<td>(2.2) (-29)</td>
<td>(1.0) (-11)</td>
<td>1</td>
<td>1.1</td>
<td>50</td>
</tr>
<tr>
<td>CFCI$_2$O$_2$ + NO$_2$ \rightarrow CFCI$_2$O$_2$NO$_2$</td>
<td>(1.1) (-29)</td>
<td>(1.7) (-11)</td>
<td>1.2</td>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>Reaction</td>
<td>Low-Pressure Limit<sup>a</sup></td>
<td>High-Pressure Limit<sup>b</sup></td>
<td>f(298 K)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>$k_o(T) = k_{o300}(T/300)^n$</td>
<td>$k_\infty(T) = k_{\infty300}(T/300)^m$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrO<sub>x</sub> Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br + NO<sub>2</sub> \rightarrow Products</td>
<td>(4.2) (–31)</td>
<td>2.4</td>
<td>(2.7) (–11)</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>BrO + NO<sub>2</sub> \rightarrow BrONO<sub>2</sub></td>
<td>(5.4) (–31)</td>
<td>3.1</td>
<td>(6.5) (–12)</td>
<td>2.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Br + CH=CHCH=CH<sub>2</sub> \rightarrow Products</td>
<td>(1.1) (–28)</td>
<td>4.8</td>
<td>(2.1) (–10)</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Br + CH=CH(C=CH)CH=CH<sub>2</sub> \rightarrow Products</td>
<td>(1.1) (–27)</td>
<td>2.5</td>
<td>(2.0) (–10)</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>IO<sub>x</sub> Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I + NO \rightarrow INO</td>
<td>(1.8) (–32)</td>
<td>1.0</td>
<td>(1.7) (–11)</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>I + NO<sub>2</sub> \rightarrow INO<sub>2</sub></td>
<td>(3.0) (–31)</td>
<td>1.0</td>
<td>(6.6) (–11)</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>IO + NO<sub>2</sub> \rightarrow IONO<sub>2</sub></td>
<td>(7.5) (–31)</td>
<td>3.5</td>
<td>(7.6) (–12)</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>CH<sub>3</sub>I + O<sub>2</sub> \rightarrow Products (See Note)</td>
<td>(1.6) (–12)</td>
<td>1.55</td>
<td>1.2</td>
<td>100</td>
<td>H4</td>
</tr>
<tr>
<td>SO<sub>x</sub> Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS + NO \rightarrow HSNO</td>
<td>(2.4) (–31)</td>
<td>2.5</td>
<td>(2.7) (–11)</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>CH<sub>3</sub>S + NO \rightarrow CH<sub>3</sub>SNO</td>
<td>(3.2) (–29)</td>
<td>4.0</td>
<td>(3.5) (–11)</td>
<td>1.8</td>
<td>1.2</td>
</tr>
<tr>
<td>O + SO<sub>2</sub> \rightarrow SO<sub>3</sub></td>
<td>(1.8)(–33)</td>
<td>–2</td>
<td>(4.2) (–14)</td>
<td>-1.8</td>
<td>2</td>
</tr>
<tr>
<td>OH + SO<sub>2</sub> \rightarrow HOSO<sub>2</sub></td>
<td>(3.3) (–31)</td>
<td>4.3</td>
<td>(1.6) (–12)</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>CH<sub>3</sub>S + O<sub>2</sub> \rightarrow CH<sub>3</sub>SOO</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub>SCH<sub>2</sub> + O<sub>2</sub> \rightarrow CH<sub>3</sub>SCH<sub>2</sub>O<sub>2</sub></td>
<td>(See Note)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO<sub>3</sub> + NH<sub>3</sub> \rightarrow H<sub>2</sub>NSO<sub>3</sub></td>
<td>(3.6) (–30)</td>
<td>6.1</td>
<td>(4.3) (–11)</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>HO + CS<sub>2</sub> \rightarrow HO--CS<sub>2</sub></td>
<td>(4.9) (–31)</td>
<td>3.5</td>
<td>(1.4) (–11)</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Cl + CS<sub>2</sub> \rightarrow Cl--CS<sub>2</sub></td>
<td>(5.9) (–31)</td>
<td>3.6</td>
<td>(4.6) (–10)</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>HO + (CH<sub>3</sub>)<sub>2</sub>S \rightarrow HO--(CH<sub>3</sub>)<sub>2</sub>S</td>
<td>(2.9) (–31)</td>
<td>6.24</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl + (CH<sub>3</sub>)<sub>2</sub>S \rightarrow Cl--(CH<sub>3</sub>)<sub>2</sub>S</td>
<td>(4) (–28)</td>
<td>7</td>
<td>(2) (–10)</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>Br + (CH<sub>3</sub>)<sub>2</sub>S \rightarrow Br--(CH<sub>3</sub>)<sub>2</sub>S</td>
<td>(3.7) (–29)</td>
<td>5.3</td>
<td>(1.5) (–10)</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>Reaction</td>
<td>Low-Pressure Limita</td>
<td>High-Pressure Limitb</td>
<td>f(298 K)</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Na + O₂ → NaO₂</td>
<td>$k_0(T) = k_{0}^{300}(T/300)^n$</td>
<td>$k_¥(T) = k_{¥}^{300}(T/300)^m$</td>
<td>1.4</td>
<td>(3.2) (–30)</td>
<td>1.3</td>
</tr>
<tr>
<td>NaO + O₂ → NaO₃</td>
<td></td>
<td></td>
<td>0</td>
<td>(6.0) (–10)</td>
<td>200</td>
</tr>
<tr>
<td>NaO + CO₂ → NaCO₃</td>
<td></td>
<td></td>
<td>0</td>
<td>(5.7) (–10)</td>
<td>200</td>
</tr>
<tr>
<td>NaOH + CO₂ → NaHCO₃</td>
<td></td>
<td></td>
<td>0</td>
<td>(6.5) (–10)</td>
<td>200</td>
</tr>
<tr>
<td>Hg + Br → HgBr</td>
<td></td>
<td></td>
<td>1.5</td>
<td>(1.5) (–32)</td>
<td>100</td>
</tr>
</tbody>
</table>

Shaded areas indicate changes or additions since JPL 10-6.

The values quoted are suitable for air as the third body, M.

a Units are cm6 molecule$^{-2}$ s$^{-1}$.

b Units are cm3 molecule$^{-1}$ s$^{-1}$.

$f(298$ K$)$ is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

$$f(T) = f(298)\exp\left[g\left(\frac{1}{T} - \frac{1}{298}\right)\right]$$

Note that the exponent is an absolute value.
Notes to Table 2-1

JPL Publication numbers for the most recent revision of the table entry, note and evaluation date are given at the end of each note.

A1. **O + O₂.** Low pressure limit and T dependence are an average of Klais et al.,¹⁰ Huie et al.,⁷ and Lin and Leu.¹¹ These studies in N₂ and Ar are in the temperature range 200 < T/K < 268. The result is in agreement with the study of Hippler et al.⁶ and the extrapolated recommendation fits their lower pressure N₂ data down to 100 K. High pressure studies by Croce de Cobos and Troe² are in agreement with this recommendation. Rawlins et al.¹² estimate values in Ar between 80 and 150 K from nascent vibrational distributions that are a factor of two higher than the recommendation extrapolated to 80 K. The temperature dependence of the rate constant determined from the experimental data are in excellent agreement with the value of n = 2.36 determined from the calculations of Patrick and Golden.¹³ However there is some reason to believe that a radical-complex plays a role in this process.⁵,⁸,¹¹,¹² Kaye⁹ has calculated isotope effects for this reaction, using methods similar to those discussed in the Introduction of this document (see Troe¹⁷ and Patrick and Golden¹³). Isotope effects have been reported by Anderson et al.¹ and Gross and Billing.⁴ Measurements of isotopic fractionation by Mauersberger and colleagues¹⁸ and Thiemens and co–workers¹⁵ reveal distinctly non–statistical effects. Various attempts at theoretical explanations exist,⁵ but the detailed knowledge of the potential energy surface required is unavailable. A summary of theoretical and experimental studies by Schinke et al.¹⁶ goes into great detail on this subject as does a study by Gao and Marcus.³

(Table: 02-25, Note: 10-6, Evaluated 10-6) Back to Table

A2. **O(4D) + N2.** Recommended parameters (including f and g) are from Estupiñán et al.¹ whose detection capabilities were more advanced than those employed in earlier studies. Kajimoto and Cvetanovic² report a value at 296 K of 6.5 × 10⁻³⁷ cm⁶ s⁻¹. Maric and Burrows³ extract (8.8 ± 3.3) × 10⁻³³ cm⁶ s⁻¹ from a study of the photolysis of synthetic air. Gaedtke et al.² report an approximate value of 10⁻¹² in molar units, which translates to 2.8 × 10⁻¹⁶ in molecular units. The rate constant is extremely low in this special system due to electronic curve crossing. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

B1. **H + O₂.** Studies by Kurylo,⁸ Wong and Davis,¹³ Hsu et al.,⁷ Hsu et al.,⁶ Cobos et al.,⁴ Pirraglia et al.,¹⁰ Carleton et al.,³ Troe,¹² Bates et al.,¹ Michael et al.,³ and Fernandes et al.⁵ have been considered. All are in good agreement. A theoretical study by Selleväg et al.¹¹ improves the knowledge of the high pressure limit and verifies the low pressure limit. The parameters in Selleväg et al.¹¹ are the basis for the recommendation. Several studies¹⁹ have pointed out the large effect of water vapor as the collider gas. Baulch et al.² have evaluated this reaction over the temperature range 298 < T/K < 1500. (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

B2. OH + OH. Recommended values are from fits of measurements by Zellner et al. in N₂ by Forster et al. and Fulle et al. in 1–150 bar He scaled to N₂. A study by Fagerstrom et al. in 85–1000 mbar SF₆ gives slightly different values. A pressure independent bimolecular channel to H₂O + O with a rate 1.8 × 10⁻¹² is observed (see Table 1-1). Zellner et al. used somewhat different values for this rate constant to make substantial corrections to their measured values. Changing to the accepted value will make large changes in the Zellner et al. values and it is unclear how to evaluate this. Trainor and von Rosenberg report a value at 300 K that is lower than recommended by a factor of 2.7. A theoretical study by Sellevåg et al. recommends values for He that are compatible with the recommendation. (Table: 02-25, Note: 10-6, Evaluated: 10-6) Back to Table

C1. O + NO. Low pressure limit and n from direct measurements of Schieberstein et al. and their re-analysis of the data of Why not et al. Error limits encompass other studies. High pressure limit and m from fitting the data of Hippler et al., who report higher values for the high pressure limiting rate constant, to the format used in this compilation. Shock tube measurements by Yarwood et al. in argon from 300–1300 K are consistent with the values in Table 2. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

C2. O + NO. Values of rate constants and temperature dependences from a combination of the study by Burkholder and Ravishankara and that of Hahn et al. At 300 K these studies almost overlap at the highest pressure of Burkholder and Ravishankara and the lowest pressure studied by Hahn et al. The former values are larger by a factor of 2.2 under these conditions. This recommendation is in reasonable agreement with the evaluation of Baulch et al., which fits the Hahn et al. values very well. (Table: 02-25, Note: 02-25, Evaluated: 06-2) Back to Table

C3. **OH + NO.** The low pressure limit rate constant has been reported byAnderson and Kaufman, Stuhl and Niki, Morley and Smith, Westenberg and de Haas, Anderson et al., Howard and Evenson, Harris and Wayne, Atkinson et al., Overend et al., Anastasi and Smith, Burrows et al., and Atkinson and Smith. The general agreement is good, and the recommended values of both the rate constant and the temperature dependence are weighted averages. Studies by Sharkey et al. and Donahue et al. in the transition regime between low and high pressure limits are in agreement and serve to reduce the uncertainty. These latter studies yield a value for the high pressure limiting rate constant in agreement with the results of Forster et al., whose study reached pressures of 100 bar in He. The temperature dependence of the high pressure limiting rate constant is from the data of Anastasi and Smith and Sharkey et al. (both cis- and trans-HONO are expected to be formed.) Fulle et al. report a high pressure limit in agreement with Forster et al. Pagsberg et al. report low pressure values in SF₆ that are compatible (i.e., the ratio of collision efficiencies is about a factor of two) with the recommendation. A study by Zabarnick is noted. The error limits encompass the differences with the IUPAC recommendation.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

4. OH + NO$_2$. This reaction has been the subject of detailed study. There are two product channels, one to HONO$_2$ (nitric acid) and the other to HOONO (pernitrous acid). (There are at least two conformers of HOONO, cis-cis and trans-perp, which are thought to be equilibrated under atmospheric conditions.) Golden and Smith concluded that there were two pathways and they offered parameters in the format of this recommendation that were given in the note in JPL 02-25. Experiments by Hippler and co-workers up to about 100 bar at 300 K and the finding of a double exponential decay of OH at 430 K and 100 bar implicate a second pathway. Nizkorodov and Wennberg report 5% HONO at 253 K and 20 Torr of an N$_2$/He buffer gas. Bean et al. and Pollack et al. report on the spectroscopy of the HOONO conformer. Mollner et al. report the total rate constant at 298 K in N$_2$, O$_2$ and air from 50 to 900 Torr and, and the branching ratio for the two pathways at 298 K in a mixture of N$_2$ and H$_2$ from 20 to 760 Torr. They find the efficiency of air to be 94% that of N$_2$ and by simultaneously fitting both the branching ratio and the total rate constant they obtained parameters at 298 K: $k_0 = 1.51 \times 10^{-30}$ and $k_\infty = 1.84 \times 10^{-30}$ for the HONO$_2$ pathway and $k_0 = 6.2 \times 10^{-32}$ and $k_\infty = 8.1 \times 10^{-11}$ for the HOONO pathway.

Golden et al. have performed RRKM/master-equation calculations on an ab initio potential energy, which are the basis for the previous recommendation, which is retained for the current recommendation. Golden et al. adjusted their calculations to agree with experiments: the low pressure limit and the high pressure limiting rate constants and their temperature dependences are from a fit to the data of Hippler et al., Anastasi and Smith, Wine et al., Donahue et al., Dransfield et al., Brown et al. and D’Ottone et al. Brown et al. report that O$_2$ is about 30% less efficient than N$_2$ as a collider and suggest that air might therefore have a total efficiency of 0.94 relative to N$_2$. The total rate constants reported by Mollner et al. are in excellent agreement with the recommendation. Data from Anderson et al., Howard and Evenson, Burrows et al., and Erler et al. are in essential agreement. Data of Forster et al. and Fulle et al. are acknowledged to be about 30% too high. Burkholder et al. and Dransfield et al. searched for the isomer HOONO, but were unable to detect it. The description of the reaction between HO and NO$_2$, as consisting of two product channels, requires that the data represent the sum of the two pathways. The branching ratios measured at 298 K by Mollner et al. are about 25% lower than from the recommendation; Mollner et al. did not report branching ratios at other temperatures. The rate of HOONO has to be included in atmospheric models. If this rate involves rapid loss due to reaction or photolysis, the effect of the second pathway is the diminution of the HONO$_2$ forming rate constant. Evaluation of data, taking into account both pathways, indicates that the contribution of the HOONO forming reaction can be from 5 to 15% under atmospheric conditions at 298 K. The equilibrium constant is given in Table 3-1.

(Table: 06-2, Note: 15-10, Evaluated 15-10) Back to Table

C5. HO₂ + NO. Butkovskaya et al. studied this reaction in a high pressure turbulent flow reactor coupled to a chemical ionization mass spectrometer.² ³ Very small yields (<1%) of nitric acid were measured from 223 to 323 K and from 72 to 600 Torr of (mostly) N₂ in the absence of water vapor. The yields were enhanced by the presence of water vapor.³⁴ In systems not including water vapor, they summarized the yield of nitric acid relative to the yield of NO₂ (from HO₂ + NO → OH + NO₂) as follows:

\[
\beta(T, P) = \frac{(530 \pm 10)}{T(K)} + (6.4 \pm 1.3) \times 10^{-14} P(\text{Torr}) - 1.73 \pm 0.07.
\]

At low temperatures, \(\beta \) extrapolated below 100 Torr has a large non-zero intercept at zero pressure,² ³ which is not expected for a gas phase reaction. In the presence of water vapor, the chemical ionization mass spectrometer signals are affected significantly³ and the yield of nitric acid increases linearly with added water vapor,³ ⁴ reaching an enhancement factor of ~8 at [H₂O] = 4 × 10¹⁷ molecule cm⁻³ and 298 K³:

\[
f_{H₂O} \approx 1 + 2 \times 10^{-17} [H₂O]\]

where the concentration of H₂O is expressed in molecules cm⁻³. If this effect is due to reaction of the hydrated HO₂ complex (i.e. HO₂+H₂O + NO → HNO₃ + H₂O), then the rate constant of the complex with NO is ~6 × 10⁻¹⁵ cm³ s⁻¹ at 298 K in the presence of 200 Torr of N₂.³

Ab initio electronic structure calculations support the possibility of gas phase HONO₂ formation, but satisfactory simulations using master equations have been elusive.¹ ⁵ ² The measured yields show a surprising intercept at zero pressure, which might be indicative of wall reactions. However, Butkovskaya et al. have made great efforts to minimize wall reactions, and their analysis suggests that wall reactions should not be important.³ ⁴ Until the results have been confirmed by other groups and are better understood, no recommendation can be made. These rate parameters are provided for the purposes of model evaluation only and do not constitute a recommendation by the Panel.

(Table: 10-6, Note: 10-6, Evaluated 10-6) Back to Table

C6. HO2 + NO2. Christensen et al.2 report rate constants 219< T/K <298 and 45< P/Torr <200. They show that methanol, present in most other studies confounds the results by forming bound complexes with HO2. They also suggest that some measurements yielded low rate constants as a result of perturbations to the NO2/N2O4 equilibrium. Sander et al.8 also noted that H2O vapor enhances the reaction rate significantly. Bacak et al.7 reported data obtained using CIMS, which is more sensitive and less prone to interference than UV and IR absorbance. They used initial radical concentrations 1000 times lower than previous work, eliminating potential interference from the HO2 and HO. Rate constants measured by Bacak et al.4 at 200 K, 223 K, and 298 K are quite similar to each other, suggesting very little temperature dependence (i.e., Bacak gives n = 0.2 and m = 0.5), which differs from previous work, leading them to conclude that previous work was affected by the HO2 + HO2 reaction at T <277 K. At ~298 K, rate constants measured by Sander et al.8, Kurylo et al.6,7 Christensen et al., and Bacak et al. are in excellent agreement, suggesting that at 298 K these studies were not affected by interferences. The recommendation is based on the data at T ≥277 K from Sander and Peterson,8 Kurylo and Ouellette.6,7 Christensen et al.2 and the data at 298 K of Bacak et al. The recommended parameters are similar to the previous recommendation; the exponent for kro is small, as expected for a recombination reaction. The low-T data of Bacak et al. fall about a factor of two lower than the fit. Although CIMS experiments have the highest sensitivity and avoid spectral interference, the data are limited to only three temperatures and they have not been replicated at the lowest two temperatures. The error parameter g was chosen so that the CIMS data at low T fall within the error range. Other studies by Howard,3 Simonaitis and Heicklen,9 and Cox and Patrick4 are in reasonable agreement with the recommendation, as is the value of Christensen et al.3

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

2-15
C7. \(\text{NO}_2 + \text{NO}_3 \). The recommended limiting rate constants at 298 K (N\(_2\) bath gas) and temperature exponents are the geometric mean of the corresponding rate constants and the average of the exponents, respectively, obtained by nonlinear least squares. The low pressure limit is based on the data of Kircher et al.,\(^9\) Smith et al.,\(^12\) Wallington et al.,\(^14\) Orlando et al.,\(^11\) and Nakano et al.,\(^10\) combined with \(k_{\text{uni}} \times \text{K}_{\text{eq}} \) data (recommended \(\text{K}_{\text{eq}} \) from Table 3-1); \(k_{\text{uni}} \) data were taken from Connell et al.,\(^3\) and Cantrell et al.,\(^2\) The high pressure limit is based on data from Kircher et al.,\(^9\) Smith et al.,\(^12\) Wallington et al.,\(^14\) Hahn et al.,\(^5\) and \(k_{\text{uni}} \times \text{K}_{\text{eq}} \) (\(\text{K}_{\text{eq}} \) from Table 3-1); \(k_{\text{uni}} \) data were taken from Cantrell et al.,\(^2\) and Ide et al.\(^7\) The recommendation is in good agreement with the data of Burrows et al.\(^1\) and with \(k_{\text{uni}} \) (multiplied by \(\text{K}_{\text{eq}} \) from Table 3-1) reported by Viggiano et al.\(^13\) Values from Croce de Cobos et al.,\(^4\) were excluded due to arguments given by Orlando et al.,\(^1\) who point out that a reanalysis of these data using better values for the rate constant for \(\text{NO}_3 + \text{NO} \rightarrow 2\text{NO}_2 \) yields a negative value for \(\text{NO}_3 + \text{NO}_3 + \text{M} \). The study of Fowles et al.\(^3\) is noted, but not used. Johnston et al.,\(^8\) reviewed this reaction. The rate constant for the reverse reaction \(k_{\text{uni}} \) can be obtained as the ratio of the recommended recombinant rate constant \(k_{\text{rec}} \) from this table, divided by the recommended \(\text{K}_{\text{eq}} \) from Table 3-1: \(k_{\text{uni}} = k_{\text{rec}}/\text{K}_{\text{eq}} \).

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(1) Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Absorption spectrum of NO\(_3\) and kinetics of the reactions of NO\(_3\) with NO\(_2\), Cl, and several stable atmospheric species at 298 K. J. Phys. Chem. 1985, 89, 4848-4856.
(6) Hahn, J.; Luther, K.; Troe, J. Experimental and theoretical study of the temperature and pressure dependences of the recombinant reactions \(\text{O} + \text{NO}_2(+\text{M}) \rightarrow \text{NO}_3(+\text{M}) \) and \(\text{NO}_2 + \text{NO}_3(+\text{M}) \rightarrow \text{N}_2\text{O}_3(+\text{M}) \). Phys. Chem. Chem. Phys. 2000, 2, 5098-5104, doi:10.1039/b005756h.
(8) Johnston, H. S.; Cantrell, C. A.; Calvert, J. G. Unimolecular decomposition of \(\text{NO}_3 \) to form \(\text{NO} \) and \(\text{O}_2 \) and a review of \(\text{N}_2\text{O}_3/\text{NO}_3 \) kinetics. J. Geophys. Res. 1986, 91, 5159-5172.
(9) Kircher, C. C.; Margitan, J. J.; Sander, S. P. Temperature and pressure dependence study of the reaction \(\text{NO}_2 + \text{NO}_3 + \text{M} \rightarrow \text{N}_2\text{O}_3 + \text{M} \). J. Phys. Chem. 1984, 88, 4370-4375.

C8. \(\text{NO}_3 + \text{M} \). Johnston et al.\(^3\) and Davidson et al.\(^1\) have suggested significant thermal decomposition of \(\text{NO}_3 \). This has been disputed by Russell et al.\(^4\) Davis et al.\(^2\) claim that the barrier to thermal dissociation is 47.3 kcal mol\(^{-1}\). This would seem to rule out such a process in the atmosphere.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

(1) Davidson, J. A.; Cantrell, C. A.; Shetter, R. E.; McDaniel, A. H.; Calvert, J. G. The \(\text{NO}_3 \) radical decomposition and \(\text{NO}_3 \) scavenging in the troposphere. J. Geophys. Res. 1990, 95, 13963-13969.
(3) Johnston, H. S.; Cantrell, C. A.; Calvert, J. G. Unimolecular decomposition of \(\text{NO}_3 \) to form \(\text{NO} \) and \(\text{O}_2 \) and a review of \(\text{N}_2\text{O}_3/\text{NO}_3 \) kinetics. J. Geophys. Res. 1986, 91, 5159-5172.

2-16
D1. **HO + CO.** This recommendation takes into account the fact that the reaction proceeds via initial formation of a chemically activated HOCO* intermediate, which can re-dissociate to HO + CO, dissociate to H + CO₂, and be collisionally stabilized to yield thermalized HOCO. In the presence of O₂, the H + CO₂ product set and the HOCO intermediate are both converted to HO₂ + CO₂ (DeMore⁶, Miyoshi et al.¹⁴). Miyoshi et al. report a rate constant for the reaction HOCO + O₂ → HO₂ + CO₂ of ~1.5 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K (recommended Arrhenius parameters are given in Table 1-1). Therefore, for atmospheric purposes, the products can be taken to be HO₂ and CO₂. The recommended parameters are based on data from McCabe et al.,¹³ Hynes et al.,¹º and Liu and Sander,¹⁵ because these two comprehensive studies extended to much lower temperatures than the others. The parameters were obtained by assuming the kₚ parameters are the same as the previous recommendation and that the relative errors are constant, and then carrying out least squares fits; the results from the two data sets were averaged. Pressure and temperature dependent data from McCabe et al.,¹³ Hynes et al.,¹º and Liu and Sander¹⁵ are well represented by the recommended parameters. This reaction has been studied by many workers. In general the results are in keeping with the current recommendation. Values have been reported by Dreier and Wolfrum,² Husain et al.,³ Ravishankara and Thompson,²¹ Paraskevopoulos and Irwin,¹⁹ Hofzumahaus and Stuhl.⁸ The results of Jonah et al.¹¹ are too high and were not included. An increase in k with pressure has been observed by a large number of investigators: Overend and Paraskevopoulos,¹⁷ Perry et al.,²⁰ Chan et al.,⁴ Biermann et al.,² Cox et al.,⁵ Butler et al.,³ Paraskevop and Irwin,¹⁸,¹⁹ DeMore,⁶ Hofzumahaus and Stuhl,⁸ Hynes et al.,¹⁰ McCabe et al.,¹³ and Liu and Sander.¹² In addition, Niki et al.¹⁶ have measured k relative to OH + C₂H₄ in one atmosphere of air by following CO₂ production using FTIR. Previous controversy regarding the effect of small amounts of O₂ (Biermann et al.²) has been resolved and is attributed to secondary reactions (DeMore,⁶ Hofzumahaus and Stuhl⁸). Liu and Sander¹² has demonstrated that modest levels of O₂ do not interfere with measuring the total rate constant. Currently, there are no indications to suggest that the presence of O₂ has any effect on the rate coefficient other than as a third body. The results of Butler et al.³ have to be re-evaluated in the light of refinements in the rate coefficient for the OH + H₂O₂ reaction; the corrected rate coefficient is in approximate agreement with the recommended value. Beno et al.¹ observe an enhancement of k with water vapor, which is in conflict with the flash photolysis studies; e.g., Ravishankara and Thompson,²¹ Paraskevopoulos and Irwin,¹⁹ Hynes et al.,¹⁰ and McCabe et al.¹³ Water is not expected to significantly change the rate coefficient for the reaction in the atmosphere and it is not expected to alter the products of the reaction. Troe ³ has carried out extensive theoretical analysis of this reaction system. Senosiain et al.²² performed empirical master equation calculations on a theoretical potential energy surface. (The value of the exponent of kₚ for the chemical activation pathway has a sign error in the reference.) The recent fully ab initio calculations of Nguyen et al.¹⁵ (also Weston et al.²⁴) fitted from 175-300 K predict kₚ(300) = 7.4 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹, n = −1.50 (which can be compared with the first line of entries for this reaction in Table 2), and kₚ(300) = 1.4 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹, nₚ = −0.44 (which can be compared with the first two entries on the second line); all of these parameters are in very good agreement with the recommended values.

Important: For practical applications in Earth's atmosphere, the total rate constant is well-represented as the sum of a bimolecular reaction and a termolecular reaction. To calculate rate constants for the termolecular reaction (i.e. OH + CO → HOCO), use the standard expression for termolecular reactions, kₚ([M],T), given in the Introduction (Section 2.1), and the data on the first line of the entry for this reaction in Table 2. To calculate rate constants kₚ([M],T) for the bimolecular reaction (i.e. OH + CO → HO + CO₂), use kₚ([M],T), given in the Introduction (Section 2.1), and the data on the first line of the entry for this reaction in Table 2. To calculate rate constants kₚ([M],T) for the termolecular reaction (i.e. OH + CO → HOCO), use kₚ([M],T), given in the Introduction (Section 2.1).

(Table: 15-10, Note: 15-10, Evaluation 06-2) Back to Table

D2. CH3 + O2. Data from Kaiser's are fit to the NASA format. The ranges of this study were 3 < P/Torr <11000 and 264 < T/K < 700. The rate constant was measured relative to the reaction CH3 + Cl2 → CH2Cl + Cl, k/cm^3 molecule^-1 s^-1 = 1.61 x 10^12 exp(-530/RT). The recommended values are in good agreement with those from Selzer and Bayes. These workers determined the rate constants as a function of pressure in N2, Ar, O2, and He. Plumb and Ryan report a value in He which is consistent within error limits with the work of Selzer and Bayes. Pilling and Smith have measured this process in Ar (32–490 Torr). Cobos et al. have made measurements in Ar and N2 from 0.25 to 150 atmospheres. They report parameters somewhat different than recommended here. The work of Laguna and Baughcum seems to be in the fall-off region. Results of Pratt and Wood in Ar are consistent with this recommendation, although the measurements are indirect. The suggested value accommodates the values of Keiffer et al., who measured the process in Ar between 20 and 600 Torr and in the range 334 < T/K < 582. Data of van den Bergh and Callear, Hochanadel et al., Basco et al., Washida and Bayes, Laufer and Bass, and Washida are also considered. A theoretical study by Zhu et al. is in reasonable agreement with the recommendation. A study by Fernandez et al. at pressures from 2–1000 bar and temperatures between 300 and 700 K presents a parameterization of the rate constant as a function of pressure and temperature which is in agreement with this recommendation at 300 K. If their parameters are used at 200 K the agreement is not as good, but is within the 95% uncertainty limit. (Table: 06-2, Note: 10-6, Evaluated: 10-6) Back to Table

D3. C2H5 + O2. Kaiser et al.2 extract from a relative rate study:
\[k_o = (9.2 \pm 0.9) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \] and
\[k_o = (6.5 \pm 2.0) \times 10^{-29} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \] in He at 298 K and pressures between 3 and 1500 Torr.
\(k_o \) has been calculated by Wagner et al.6 Miller and Klippenstein,3 and Sheng et al.5 with
\[k_o(300 \text{ K}) = 8, 10, \text{ and } 4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, \] respectively. Although all cite some small temperature dependence, the values are stated to hold above 300 K. The Kaiser et al.2 extrapolation to the low-pressure limit is difficult due to the complex potential energy surface, but agrees with a Patrick and Golden–type calculation using \(\Delta H^\text{a} = 32.4 \text{ kcal mol}^{-1} \). The recommended values use the calculated temperature dependence and a 2.5 times higher rate constant for air as the bath gas, in line with suggestions in Kaiser et al.1
(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

D4. OH + C2H2. The rate constant for this complex process has been examined by Smith et al.13 in the temperature range from 228 to 1400 K, and in the pressure range 1 to 760 Torr. Their analysis, which is cast in similar terms to those used here, is the source of the rate constants and temperature dependences at both limits. The negative value of m reflects the fact that their analysis includes a 1.2 kcal/mol barrier for the addition of OH to C2H2. The data analyzed include those of Pastrana and Carr,1 Perry et al.,10 Michael et al.,8 and Perry and Williamson.11 Other data of Wilson and Westenberg,16 Breen and Glass,3 Smith and Zellner,14 and Davis et al.8 were not included. Studies by Liu et al.7 and Lai et al.6 are in general agreement with the recommendation. Calculations of \(k_o \) via the methods of Patrick and
Golden8 yield values compatible with those of Smith et al.13 A study by Sørensen et al.15 at 298 K and pressures from 25 to 8000 Torr of bath gas suggests \(k_0/\text{cm}^3\text{molecule}^{-2}\text{s}^{-1} = 2.92 \times 10^{-30}\), \(k_0/\text{cm}^3\text{molecule}^{-1}\text{s}^{-1} = 9.69 \times 10^{-13}\) and \(F = 0.6\). No difference was found between air, \(\text{N}_2/\text{O}_2\) mixtures or \(\text{O}_2\) as the bath gas. These values yield rate constants as a function of pressure at 298 K in agreement with this recommendation, so the recommended values are unchanged from JPL 02-25. Earlier, Fulle et al.5 reported a high pressure limiting rate constant of \(2 \times 10^{-12}\) \(\text{cm}^3\text{molecule}^{-1}\text{s}^{-1}\), which is the basis for the IUPAC2 recommendation. A theoretical study by Senosiain et al.12 is in essential agreement with this recommendation.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(6) Lai, L.-H.; Hsu, Y.-C.; Lee, Y.-P. The enthalpy change and the detailed rate coefficients of the equilibrium reaction \(\text{OH} + \text{C}_2\text{H}_4 = (M) \text{HOC}_2\text{H}_2\) over the temperature range 627-713 K. J. Chem. Phys. 1992, 97, 3092-3099.
(7) Liu, A.; Mulac, W. A.; Jonah, C. D. Temperature dependence of the rate constants of the reactions of \(\text{OH}\) radicals with \(\text{C}_2\text{H}_2\) and \(\text{C}_2\text{D}_2\) at 1 atm in \(\text{Ar}\) and from 333 to 1273 K. J. Phys. Chem. 1988, 92, 5942-5945, doi:10.1021/j100332a020.
(8) Michael, J. V.; Nava, D. F.; Borkowski, R. P.; Payne, W. A.; Stief, L. J. Pressure dependence of the absolute rate constant for the reaction \(\text{OH} + \text{C}_2\text{H}_2\) from 228 to 413 K. J. Chem. Phys. 1980, 73, 6108-6116.

D5. \(\text{OH} + \text{C}_2\text{H}_4\). The recommendation for the low pressure limit at 300 K is the average of fitted values from studies carried out over a significant range of pressure using synthetic air (Klein et al.9), \(\text{N}_2\) (Vakhitin et al.17 and Cleary et al.7), or Argon (Klein et al.9). All three colliders were treated as equivalent. The recommended temperature exponent (\(n \)) was taken from the master equation analysis by Golden,1 who fitted the experimental rate constants in \(\text{N}_2\), including those at very low temperatures (96, 110, and 165 K) reported by Vakhitin et al.17 The recommendation for the high pressure limit at 300 K is the average of fitted values from eight data sets measured near 300 K using helium (Tully et al.16, Kuo and Lee10 and Cleary et al.7), argon (Klein et al.9), \(\text{N}_2\) (Vakhitin et al.17 and Cleary et al.7), and synthetic air (Klein et al.9). The recommended temperature exponent was from a least squares fit of the high pressure limiting values obtained from individual fits of data at 15 temperatures ranging from 200 K to 430 K, including data near 300 K2,5,10,16,17. In addition to the studies already mentioned, the recommended high pressure rate constants are in good agreement with the data of Davis et al.4 Howard,8 Greiner,7 Morris et al.,12 and Overend and Paraskevopoulos13 in helium, Atkinson et al.1 in argon, and Lloyd et al.11 and Cox10 in nitrogen/oxygen mixtures. The parameters recommended are similar to the curve proposed by Klein et al.9 at 298 K. Kuo and Lee10 report a stronger temperature dependence for the low-pressure limit (\(n=4\)), but the present recommendation is in good agreement with their
measured rate constants. Calculations of the type in Patrick and Golden14 as described in Vakhtin et al.17 yield \(n = 4.2 \), although they use a somewhat low value for energy transfer by nitrogen. The high-pressure limit temperature dependence has been determined by several workers. Zellner and Lorenz18 report a value equivalent to \(m = +0.8 \) over the range (296 < T/K < 724) at about 1 atmosphere. A value of \(m = +2.0 \) fits the data (540 < T/K < 670) of Diao and Lee.5 Cleary et al.2 report values in \(N_2 \) at 295 K. They also report values in He between 200 and 400 K. They perform master equation calculations and report fitting parameters. Taylor et al.15 report data at a single pressure and 69 and 86 K. Their data are well-accommodated by this recommendation and by the parameters in Cleary et al.2 (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(5) Diao, E. W.-G.; Lee, Y.-P. Detailed rate coefficients and the enthalpy change of the equilibrium reaction \(\text{OH} + \text{C}_2\text{H}_4 \) \(\rightarrow \text{M} \) \(\text{HOC}_2\text{H}_4 \) over the temperature range 544-673 K. \textit{J. Chem. Phys.} \textbf{1992}, \textit{96}, 377-386.

(9) Klein, T.; Barnes, I.; Becker, K. H.; Fink, E. H.; Zabel, F. Pressure dependence of the rate constants for the reactions of \(\text{C}_2\text{H}_4 \) and \(\text{C}_2\text{H}_5 \) with \(\text{OH} \) radicals at 295 K. \textit{J. Phys. Chem.} \textbf{1984}, \textit{88}, 5020-5025, doi:10.1021/jacs.150665a046.

\textbf{D6.} \(\text{OH} + \text{CH}_3\text{CH}=\text{CH}_2 \) (propene). The following studies have been used to reach the recommendation: Spangenberg et al.10 in a Laval nozzle expansion of \(\text{N}_2 \) with LIF detection of \(\text{OH} \) at 293 K and at individual points from 114 to 58 K; Vakhtin et al.12,13 in a Laval nozzle expansion of \(\text{N}_2 \) with LIF detection of \(\text{OH} \) at 296 K and individual points at 96, 110, and 165 K; Nielsen et al.6 in a pulse radiolysis experiment (kinetic UV absorbance of \(\text{OH} \) radical) at 298 K in 1 atm of air; Wallington14 in a pulsed laser photolysis experiment with LIF detection of \(\text{OH} \) at 298 K in Argon; Schmidt et al.8 with laser photolysis and LIF of \(\text{OH} \) at 295 K in 1 atm of air; Tully and Goldsmith1 with laser photolysis and LIF detection of \(\text{OH} \) to 467 K in 25 to 600 Torr of He; Zellner and Lorenz12 laser photolysis and resonance fluorescence detection of \(\text{OH} \) at 297 K in 1.3–130 mbar of Ar; Klein et al.4 with a relative rate measurement (relevant to \(\text{n-Hexane} \)) at 295 K in 1.3–1000 mbar of air; Atkinson and Aschmann1 from relative rate measurements at 295 K in
The recommended high pressure rate constant at 298 K is the geometric mean of all of the studies listed above, except for the relative rate measurement of Klein et al. The temperature exponent of \(k \) (parameter \(m \)) is the average of the values obtained from weighted least squares fits of data from Tully and Goldsmith and from Vakhtin et al.; the former extends upward from \(-300 \) K and the latter extends downward. Pressure fall-off is only apparent at lower pressures and higher temperatures; most studies did not observe significant fall-off. Usable fall-off data near 300 K are available from Klein et al., (Ar bath gas), Zellner and Lorenz (Ar bath gas), and Vakhtin et al., (N\(_2\) bath gas). These fall-off data sets are for two different collider gases and provide only rough estimates of \(k \) at 298 K; the error factor associated with \(k \) is at least \(\times3 \). Because no temperature-dependent fall-off data are available, the recommendation for the temperature exponent (parameter \(n \)) is based on the estimate by Calvert et al., Loison et al., using a fast flow reactor coupled to a time of flight mass spectrometer, found that 71 \(\pm 16 \)% of the reaction near room temperature proceeds by addition of the OH to the terminal CH\(_2\) group.

D7. OH + CH\(_2\)=C(C(H\(_3\))=CH\(_3\)) (iso-butene). The rate constant is not dependent on pressure even at 1 Torr of helium, suggesting that it is very near the high pressure limit in all of the reported studies. The recommended high pressure rate constant at 298 K is the geometric mean of the absolute rate constants reported by Atkinson and Pitts (flash photolysis (FP) with resonance fluorescence (RF) detection of OH) and relative rate measurements reported by Wu et al. (cited by Calvert et al.). Barnes et al., Ohta, and Atkinson and Aschmann. The recommendation is in fair agreement with the early discharge-flow measurement of Morris and Niki. The temperature dependence is based on...
D8. \(\text{OH} + \text{C}_2\text{H}_4\text{C}_2\text{H}_3\text{H}_2 \) (1-butene). The rate constant is not dependent on pressure even at 1 Torr of helium, suggesting that it is very near the high pressure limit in all of the studies. The recommended high pressure rate constant at 298 K is the geometric mean of the absolute rate constants reported by Atkinson and Pitts\(^2\) (flash photolysis (FP) with resonance fluorescence (RF) detection of OH), Ravishankara et al.\(^13\) (FP-RF), Nip and Paraskevopoulos\(^3\) (FP with resonance absorption (RA) detection of OH), Biermann and Pitts\(^4\) (discharge flow (DF) with mass spectrometry (MS) detection), Sims et al.\(^14\) (Laval-Nozzle flow apparatus (LN) and laser induced fluorescence (LIF) detection of OH), Vakhlin et al.\(^15\) (LN-LIF), and relative rate measurements reported by Wu et al.\(^17\) (cited by Calvert et al.\(^3\)), Lloyd et al.\(^6\) Winer et al.\(^16\) Barnes et al.\(^3\) Ohta.\(^10\) and Atkinson and Aschmann.\(^1\) The recommendation is in good agreement with the early discharge-flow measurement of Morris and Niki,\(^8\) and in poor agreement with that of Pastrana and Carr,\(^11\) which possibly was affected by secondary reactions. The temperature dependence is based on the measurements of Atkinson and Pitts,\(^2\) Sims et al.\(^14\) and Vathkin et al.\(^15\) Calvert et al. reviewed the data published prior to 2000 and recommended rate constants\(^3\) in good agreement with the present recommendation. The estimated \(2\sigma\) error limits are set to include all of the data used in the recommendation. The reaction proceeds mostly (>90%) by addition of OH to the two carbon atoms at the ends of the double bond.\(^4\) Peeters et al.\(^7\) reported that 85 ± 10% of the addition is to the terminal carbon atom, producing a tertiary free radical (the balance produces a primary free radical).

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

D9. **OH + cis-CH2=CH=CHCH3 (cis-2-butene).** The rate constant is not dependent on pressure even at 1 Torr of helium, suggesting that it is very near the high pressure limit in all of the studies. The recommended high pressure rate constant at 298 K is the geometric mean of the absolute rate constants reported by Atkinson and Pitts, and Winer et al., with resonance fluorescence (RF) detection of OH, Rachid et al. (FP-RF), and Sims et al. (Laval-Nozzle flow apparatus (LN) and laser induced fluorescence (LIF) detection of OH), and relative rate measurements reported by Lloyd et al., Winer et al., and Ohta. The recommendation is in good agreement with the early discharge-flow measurement of Morris and Niki. The temperature dependence is based on the measurements of Atkinson and Pitts and Sims et al. Calvert et al. reviewed the data published prior to 2000 and recommended rate constants in good agreement with the present recommendation. The reaction proceeds mostly (>90%) by addition of OH to the two carbon atoms at the ends of the double bond. The estimated 2σ error limits are set to include all of the data used in the recommendation. (Table: 15-10, Note: 15-10, Evaluated: 15-10)

Back to Table

D10. **OH + trans-CH_2CH=CHCH_3 (trans-2-butene)**

The rate constant is not dependent on pressure even at 1 Torr of helium, suggesting that it is very near the high pressure limit in all of the studies. The recommended high pressure rate constant at 298 K is the geometric mean of the absolute rate constants reported by Atkinson and Pitts\(^2\) (flash photolysis (FP) with resonance fluorescence (RF) detection of OH), and Sims et al.\(^{10}\) (Laval-Nozzle flow apparatus (LN) and laser induced fluorescence (LIF) detection of OH), and relative rate measurements reported by Wu et al.\(^{11}\) (cited by Calvert et al.\(^{8}\)), Ohta,\(^7\) Atkinson and Aschmann,\(^1\) Edney et al.,\(^4\) and Rogers.\(^9\) The recommendation is in good agreement with the early discharge-flow measurement of Morris and Niki,\(^8\) and in poor agreement with that of Pastrana and Carr,\(^3\) which possibly was affected by secondary reactions. The temperature dependence is based on the measurements of Atkinson and Pitts\(^2\) and Sims et al.\(^{10}\) The estimated 2σ error limits are set to include all of the data used in the recommendation. Calvert et al.\(^3\) reviewed the data published prior to 2000 and recommended rate constants in reasonable agreement with the present recommendation. The reaction proceeds mostly (>90%) by addition of OH to the two carbon atoms at the ends of the double bond.\(^3\) Loison et al.\(^5\) used a flow apparatus with photoionization mass spectrometric detection and reported that 3 ± 1% of the total reaction proceeds by hydrogen abstraction.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) [Back to Table]

D11. **CH\(_3\)O + NO**

This reaction proceeds via a complex potential energy surface that includes both chemical activation and direct abstraction routes\(^1\) to the disproportionation products CH\(_3\)O and HNO as well as the combination to form CH\(_3\)NO. The chemical activation process would have inverse pressure dependence and the direct abstraction would be pressure independent. The recommended values take into account the results of Frost and Smith\(^4\) in Ar and CF\(_2\) and of Caralp et al.\(^1\) in He and Ar. In both of these references the disproportionation process is subtracted from total loss of CH\(_3\)O with a pressure independent, temperature dependent value. At 300 K below one Torr the disproportionation process dominates. Temperature dependences are from the higher temperature results. The low pressure rate constant is consistent with the measurements of McCaulley et al.\(^5\) and Daële et al.\(^2\) in helium. Studies by Ohmori et al.\(^6\) and Dobé et al.\(^3\) are in general agreement with respect to both the addition and bimolecular pathways. (See the note in Table 1-1 for the bimolecular pathway.)

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table]
D12. **CH₃O + NO₂.** The recommended values are from the work mostly of Wollenhaupt and Crowley (in Ar). Agreement is good with earlier work at 298 K from the study of Frost and Smith in Ar (corrected by Frost and Smith) and that of Biggs et al. and Martinez et al. in He. Low pressure results agree within a factor of two with the measurements of McCaulley et al. in He. A minor bimolecular (chemical activation) pathway is also observed. (See Table 1-1.)

(Table: 02-25, Note: 06-2, Evaluated: 06-2)
Back to Table

D13. **C₃H₅O + NO.** High-pressure data at 298 K in Ar from Frost and Smith and in He between 286 and 388 K at pressures from 30 to 500 Torr, from Fitschen et al. Low-pressure measurements in He are from Daële et al. He experiments were scaled to N₂ by dividing by a factor of 2.5. Ar data were taken as equivalent to N₂ or air. The data were fit by subtracting an assumed pressure independent value of 1 × 10⁻¹¹ from the measured rate constants to account for the route to form HNO and CH₃CHO. The low pressure value agrees with theory. The bimolecular channel with an estimated rate constant of about 10⁻¹¹ needs to be verified by direct studies. The temperature dependence of the low pressure limit is estimated and that of the high pressure limit is taken from Fitschen et al. The high pressure rate expression in Fitschen et al. seems to be in error.

(Table: 06-2, Note: 06-2, Evaluated: 06-2)
Back to Table

D14. **C₃H₅O + NO₂.** High-pressure rate constant at 298 K from Frost and Smith. Other values estimated from similar reactions.

(Table: 06-2, Note: 92-20, Evaluated: 06-2)
Back to Table

D15. CH$_3$O$_2$ + NO$_2$. Golden3 has re-evaluated the data for this reaction. The recommended parameters are from a fit to Percival4 and temperature- and pressure-dependent data in Sander and Watson5 and Ravishankara et al.5 The temperature dependence of the high pressure rate constant is a little high, but results from the statistical fit to the data. The values recommended herein, were taken with the data in a study of the reverse reaction by Zabel et al.7 to compute the value of the equilibrium constant in Table 3-1. Destriau and Troe2 have fit the above data with k$_r$ independent of temperature and F$_c$ = 0.36. Bridier et al.4 are in good agreement with this recommendation at one atmosphere and 298 K.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

D16. C$_2$H$_2$O$_2$ + NO$_2$. The only experimental study is that of Elfers et al.3 who measured the rate constant relative to the C$_2$H$_2$O$_2$ + NO reaction between 10 and 1000 mbar. Elfers et al. used a value of k = 8.9×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$ for the reference reaction. By comparison the recommended rate constant for the reference reaction from Table 1-1 of this evaluation is 1.1×10^{-11} cm3 molecule$^{-1}$ s$^{-1}$ at 254 K. There are three data points. An evaluation of the Elfers et al. work by Destriau and Troe2 cast data in the format used in the IUPAC evaluation. The parameters in Table 2 are adjusted to agree with the data corrected for the change in the reference reaction, using the simpler formula employed in this recommendation.

(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

D17. CH$_3$C(O)O$_2$ + NO$_2$. The recommended parameters are from the data of Bridier et al.4 who report in the format represented here, but using F$_c$ = 0.3. Their values are: $k_0^{300} = (2.7 \pm 1.5) \times 10^{-28}$, $k_1^{300} = (12.1 \pm 2.0) \times 10^{-12}$, with n = 7.1 \pm 1.7 and m = 0.9 \pm 0.15. Studies of the decomposition of CH$_3$C(O)O$_2$NO$_2$ [PAN] by Roberts and Bertman4 Grosjean et al.2 and Orlando et al.3 are in accord with those of Bridier et al.4 In the Roberts and Bertman4 study it was shown that PAN decomposition yields only peroxycetyl radical and NO$_2$; no methyl nitrate. Studies by Seefeld et al.5 and Sehested et al.6 of the relative rates of CH$_3$C(O)O$_2$ with NO and NO$_2$ are confirmatory. A study by von Ahsen et al.7 involving matrix isolation of the products of PAN decomposition, suggests a minor pathway due to O-O bond fission.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

D18. CH₃(CH₂C(O))O₂ + NO₂. This reaction, forming peroxypropiolyl nitrate (PPN), has been studied in the reverse direction by Schurath and Wipprecht,¹ Mineshos and Glavas,³ Grosjean et al.,¹ and Kirchner et al.² Group additivity considerations indicate that the equilibrium constant for both PAN and PPN will be the same (both sides of the equilibrium for PPN differ from those for PAN by the group C-(C)(CO)(H)₂). Therefore, the recommended value for the association reaction is taken from the decomposition studies multiplied by the same equilibrium constant as for PAN. The resulting values are very similar to those for CH₃C(O)O₂ + NO₂ forming peroxyacetyl nitrate (PAN). Conservative error limits are estimated.

(Table: 02-25, Note: 06-2, Evaluated: 06-2) Back to Table

(4) Schurath, U.; Wipprecht, V. 1st European Symposium on Physico-Chemical Behavior of Atmospheric Pollutants, 1979, Ispra.

D19. CH₃C(O)CH₂ + O₂. Cox et al.¹ reported a value of k = (1.5 ± 0.3) × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K and 1 atm of SF₆ in which a pulse radiolysis study was modeled. Studies in He at 298 K have been reported by Oguchi et al.,² Imrik et al.,³ Kovacs et al.,⁴ and Hassouna et al.² This data can be accommodated with k₀ = 1.5 × 10⁻²⁹ cm² molecule⁻¹ s⁻¹, kₛ = 1.0 × 10⁻¹² s⁻¹ with f = 1.15. To account for the difference between He and N₂, kₛ = 3 × 10⁻₂⁹, and f = 1.3 are estimated and recommended. Hassouna et al.report rate constants in the temperature range 291 to 400 K at 130 and 650 bar He showing a slight negative temperature dependence. They also report data at 10 bar He in the temperature range 459 to 520 K. These latter data exhibit biexponential decays from which the equilibrium constant is also extracted. (See Table 3-1.)

(Table:10-6, Note: 10-6, Evaluated: 10-6) Back to Table

D20. CH₂OO + CH₂OO (Criegee intermediate). The recommendation is the average of the rate constants reported near 298 K by Buras et al.¹ and Ting et al.⁶ (the latter supersedes the report of Su et al.⁷). The reaction does not depend on pressure at least up to 1 atmosphere, because of the existence of low energy thresholds for subsequent isomerization and fragmentation.⁷ The reaction products are thought to be 2 H₂CO + O₂(Δg). Because of the rapid reactions of CH₂OO and the complex mixtures of reactants present in the systems that have been studied, rate constants must be extracted from complicated mechanisms.¹⁴,⁶,⁷ Ting et al.⁶ have presented an analysis using perhaps the most comprehensive mechanism to date, but this field is changing very rapidly.

(Table 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

E1. F + O2. Values are taken from a study by Campuzano-Jost et al., 2 with experiments from 100 to 420 K at pressures of He, Ar and N2 from 1 to 1000 bar. (They used F2 = 0.54(T/300)0.09, but the results are essentially the same with F2 = 0.6.) A study by Pagsberg et al. 7 reports k3 in argon = 4.38 × 10-33 (T/300)-1.2. There is also good agreement with earlier values of Smith and Wrigley, 3 Smith and Wrigley, 10 Shamonina and Kotov, 5 Arutyunov et al., 11 Wallington and Nielsen, 12 Wallington et al., 11 and Ellerman et al. 5 The values are slightly lower than the values of Chen et al. 4 and Chegodaev et al. 2. Lyman and Holland 8 report a slightly lower value in Ar at 298 K. Campuzano-Jost et al. 2 and Pagsberg et al. 7 also determined the equilibrium constant and thus ΔHf298(FO2) = 6.13 ± 0.5 kcal mol-1. See F + O2 in Table 3-1.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(10) Smith, I. W. M.; Wrigley, D. J. Time-resolved vibrational chemiluminescence: Rate constants for the reactions F + HBr, HI → HF + Br, I and for the relaxation of HF(v=4) and HF(v=6) by HBr, HI, CO2, N2O, CO, N2 and O2. Chem. Phys. 1981, 63, 321-336.

E2. F + NO. A study by Pagsberg et al., 2 taking into account data from Zetzsch, 6 Skolnik et al., 4 Kim et al., 1 Pagsberg et al., 3 and Wallington et al. 5 reports rate constants for this reaction in several bath gases. Re-evaluating the data and converting to the form used in this compilation yields the recommended parameters.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

E3. **F + NO₂**. Fasano and Nogar¹ studied this reaction in N₂ at 300 K. Pagsberg et al.⁵ studied the reaction in SF₅ and Zetzsch² studied it in He. The results from Fasano and Nogar³ and Pagsberg et al.⁵ were used to determine both the high and low pressure limits at 300 K. Treatment of the data for this system requires knowledge of the relative stabilities of FNO₂ and FONO. Patrick and Golden⁴ assumed that the difference between these would be the same as between the CINO₂ isomers. Theoretical work of Dixon and Christie,⁴ Lee and Rice,⁴ and Amos et al.¹ indicates that FNO₂ is 35–40 kcal mol⁻¹ more stable than FONO, and therefore the measured rate refers to FNO₂ formation. The value of m = 2 is from Patrick and Golden, but consistent with Pagsberg et al.⁵ who made a few measurements at 341 K. The value of m is a rough estimate from similar reactions, but is also consistent with Pagsberg et al.⁵ (Table: 06-2, Note: 06-2, Evaluated: 06-2) **Back to Table**

E4. **FO + NO₂**. Low pressure limit from strong collision calculation and β = 0.33. T dependence from resultant ⟨ΔE⟩ = 0.523 kcal mol⁻¹, high-pressure limit and T dependence estimated. A theoretical study by Rayez and Destriau² indicates that the product is the single isomer FONO₂. Bedzhanyan et al.¹ report a value extracted from a complex mixture of bath gases. (Table: 06-2, Note: 94-26, Evaluated: 06-2) **Back to Table**

E5. **CF₃ + O₂**. Caralp et al.¹ have measured the rate constant in N₂ between 1 and 10 Torr. This supersedes the value from Caralp and Lesclaux.² Kaiser et al.³ have extended the pressure range to 580 Torr measuring the reaction relative to the reaction of CF₃ with Cl₂. Breheny et al.¹ report values at 295 K from 2–110 Torr and they make a cogent argument for lowering the value of the rate constant used by Kaiser et al for their reference reaction by about 50%. This has the effect of lowering the Kaiser values. Each study recommends different parameters, but the data are well represented by the currently recommended values. Data of Ryan and Plumb⁴ are in general agreement. Forst and Caralp⁵ have examined this reaction theoretically. (Table: 06-2, Note: 06-2, Evaluated: 06-2) **Back to Table**

2-30
The value in the table is an estimate. Wallington and Ball assumed to hold for \(N_{\text{CF}} \) decomposition of \(\text{CF}_3 \) radicals with \(\text{O}_2 \) over the temperature range 233-373 K. \textbf{Chem. Phys. Lett.} \textbf{1986}, \textit{129}, 433-438.

E6. \(\text{CF}_3\text{O} + \text{NO}_2 \). Fockenberg et al.2 report values (and large error limits) in nitrogen with 250< T/K <302 and 7< P/mbar <107. Their values, including two sigma errors are: \(k_0 = (3.1 \pm 0.3) \times 10^{-28} \); \(n = (2.0 \pm 2.0) \); \(k_v = (1.5 \pm 0.5) \times 10^{-28} \); \(m = (2.8 \pm 2.0) \). Because such large values for \(m \) are not physically justifiable, the recommendation is based on a fit forcing \(m = 1 \), which falls within the large error limits. The reaction products reported by Fockenberg et al. agree with those reported by Chen et al.1 who used photolysis of \(\text{CF}_3\text{NO} \) to prepare \(\text{CF}_3\text{O}_2 \) and subsequently \(\text{CF}_3\text{O} \) in 700 Torr of air at 297 ± 2 K. They considered two product channels: (a) \(\text{CF}_3\text{O}_2 \) obtained via three-body recombination and (b) \(\text{CF}_3\text{O} + \text{FNO}_2 \) obtained via fluorine transfer. Both products were observed and found to be thermally stable in their reactor. They report \(k_b/(k_v + k_b) > 90\% \) and \(k_v/(k_v + k_b) < 10\% \), thus the formation of \(\text{CF}_3\text{O}_2\text{NO}_2 \) is the dominant channel at 700 Torr and 297 K.

(Table: 06-2, Note: 15-10, Evaluated: 06-2) \textbf{Back to Table}

E7. \(\text{CF}_3\text{O}_2 + \text{NO}_2 \). The data are from experiments in \(\text{O}_2 \) of Caralp et al.,1 who suggest a somewhat different fitting procedure than used here. A statistical best fit to the data yields a value of \(m = 5.7 \), but the values recommended here fit the data just about as well. Destriau and Troe2 use yet a different fitting procedure that does not represent the data quite as well as that recommended here. Reverse rate data are given by Köppenkastrop and Zabel.3

(Table: 06-2, Note: 06-2, Evaluated: 06-2) \textbf{Back to Table}

E8. \(\text{CF}_3\text{O} + \text{CO} \). Values taken from Turnipseed et al.1 The numbers were obtained for \(\text{Ar} \) as the bath gas and are assumed to hold for \(\text{N}_2 \) as well. The temperature dependence of the high-pressure rate constant was determined over the range 233< T/K <332 in \(\text{SF}_6 \). No temperature dependence of the low-pressure-limiting rate constant was reported. The value in the table is an estimate. Wallington and Ball2 report values in good agreement with Turnipseed et al.1

(Table: 06-2, Note: 06-2, Evaluated: 06-2) \textbf{Back to Table}

E9. \(\text{CF}_3\text{O} + \text{M} \). The activation energy for thermal decomposition of \(\text{CF}_3\text{O} \) to \(\text{CF}_2\text{O} + \text{F} \) has been reported to be 31 kcal mol-1 by Kennedy and Levy.1 Thermochemical data yield \(\Delta H(298) = 23 \) kcal mol-1. This implies an intrinsic barrier of about 8 kcal mol-1 to elimination of \(\text{F} \) from \(\text{CF}_3\text{O} \). Electronic structure calculations by Li and Francisco2 support this observation. Adopting the A-factor for unimolecular dissociation, \(A = 3 \times 10^{14} \text{s}^{-1} \) and \(E = 31 \) kcal mol-1 from Kennedy and Levy, \(k_v(298 \text{ K}) \) is about \(6 \times 10^{-9} \text{s}^{-1} \). This corresponds to a lifetime of about 6 years; therefore, thermal decomposition of \(\text{CF}_3\text{O} \) is unimportant throughout the atmosphere.
F1. \(\text{Cl} + \text{O}_2 \). Nicovich et al.\(^3\) measured the rate constant at 181 < T/K < 200 and 15 < P/Torr < 40 in \(\text{O}_2 \). They reported \(k_n = (9 \pm 3) \times 10^{-33} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \) at T = 187 ± 6 K in \(\text{O}_2 \). The recommended low pressure limiting parameters are from fitting their data over the entire range and assuming that \(\text{O}_2 \) and \(\text{N}_2 \) bath gases are equivalent. The value from the calculation at 300 K (i.e., 2.2 \times 10^{-33} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}) compares with an older value of Nicholas and Norrish\(^*\) of 1.7 \times 10^{-33} in an \(\text{N}_2 + \text{O}_2 \) mixture. Baer et al.\(^1\) report a value in \(\text{O}_2 \) of \(k_n = 1.6 \times 10^{-33} \text{(T/300)} \times 9 \times 10^{-4} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \) in good agreement with the value recommended here. They also report a value in \(\text{N}_2 \) of \(k_n = 1.4 \times 10^{-33} \text{(T/300)} \times 3.9 \times 10^{-4} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \). A theoretical study by Zhu and Lin\(^2\) suggests \(k_n = 1.26 \times 10^{-16} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \) in \(\text{O}_2 \) (2.0 \times 10^{-33} at 300 K) with \(k_n(300) = 1.8 \times 10^{-10} \text{ s}^{-1} \), which is adopted here. The Nicovich et al.\(^3\) data are so far from the high pressure limit, that the rate constant has little sensitivity to \(k_n \). Baer et al.\(^1\) suggest \(k_n = 2.7 \times 10^{-11} \text{ s}^{-1} \), but the data suggest a higher value.

F2. \(\text{Cl} + \text{NO} \). Low-pressure limit and temperature dependence is from re-evaluation of data from Lee et al.\(^3\) The recommendation is also in good agreement with the data reported by Clark et al.\(^2\) and by Ashmore and Spencer.\(^1\)

F3. \(\text{Cl} + \text{NO}_2 \). Low-pressure limit at 300 K from Leu\(^4\) and Ravishankara et al.\(^7\) The latter study extended the data to 200 Torr in He. A turbulent flow study by Seeley et al.\(^8\) extended the results to 250 Torr of Ar and the high-pressure limit was chosen to fit these two studies after taking into account differences in collisional efficiencies of the bath gases. Leu\(^4\) confirms the observation of Niki et al.\(^3\) that both \(\text{ClONO} \) and \(\text{CINO}_2 \) are formed, with the former dominating. This has been explained by Chang et al.,\(^1\) with detailed calculations in Patrick and Golden.\(^6\) The temperature dependence is as predicted in Patrick and Golden\(^6\) and is the same as Leu’s results in He. Ravishankara et al.\(^7\) report a few data points in \(\text{N}_2 \) that may suggest a somewhat higher temperature dependence. The temperature dependence of the high-pressure limit is estimated. The uncertainty limits are estimated. Master Equation/RRKM studies by Zhu and Lin\(^10\) and by Golden,\(^6\) using potential energy surfaces computed by Lee,\(^3\) Zhu and Lin,\(^10\) and Sayin and McKee,\(^6\) report differences in their ability to fit the data. Zhu and Lin\(^10\) claim to fit, while Golden\(^6\) finds the calculations to under predict the low pressure data.

F4. Cl + CO. From Nicovich et al.,2 who measured the process in N$_2$ for 185 ≤ T/K ≤ 260. Hewitt et al.1 report a value at one atmosphere and 298 K with 13CO in agreement with Nicovich et al.2
(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F5. Cl + C$_2$H$_6$. The recommended values are a statistical fit to the work of Kaiser4 in air. Kaiser and Wallington5 extends the pressure range at 296 K to 0.3–6000 Torr. The data are in reasonable agreement with earlier measurements of Brunning and Stief6 and Wallington et al.,7 although the derived temperature dependence is less than obtained by Brunning and Stief.2 These values are compatible with earlier studies of Poulet et al.,6 Atkinson and Aschmann,1 Lee and Rowland,5 and Wallington et al.8 Using FTIR, Zhu et al.9 reported branching of 16% and 84% to the trans and cis adduct isomers, respectively, at 700 Torr N$_2$ and 295 K.
(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(2) Brunning, J.; Stief, L. J. Pressure dependence of the absolute rate constant for the reaction Cl + C$_2$H$_5$ from 210-361 K. J. Chem. Phys. 1985, 83, 1005-1009.

(3) Kaiser, E. W.; Wallington, T. J. Kinetics of the reactions of chlorine atoms with C$_2$H$_4$ (k_1) and C$_2$H$_2$ (k_2): A determination of ΔH$_{298}^\circ$ for C$_2$H$_4$. J. Phys. Chem. 1996, 100, 4111-4119, doi:10.1021/jp953178u.

F6. Cl + C$_2$H$_4$. Values at 300 K are from a relative rate study by Wallington et al.10 A relative rate study by Kaiser and Wallington6 extends the pressure range to 0.3–6000 Torr and is compatible with earlier studies. Temperature dependence of k_e is taken from Kaiser and Wallington.5 The temperature dependence of k_e is estimated. Values are in reasonable agreement with studies by Maricq et al.,3 Lee and Rowland,7 Iyer et al.,5 Atkinson and Aschmann,1 Atkinson and Aschmann,2 and Wallington et al.11 A study in He by Stutz et al.10 is noted, as is a comment on it by Kaiser and Wallington.5 Knyazev et al.6 have done an extensive experimental and theoretical analysis. Their values agree with this recommendation.
(Table: 97-4, Note: 02-25, Evaluated: 06-2) Back to Table

F7. **Cl + C₂Cl₄.** Recommendation is from the flash-photolysis study of Nicovich et al.,¹ done at 231–390 K in 3–700 Torr N₂. A study by Thuner et al.,² is in agreement.
(Table: 97-4, Note: 02-25) Back to Table

F8. **ClOO + NO₂.** The low-pressure-limit and uncertainties based on temperature-dependent values from Zahniser et al.,³ Lee et al.,² Birks et al.,¹ Leu et al.,⁴ Wallington and Cox,⁵ Cox et al.,⁶ and Molina et al.,⁷ All of these data were collected in N₂ bath gas, except for several points from Lee et al.⁴ collected in O₂. The high-pressure-limit recommendation is based on the RRKM calculations of Smith and Golden.⁷ There are several pressure-dependent data sets in the literature, such as Percival et al.,¹¹ Handwerk and Zellner,⁷ Dasch et al.,³ and Cox and Lewis;² however, they are too disparate to extract unambiguous values. These data are all reproduced within two-sigma error limits by the current recommendation. However, the value of m = 1.9 is somewhat large for a radical-radical process. If m = 1 is chosen the computed rate constant is lower by about 20% at 180 K and pressures above 500 Torr. Golden⁸ has attempted to fit the data with a master equation analysis and finds that the usual energy transfer treatment at low pressures is insufficient to fit the data.
(Table: 06-2, Note: 10-6, Evaluated: 10-6) Back to Table

F9. OCIO + NO₂. Friedel et al.² studied this system at 1 ≤ P/Torr ≤ 5 for helium and 220 ≤ T/K ≤ 298. They deduced values for the rate constant consistent with their data of kₑ ≈ 10⁻³¹ and k₅ ≈ 10⁻¹⁶. They also suggest a value for the equilibrium constant: K/cm³ molecule⁻¹ = 1 × 10⁻¹⁸ exp (9300/T). Boyd et al.⁴ raised the question of possible heterogeneous effects in this system. Parthiban et al.³ in a theoretical study, support the finding of Friedel et al.² of the species O₂ClONO₂, but suggest a very different equilibrium constant. (See Table 3-1).

(Table: 94-26, Note: 06-2, Evaluated: 06-2) Back to Table

F10. CI O + CI O. The recommendation is based on a global non-linear least squares fit (all data were assumed to have the same relative error) of data from Sander et al.¹³ (195–247 K), Nickolaisen et al.¹³ (260–390 K), Bloss et al.³ (183–245 K), Trolier et al.¹⁹ (200–263 K), Boakes et al.,⁴ and Ferrari and Rowley⁵ (250–312 K). The Trolier et al. data have been corrected for values at the zero pressure intercept as suggested in the Trolier et al. paper. With this adjustment most of the data are in reasonable agreement. Boakes et al.⁴ report higher values and a zero pressure intercept; they suggest disregarding their data at less than 100 Torr and report preferred parameters of 2.79 × 10⁻¹²; 3.78; 3.44 × 10⁻¹²; 1.73. Ferrari and Rowley⁵ studied the reaction only at 760 Torr and found values in agreement with those of Boakes et al. The error limits represent an attempt to include most of the data within the 95% uncertainty band. The major dimerization product is chlorine peroxide (Birk et al.² DeMore and Tschuikow-Roux,⁶ Slanina and Uhlik,¹⁶ Stanton et al.¹⁷ and Lee et al.¹¹). Golden⁸ has performed RRKM and master equation calculations using the potential energy surface in Zhu and Lin¹¹ and concluded that while a channel to form CIOClO might exist, the net yield is probably very small the best representation of the data remains that only a single channel is important. The k₅ value for N₂ is not in accord with a simple theory as explained in Patrick and Golden¹⁸ and in some detail in Golden⁸ (this finding was probably the result of a bug that was subsequently found in the master equation code). It has been suggested¹⁸ that the “radical-complex” mechanism may apply here, although a study by Liu and Barker¹² suggests otherwise. Other previous rate constant measurements, such as those of Hayman et al.³ Cox and Derwent,⁴ Basco and Hunt,¹ Walker,²⁰ and Johnston et al.,¹⁰ range from (1–5) × 10⁻¹² cm³ molecule⁻² s⁻¹, with N₂ or O₂ as third bodies.

(Table 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

F11. ClO + OCIO. Data are from Burkholder et al., who measured the rate constant in N$_2$ at 200 \leq T/K \leq 260 and densities from (1.1-10.9) \times 1018 molecules cm$^{-3}$. They also measured the equilibrium constant (See Table 3-1). Parr et al.3 also report a value for the rate constant in reasonable agreement with the recommendation. Zhu and Lin4 report an ab initio study of this system. Their parameters are somewhat different from those herein, but they fit the data equally well. Green et al.2 report a value in He that is consistent with the values recommended herein. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F12. O + OCIO. The recommendation is based on data of Colussi et al.2 and Colussi,1 who measured the pressure dependence between 248 and 312 K in Ar. They interpret the intercept of their k vs [M] curves as a zero-pressure rate constant of (1.6 \pm 0.4) \times 10$^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$ with a negative activation energy corresponding to a chemical activation channel producing ClO + O$_2$. This interpretation is supported by a low pressure study by Gleason et al.,3 as well as a theoretical study by Zhu and Lin,4 which suggests a direct abstraction with a positive activation energy. (Zhu and Lin5 point out that sym-ClO$_3$ has a positive barrier for dissociation to ClO + O$_2$.) The recommended values are fit to the data after subtracting the abstraction channel. See Table 1-1. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F13. CHCl + O2. Measured by Fenter et al. over the range 298≤ T/K ≤448 and 1≤ P/Torr ≤760 in nitrogen. Two different techniques were employed: laser photolysis/photoionization mass spectrometry in the range 1–10 Torr and laser photolysis/UV absorption for the range 20–760 Torr. A study by Bilde et al. in N2 relative to the reaction CHCl + Cl2 → CH2Cl2 + Cl is in excellent agreement. Error limits transposed to the current format. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F14. CHCl2 + O2. Measured by Fenter et al. over the range 298≤ T/K ≤383 and 1≤ P/Torr ≤760 in nitrogen. Two different techniques were employed: laser photolysis/photoionization mass spectrometry in the range 1–10 Torr and laser photolysis/UV absorption for the range 20–760 Torr. A study by Nottingham et al. in He, is in agreement. Error limits transposed to the current format. (Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

F15. CCl3 + O2. The recommendation incorporates studies by Fenter et al., Danis et al., and Luther et al. (The data of Luther et al. above 100 bar are affected by slow diffusion.) Experimental data of Ryan and Plumb have been considered in the evaluation. A study by Nottingham et al. in He, is in agreement. Forst and Caralp have examined this reaction theoretically. A Patrick and Golden-type calculation using the thermochemistry of Russell et al. yields k0 = 1.5 × 10^-30, with β = 0.3. A value of k0 = 5 × 10^-12 has been reported by Cooper et al. The value of the rate constants recommended here differ only slightly from those of Luther et al., (who report k0 = 5.2 × 10^-12; m = 1.4 and k0 = 1.5 × 10^-30; n = -6.3; Fc = 0.35 × (T/300)^0.35 using the IUPAC formula) but yield an overall rate constant within their error limits. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

F16. **CFCl₂ + O₂.** Values for both low- and high-pressure limits at 300 K are from Caralp and Lesclaux.¹ Forst and Caralp² have examined this reaction theoretically. Temperature dependences are rough estimates based on their calculations and by analogy with similar reactions.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table](#)

F17. **CF₂Cl + O₂.** The recommended k₀(300) and kₑ(300) are from the experimental work reported by Codnia and Azcárate,¹ and the recommended temperature exponents are taken from the theoretical predictions of Forst and Caralp.² Codnia and Azcárate used CO₂ laser IR multiphoton dissociation of CF₂Cl₂ to prepare CF₂Cl radicals in the presence of O₂ (and N₂ buffer gas) at 300 K. Subsequent fast reactions produced vibrationally excited CF₂O*, which they monitored by measuring its spontaneous IR fluorescence near 1928 cm⁻¹. They showed that the growth and decay rates of the IR fluorescence intensity are due to the reactions of CF₂Cl radicals with O₂ and to the rate of collisional deactivation of CF₂O*. Analysis of the reaction rates between CF₂Cl and O₂ revealed the existence of both the pressure-dependent recombination reaction and a direct bimolecular step (previously proposed by other workers; see Table 1-1) important in the pressure range from 0 to 20 mbar of N₂. Separate control of O₂ concentrations enabled them to obtain the rate constant for the direct reaction (Table 1-1), as well as k₀(300) and kₑ(300) for the recombination. The latter values are in rough agreement with the theoretical predictions of Forst and Caralp,² who predicted temperature exponents in approximate agreement with similar reactions. The estimated errors are relatively large because the reaction has been measured only once at 300 K and because the temperature dependence is based on theoretical predictions.

(Table: 10-6, Note: 10-6; Evaluated 10-6) [Back to Table](#)

F18. **CClO₂ + NO₂.** Statistical fit (constrained to m = 1) to experiments in O₂ of Caralp et al.,¹ who suggest a somewhat different fitting procedure, but the values recommended here fit the data just as well. Destriau and Troe² use yet a different fitting procedure that does not represent the data quite as well as that recommended herein. Reverse rate data are given by Köppenkastrop and Zabel.³

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table](#)

F19. **CFCl₃O₂ + NO₂.** Statistical fit to experiments in O₂ of Caralp et al.,¹ with constraint that m = 1. Caralp et al.,¹ suggest a different fitting procedure, but the values recommended here fit the data just as well. Destriau and Troe² use yet a different fitting procedure that does not represent the data quite as well as that recommended herein. Reverse rate data are given by Köppenkastrop and Zabel.³

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table](#)

F20. **CF₂ClO₂ + NO₂.** A study by Xiong and Carr⁵ of the reverse reaction, combined with the equilibrium constant, which was computed from correcting the study by Wu and Carr⁶ of the forward reaction in a bath gas consisting of 80%
CF₂ClBr + 20% O₂ for N₂ bath gas. (The study by Wu and Carr⁴ supersedes the earlier work of Moore and Carr.) Xiong and Carr³ report their parameterization differently than in this recommendation, but the values herein reproduce their results to a few percent. Reverse rate data are also given by Köppenkastrop and Zabel¹ and in a theoretical study by Forst and Caralp.¹ (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

G1. Br + NO₂. The recommended values are from a study by Kreutter et al.² They regarded the product as BrNO₂. Their kₒ value in He agrees with the measurement of Mellouki et al.⁴ at 300 K. Broske and Zabel¹ and Orlando and Burkholder³ have shown that cis-BrONO is the major product in their studies. Orlando and Burkholder³ suggest that isomerization to BrNO₂ is heterogeneous. Lee¹ calculated structure, frequencies and energetics for BrNO₂, cis-BrONO and trans-BrONO. A Patrick-and-Golden-type calculation using the Lee¹ results yields kₒ (strong collision) ≈ 1.2, 2.5, and 2.1 in units of 1 × 10⁻³¹ cm³ molecule⁻² s⁻¹ for trans-BrONO, cis-BrONO, and BrNO₂, respectively. The sum, 5.9 × 10⁻³¹, multiplied by a collision efficiency in N₂ of 0.3 is a factor of about 2.5 lower than the observed kₒ value. Also, the relative yield of BrNO₂ is somewhat too high since Orlando and Burkholder⁵ measure BrONO > 75%. Kreutter et al.² report an equilibrium constant, which, if cis-BrONO is assumed to be the product, suggests bond strengths for the BrONO compounds that are about 4 kcal mol⁻¹ higher than the Lee¹ calculation. Computing kₒ with these new values yields kₒ = 4.5 and 6.4 in units of 1 × 10⁻³¹ for trans-BrONO and cis-BrONO, respectively. When the sum of the rate constants for the three channels is multiplied by the collision efficiency (0.3), the result is 3.9 × 10⁻³¹ and the yield of BrONO is 85%.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

G2. BrO + NO₂. Recommended values are from a global least squares fit of data from Thorn et al.¹⁰ and Sander et al.⁸, which are in excellent agreement at 298 K. The recommended values differ only slightly from the previous recommendation. Danis et al.¹ give slightly lower values for the low-pressure-limiting rate constant and a smaller temperature dependence as well. This latter study may be hampered by heterogeneous effects, but can be accommodated within the error limits recommended. A theoretical study by Rayez and Destriau⁸ suggests that the bond-dissociation energy in BrONO₂ is 8.5 kcal mol⁻¹ higher than in ClONO₂, thus rationalizing the relative values of the low-pressure-limiting rate constants for these two processes. A more detailed theoretical study by Parthiban and Lee,⁶ as well as a study by Orlando and Tyndall,⁵ who measured BrONO₂ decomposition and thus an equilibrium constant, both determine only 1.6 kcal mol⁻¹ for the above difference. A theoretical study by Zou et al.¹² agrees with the latter figure. A Patrick and Golden⁷ type calculation, even with the stronger bond of Rayez and Destriau⁸ yields a value for the low pressure limiting rate constant that is smaller than observed. Lessar et al.⁴ calculate a potential energy surface for BrOONO. They find that the BrO–ONO bond strength is of the order of 7 kcal mol⁻¹, which is too weak to have any effect on the overall rate of BrO + NO₂. Walsh and Golden²¹¹ have attempted to fit the data with a master equation analysis and found that the usual energy transfer treatment at low pressures is insufficient to fit the data (this was probably due to a bug that was found in that version of the master equation code). Kreycy et al.³
analyzed atmospheric data and concluded that the recombination rate constant needed to fit the data near 200 K is smaller than the (previous) recommendation.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G3. Br + CH₂=CHCH=CH₂ (1,3-butadiene). In a comprehensive study of the forward and reverse rates of this reaction (using laser flash photolysis of CF₂Br₂ precursor and atomic resonance fluorescence detection of Br-atoms), Laine et al. determined the recombination rate constant from 227 to 298 K. The products are thought to consist of two isomers, but they were not identified in the experiments. Calculations (G4 method) reported by Laine et al. show that addition of Br to a terminal carbon atom is thermodynamically favored. The rate constants reported by Laine et al.² are about 2× as large as relative measurements at 298 K and 1 bar reported previously by Bierbach et al.¹ Bierbach et al. placed their rate constant on an absolute basis by employing a linked chain of relative rate measurements, consisting of reactions of Br with 1,3-butadiene, 2,3-dimethyl-2-buten, trans-2-buten, propene, and terminated with an absolute rate constant for Br + acetaldehyde; thus the uncertainties may have accumulated. The current recommendation is based on the parameters measured in the direct experiments of Laine et al.² The recommended 2σ error bars encompass all of the data of Laine et al.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

G4. Br + CH₂=C(CH₃)CH=CH₂ (isoprene). In a comprehensive study of the forward and reverse rates of this reaction (using laser flash photolysis of CF₂Br₂ precursor and atomic resonance fluorescence detection of Br-atoms), Laine et al. determined the rate constant from 227 to 298 K. The products may consist of several isomers; calculations (G4 method) reported by Laine et al. show that the energetically most stable isomer is BrH₂CC(CH₃)CH=CH₂, but the identities of the isomers actually produced in the reaction are not known. Laine et al. also measured the rate constants for the reaction of Iso-Br + O₂ (see Table 1-1) and for the reaction of Br + 1,3-butadiene in both the presence and absence of O₂. They found that the apparent rate of the latter reaction is affected by the presence of O₂. Bierbach et al.¹ previously reported relative rate constants at 298 K and 1 bar of air. They placed their rate constants on an absolute basis by employing a linked chain of five relative rate measurements, consisting of reactions of Br with 1,3-butadiene, 2,3-dimethyl-2-buten, trans-2-buten, propene, and terminated with an absolute rate constant for Br +
acetaldehyde; thus the uncertainties may have accumulated. The current recommendation is based on the parameters measured in the direct experiments of Laine et al.\(^2\) in the absence of \(\text{O}_2\). The recommended 2\(\sigma\) error bars encompass all of the data of Laine et al.

(Table: 15-10, Note: 15-10, Evaluated: 15-10) \textbf{Back to Table}

\subsection*{H1. I + NO.} Evaluation taken from IUPAC.\(^3\) The data are from van den Bergh et al.\(^4\) and Basco and Hunt.\(^1\) Error limits transposed to the current format. The heat of formation of \(\text{INO}\) is given as 120.0 ± 0.3 kJ/mole by Forte et al.\(^2\)

(Table: 06-2, Note: 06-2, Evaluated: 06-2) \textbf{Back to Table}

(4) van den Bergh, H.; Benoit-Guyot, N.; Troe, J. Collisional energy transfer in the reactions \(\text{I} + \text{NO} + \text{M} \rightarrow \text{INO} + \text{M}\) and \(\text{I} + \text{NO}_2 + \text{M} \rightarrow \text{INO}_2 + \text{M}\). \textit{Int. J. Chem. Kinet.} 1977, 9, 223-234.

\subsection*{H2. I + NO\(_2\).} Evaluation taken from IUPAC.\(^2\) The data are from van den Bergh et al.\(^5\), Mellouki et al.\(^3\), Buben et al.\(^1\), and van den Bergh and Troe.\(^6\) IUPAC uses \(F_2 = 0.63\), which is essentially the same as the universal value adopted here of \(F_2 = 0.6\). (No evidence of possible isomers \([\text{INO}\) or \(\text{IONO}]\) is reported.) Error limits transposed to the current format. Tucceri et al.\(^3\) used laser flash photolysis coupled to resonance-fluorescence detection of \(I\) atoms to measure the rate coefficients for the reaction: \(\text{I} + \text{NO}_2 + \text{M} \rightarrow \text{INO}_2 + \text{M}\). Rate coefficients at 298 K when combined with other datasets obtained at higher and lower pressures, were adequately described by a simplified Troe function with the parameters: \(k_0(\text{He}, 330 \text{K}) = 1.48 \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}\), \(F_2(\text{He}) = 0.43\), and \(k_c = 1.1 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) for \(\text{He}\) as bath gas. In \(\text{N}_2\) (or air) the following parameters were obtained \(k_0(\text{N}_2, 300 \text{K}) = 3.2 \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}\), \(F_2(\text{N}_2) = 0.48\), with \(k_c = 1.1 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\). These parameters essentially reproduce the values at 300 K from the parameters in the Table.

(Table: 10-6, Note: 10-6, Evaluated 10-6) \textbf{Back to Table}

(1) Buben, S. N.; Larin, I. K.; Messineva, N. A.; Trofimova, E. M. Measurement of the rate constant of the reaction \(\text{I} + \text{NO}_2 + \text{M} \rightarrow \text{INO}_2 + \text{M}\) \((\text{M} = \text{He, N}_2, \text{Ar, O}_2)\). \textit{Kinetika i Kataliz} 1990, 31, 973.

(3) Mellouki, A.; Laverdet, G.; Jourdain, L.; Poulet, G. Kinetics of the reactions \(\text{Br} + \text{NO}_2 + \text{M}\) and \(\text{I} + \text{NO}_2 + \text{M}\). \textit{Int. J. Chem. Kinet.} 1989, 21, 1161-1172.

(4) Tucceri, M. E.; Dillon, T. J.; Crowley, J. N. A laser photolysis–resonance fluorescence study of the reactions: \(\text{I} + \text{O}_3 \rightarrow \text{IO} + \text{O}_2, \text{O} + \text{I}_2 \rightarrow \text{IO} + \text{I},\) and \(\text{I} + \text{NO}_2 + \text{M} \rightarrow \text{INO}_2 + \text{M}\) at 298 K. \textit{Phys. Chem. Chem. Phys.} 2005, 10, 1657-1663, doi:10.1039/b502844b.

(5) van den Bergh, H.; Benoit-Guyot, N.; Troe, J. Collisional energy transfer in the reactions \(\text{I} + \text{NO} + \text{M} \rightarrow \text{INO} + \text{M}\) and \(\text{I} + \text{NO}_2 + \text{M} \rightarrow \text{INO}_2 + \text{M}\). \textit{Int. J. Chem. Kinet.} 1977, 9, 223-234.

\subsection*{H3. IO + NO\(_2\).} Data from Daykin and Wine,\(^2\) Hölscher and Zellner,\(^5\) Allan and Plane,\(^1\) Jenkin and Cox,\(^6\) and Dillon et al.\(^3\) are considered. Dillon et al. suggest that the value from Hölscher and Zellner might be low at 298 K due to regeneration of \(\text{IO}\), although their values at lower temperatures are in agreement with others. The recommendation takes this into consideration and accommodates the rest of the data. Two more studies at lower pressures are available, Larin et al.\(^9\) and Maguin et al.\(^8\) These latter do not agree very well with the above five studies and have larger experimental errors. The recommended \(k_0\) and \(k_c\) also agree with a theoretical study by Rayez and Destriau.\(^12\) A computational study by Marshall\(^10\) sets the bond dissociation energy as \(\Delta H_0(\text{IO}-\text{NO}_2) = 113.6 ± 3.1\) kJ mol\(^{-1}\) and suggests \(k_c = (5.3-13.3) \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-1} \text{ s}^{-1}\) for \(\text{N}_2\) as the bath gas, while an ME/RRKM study by Golden\(^4\) required \(\Delta H_0(\text{IO}-\text{NO}_2) = 150\) kJ mol\(^{-1}\) to fit the data. Papayannis and Kosmas\(^11\) compute \(\Delta H_0(\text{IO}-\text{NO}_2) = 137.6\) or 131.7 kJ mol\(^{-1}\), depending on spin orbit coupling corrections in \(\text{IO}\). A computational study by Koltsoyannis and Plane\(^3\) concludes that \(\Delta H_0(\text{IO}-\text{NO}_2) = 117.9\) kJ mol\(^{-1}\). See Table 3-1 for the recommended \(K_{eq}\).

(Table: 10-6, Note: 10-6, Evaluated: 10-6) \textbf{Back to Table}
H4. CHI₂ + O₂. The recommendation at 298 K is the average of measurements by Masaki et al., Eskola et al., Huang et al., Sheps, and Stone et al. Evidently, there is no pressure dependence up to at least 1 atm. The recommendation for the temperature dependence is taken from Eskola et al. Among other products, this reaction produces significant yields of thermalized formaldehyde oxide (CH₂OO, the simplest carbonyl oxide, also known as a Criegee Intermediate). Yields of CH₂OO in this reaction under one atmosphere of air near 300 K have been reported to be 0.15 ± 0.03, ~0.18, ~0.18, and ~0.30.

Table 15-10, Note: 15-10, Evaluated: 15-10

II. HS + NO. Data are from the work of Black et al. The temperature dependence of k₉ has been estimated and k₉ has been adjusted to fit the data.

Table: 06-2, Note: 06-2, Evaluated: 06-2
(1) Black, G.; Patrick, R.; Jusinski, L. E.; Slanger, T. G. Rate coefficients for the reaction HS + NO + M(M = He, Ar, and N₂) over the temperature range 250-445 K. J. Chem. Phys. 1984, 80, 4065-4070.

12. CH₃S + NO. The recommended values are fit to the study by Balla et al. The temperature range was 295 to 453 K and pressures of N₂ from 1.5 to 300 Torr. The recommended high pressure limiting rate coefficient and temperature dependence provide a better fit to the data than reported by Balla et al.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

13. O + SO₂. Naidoo et al. studied this spin-forbidden reaction in Ar over the temperature range 290<T/K<840 and pressure range 100<P/mbar<880. They fit the data very well using the IUPAC format with k₀ = 9.5 × 10⁻³ T³ exp(−2400/T) cm³ molecule⁻² s⁻¹, k₁ = 6.1 × 10⁻¹³ exp(−850/T) cm³ molecule⁻¹ s⁻¹ and F₂ = 0.558exp(−T/316) + 0.442exp(−T/7442). The recommended values transpose the rate constants to the form used in this evaluation and are used with the standard value of F₂ = 0.6. These parameters do not fit the higher temperatures as well as the values derived by Naidoo et al. (i.e. missing the values at 840 K by about 50% and those at 699 K by about 20%), but values at 289, 399 and 581 K fit quite well and are adequate for atmospheric conditions. Earlier values are reported by Atkinson and Pitts and Müller et al.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

14. OH + SO₂. Values of the rate constant as a function of pressure and temperature are from Blitz et al. They used a five parameter fit to the data, allowing F₂ to be temperature dependent. The values of k₀ and k₁ have been adjusted in the Table to accommodate F₂ = 0.6. Blitz et al. determined the high pressure limit from the reaction of OH(v=1) with SO₂. Their low pressure value was taken by re-evaluating the data of Wine et al. in various bath gases at pressures up to 150 Torr and temperatures between 260 K and 420 K, through the use of a master equation. The data of Paraskevopoulos et al. in the same pressure range, are equally well fit. Lower pressure data from at 298 K from Leu and Lee et al. are well accommodated by the recommendation herein. Earlier data listed in Baulch et al., Baulch et al., and Atkinson et al. are noted. Blitz et al. have calculated the entropy and measured a third law heat of formation for HOSO₂ (373 ± 6 kJ/mol). See also Li and McKee.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

I5. CH3S + O2. The Panel makes no recommendation, since only one direct measurement of the rate constant has been reported and helium bath gas is not appropriate for the atmosphere. The following is for information, only.

Turnipseed et al.4 generated CH3S radicals by pulsed laser photolysis of CH3SCH3 with O2 in excess and used LIF of CH3S to monitor the subsequent reaction. Biexponential decays were observed, signaling the reversible formation of a weakly bound complex. They obtained forward and reverse rate constants in 80 Torr of He bath gas at temperatures from 216 to 250 K; the values of krec/kuni are in good agreement with the recommended krec (see Table 3-1). Assuming that krec is near the low pressure limit, the data of Turnipseed et al. are described by krec(T) = 8 × 10^{-32} (T/298)^{-3/2} in helium bath gas. The reaction has been implicated in three indirect studies,1-3 which reported estimated ratios of rate constants.

Back to Table (Table: 15-10; Note: 15-10; Evaluation 15-10) Back to Table

I6. CH3SCH3 + O2. Wallington et al.2 have employed a pulse radiolysis technique, obtaining k = (5.7 ± 0.4) × 10^{-12} cm^{3} molecule^{-1} s^{-1} in 992 mbar of SF6 at room temperature. A theoretical study by Resende and De Alemeida1 yields a heat of formation of the product, CH3SCH2O2, as 6.51 kcal mol^{-1}.

Back to Table (Table: 94-26; Note: 06-2; Evaluated: 06-2) Back to Table

(2) Wallington, T. J.; Ellermann, T.; Nielsen, O. J. Atmospheric chemistry of dimethyl sulfide: UV spectra and self-reaction kinetics of CH3SCH3 and CH3SCH2 radical and kinetics of the reactions CH3SCH3 + O2 → CH3SCH2O + NO and CH3SCH2O + NO → CH3SCH2O + NO2. *J. Phys. Chem.* 1993, 97, 8442-8449.

I7. SO3 + NH3. Recommendation is from Lovejoy.1 This study covered 20–80 Torr from 280–340 K. An earlier study by Lovejoy and Hanson,2 who studied this reaction from 10–400 Torr N2 at 295 K is in agreement. Lovejoy and Hanson observed that any incipient adduct rapidly becomes sulfamic acid (H3NSO3) which clusters efficiently with itself and sulfuric acid. The observed sulfamic acid dimerization rate constant exceeds 5 × 10^{-11} cm^{3} molecule^{-1} s^{-1}. Measurements of Shen et al.3 at 1–2 Torr He are much higher than those of Lovejoy and Hanson2 or Lovejoy,1 Error limits have been adjusted to take into account the fact that the exponent of the temperature dependence of the low pressure rate constant is unusually large. Lovejoy1 also reports an equilibrium constant and heat of formation of sulfamic acid of -24 ± 1 kcal mol^{-1}.

Back to Table (Table: 06-2; Note: 06-2; Evaluated: 06-2) Back to Table

I8. HO + CS2. The data are from Hynes et al.3 and Murrells et al.4 The value m = 1 is constrained. The recommended rate constant is in reasonable agreement with the measurement of Bulatov et al.3 Petris et al.2 report experimental detection of CS2OH. See Table 3-1 for the recommended equilibrium constant. The adduct reacts slowly with O2. (See Table 1-1).

Back to Table (Table: 06-2; Note: 15-10; Evaluated: 06-2) Back to Table

I9. \(\text{Cl} + \text{CS}_2 \). The data are from Nicovich et al.\(^2\) Wallington et al.\(^3\) have also studied this system. The value \(m = 0 \) is constrained. Nicovich et al.\(^2\) confirm that the reaction proceeds via reversible adduct formation as suggested by Martin et al.\(^1\) The much larger rate constant values determined by Martin et al. may possibly be attributed to reactive impurities in the \(\text{CS}_2 \) sample. Nicovich et al. set an upper limit on the rate constant for the adduct \((\text{CS}_2\text{Cl})\) reacting with \(\text{O}_2 \) of \(2.5 \times 10^{-16} \text{ cm}^2 \text{ molecule}^{-1} \text{ s}^{-1} \) at room temperature. Wang and Phillips\(^4\) have reported a theoretical study of the adduct.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(2) Nicovich, J. M.; Wine, P. H. Kinetics of the reactions of \(\text{O}^\cdot \text{(P)} \) and \(\text{Cl}^\cdot \text{(P)} \) with \(\text{HBr} \) and \(\text{Br}_2 \). *Int. J. Chem. Kinet.* **1990**, *22*, 379-397.

I10. \(\text{OH} + \text{CH}_3\text{SH}_3 \rightarrow (\text{CH}_3)_2\text{SOH} \rightarrow \text{products} \). The \(\text{OH} + \text{CH}_3\text{SH}_3 \) reaction is complex, proceeding by direct H-abstraction and reversible addition pathways. A recommendation for the direct reaction is discussed separately in Table 1-1. The product of the reversible addition pathway reacts with \(\text{O}_2 \) creating an irreversible path as well. Mechanistically, this pathway is described by combining the rate constants \(k_r \) for the addition step, \(k_c \) for the reverse dissociation step, and \(k_{o2} \) for the adduct reaction with \(\text{O}_2 \). This is discussed in detail in the notes for Table 1-1. The equilibrium constant for the reversible addition process is \(K_{eq} = k_r/k_c \). Recommendations for \(K_{eq} \) and \(k_{o2} \) are found in Tables 3-1, and 1-1, respectively. The value for \(k_r \) recommended here is from Williams et al.\(^1\) The discussion in Table 1-1 points out that this value taken with \(K_{eq} \) and \(k_{o2} \) fits the extant data very well.

(Table: 10-6; Note: 10-6; Evaluated: 10-6) Back to Table

I11. \(\text{Cl} + (\text{CH}_3)_2\text{S} \). [See Table 1-1] If the HCl yield at 297 K from Stickel et al.\(^4\) is used as a measure of the abstraction reaction, the rate constant would be \(1.64 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \). Using this value the complete data set from Stickel et al.\(^4\) can be fit with the form used in Table 2-1 with the addition of a term for the abstraction in the form \(k_{abs} = 1.64 \times 10^{-10} \text{ (T/300)} \). The value of “a” obtained in this manner is almost zero, so the data are fit with: \(k_0 = 4 \times 10^{-28} \text{ (T/300)}^{-7} \) and \(k_c = 2 \times 10^{-10} \text{ (T/300)}^{-1} \) along with the temperature independent value of \(k_{abs} \). These parameters are recommended herein. Enami et al.\(^2\) propose \(k_0 = 2.2 \times 10^{-28} \) and \(k_c = 2.2 \times 10^{-10} \) at 298 K along with \(k_{abs} = 1.8 \times 10^{-10} \). On the other hand, a study by Diaz-de-Mera et al.\(^1\) performed in the temperature range 259< \(T/K <364 \) and in helium at pressures of 0.5< \(P/\text{Torr} <1 \) reports a value \(k_{abs} = (2.0 \pm 1.2) \times 10^{-10} \text{ exp}[-(332 \pm 173)/T] \), which yields \(6.6 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at room temperature. Several studies, both experimental by Urbanksi and Wine\(^5\) and theoretical by Resende and De Almeida\(^6\) make it clear that at higher pressures an adduct Cl-S(CH3)2 is formed and this adduct does not yield CH3 radicals or the products of the abstraction pathway.

(Table: 06-2; Note: 10-6; Evaluated: 10-6) Back to Table

I12. **Br + (CH3)2S.** Wine et al.\(^2\) data for the adduct formation in N\(_2\) at 25\(\text{<} P/\text{Torr} < 600\) and 263\(\text{<} T/\text{K} < 310\) are the basis for the recommendation. Studies by Ingham et al.\(^2\) and Nakano et al.\(^4\) are in agreement. Nakano et al.\(^4\) is also in agreement with the value of the equilibrium constant. However, Maurer et al.\(^3\) find a value at 300 K and 1 bar total pressure of a mixture of 5% O\(_2\) and 95% N\(_2\), only 2% as high as the value computed from the recommended parameters. This latter value is supported by Ballesteros et al.\(^1\).

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table](#)

J1. **Na + O\(_2\).** A study by Plane and Rajasekhar\(^3\) finds \(k_0 = (2.9 \pm 0.7) \times 10^{-30} \text{cm}^6 \text{molecule}^{-2} \text{s}^{-1}\) at 300 K with \(n = 1.30 \pm 0.04\). They also estimate \(k_o\) to be about \(6 \times 10^{-10} \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}\) with a small positive temperature dependence. Another study by Helmer and Plane\(^1\) yields \(k_o = (3.1 \pm 0.2) \times 10^{-30} \text{cm}^6 \text{molecule}^{-2} \text{s}^{-1}\) at 300 K with \(n = 1.52 \pm 0.27\). The recommended values are taken from these studies. They are consistent with values measured by Marshall et al.\(^2\) at 600 K and those measured by Vinckier et al.\(^5\) at higher temperatures. The \(k_o\) value is about 60% higher than that of Silver et al.\(^4\).

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table](#)

J2. **NaO + O\(_2\).** Ager and Howard\(^1\) have measured the low-pressure limit at room temperature in several bath gases. Their value in N\(_2\) is used in the recommendation. They performed a Troe calculation, as per Patrick and Golden\(^2\), to obtain collision efficiency and temperature dependence. They obtained a high-pressure-limit rate constant by use of a simple model. The temperature dependence is estimated.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table](#)

J3. **NaO + CO\(_2\).** Ager and Howard\(^1\) have measured the rate constant for this process in the “fall–off” regime. Their lowest pressures are very close to the low-pressure limit. The temperature dependence is an estimate. Ager and Howard calculate the high-pressure rate constant from a simple model.

(Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table](#)
J4. **NaOH + CO₂.** Ager and Howard¹ have measured the low-pressure-limiting rate constant. The temperature dependence is an estimate. Ager and Howard have calculated the high-pressure limit using a simple model. (Table: 06-2, Note: 06-2, Evaluated: 06-2) [Back to Table]

J5. **Hg + Br.** The recommendation is based on the direct experiments of Donohoue et al.,² who used pulsed laser photolysis of Br₂ to generate an excess of Br atoms, which reacted with Hg⁰ vapor; the Hg⁰ and atomic Br were monitored simultaneously by pulsed laser induced fluorescence techniques. The recombination reaction rate constant at the low pressure limit was measured in N₂ gas at temperatures from 243 to 293 K and N₂ pressures from 200 to 600 Torr (measurements were also carried out using He gas). In earlier studies, Greig et al.³ analyzed the UV spectrum of HgBr and used their measured absorption coefficients to determine the recombination rate constant from 393 K to 448 K in 200 Torr of CF₃Br (conditions not relevant to the atmosphere). Ariya et al.⁴ and Spicer et al.⁵ used relative rate techniques to obtain the rate constant, but both studies are discussed in detail by Donohoue et al.,² who concluded that they were seriously affected by secondary reactions. Several theoretical calculations have been reported.⁶⁻⁹ In particular, Goodsite et al.⁷ used spectroscopic data, quantum chemistry calculations, and RRKM modeling to show that the theoretical results are in reasonable agreement with experiments. Later, using a corrected bond dissociation energy, they repeated the calculations⁸ and showed that with a reasonable choice of an energy transfer parameter, the RRKM results are in very good agreement with the experiments of Donohoue et al.² A review of Hg atmospheric chemistry has appeared.¹ (Table: 15-10; Note: 15-10; Evaluated: 15-10) [Back to Table]

2.8 Bibliography – Termolecular Reactions

Black, G.; Patrick, R.; Jusinski, L. E.; Slanger, T. G. Rate coefficients for the reaction HS + NO + M(M = He, Ar, and N₂) over the temperature range 250-445 K. J. Chem. Phys. 1984, 80, 4065-4070.

Caralp, F.; Lesclaux, R. Rate constant for the reaction of the CFCl₃ radical with oxygen in the pressure range 0.2-12 Torr at 298 K. *Chem. Phys. Lett.* 1983, 102, 54-58.

Danis, F.; Caralp, F.; Rayez, M.; Lesclaux, R. Kinetic study of the reaction CCl₃ + O₂ + M → CCl₃O₂ + M from 1 to 760 Torr and from 233 to 333 K. *J. Phys. Chem.* 1991, 95, 7300-7307.

2-52

Golden, D. M. Evaluating data for atmospheric models, an example: CH\textsubscript{3}O\textsubscript{2} + NO\textsubscript{2} = CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}. Int. J. Chem. Kinet. 2005, 37, 625-632, doi:10.1002/kin.20104.

Golden, D. M. Evaluating data for atmospheric models, an example: CH\textsubscript{3}O\textsubscript{2} + NO\textsubscript{2} = CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}. Int. J. Chem. Kinet. 2005, 37, 625-632, doi:10.1002/kin.20104.

Golden, D. M. Evaluating data for atmospheric models, an example: CH\textsubscript{3}O\textsubscript{2} + NO\textsubscript{2} = CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}. Int. J. Chem. Kinet. 2005, 37, 625-632, doi:10.1002/kin.20104.

Golden, D. M. Evaluating data for atmospheric models, an example: CH\textsubscript{3}O\textsubscript{2} + NO\textsubscript{2} = CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}. Int. J. Chem. Kinet. 2005, 37, 625-632, doi:10.1002/kin.20104.

Golden, D. M. Evaluating data for atmospheric models, an example: CH\textsubscript{3}O\textsubscript{2} + NO\textsubscript{2} = CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}. Int. J. Chem. Kinet. 2005, 37, 625-632, doi:10.1002/kin.20104.

2-56

Kurrylo, M. J.; Ouellette, P. A. Pressure dependence of the rate constant for the reaction HO_2 + NO_2 + M → HO_2NO_2 + M (M = N_2, O_2) at 298 K. *J. Phys. Chem.* 1986, 90, 441-444, doi:10.1021/j100275a018.

Lai, L.-H.; Hsu, Y.-C.; Lee, Y.-P. The enthalpy change and the detailed rate coefficients of the equilibrium reaction OH + C_2H_4 = (M) HOC_2H_4 over the temperature range 627-713 K. *J. Chem. Phys.* 1992, 97, 3092-3099.

Lovejoy, E. R. Kinetics and thermodynamics of the gas phase reaction SO\textsubscript{2} + NH\textsubscript{3} + N\textsubscript{2} ↔ H\textsubscript{3}NSO\textsubscript{3} + N\textsubscript{2}. *J. Phys. Chem. A* 1997, 101, 4950-4953.

Lovejoy, E. R.; Hanson, D. R. Kinetics and products of the reaction SO\textsubscript{2} + NH\textsubscript{3} + N\textsubscript{2}. *J. Phys. Chem. 1996*, 100, 4459-4465.

Luther, K.; Oum, K.; Troe, J. Study of the recombinaton reaction CCl\textsubscript{3} + O\textsubscript{2} (+M) → CCl\textsubscript{3}O\textsubscript{2} (+M) at pressures of 2-900 bar and temperatures of 260-346 K. *J. Phys. Chem. A* 2001, 105, 5535-5541, doi:10.1021/jp003844d.

Marshall, P. Computational studies of the thermochemistry of the atmospheric iodine reservoirs HOI and IONO\textsubscript{2}. *Advances in Quantum Chemistry 2008*, 159-175.

Masaki, A.; Tsunashima, N.; Washida, N. Rate constant for the reaction of CH\textsubscript{2}O with NO. *Chem. Phys. Lett.* 1994, 218, 523-528.

Michael, J. V.; Nava, D. F.; Borkowski, R. P.; Payne, W. A.; Stief, L. J. Pressure dependence of the absolute rate constant for the reaction OH + CH\textsubscript{3}O from 228 to 413 K. *J. Chem. Phys.* 1980, 73, 6108-6116.

Overend, R. P.; Paraskevopoulos, G.; Black, C. Rates of OH radical reactions. II. The combination reaction OH + NO + M. *J. Chem. Phys.* 1976, 64, 4149-4154.

Pagsberg, P.; Bjergbakke, E.; Ratjaczek, E.; Sillesen, A. Kinetics of the gas phase reaction OH + NO(+M) → HONO(+M) and the determination of the UV absorption cross sections of HONO. *Chem. Phys. Lett.* 1997, 272, 383-390.

Paraskevopoulos, G.; Irwin, R. S. The pressure dependence of the rate constant of the reaction of OH radicals with CO. *J. Phys. Chem.* 1984, 80, 259-266.

Schurath, U.; Wipprecht, V. 1st European Symposium on Physico-Chemical Behavior of Atmospheric Pollutants, 1979, Ispra.

Wallington, T. J.; Ellerman, T.; Nielsen, O. J. Atmospheric chemistry of dimethyl sulfide: UV spectra and self-reaction kinetics of CH3SCH2 and CH3SCH2O radicals and kinetics of the reactions CH3SCH2 + O2 → CH3SCH2O + NO and CH3SCH2O + NO → CH3SCH2 + NO2. *J. Phys. Chem.* 1993, 97, 8442-8449.

Wollenhaupt, M.; Crowley, J. N. Kinetic studies of the reactions CH₄ + NO₂ → products, CH₃O + NO₂ → products, and OH + CH₃C(O)CH₃ → CH₃C(O)OH + CH₃ over a range of temperature and pressure. *J. Phys. Chem. A* 2000, 104, 6429-6438, doi:10.1021/jp0005726.

SECTION 3. EQUILIBRIUM CONSTANTS

3.1 Format

Some of the three-body reactions in Table 2 form products that are thermally unstable at atmospheric temperatures. In such cases the thermal decomposition reaction may compete with other loss processes, such as photodissociation or radical attack. Table 3 lists the equilibrium constants, $K_{eq}(T)$, for several reactions that may fall into this category. The table has three column entries, the first two being the parameters A and B that can be used to express $K_{eq}(T)$:

$$K_{eq}(T)/\text{cm}^3\text{molecule}^{-1} = A \exp(B/T) \ (200 < T < 300 \text{ K})$$

The third column entry in Table 3 is the calculated value of K_{eq} at 298 K. The data sources for $K_{eq}(T)$ are described in the individual notes to Table 3.

3.2 Definitions

When values of the heats of formation and entropies of all species are known at the temperature T, we note that the equilibrium constant is given by the van’t Hoff equation:

$$\log_{10}[K_{eq}(T)/\text{bar}^{-1}] = \frac{\Delta S^o_R}{2.303R} - \frac{\Delta H^o_R}{2.303RT}$$

$$\log_{10}[K_{eq}(T)/\text{cm}^3\text{molecule}^{-1}] = \frac{\Delta S^o_T}{2.303R} - \frac{\Delta H^o_T}{2.303RT} + \log_{10}(T) - 21.87$$

where the superscript “o” refers to a standard state of one bar. When the entropy is known (or can be calculated from molecular properties) as a function of temperature, experimental values of $K_{eq}(T)$ can be used to extract a value for ΔH_0 and $K_{eq}(T)$ can be calculated over a wide temperature range (Third law method.). The parameters A and B can then be determined from a linear fit. In other cases the $K_{eq}(T)$ values were calculated directly from kinetic data for the forward and reverse reactions. When only thermochemical values at 298 K were available, they were treated as temperature independent and used to calculate the equilibrium constants between 200 and 300 K. The following equations were then used to calculate the parameters A and B:

$$B/K = 2.303 \left[\frac{(300 \times 200)}{(300-200)} \right] \log_{10} \left[\frac{K_{eq}^{200}}{K_{eq}^{300}} \right] = 1382 \log_{10} \left(\frac{K_{eq}^{200}}{K_{eq}^{300}} \right)$$

$$\log_{10}(A) = \log_{10}(K_{eq}^T) - \frac{B}{2.303T}$$

The relationships between the parameters A and B and the quantities $\Delta S^o(298 K)$ and $\Delta H^o(298 K)$ are:
\[A = \frac{eR'T}{N_{av}} \exp \left(\frac{\Delta S^0_{298K}}{R} \right) = 3.7 \times 10^{-22} T \exp \left(\frac{\Delta S^0_{298K}}{R} \right) \]

where \(R' = 82.1 \text{ cm}^3 \text{ bar}^{-1} \text{K}^{-1} \), and \(N_{av} = 6.02 \times 10^{23} \) molecule mole\(^{-1}\) and

\[B^\circ K = - \left[\frac{\Delta H^0_{298K} + RT}{R} \right] \]
Table 3-1. Equilibrium Constants

<table>
<thead>
<tr>
<th>Reaction</th>
<th>A cm⁻³ molecule⁻¹</th>
<th>B °K</th>
<th>K_eq(298 K)</th>
<th>f(298 K)ᵃ</th>
<th>g</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O + H₂O → (H₂O)₂</td>
<td>8.9×10⁻²⁴</td>
<td>1622</td>
<td>2.0×10⁻²¹</td>
<td>1.05</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HO + NO₂ → HOONO</td>
<td>3.5×10⁻²⁷</td>
<td>10135</td>
<td>2.2×10⁻¹²</td>
<td>1.4</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>HO₂ + NO₂ → HO₂NO₂</td>
<td>2.1×10⁻²⁷</td>
<td>10900</td>
<td>1.6×10⁻¹¹</td>
<td>1.3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>HO₂ + H₂O → HO₂•H₂O</td>
<td>2.4×10⁻²⁵</td>
<td>4350</td>
<td>5.2×10⁻¹⁹</td>
<td>2</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>HO₂ + CH₃OH → HO₂•CH₃OH</td>
<td>1.1×10⁻²⁴</td>
<td>4093</td>
<td>1.0×10⁻¹⁸</td>
<td>1.2</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>HO₂ + CH₃O → HOCH₂OO</td>
<td>6.3×10⁻²⁷</td>
<td>7488</td>
<td>5.2×10⁻¹⁶</td>
<td>1.2</td>
<td>300</td>
<td>6</td>
</tr>
<tr>
<td>HO₂ + CH₃CHO → CH₃CH(OH)HOO</td>
<td>5.0×10⁻²⁸</td>
<td>7130</td>
<td>1.7×10⁻¹⁷</td>
<td>2.0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>HO₂ + CH₃C(O)CH₃ → HO₂•CH₃C(O)CH₃</td>
<td>1.8×10⁻²⁴</td>
<td>4040</td>
<td>1.4×10⁻¹⁸</td>
<td>1.6</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>NO + NO₂ → N₂O₃</td>
<td>3.3×10⁻²⁷</td>
<td>4667</td>
<td>2.1×10⁻²⁰</td>
<td>2</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>NO₂ + NO₂ → N₂O₄</td>
<td>5.9×10⁻²⁹</td>
<td>6643</td>
<td>2.8×10⁻¹⁹</td>
<td>1.4</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>NO₂ + N₂O₃ → N₂O₅</td>
<td>5.8×10⁻²⁷</td>
<td>10840</td>
<td>2.8×10⁻¹¹</td>
<td>1.2</td>
<td>75</td>
<td>11</td>
</tr>
<tr>
<td>CH₃O₂ + NO₂ → CH₃O₂NO₂</td>
<td>9.5×10⁻²⁹</td>
<td>11234</td>
<td>2.2×10⁻¹²</td>
<td>1.3</td>
<td>500</td>
<td>12</td>
</tr>
<tr>
<td>CH₃C(O)O₂ + NO₂ → CH₃C(O)O₂NO₂</td>
<td>9.0×10⁻²⁹</td>
<td>14000</td>
<td>2.3×10⁻⁸</td>
<td>1.2</td>
<td>200</td>
<td>13</td>
</tr>
<tr>
<td>CH₃CH₂C(O)O₂ + NO₂ → CH₃CH₂C(O)O₂NO₂</td>
<td>9.0×10⁻²⁹</td>
<td>14000</td>
<td>2.3×10⁻⁸</td>
<td>10</td>
<td>800</td>
<td>14</td>
</tr>
<tr>
<td>CH₃C(O)CH₂ + O₂ → CH₃C(O)H₂O</td>
<td>6.3×10⁻²⁷</td>
<td>12200</td>
<td>3.8×10⁻⁹</td>
<td>1.5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>F + O₂ → FOO</td>
<td>4.5×10⁻²⁵</td>
<td>6118</td>
<td>3.7×10⁻¹⁶</td>
<td>1.5</td>
<td>300</td>
<td>16</td>
</tr>
<tr>
<td>Cl + O₂ → ClO₂</td>
<td>6.6×10⁻²⁵</td>
<td>2502</td>
<td>2.9×10⁻²¹</td>
<td>1.7</td>
<td>100</td>
<td>17</td>
</tr>
<tr>
<td>Cl + CO → CICO</td>
<td>3.5×10⁻²⁵</td>
<td>3730</td>
<td>9.6×10⁻²⁰</td>
<td>1.2</td>
<td>200</td>
<td>18</td>
</tr>
<tr>
<td>ClO + O₂ → ClO•O₂</td>
<td>2.9×10⁻²⁶</td>
<td><3700</td>
<td><7.2×10⁻²¹</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>ClO + ClO → Cl₂O₂</td>
<td>2.16×10⁻²⁷</td>
<td>8537</td>
<td>6.0×10⁻¹⁵</td>
<td>1.4</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>ClO + ClO → ClO₂</td>
<td>2.16×10⁻²⁷</td>
<td>6.5×10⁻¹⁷</td>
<td>2.0×10⁻²⁰</td>
<td>2.0</td>
<td>600</td>
<td>21</td>
</tr>
<tr>
<td>Cl + OCIO → ClCIO₂</td>
<td>1.3×10⁻²⁶</td>
<td>12500</td>
<td>2.1×10⁻⁸</td>
<td>2</td>
<td>600</td>
<td>22</td>
</tr>
<tr>
<td>ClO + OCIO → Cl₂O₃</td>
<td>1.5×10⁻²⁷</td>
<td>7170</td>
<td>4.2×10⁻¹⁷</td>
<td>1.2</td>
<td>400</td>
<td>23</td>
</tr>
<tr>
<td>OCIO + NO₃ → O₂ClONO₂</td>
<td>6.6×10⁻²⁹</td>
<td>3971</td>
<td>4.0×10⁻²³</td>
<td>2.3</td>
<td>250</td>
<td>24</td>
</tr>
<tr>
<td>Br + CH₂=CHC(CH₃)=CH₂ (Isoprene)</td>
<td>4.2×10⁻²⁴</td>
<td>7480</td>
<td>3.3×10⁻¹⁰</td>
<td>1.3</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>Reaction</td>
<td>A cm3 molecule$^{-1}$</td>
<td>B °K</td>
<td>$K_{eq}(298 \text{ K})$</td>
<td>f(298 K)a</td>
<td>g</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>------</td>
<td>-----------------</td>
<td>---------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>Br + CH$_2$=CHCH=CH$_2$ (1,3-Butadiene)</td>
<td>1.1×10$^{-24}$</td>
<td>7520</td>
<td>8.6×10$^{-14}$</td>
<td>1.3</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>OH + CS$_2$ → CS$_2$OH</td>
<td>4.5×10$^{-25}$</td>
<td>5140</td>
<td>1.4×10$^{-17}$</td>
<td>1.4</td>
<td>300</td>
<td>26</td>
</tr>
<tr>
<td>CH$_3$S + O$_2$ → CH$_3$SO$_2$</td>
<td>1.8×10$^{-27}$</td>
<td>5545</td>
<td>2.2×10$^{-19}$</td>
<td>1.4</td>
<td>300</td>
<td>27</td>
</tr>
<tr>
<td>Cl + CS$_2$ → Cl----CS$_2$</td>
<td>1.8×10$^{-25}$</td>
<td>4982</td>
<td>3.3×10$^{-18}$</td>
<td>1.3</td>
<td>150</td>
<td>28</td>
</tr>
<tr>
<td>CH$_3$S +O$_2$ → CH$_3$SOO</td>
<td>1.4×10$^{-26}$</td>
<td>4850</td>
<td>1.7×10$^{-19}$</td>
<td>1.2</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>OH + (CH$_3$)$_2$S → HO----(CH$_3$)$_2$S</td>
<td>9.6×10$^{-27}$</td>
<td>5376</td>
<td>6.6×10$^{-19}$</td>
<td>1.4</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Br + (CH$_3$)$_2$S → Br----(CH$_3$)$_2$ S</td>
<td>3.4×10$^{-25}$</td>
<td>3021</td>
<td>4.6×10$^{-15}$</td>
<td>1.2</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>IO + NO$_2$ → IONO$_2$</td>
<td>5.0×10$^{-28}$</td>
<td>14120</td>
<td>1.9×10$^{-7}$</td>
<td>2.5</td>
<td>300</td>
<td>32</td>
</tr>
<tr>
<td>Hg + Br → HgBr</td>
<td>9.1×10$^{-24}$</td>
<td>7800</td>
<td>2.1×10$^{-12}$</td>
<td>2.0</td>
<td>200</td>
<td>33</td>
</tr>
</tbody>
</table>

K_{eq}/cm3 molecule$^{-1}$ = A exp (B/T) [200 < T/K < 300]

Shaded areas indicate changes or additions since 10-6.

a f(298 K) is the uncertainty factor at 298 K, and g is a measure of the uncertainty in the quantity B. To calculate the uncertainty at temperatures other than 298 K, use the expression:

$$f(T) = f(298 \text{ K}) \exp \left| g \left(\frac{1}{T} - \frac{1}{298} \right) \right|$$
3.3 Notes to Table 3-1

JPL Publication numbers for the most recent revision of the table entry, note and evaluation date are given at the end of each note.

1. **H₂O + H₂O → (H₂O₂)₂ (water dimer).** The recommendation is based on the optimized Active Thermochemical Tables of Ruscic,¹ which utilizes a comprehensive thermochemical network that includes all of the prior work related to this equilibrium. K⁻eq from Ruscic agrees very well with the recent work of Scribano et al.² and references cited therein. The error limit was set to encompass the exponential fit to the K⁻eq of Ruscic (which is not exactly exponential). For more accurate values, the following non-exponential fit falls within 2% of Ruscic’s values:

\[
K^{-eq} = 1.92 \times 10^{-23} \exp[(1 + 43/T) \times 1216/T] \text{ cm}^3 \text{ molecule}^{-1}
\]

(Table: 15-10; Note: 15-10; Evaluation 15-10) Back to Table

2. **HO + NO₂ → HOONO.** The tabulated value is for the *cis, cis*-HOONO product channel (see below for formation of the *trans, perp*-HOONO isomer, which is unlikely to be important in the atmosphere). Using the data from Hippler et al.,⁴ Golden et al.⁶ performed a third law analysis using structures and frequencies from an ab initio quantum calculation to extract the heat of formation of *cis, cis*-HOONO (ΔH°(0 K) = −9.3 kJ mol⁻¹). The data covers 430 < T/K <475 with 30% uncertainties. Most vibrational frequencies recently have been identified using matrix isolation spectroscopy⁷ and the moments of inertia have been measured by microwave spectroscopy.⁸ High level CCSD(T) calculations and spectral simulation of overtone and action spectra have examined the torsion in considerable detail.⁹ Mathews and Sinha⁸ measured overtone action spectra and carried out an analysis that gave D₀ = 83.3 ± 2.1 kJ mol⁻¹. By using the observed frequencies (supplemented by the high level CCSD(T) calculations⁹), moments of inertia, and the potential energy and moment of inertia of the internal rotor,⁹ a new third law analysis using the data from Hippler et al.⁴ gives the entropy for reaction that differs from the previous analysis by −5.6 J K⁻¹ mol⁻¹ and a new estimate of D₀ = 81.5 ± 0.8 kJ mol⁻¹ and ΔH°(0 K) = −7.6 kJ mol⁻¹ (ΔH°(298 K) = −14.9 kJ mol⁻¹ and S°(298) = 279 J K⁻¹ mol⁻¹).

For formation of the *trans, perp*-HOONO product channel (which is of negligible atmospheric importance), the reaction is written HO + NO₂ → *trans, perp*-HOONO. Konen et al.⁵ used infrared overtone action spectroscopy in a molecular beam apparatus to determine D₀ = 67.8 ± 0.4 kJ mol⁻¹. High level CCSD(T) calculations⁵ supported by analysis⁶ of the action spectra give vibrational frequencies and moments of inertia. These data are used to calculate ΔH°(0 K) = 6.1 kJ mol⁻¹ (ΔH°(298 K) = −0.5 kJ mol⁻¹ and S°(298) = 291 J K⁻¹ mol⁻¹). Using these parameters, the equilibrium constant is given by K⁻eq(*trans, perp*) = 1.33 × 10⁻²⁶ exp(8390/T) with uncertainty factors set so that all of the data used for the recommendation fall within the 2σ error bounds.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

3. **HO$_2$ + NO$_2$.** The value was obtained by combining the expression from Table 2-1 for the rate constant of the reaction as written with that from an average of the expressions from Graham et al.3 and Zabel4 for the reverse reaction. Values for the entropy and heat of formation of pernitric acid may be extracted. These values are: S(298 K) = 71.7 cal mole$^{-1}$ K$^{-1}$ and ΔH(298 K) = −12.9 kcal mol$^{-1}$. If the entropy is calculated from the frequencies and moments of inertia given by Chen and Hamilton,1 the value becomes 71.0 and the heat is −13.1. The values in the Thermochemistry Section of this report reflect the confidence limit of ±3 kJ mol$^{-1}$ (one sigma). Since the analysis is based only on the Kanno experiments, we adopt an estimated 95% confidence limit of ±3 kJ mol$^{-1}$ –1

4. **HO$_2$ + H$_2$O.** The influence of water vapor on the HO$_2$ + HO$_2$ bimolecular rate constant was first shown by Hamilton,3 who invoked formation of a HO$_2$+H$_2$O complex with ~38 kJ mol$^{-1}$ binding energy. Since then, several other groups have quantified the effect on the HO$_2$ + HO$_2$ reaction (see Table 1). Only two direct measurements of the equilibrium constant have been carried out. Aloisio et al.1 used FTIR absorption spectroscopy around 1120 cm$^{-1}$ to measure the depletion of gas phase HO$_2$ as it formed a complex with H$_2$O. They measured K$_{eq}$ at 230 and 250 K, but only an upper limit at room temperature. Kanno et al.5,6 also monitored depletion of gas-phase HO$_2$, but with high resolution FM spectroscopy of the HO$_2$ A-X transition near 7020 cm$^{-1}$ with apparently higher sensitivity than in the FTIR measurement of Aloisio et al., since they could measure K$_{eq}$ up to much higher temperatures (250 K≤ T≤350 K). The two studies are in rough agreement on parameter B, but differ on parameter A by a factor of 7. Kanno et al.’s results are in very good agreement with the Aloisio et al. ab initio calculations of parameter A. The indirect estimate of K$_{eq}$ by Cox and Burrows5 agrees better with Kanno et al., and the indirect estimate by Hamilton and Lii4 is in better agreement with Aloisio et al. The current recommendation for K$_{eq}$ is based on Kanno et al.5,6 because their technique had higher sensitivity and because they measured K$_{eq}$ over a much wider temperature range. A 3rd Law analysis of the Kanno et al. experimental data was carried out using the harmonic frequencies calculated by Aloisio et al.1 and the microwave rotational constants from Suma et al.7 This gives S$_{298}$(HO$_2$+H$_2$O) = 308.9 J K$^{-1}$ mol$^{-1}$ and D$_0$ = 35.9 ± 1.2 kJ mol$^{-1}$ (one sigma). Since the analysis is based only on the Kanno experiments, we adopt an estimated 95% confidence limit of ±3 kJ mol$^{-1}$. The results give ΔH$_{f,0}$(HO$_2$+H$_2$O) = −259.6 ± 3 kJ mol$^{-1}$ and ΔH$_{f,298}$(HO$_2$•H$_2$O) = −268.0 ± 3 kJ mol$^{-1}$. The values of f(298) and g were made large enough to include the data of Aloisio et al.1

3-6
5. **HO₂ + CH₃OH.** The influence of CH₃OH on the HO₂ + HO₂ bimolecular rate constant was first shown by Andersson et al.,¹ who invoked formation of a HO₂•CH₃OH complex with ~25 kJ mol⁻¹ binding energy to explain their results. Since then, several other groups have quantified the effect on the HO₂ + HO₂ reaction (see Table 1). The only direct measurement of the equilibrium constant was carried out by Christensen et al.² from 231 to 261 K. Their measurements are the basis for this recommendation. They obtained ΔH°(298 K) = -37.4 ± 4.8 kJ mol⁻¹ and ΔS°(298 K) = -100 ± 19 J K⁻¹ mol⁻¹. Christensen et al. also measured the forward and reverse rate constants and performed ab initio calculations, which are in reasonable agreement with the measured thermochemistry. (Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

6. **HO₂ + CH₂O → HOCH₂OO.** The recommendation is based on the data of Barnes et al.,² Burrows et al.,³ Veyret et al.,⁴ and Morajkar et al.⁵ All of these measurements, which are in good agreement with each other, relied on optical absorption to monitor the free radicals. The early measurement of Su et al.⁶ is considerably higher, for unknown reasons, as are the measurements of Zabel et al.,⁷ who utilized electron spin resonance to monitor the free radical concentrations. The temperature dependence reported by Zabel et al. is in good agreement with the current recommendation, although the reported absolute magnitude of Zabel et al.’s Kₑq is systematically about a factor of 6 or 7 greater. Theoretical work on this reaction has been reported by Evleth et al.,⁸ Aloisio and Francisco,¹ Benson,³ and Hermans et al.⁹ (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

7. **HO₂ + CH₃CHO → CH₃(CH₂OH)OO.** Tomas et al.⁵ measured this equilibrium constant from 298 to 373 K by using flash photolysis with time resolved UV absorption spectroscopy to monitor all three species (Kₑq ≈ 5.9 × 10⁻¹⁷ cm³ molecule⁻¹ at 298 K). Moortgat et al.³ obtained product quantum yields from the photo-oxidation of CH₃CHO in air. In carrying out their data analysis, which involved a complicated chemical mechanism, they estimated Kₑq ≈ 1 × 10⁻¹⁷.
cm3 molecule$^{-1}$ at 298 K. Morajkar et al.4 used laser flash photolysis with cavity ring-down spectroscopy (CRDS) at 297 K to monitor HO$_2$ radicals in real time; acetaldehyde concentrations were established by preparing gas mixtures (periodically checked in the cell by using laser induced fluorescence of OH and the known rate constant for OH + CH$_3$CHO). In their experiments, the HO$_2$ bi-exponential decays were used to extract K$_{eq} = (1.7 \pm 0.5) \times 10^{-17}$ cm3 molecule$^{-1}$ at 298 K without the necessity of measuring the concentration of CH$_3$CH(OH)OO directly. The recommendation is based on the value obtained by Morajkar et al.4 and the temperature dependence determined by Tomas et al.5; error bounds were set large enough to include almost all of the reported data. Theoretical calculations have been reported by Aloisio and Francisco1 and by Hermans et al.2

(Table: 15-10, Note: 15-10, Evaluated: 15-10) \textbf{Back to Table}

\begin{enumerate}

\end{enumerate}

8. \textbf{HO$_2$ + CH$_3$C(O)CH$_3$ \rightarrow HO$_2$*CH$_3$C(O)CH$_3$.} The recommendation is based on the measured equilibrium constants that have been reported by Grieman et al.4 and by Dillon et al.3 The two sets of data are in excellent agreement with each other. Both groups measured the HO$_2$ concentration with and without added acetone and identified the concentration difference with the concentration of the product (neither group observed the product adduct directly). Grieman et al. controlled the acetone concentration by temperature control of its vapor pressure and measured the HO$_2$ concentration by tunable IR diode laser absorption. Dillon et al. used UV absorption to monitor the HO$_2$ and acetone concentrations. Both groups used information from theoretical calculations and other sources to determine that the product is the hydrogen bonded molecular complex (HBMC) and not the 2-hydroxyisopropylperoxyl radical isomer that is expected to be formed subsequently by a “tail-biting” cyclic hydrogen transfer reaction (analogous to the one that occurs in the reaction of HO$_2$ + CH$_2$O). Theoretical calculations at various levels of theory have been reported by Aloisio and Francisco,1 Hermans et al.6 Hermans et al.5 Cours et al.2, and Dillon et al.3

(Table 15-10, Note 15-10, Evaluation 15-10) \textbf{Back to Table}

\begin{enumerate}

\end{enumerate}

9. \textbf{NO + NO$_2$.} The data are from JANAF2 and Chao et al.1 This process is included because a measurement of the rate constant by Smith and Yarwood6 and Markwalder et al.3 shows that it is too slow to be an important process in most atmospheric and laboratory systems.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) \textbf{Back to Table}

\begin{enumerate}

\end{enumerate}
10. **NO₂ + NO₂**. The data are from JANAF⁹ and Vosper,¹¹ Chao et al.,⁴ and Amoruso et al.¹ Rate data for this process are reported by Brunning et al.,³ Borrell et al.,² Gozel et al.,⁶ and Markwalder et al.⁹ A direct study by Harwood and Jones⁷ at low temperatures is in agreement with the recommendation. Estupiñán et al.,⁵ Wollenhaupt and Crowley,¹² and Tüchler et al.¹⁰ deduce values that are in essential agreement, within uncertainties, with the recommendation. (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

(2) Borrell, P.; Cobos, C. J.; Luther, K. Falloff curve and specific rate constants for the reaction NO₂ + NO₂ ⇌ N₂O₄. J. Phys. Chem. 1988, 92, 4377-4384.

(12) Wollenhaupt, M.; Crowley, J. N. Kinetic studies of the reactions CH₃ + NO₂ → products, CH₂O + NO₂ → products, and OH + CH₂C(O)CH₃ → CH₂C(O)OH + CH₃, over a range of temperature and pressure. J. Phys. Chem. A 2000, 104, 6429-6438, doi:10.1021/jp0005726.

11. **NO₂ + NO₃**. The recommendation is based on the direct measurements of Kₜeq reported by Cantrell et al.,² Hjorth et al.,¹ and Osthoff et al.⁹ As pointed out by Osthoff et al., the differences among the direct measurements of Kₜeq differ mostly because of calibration errors in the absorption coefficients of NO₂, N₂O₅, and the NO₃ free radical. The recommended pre-exponential factor (parameter "A") is the geometric mean of the values from Cantrell et al.,² Hjorth et al.,¹ and Osthoff et al.⁹ the recommended exponential parameter (i.e. parameter "B") is the average of the values reported in the same studies. The current recommendation is similar to the previous recommendation, which was based on the 'kinetics' Kₜeq reported by Cantrell et al.,³ who carried out a thorough review of previous literature. They used their own measured rate constants for the decomposition reaction and the rate constants reported by Orlando et al.⁸ for the recombination reaction to derive the 'kinetics' Kₜeq. The current recommendation is also in good agreement with the data of Burrows et al.,¹ and with the room temperature data of Tuazon et al.¹⁴ and of Perner et al.,¹⁰ and with the exponential factor of Wängberg et al.,¹⁶ although their absolute values of Kₜeq differ significantly, probably due to an unidentified calibration error. It is also in good agreement with the evaluation by Pritchard,¹¹ who reviewed the data of Cantrell et al.,² Burrows et al.,¹ Graham and Johnston,⁵ Wängberg et al.,¹⁶ Schott and Davidson,¹² and the room temperature data of Tuazon et al.,¹⁴ Perner et al.,¹⁰ and Hjorth et al.⁹ Pritchard also included the values given by Smith et al.,¹³ and Kircher et al.⁷ who combined data on the forward reaction with decomposition data of by Connell and Johnston¹ and Vigiano et al.¹⁵ (Table: 15-10 Note: 15-10, Evaluation: 15-10) Back to Table

12. CH₃O₂ + NO₂. Zabel et al.⁴ have measured k(dissociation) as a function of pressure (10< P/Torr <800) and temperature (253< T/K <272). Bahta et al.⁵ have measured k(dissociation) at 263 K. Using the values of k(recombination) suggested in this evaluation, (Table-2) Golden² has re-evaluated the equilibrium constant. Bridier et al.⁶ measure an equilibrium constant in good agreement with this recommendation, reducing the uncertainty even further.

13. CH₃C(O)O₂ + NO₂. The recommendation is derived from measurements of the rate constants in both directions by Bridier et al.¹ These authors used the values of the rate constants at 298 K and a calculated value of the entropy change to get a third law value of the equilibrium constant. Their value of the enthalpy is exactly reproduced in a theoretical study by Miller et al.² A theoretical study by Wei et al.³ is noted.

14. \(\text{CH}_3\text{C}(\text{O})\text{O}_2 + \text{NO}_2 \). Assumed to be the same as for PAN (Note 7). Both sides of the of the reaction differ from PAN by the group –(C)(CO)(H)_2. Error limits are estimated and expanded from those for PAN.
(Table: 02-25, Note: 02-25, Evaluated: 02-25) Back to Table

15. \(\text{CH}_3\text{C}(\text{O})\text{CH}_2 + \text{O}_2 \). Hassouna et al.\(^1\) measured the rate constant and equilibrium constant for this reaction. The temperature range for the equilibrium measurements was 459< T/K <520. They extracted the entropy and enthalpy changes over this temperature range from a van’t Hoff plot. (Second Law.) Values reported are \(\Delta S = -143.0 \pm 4.0 \) J mol\(^{-1}\) K\(^{-1}\) and \(\Delta H = -105.0 \pm 2.0 \) kJ mol\(^{-1}\). The value in Table 3 is computed assuming that these thermochemical values are constant to 200 K. They also performed quantum calculations, which confirmed the enthalpy measurement. They suggest \(\Delta H_{1298}(\text{CH}_3\text{C}(\text{O})\text{CH}_2) = -32.9 \pm 2.0 \) kcal mol\(^{-1}\).
(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

16. F + O\(_2\). Taken from Campuzano-Jost et al.\(^1\) There is good agreement with data from Pagsberg et al.\(^6\). This corresponds to a value for \(\Delta H_{1298}(\text{FO}) = 6.13 \pm 0.5 \) kcal mol\(^{-1}\). There are several modern theoretical computations of this value, ranging from 6 to 9 kcal mol\(^{-1}\). Feller et al.\(^4\) compute 5.8 \pm 0.3 kcal mol\(^{-1}\).
(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

17. Cl + O\(_2\). Data are from Baer et al.\(^1\); Nicovich et al.\(^3\); and Mauldin et al.\(^2\). Zhu and Lin\(^4\) have reported structure and frequency calculations and a heat of formation for ClOO. Using known thermochemistry for Cl and O\(_2\) and entropy values for ClOO computed from Zhu and Lin, \(\Delta H_{10}(\text{ClOO}) = 23.85 \pm 0.1 \) kcal mole\(^{-1}\) is obtained by the third law method from the individual data points of the Nicovich et al.\(^3\) data. The Baer et al.\(^1\) paper reports only one value at each temperature and only graphically, but yields essentially the same value as Nicovich et al.\(^3\). The third law value from Mauldin et al.\(^2\) is less stable by 0.4 kcal mole\(^{-1}\). Earlier values, both experimental and theoretical, of the structural parameters of ClOO are referenced in Zhu and Lin.\(^4\) \(S_{298}^o(\text{ClOO}) = 64.6 \) cal mole\(^{-1}\) K\(^{-1}\) and \(\Delta H_{298}(\text{ClOO}) = 23.5 \pm 0.5 \) kcal mole\(^{-1}\) are recommended.
(Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

18. **Cl + CO.** From fitting the data of Nicovich et al.\(^1\) who measured both \(k\) and \(K_{eq}\) between 185 and 260 K in \(N_2\). They report \(\Delta H_{298}^{\circ} (\text{CICO}) = -5.2 \pm 0.6 \text{ kcal mole}^{-1}\). (Table: 06-2, Note: 06-2, Evaluated: 06-2) Back to Table

19. **CIO + O\(_2\).** DeMore\(^2\) reports \(K_{eq} < 4 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1}\) at 197 K. His temperature dependence of the equilibrium constant is estimated using \(S^\circ_{298} (\text{CIO} + \text{O}_2) = 73 \text{ cal mol}^{-1} \text{ K}^{-1}\) and \(\Delta H^\circ_{298} < 7.7 \text{ kcal mol}^{-1}\). A higher value of \(K_{eq}\) has been proposed by Prasad\(^3\) but it requires \(S^\circ(\text{CIO} + \text{O}_2)\) to be about 83 cal mol\(^{-1}\) K\(^{-1}\), which seems unreasonably high. Carter and Andrews\(^4\) found no experimental evidence for ClO•O\(_2\) in matrix experiments. Prasad and Lee\(^5\) discuss these issues and question the validity of the upper limit reported by DeMore. (Table: 92-20, Note: 94-26, Evaluated: 94-26) Back to Table

(2) DeMore, W. B. Equilibrium constant for the reaction ClO + \(\text{O}_2 \leftrightarrow\) ClO•O\(_2\). *Geophys. Res. Lett.* 1990, 17, 2353-2355.

20. **(a) ClO + ClO \(\rightarrow\) ClOClO.** The values of the equilibrium constant and the thermochemical parameters are from a third-law calculation based on the data of Hume et al.,\(^12\) which span temperatures from 206 K to 250 K. A second-law analysis of the data of Hume et al. is highly consistent with the third-law results. The data of Hume et al. are statistically much more precise than previous studies and extend to lower temperatures, which are more relevant to the stratosphere. The recommendation is generally consistent with the data of Cox and Hayman\(^1\) and Nickolaisen et al.,\(^16\) which were the basis for the previous recommendation. The 95% error limits were chosen to incorporate all the data points in these two studies and to include the error range estimated by Hume et al. The entropy of ClOClO (302.9 J mol\(^{-1}\) K\(^{-1}\) at 298 K) was calculated from rotational constants measured by Birk et al.,\(^2\) four vibrational frequencies measured by Jacobs et al.,\(^3\) and two frequencies computed by Matus et al.\(^15\) The entropy values are in close agreement with those calculated by Zhu and Lin\(^22\) (symmetry number corrected by Golden\(^10\) to account for optical isomers) or by treatment of the torsion as a hindered rotor,\(^2\) in which case the symmetry number correction is not required. From the third-law analysis, the ClOClO heat of formation at 0 K and 298 K are \(\Delta H^\circ_{298} = 133.3 \pm 1 \text{ kcal mol}^{-1}\) and \(\Delta H^\circ_{197} = 130.1 \pm 1 \text{ kcal mol}^{-1}\), in good agreement with the analysis of Hume et al. A study of branching ratios of ClO + ClO channels in Cl\(_2\)O\(_2\)/O\(_2\) mixtures by Horowitz et al.\(^11\) also finds the equilibrium constant in \(\text{O}_2\) at 295 K to be in agreement with the recommendation. Values at single temperatures from Ellermann et al.\(^4\) and from Boakes et al.\(^14\) fall within the 95% confidence limit. Broske and Zabel\(^5\) measured the reverse reaction at four temperatures between 245 and 260 K. They used the parameters for the forward reaction recommended in JPL 02-25 to suggest van’t Hoff parameters of \(5.09 \times 10^{-26}\) and 7584. van’t Hoff parameters suggested by Plenge et al.,\(^17\) who measured \(\Delta H^\circ_{eq}(\text{ClOClO}) = 134.0 \pm 2.8 \text{ kcal mol}^{-1}\) by photoionization mass spectrometry and computed the entropy change for the reaction, are \(1.92 \times 10^{-27}\) and 8430. Ferracci and Rowley\(^9\) report values of \(K_{eq}\) between 250 and 313 K that also fall within the 95% confidence limits. Several studies have derived values of \(K_{eq}\) using atmospheric measurements in the nighttime polar stratosphere under conditions where ClO and ClOClO should be in equilibrium. These are summarized here but are not used in the derivation of the recommended equilibrium constants. Avallone and Toohey\(^4\) used \(K_{eq} = 1.99 \times 10^{30} \times T \times \exp(8854/T)\) derived from *in situ* aircraft experiments. The Avallone and Toohey\(^4\) expression yields values that are quite close to those from the recommended expression. Atmospheric measurements from an airborne platform have also been used by von Hobe et al.\(^21\) to deduce \(K_{eq}\) parameters of \(3.61 \times 10^{-27}\) and 8167, resulting in values which lie close to the lower 95% confidence limit. A reanalysis by Salawitch and Canty\(^18\) of ER-2 data between 185 and 200 K, from Stimpfle et al.\(^20\) results in an expression for \(K_{eq}\) which lies within the uncertainty bounds and is quite close to the Avallone and Toohey\(^4\) expression. Santee et al.\(^19\) report measurements in the Arctic and Antarctic night by satellite based instruments, which are close to the current recommendation. The recent analysis by Kleinböhrl et al.\(^14\) is also consistent with the current recommendation. (Table 15-10, Note: 15-10, Evaluated: 15-10)

(b) **CIO+ClO \(\rightarrow\) ClOClO.** Zhu and Lin\(^22\) used the G2 composite method to calculate the bond dissociation energy \(D_0(\text{ClO+ClO}) = 49.8 \text{ kcal mol}^{-1}\). Matus et al.\(^15\) used the CCSD(T)/aug-cc-pV(5+d)Z method extrapolated to the complete basis set limit and found that ClOClO is less strongly bound than ClOClO by 33.9 kcal mol\(^{-1}\) at 298 K (Matus et al. estimate their errors to be less than 4.2 kcal mol\(^{-1}\)). Combining this value from Matus et al. with \(\Delta H^\circ_{298}(\text{ClOClO}) = 130.1 \pm 1 \text{ kcal mol}^{-1}\) gives \(\Delta H^\circ_{197} = 164.0 \pm 5 \text{ kcal mol}^{-1}\). Back to Table
frequencies and moments of inertia calculated by Matus et al. are in good agreement with those of Zhu and Lin\(^2\) and Chase\(^6\). The entropy of ClOCl was calculated using the harmonic frequencies from Matus et al.,\(^3\) anharmonicities computed by Maranzana (2007, unpublished), and rotational constants from Chase,\(^6\) giving \(S_0^{298}(\text{ClOCl}) = 312.6\) J K\(^{-1}\) mol\(^{-1}\). Thermodynamic data for ClO radicals were taken from Chase.\(^6\) The 1-sigma errors in \(\Delta S_{298}\) and \(\Delta H_{298}\) are estimated to be 6 J K\(^{-1}\) mol\(^{-1}\) and 6 kJ mol\(^{-1}\), respectively. Using these parameters, the equilibrium constant is given by \(K_{eq}(\text{ClOCl}) = 6.5 \times 10^{-27} \times \exp(4460/T)\) with uncertainty factors f(298) = 2 and g = 600. (Table: 15-10, Note: 15-10, Evaluated: 15-10) Back to Table

(18) Salawitch, R. J.; Canty, T.; Personal Communication.

21. Cl + OC\(_2\). Because of the high energy barriers calculated for other plausible pathways (ClO + ClO or isomerization of ClOClO and ClOClO), this pathway seems to be the most relevant for formation and dissociation of ClOClO.
(chloryl chloride). Zhu and Lin⁶ found energy barriers of >19 kcal mol⁻¹ separating ClClO₂ from ClOOCl and ClOClO; they did not identify any low energy paths from ClO + ClO. It is noteworthy that Bröske and Zabel¹ did not see any evidence for formation of ClClO₂ when they measured the gas phase thermolysis of ClOOCl, although they were able to measure ClClO₂ produced in wall reactions. Thus it seems unlikely that the gas phase isomerization reactions are fast enough to be significant. The recommended Keq is based on the thermodynamic calculation. The vibrational frequencies and moments of inertia are known,⁴ giving S²eq(ClClO₂) = 294.4 J K⁻¹ mol⁻¹. The heat of formation of ClClO₂ has not been measured, but it has been calculated many times (see Zhu and Lin⁶ for a summary of calculations up to 2003). The CCSD(T) calculations by Lee et al.² with large ANO basis sets was formerly regarded as the best. Recently, Matus et al.⁵ carried out even better calculations (i.e., CBS(Q5)) and concluded that ΔH⁰(ClClO₂) is 3.5 kcal mol⁻¹ below that of ClOOCl. Matus et al. estimate their relative errors to be less than ±1 kcal mol⁻¹. Coupled with the recommended value of 132.4 ± 3 kJ/mol for ClOOCl (see Note 14a), this gives ΔH⁰(ClClO₂) = 117.8 kJ/mol and ΔH₆₂₉₈ = 113.7 kJ/mol. The 1-sigma errors in ΔS₆₂₉₈ and ΔH₆₂₉₈ are estimated to be 6 J K⁻¹ mol⁻¹ and 5 kJ mol⁻¹, respectively.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

22. ClO + OClO. Data are from Burkholder et al.,² Hayman and Cox,⁵ and Green et al.⁴ The best van’t Hoff fit to all the data yields the recommended parameters. The 95% error limits encompass all the data. A calculation of the entropy and heat capacity from the structure and frequencies of ClOCl(O)O reported by Zhu and Lin⁶ allows a “3rd Law” fit that gives Keq/cm⁻¹ molecule⁻¹ = 1.6 x 10⁻²⁷ exp(7155/T) for 232<T/K<298. By including the hindered rotor potential explicitly,¹ a new “3rd Law” fit obtained by fitting the data of Burkholder et al.² and Hayman and Cox,⁵ including the lowest temperature point, gives the new recommendation: S²eq(ClClO₃) = 337.8 J K⁻¹ mol⁻¹ (80.7 cal mol⁻¹ K⁻¹) and ΔH⁰(ClClO₃) = 143.9 kJ mol⁻¹ (34.4 kcal mol⁻¹) and ΔH₆₂₉₈(ClClO₃) = 138.9 kJ mol⁻¹ (33.2 kcal mol⁻¹). This compares to calculated values of ΔH⁰(ClClO₃) = 32.3 kJ mol⁻¹ from Zhu and Lin⁶ and 32.9 kcal mol⁻¹ from Sicre and Cobos.⁷ Burkholder et al.² reported that treating the lowest vibration as a free internal rotation increases the entropy of ClOCl(O)O by almost 9 cal mol⁻¹ K⁻¹, but this value, repeated by Green et al.,⁴ is not correct. Clark and Francisco,³ who calculated structure and frequencies, concluded that S²eq(ClClO₃) = 78.5 cal mol⁻¹ K⁻¹, based on harmonic frequencies. Li et al.⁶ have also reported theoretical structure and frequencies in general agreement with Zhu and Lin⁶ and Clark and Francisco,³ but energetics that are quite different.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

7. Sicre, J. E.; Cobos, C. J. Thermochemistry of the higher chlorine oxides ClOₓ (x = 3, 4) and Cl₂Oₓ (x = 3 - 7). J. Mol. Struct. (Theochem) 2003, 620, 215-226.
23. **OCIO + NO**. From theoretical calculations of Parthiban et al.\(^2\) This value replaces the value that was previously deduced by Friedl et al.\(^1\) Uncertainties are based on an assumed ±1 kcal mole\(^{-1}\) uncertainty in the calculated heat of formation.
(Table: 10-6, Note: 15-10, Evaluated: 10-6)

24. **Br + CH\(_2\)C(CH\(_3\))CH=CH\(_2\) (isoprene).** In a comprehensive study of the forward and reverse rates of this reaction (using laser flash photolysis of CF\(_2\)Br; precursor and atomic resonance fluorescence detection of Br-atoms), Laine et al.\(^1\) determined \(K_{eq}\) from 210 to 298 K. The adduct(s) produced in the reaction are not known, but may consist of several isomers; calculations (G4 method) reported by Laine et al. show that the energetically most stable isomer is BrH\(_2\)CC(CH\(_3\))CH=CH\(_2\). Analysis of the data by 2\(^{nd}\) Law and by 3\(^{rd}\) Law methods produced results in good mutual agreement. Laine et al. averaged the 2\(^{nd}\) Law and 3\(^{rd}\) Law results to obtain \(\Delta H^{298} = -67.5 \pm 6.6\) kJ mol\(^{-1}\), and \(\Delta S^{298} = -93 \pm 16\) J K\(^{-1}\) mol\(^{-1}\). The present recommendation is based on a 3\(^{rd}\) Law analysis. The recommended error parameters are larger than the 40% 2\(^{nd}\) relative errors (including both statistical and systematic) estimated by Laine et al.; they are set so that all of the \(K_{eq}\) data fall within the 2\(\sigma\) error limits and an extra margin was added because only one determination of \(K_{eq}\) has been reported for this reaction.
(Table: 15-10, Note: 15-10, Evaluated: 15-10)

25. **Br + CH\(_2\)=CHCH=CH\(_2\) (1,3-butenadiene).** In a comprehensive study of the forward and reverse rates of this reaction (using laser flash photolysis of CF\(_2\)Br; precursor and atomic resonance fluorescence detection of Br-atoms), Laine et al.\(^1\) determined \(K_{eq}\) from 227 to 298 K; they estimated the 2\(\sigma\) relative error to be ~40%. The adduct(s) produced in the reaction were not measured directly, but calculations (G4 method) reported by Laine et al. predict that the adduct formed by addition of Br to the terminal carbon is favored thermodynamically. Analysis of the data by 2\(^{nd}\) Law and by 3\(^{rd}\) Law methods produced results in fair mutual agreement. Laine et al. averaged the 2\(^{nd}\) Law and 3\(^{rd}\) Law results to obtain \(\Delta H^{298} = -64.5 \pm 8.5\) kJ mol\(^{-1}\) and \(\Delta S^{298} = -94 \pm 20\) J K\(^{-1}\) mol\(^{-1}\), which provide the basis for the current recommendation. The recommended error parameters are larger than the 40% 2\(^{nd}\) relative errors (including both statistical and systematic) estimated by Laine et al.; they are set so that all of the \(K_{eq}\) data of Laine et al. fall within the 2\(\sigma\) error limits and an extra margin was added because only one determination of \(K_{eq}\) has been reported for this reaction.
(Table: 15-10, Note: 15-10, Evaluated: 15-10)

26. **OH + CS\(_2\).** Fit to the data of Murrells et al.\(^4\) Hynes et al.\(^3\) and Diau and Lee\(^2\) between 246 and 318 K. Petris et al.\(^1\) report experimental detection of CS\(_2\)OH.
(Table: 06-2, Note: 15-10, Evaluated 06-2)
27. **CH₃S + O₂.** Turnipseed et al.¹ report the equilibrium constant for 216≤ T/K ≤258. From a third law analysis using ΔS°₂₃₇ = −36.8 ± 2.6 eu, they obtain ΔH°₂₃₇ = −11.5 ± 0.9 kcal/mole.

(Table: 94-26, Note: 94-26, Evaluated: 94-26) Back to Table

28. **Cl + CS₂.** Fit to the data of Nicovich et al.¹ between 193 and 258 K.

(Table: 10-6, Note: 10-6, Evaluated: 10-6) Back to Table

29. **CH₃S + O₂.** Turnipseed et al.⁶ generated CH₃S radicals by pulsed laser photolysis of CH₃SCH₃ in an excess of O₂ and used LIF of CH₃S to monitor the subsequent reaction. Biexponential decays were observed, signaling the reversible formation of a weakly bound complex. The equilibrium constant was extracted in the data analysis over a range of temperatures from 216 to 258 K and a van't Hoff (2nd Law) analysis gives K_eq = 7.9 × 10⁻²⁷ exp(4978/T) cm³ molecule⁻¹. In a different experimental system, Butkovskaya and Barnes¹ (cited by Chu and Lee²) measured K_eq = 1.4 × 10⁻¹⁹ at 298 K, in good agreement with the 2nd Law expression given above for K_eq. The molecular properties of CH₃SOO have been computed in several theoretical studies³⁴⁵⁷⁸ and some vibrational transitions have been observed by FTIR.² The recommendation is based on a new 3rd Law analysis of the data of Turnipseed et al.⁶ This analysis made use of vibrational frequencies and rotational constants obtained from Chu and Lee² and from the NIST CCCDB database.³ The value of K_eq(298 K) obtained by Butkovskaya and Barnes is in excellent agreement with the recommendation. The bond dissociation energies at 0 K and 298 K obtained in this 3rd Law analysis are 39.5 and 42.2 kJ mol⁻¹, respectively; the computed entropy of CH₃SOO at 298 K is 316.7 J K⁻¹ mol⁻¹.

(Table: 15-10; Note: 15-10; Evaluation 15-10) Back to Table

30. **OH + (CH₃)₂S → (CH₃)₂SOH.** This recommendation is based on the results of Hynes et al.³ and Barone et al.,¹ who used deuterated dimethyl sulfide (DMS-d₆), and Williams et al.,⁷ who used both DMS-d₆ and non-deuterated DMS-d₆, in studies of the rate constants for the reaction and found clear evidence for adduct formation. In each case, K_eq was obtained by analyzing the rate constant data, which showed double-exponential decays. Hynes et al.³ measured K_eq from 250–267 K and reported an adduct bond energy of 13.0 ± 3.3 kcal/mol from a van't Hoff (2nd Law) analysis and a bond energy of 10.1 ± 1.1 kcal/mol based on a 3rd Law analysis using the theoretical molecular parameters computed by McKeel.⁴ Barone et al. measured K_eq from 217–240 K and reported bond energies of 10.2 and 10.7 ± 2.5 kcal/mol from 2nd and 3rd Law calculations, respectively. Williams et al. analyzed only their K_eq data for OH + DMS-d₆ (240–245 K) and obtained bond strengths of 10.9 ± 1.0 kcal/mol from a 2nd Law analysis and 10.5 kcal/mol from a 3rd Law analysis based on their own MP2/6-31+G(2d,p) quantum chemical calculations (in good agreement with McKeel.⁴ The present recommendation was obtained from a 3rd Law analysis of the data for OH + DMS-d₆ from all three DMD-d₆ studies combined with the data for OH + DMS-d₆ from Williams et al. 61 data points covered the temperature range from 217–261 K. The 3rd Law analysis used the theoretical molecular parameters for DMS and HODMS computed by Williams et al.⁷ and the properties of the OH radical from the JANAF⁸ Tables and Rusci et al.⁹

http://cccbdb.nist.gov/
to obtain the dissociation energy (without zero point energies) \(D_e = 55.5 \pm 1.3 \text{ kJ/mol} \) \((2\sigma)\). When the zero point energy differences are taken into account, this gives dissociation energies \(D_0(\text{HO-DMS-}d_0) = 43.2 \pm 1.3 \text{ kJ/mol} \) and \(D_0(\text{HO-DMS-}d_0) = 43.0 \pm 1.3 \text{ kJ/mol} \) \((2\sigma)\).

(Table: 10-6, Note: 10-6, Evaluated: 10-6) [Back to Table]

31. \(\text{Br} + \text{CH}_3\text{SCH}_3 \). Second Law fit to data of Wine et al.\(^2\) and Nakano et al.\(^1\) This corresponds to a bond dissociation energy in the adduct of 13.84 kcal \text{mole}^{-1}.

(Table: 06-02, Note: 06-02, Evaluated: 06-02) [Back to Table]

32. \(\text{IO} + \text{NO}_2 \). The parameters were computed based on a combination of experimental and theoretical data. The rovibrational parameters and electronic energy levels for IO radical and \(\text{NO}_2 \) were obtained from the NIST/JANAF tables;\(^2\) rovibrational parameters for IONO\(_2\) were obtained from Marshall.\(^5\) The IO-\(\text{NO}_2 \) bond dissociation energy (\(D_0 \)) is relatively uncertain, but estimates are provided by several recent publications. Golden\(^7\) carried out RRKM/master equation calculations and concluded that \(D_0 \approx 150 \text{ kJ/mol} \). Kaltsoyannis and Plane\(^8\) obtained 117.9 \text{ kJ/mol} from quantum chemical calculations at the CCSD(T)/aug-cc-pVTZ // B3LYP/aug-cc-pVTZ level of theory. Saiz-Lopes et al.\(^9\) reported a rounded value of 118 \text{ kJ/mol} in their recent review article. Marshall\(^5\) obtained 113.6 \pm 3.1 \text{ kJ/mol} from quantum chemical calculations at the CCSD(T)/aug-cc-pVTZ // CCSD(T)/aug-cc-pVTZ level of theory. The \(K_{eq} = A \times \exp(B/T) \) parameters computed based on \(D_0 \) from Golden, from Kaltsoyannis and Plane, and from Marshall are \(A = 5.02 \times 10^{-28} \) (\pm 10\%\) and \(B = 18240, 14380, \text{and} 13860 \). The recommendation is based on the average of the latter two. The entropy of IONO\(_2\) computed using this model is \(S(298) = 320.95 \text{ J K}^{-1} \text{ mol}^{-1} \). In earlier work, Rayez and Destriau\(^6\) reported \(D_0 = 134 \pm 13 \text{ kJ/mol} \), Allan and Plane\(^1\) reported \(D_0 = 94.9 \text{ kJ/mol} \) and Papayannis and Kosmas\(^6,7\) reported \(D_0 \) values from 131.4 to 137.6 \text{ kJ/mol}.

(Table: 15-10, Note: 15-10, Evaluation: 15-10) [Back to Table]

(5) Marshall, P. Computational studies of the thermochemistry of the atmospheric iodine reservoirs HOI and IONO\(_2\). \textit{Advances in Quantum Chemistry} 2008, 159-175.

3-17
33. Hg + Br. This equilibrium constant has never been measured directly. Goodsite et al.\(^2\) used statistical rate theory combined with atomic and molecular properties to calculate the forward and reverse rate constants, from which \(K_{eq}\) can be obtained. Later, Goodsite et al.\(^3\) recomputed the rate constants with an updated HgBr bond dissociation energy (assumed to be 66.3 kJ mol\(^{-1}\), which is the average of the spectroscopic determination by Tellinghuisen and Ashmore,\(^5\) the computed value (CCSD(T)) from Shepler et al.,\(^4\) and the JANAF value (from 1961) and obtained \(K_{eq} = 9.1 \times 10^{-24}\) exp(7984/T). The spectroscopic determination of Tellinghuisen and Ashmore gives \(D_e = 5525 \pm 100\) cm\(^{-1}\) (66.1 ± 1.2 kJ mol\(^{-1}\)), where the uncertainty arises from the extrapolation of the assigned vibrational levels to the dissociation limit. Dibble et al.\(^1\) used this spectroscopic value in a direct statistical mechanics calculation, obtaining \(K_{eq} = 9.1 \times 10^{-24}\) exp(7801 ± 201/T). The recommendation is based on the calculation of Dibble et al.\(^1\) with error limits assigned to accommodate the calculation of Goodsite et al.\(^3\).

3.4 Bibliography – Equilibrium Constants

Amoruso, A.; Crescentini, L.; Fiocco, G.; Volpe, M. New measurements of the NO\textsubscript{2} absorption cross section in the 440- to 460-nm region and estimates of the NO\textsubscript{2}-N\textsubscript{2}O\textsubscript{4} equilibrium constant. J. Geophys. Res. 1993, 98, 16857-16863.

Borrell, P.; Cobos, C. J.; Luther, K. Falloff curve and specific rate constants for the reaction NO\textsubscript{2} + NO\textsubscript{2} ⇄ N\textsubscript{2}O\textsubscript{4}. J. Phys. Chem. 1988, 92, 4377-4384.

Bridier, I.; Lesclaux, R.; Veyret, B.; Becker, K. H.; Reimer, A.; Zabel, F. Kinetic and theoretical studies of the reactions CH\textsubscript{3}C(O)O\textsubscript{2} + NO\textsubscript{2} + M ⇄ CH\textsubscript{3}C(O)NO\textsubscript{2} + M between 248 and 393 K and between 30 and 760 Torr. J. Phys. Chem. 1991, 95, 3594-3600.

Bridier, I.; Lesclaux, R.; Veyret, B. Flash photolysis kinetic study of the equilibrium CH\textsubscript{3}O\textsubscript{2} + NO\textsubscript{2} ⇄ CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}. Chem. Phys. Lett. 1992, 191, 259-263.

Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. A study of the N\textsubscript{2}O\textsubscript{4} equilibrium between 275 and 315 K and determination of the heat of formation of NO\textsubscript{3}. Chem. Phys. Lett. 1985, 119, 193-198.

Butkovskaya, N. I.; Barnes, I. Model study of the photooxidation of CH\textsubscript{3}SO\textsubscript{2}SCH\textsubscript{3} at atmospheric pressure: Thermal decomposition of the CH\textsubscript{3}SO\textsubscript{2} radical. Global Atmospheric Change and its Impact on Regional Air Quality, NATO Science Series 2002, 16, 147-152, doi:10.1007/978-94-010-0082-6_22.

Cantrell, C. A.; Davidson, J. A.; McDaniel, A. H.; Shetter, R. E.; Calvert, J. G. The equilibrium constant for N\textsubscript{2}O\textsubscript{4} ⇄ NO\textsubscript{2} + NO\textsubscript{3}: Absolute determination by direct measurement from 243 to 397 K. J. Chem. Phys. 1988, 88, 4997-5006.

SECTION 4. PHOTOCHEMICAL DATA

Table of Contents

SECTION 4. PHOTOCHEMICAL DATA ... 4-1
4.1 Format and Uncertainty Estimates .. 4-6
4.2 Photodissociation Thresholds and Quantum Yields 4-6
4.3 Web Access to Recommended Data in Text and Graphical Formats 4-7
SECTION 4A. Oₓ PHOTOCHEMISTRY ... 4-11
4.4 Bibliography – Ox Photochemistry .. 4-32
SECTION 4B. HOₓ PHOTOCHEMISTRY .. 4-39
4.5 Bibliography – HOₓ Photochemistry ... 4-49
SECTION 4C. NOₓ PHOTOCHEMISTRY .. 4-53
4.6 Bibliography – NOₓ Photochemistry ... 4-83
SECTION 4D. ORGANIC PHOTOCHEMISTRY .. 4-90
4.7 Bibliography – Organic Photochemistry .. 4-148
SECTION 4E. FOₓ PHOTOCHEMISTRY ... 4-157
4.8 Bibliography – FOₓ Photochemistry .. 4-186
SECTION 4F. CLOₓ PHOTOCHEMISTRY ... 4-189
4.9 Bibliography – CIOₓ Photochemistry ... 4-270
SECTION 4G. BROₓ PHOTOCHEMISTRY .. 4-280
4.10 Bibliography – BrOₓ Photochemistry .. 4-335
SECTION 4H. IOₓ PHOTOCHEMISTRY ... 4-340
4.11 Bibliography – IOₓ Photochemistry .. 4-384
SECTION 4I. SOₓ PHOTOCHEMISTRY ... 4-389
4.12 Bibliography – SOₓ Photochemistry ... 4-397
SECTION 4J. METAL PHOTOCHEMISTRY ... 4-399
4.13 Bibliography – Metal Photochemistry .. 4-404

Figures

Figure 4A-1. Recommended O(^1D) Quantum Yields 4-27
Figure 4C-1. Absorption Spectrum of NOₓ ... 4-64
Figure 4F-1. Absorption Spectrum of CIOₓ .. 4-192
Figure 4F-2. Absorption Spectrum of OCIO at 204 K 4-199
Figure 4G-1. Absorption Spectrum of BrO ... 4-287
Figure 4G-2. Absorption spectrum of OBrO ... 4-290

Tables

Table 4-1. Photochemical Reactions ... 4-8
Table 4A-1. Summary of O₂ Absorption Cross Section Studies 4-11
Table 4A-2. Recommended Absorption Cross Sections of O₂ between 205 and 245 nm ... 4-14
Table 4A-3. Summary of O₂ Absorption Cross Section Studies 4-20
Table 4A-4. Recommended Absorption Cross Sections of O₂ at 218 and 293–298 K ... 4-24
Table 4A-5. Parameters for the Calculation of O(^1D) Quantum Yields 4-26
Table 4B-1. Recommended Absorption Cross Sections of HO₂ at 298 K 4-39
Table 4B-2. Summary of H₂O Vapor Absorption Cross Section Studies 4-41
Table 4B-3. Recommended Absorption Cross Sections of H₂O Vapor at 298 K ... 4-43
Table 4B-4. Summary of H₂O₂ Absorption Cross Section Studies 4-46
Table 4B-5. Recommended Absorption Cross Sections of H₂O₂ Vapor at 298 K ... 4-47
Table 4B-6. Mathematical Expression for Absorption Cross Sections of H₂O₂ as a Function of Temperature ... 4-47
Table 4C-1. Summary of NO₂ Absorption Cross Section Studies 4-53
Table 4C-2. Recommended Absorption Cross Sections of NO₂ at 220 and 294 K ... 4-56
Table 4C-3. Recommended Quantum Yields for NO₂ Photolysis 4-57
Table 4C-4. Summary of NO₃ Absorption Cross Section Studies .. 4-59
Table 4C-5. Recommended Absorption Cross Sections of NO₃ at 298 K .. 4-62
Table 4C-6. Recommended Product Channel Quantum Yields in the Photolysis of NO₃ at 298, 230, and 190 K .. 4-63
Table 4C-7. Summary of N₂O Cross Section Studies ... 4-66
Table 4C-8. Recommended Absorption Cross Sections of N₂O at 298 K .. 4-67
Table 4C-9. Recommended Expression for the Absorption Cross Sections of N₂O as a Function of Temperature .. 4-68
Table 4C-10. Summary of NO₂ Absorption Cross Section Studies ... 4-70
Table 4C-11. Recommended Absorption Cross Sections of N₂O at 220 K 4-70
Table 4C-12. Summary of NO₂ Absorption Cross Section Studies ... 4-71
Table 4C-13. Recommended Absorption Cross Sections at 300 K and Temperature Coefficients for N₂O .. 4-72
Table 4C-14. Summary of N₂O Photolysis Quantum Yield Results .. 4-73
Table 4C-15. Summary of HONO Absorption Cross Section Studies ... 4-74
Table 4C-16. Recommended Absorption Cross Sections of HONO at 298 K 4-75
Table 4C-17. Recommended Absorption Cross Sections at 298 K and Temperature Coefficients for HNO₃ .. 4-78
Table 4C-18. Recommended Absorption Cross Sections of HO₂NO₂ at 298 K 4-80
Table 4C-19. Recommended HO₂NO₂ Photolysis Quantum Yields .. 4-81
Table 4C-20. Photodissociation Band Strengths and Quantum Yields for Several Overtone and
Combination Bands of HO₂NO₂ .. 4-81
Table 4D-1. Summary of CH₂O Absorption Cross Section Studies ... 4-91
Table 4D-2. Recommended Absorption Cross Sections of CH₂O at 298 Kand Temperature Coefficients
Averaged over 1 nm Intervals .. 4-94
Table 4D-3. Recommended Absorption Cross Sections of CH₂O at 298 K and 223 K and Temperature
Dependence Coefficients Averaged over Intervals Used in Atmospheric Models .. 4-95
Table 4D-4. Recommended CH₂O Photolysis Quantum Yields at 300 K and 1 Atmosphere .. 4-96
Table 4D-5. Recommended Absorption Cross Sections of CH₃CHO at 298 K 4-99
Table 4D-6. Recommended CH₃CHO Photolysis Quantum Yields at 1 bar Total Pressure .. 4-100
Table 4D-7. Recommended Absorption Cross Sections of C₂H₅CHO at 298 K 4-102
Table 4D-8. Recommended Absorption Cross Sections of CH₃O₂, C₂H₅O₂, and CH₃C(O)O₂ at 298 K .. 4-103
Table 4D-9. Recommended UV Absorption Cross Sections of CH₂CO at 298 K 4-106
Table 4D-10. Vis Absorption Cross Sections of CH₂CO at 298 K .. 4-107
Table 4D-11. Recommended Absorption Cross Sections of CH₃C(O)CH₂O at 298 K 4-109
Table 4D-12. Recommended Absorption Cross Sections of CH₃OOH at 298 K 4-110
Table 4D-13. Recommended Absorption Cross Sections of HOCH₂OOH at 298 K 4-111
Table 4D-14. Recommended Absorption Cross Sections of CH₃ONO at 298 K 4-112
Table 4D-15. Recommended Absorption Cross Sections of CH₃ONO at 298 K 4-114
Table 4D-16. Recommended Absorption Cross Sections of CH₃O₂NO₂ at 298 K 4-115
Table 4D-17. Recommended Absorption Cross Sections of CH₃C(O)O₂NO₂ at 298 K andTemperature Coefficients .. 4-116
Table 4D-18. Recommended Absorption Cross Sections of C₂H₅C(O)O₂NO₂ at 296 K andTemperature Coefficients .. 4-118
Table 4D-19. Recommended Absorption Cross Sections of CH₃=CHCHO at 298 K 4-119
Table 4D-20. Recommended Absorption Cross Sections of CH₃=C(CH₃)CHO at 298 K 4-120
Table 4D-21. Recommended Absorption Cross Sections of CH₃C(O)CH=CH₂ at 298 K 4-122
Table 4D-22. Recommended Absorption Cross Sections of HOCH₂CHO at 298 K 4-123
Table 4D-23. Recommended Absorption Cross Sections of CH₃C(O)CH₃ at 298 K andTemperature Coefficients .. 4-127
Table 4D-24. Recommended Acetone Photolysis Quantum Yields .. 4-129
Table 4D-25. Absorption Cross Sections of CH₃C(O)CH₂OH at 298 K .. 4-132
Table 4D-26. Recommended Absorption Cross Sections of CHOCHO at 296 K 4-134
Table 4D-27. Recommended CHOCHO Photolysis Quantum Yields at 1 Atm and 298 K .. 4-136
Table 4D-28. Recommended Absorption Cross Sections of CH₃C(O)C(O)H at 298 K 4-138
Table 4D-29. Recommended Absorption Cross Sections of HC(O)OH and (HC(O)OH)₂ at 302 K .. 4-141
Table 4D-30. Recommended Absorption Cross Sections of CH₃C(O)OH and (CH₃C(O)OH)₂ at 298 K .. 4-142
Table 4D-31. Recommended Absorption Cross Sections CH₃C(O)OH at 298 K .. 4-143
Table 4D-32. Recommended Absorption Cross Sections of CH₃C(O)C(O)OH at 298 K .. 4-145
Table 4D-33. Recommended Absorption Cross Sections of HC(O)OCH₃ at 298 K .. 4-146
Table 4D-34. Recommended Absorption Cross Sections of HC(O)OC₂H₅ at 297 K .. 4-147
Table 4E-1. Recommended Absorption Cross Sections of FO₂ at 295 K .. 4-157
Table 4E-2. Recommended Absorption Cross Sections of F₂O at 273 K .. 4-158
Table 4E-3. Recommended Absorption Cross Sections of F₂O₂ at 193–273 K .. 4-159
Table 4E-1. Recommended Absorption Cross Sections of ClO at 298 K ... 4-190
Table 4E-2. Recommended Absorption Cross Sections of ClO at 298 K ... 4-192
Table 4E-3. Summary of Absorption Cross Section Studies of ClO at the band heads of the v',v'' = 1.0 to 21.0 bands ... 4-193
Table 4E-4. Absorption Cross Sections of ClO at 191 K ... 4-194
Table 4E-5. Summary OCIO Cross Section Studies ... 4-195
Table 4E-6. Recommended Absorption Cross Sections of OCIO at 204 K (averages over 1 nm intervals)............... 4-196
Table 4E-7. Absorption Cross Sections of OCIO at the a(21) to a(3) Band Peaks at Temperatures in the Range 213–293 K .. 4-197
Table 4E-8. Absorption Cross Sections of ClO at 298 K ... 4-198
Table 4E-9. Absorption Cross Sections of ClO at 298 K ... 4-198
Table 4E-10. Summary of ClOOCl UV Absorption Spectrum Studies .. 4-203
Table 4E-11. Recommended Absorption Cross Sections of ClOOCl ... 4-206
Table 4E-12. Recommended Absorption Cross Sections of ClOClO at 298 K 4-208
Table 4E-13. Recommended Absorption Cross Sections of ClOClO at 220–260 K 4-209
Table 4E-14. Recommended Absorption Cross Sections of ClOClO at 298 K 4-210
Table 4E-15. Recommended Absorption Cross Sections of ClOClO at 298 K 4-211
Table 4E-16. Recommended Absorption Cross Sections of ClOClO at 298 K 4-212
Table 4E-17. Recommended Absorption Cross Sections of HCl and DCI at 298 K 4-213
Table 4E-18. Recommended Absorption Cross Sections of HOCl at 298 K 4-215
Table 4E-19. Recommended Absorption Cross Sections of CINO at 298 K 4-217
Table 4E-20. Recommended Absorption Cross Sections of CINO at 298 K and Temperature Dependence Coefficients ... 4-218
Table 4E-21. Recommended Absorption Cross Sections of ClONO at 231 K ... 4-219
Table 4E-22. Recommended Absorption Cross Sections and Temperature Coefficients of ClONO2 4-221
Table 4E-23. Recommended Absorption Cross Sections of ClCl at 295 K ... 4-222
Table 4E-24. Recommended Absorption Cross Sections of CH3OCl at 295 K ... 4-224
Table 4E-25. Recommended Absorption Cross Sections of CHCl3 at 296 K ... 4-227
Table 4E-26. Recommended Absorption Cross Sections of CH2Cl at 298 K ... 4-229
Table 4E-27. Recommended Absorption Cross Sections of CHCl3 at 298 K ... 4-230
Table 4E-28. Recommended Absorption Cross Sections of CH2Cl at 298 K ... 4-232
Table 4E-29. Recommended Absorption Cross Sections of CH3Cl at 298 K ... 4-233
Table 4E-30. Recommended Absorption Cross Sections of CH3CH2Cl at 295 K ... 4-233
Table 4E-31. Recommended Absorption Cross Sections of COCl at 298 K ... 4-235
Table 4E-32. Recommended Absorption Cross Sections of COCl at 298 K ... 4-236
Table 4E-33. Recommended Absorption Cross Sections of COCl at 298 K ... 4-237
Table 4E-34. Summary of COFCl Photolysis Quantum Yield Results .. 4-237
Table 4E-35. Recommended Absorption Cross Sections of CFC13 at 298 K ... 4-239
Table 4F-36. Recommended Absorption Cross Sections of CF$_2$Cl$_2$ at 298 K .. 4-241
Table 4F-37. Recommended Absorption Cross Sections of CF$_2$Cl at 295 K .. 4-242
Table 4F-38. Recommended Absorption Cross Sections of CF$_2$CICFCl$_2$ at 298 K 4-244
Table 4F-39. Recommended Absorption Cross Sections of CF$_2$CICF$_2$Cl at 295 K 4-245
Table 4F-40. Recommended Absorption Cross Sections of CF$_2$Cl at 298 K .. 4-246
Table 4F-41. Recommended Absorption Cross Sections of CHFCl$_2$ at 298 K .. 4-247
Table 4F-42. Recommended Absorption Cross Sections of CHFCl at 298 K .. 4-248
Table 4F-43. Recommended Absorption Cross Sections of CH$_2$FCI at 298 K .. 4-249
Table 4F-44. Recommended Absorption Cross Sections of CF$_3$CHCl at 295 K .. 4-250
Table 4F-45. Recommended Absorption Cross Sections of CF$_3$CHFCl at 295 K .. 4-252
Table 4F-46. Recommended Absorption Cross Sections of CF$_3$CHCl at 298 K .. 4-252
Table 4F-47. Recommended Absorption Cross Sections of CH$_3$CFCCl$_2$ at 298 K 4-253
Table 4F-48. Recommended Absorption Cross Sections of CH$_3$CFCI at 298 K .. 4-255
Table 4F-49. Recommended Absorption Cross Sections of CH$_2$CICCHO at 298 K 4-256
Table 4F-50. Recommended Absorption Cross Sections of CHCl$_2$CHO at 298 K .. 4-257
Table 4F-51. Recommended Absorption Cross Sections of CF$_3$CICCHO at 298 K and Temperature Coefficients 4-258
Table 4F-52. Recommended Absorption Cross Sections of CFCl$_2$CHO at 298 K and Temperature Coefficients ... 4-259
Table 4F-53. Recommended Absorption Cross Sections of CCl$_3$CHO at 298 K and Temperature Coefficients 4-260
Table 4F-54. Recommended Absorption Cross Sections of CH$_3$C(O)Cl at 298 K 4-261
Table 4F-55. Recommended Absorption Cross Sections of CH$_3$CIC(O)Cl at 298 K 4-262
Table 4F-56. Recommended Absorption Cross Sections of CHCl$_3$(O)Cl at 298 K 4-263
Table 4F-57. Recommended Absorption Cross Sections of CCl$_3$(O)Cl at 295 K .. 4-264
Table 4F-58. Recommended Absorption Cross Sections of CF$_3$CF$_2$CHCl$_2$ (HCFC-225ca) at 298 K 4-265
Table 4F-59. Recommended Absorption Cross Sections of CF$_3$CICF$_3$CHFCl (HCFC-225cb) at 298 K 4-266
Table 4F-60. Recommended Absorption Cross Sections of CH$_3$C(O)CH$_2$Cl at 296 K 4-267
Table 4F-61. Recommended (E)-1,2-c-C$_6$H$_5$F$_6$ Absorption Spectrum, $\sigma(\lambda,T)$, Parameterization 4-268
Table 4F-62. Recommended (Z)-1,2-c-C$_6$H$_5$F$_6$ Absorption Spectrum, $\sigma(\lambda,T)$, Parameterization 4-269
Table 4G-1. Summary of Br$_2$ Absorption Cross Section Studies ... 4-280
Table 4G-2. Recommended Absorption Cross Sections of Br$_2$ at 298 K .. 4-281
Table 4G-3. Summary of HBr UV Absorption Cross Section Studies .. 4-283
Table 4G-4. Recommended Absorption Cross Sections of HBr at 298 K .. 4-283
Table 4G-5. Summary of BrO Absorption Cross Section Studies ... 4-284
Table 4G-6. Absorption Cross Sections at the Vibrational Band Peaks in the A\leftrightarrowX Spectrum of BrO (0.4 nm resolution) .. 4-285
Table 4G-7. Recommended Absorption Cross Sections of BrO at 298 K .. 4-286
Table 4G-8. Peak Absorption Cross Sections of OBrO at 298 K ... 4-288
Table 4G-9. Recommended Absorption Cross Sections of OBrO at 298 K .. 4-289
Table 4G-10. Recommended Absorption Cross Sections of Br$_2$O at 298 K ... 4-291
Table 4G-11. Recommended Absorption Cross Sections of HOBr at 298 K .. 4-293
Table 4G-12. Recommended Absorption Cross Sections of BrNO at 298 K ... 4-294
Table 4G-13. Recommended Absorption Cross Sections of BrONO at 253 K ... 4-295
Table 4G-14. Recommended Absorption Cross Sections of BrNO$_2$ at 298 K ... 4-296
Table 4G-15. Recommended Absorption Cross Sections of BrONO$_2$ at 296 K and Temperature Coefficients ... 4-298
Table 4G-16. Summary of BrONO$_2$ Photolysis Quantum Yield Results ... 4-299
Table 4G-17. Recommended Absorption Cross Sections of BrCl at 298 K .. 4-300
Table 4G-18. Recommended Absorption Cross Sections of BrOCl at 298 K .. 4-301
Table 4G-19. Recommended Absorption Cross Sections of CH$_2$Br at 296 K ... 4-302
Table 4G-20. Recommended Absorption Cross Sections of CH$_2$Br$_2$ at 298 K .. 4-304
Table 4G-21. Recommended Absorption Cross Sections of CHBr$_3$ at 296 K ... 4-306
Table 4G-22. Recommended Absorption Cross Sections of CH$_2$BrCH$_2$Br at 295 K 4-307
Table 4G-23. Recommended Absorption Cross Sections of C$_2$H$_4$Br at 295 K 4-308
Table 4G-24. Recommended Absorption Cross Sections of COBr$_2$ at 298 K ... 4-308
Table 4G-25. Recommended Absorption Cross Sections of COHBr at 298 K ... 4-309
Table 4G-26. Recommended Absorption Cross Sections of CH$_2$ClBr at 295 K .. 4-310
Table 4G-27. Recommended Absorption Cross Sections of CHClBr$_2$ at 296 K .. 4-311
Table 4G-28. Recommended Absorption Cross Sections of CHCl$_2$Br at 298 K .. 4-312
Table 4G-29. Recommended Absorption Cross Sections of CCl$_3$Br at 298 K .. 4-313
Table 4G-30. Recommended Absorption Cross Sections of CHF$_2$Br at 298 K .. 4-314
Table 4G-31. Recommended Absorption Cross Sections of CF$_3$Br at 296 K ... 4-317
Table 4G-32. Recommended Absorption Cross Sections of CF$_2$ClBr at 298 K .. 4-320
Table 4G-33. Recommended Absorption Cross Sections of CF3Br at 296 K.................................4-322
Table 4G-34. Recommended Absorption Cross Sections of CH3=CHBr at 295 K..........................4-323
Table 4G-35. Recommended Absorption Cross Sections of CBrCF3 at 295 K...............................4-324
Table 4G-36. Recommended Absorption Cross Sections of CHBr=CF2 at 295 K..........................4-325
Table 4G-37. Recommended Absorption Cross Sections of CH3=CHBr at 295 K..........................4-325
Table 4G-38. Recommended Absorption Cross Sections of CF2=CHBr at 295 K............................4-326
Table 4G-39. Recommended Absorption Cross Sections of CBr=CHBr at 298 K............................4-327
Table 4G-40. Recommended Absorption Cross Sections of CF2=CFBr at 295 K..............................4-328
Table 4G-41. Recommended Absorption Cross Sections of CF=CF2 at 296 K.................................4-330
Table 4G-42. Recommended Absorption Cross Sections of CF=CFBr at 298 K..............................4-331
Table 4G-43. Recommended Absorption Cross Sections of CH2=CH2Br and CH2=CHBr at 295 K.......4-332
Table 4G-44. Recommended Absorption Cross Sections of CH2=C(O)Br at 296 K...........................4-333
Table 4H-1. Summary of I Absorption Cross Sections Studies ..4-340
Table 4H-2. Absorption Cross Sections of I2 at 295 K...4-341
Table 4H-3. Cross Sections at the Maxima and Minima of I2 at 295 K...4-342
Table 4H-4. Summary of IO Absorption Cross Section Studies ...4-343
Table 4H-5. Recommended Absorption Cross Sections of IO at 298 K...4-345
Table 4H-6. Recommended Absorption Cross Sections of OIO at 295 K.......................................4-347
Table 4H-7. Summary of HI Absorption Cross Sections Studies ...4-348
Table 4H-8. Recommended Absorption Cross Sections of HI at 298 K...4-349
Table 4H-9. Recommended Absorption Cross Sections of HOI at 298 K.......................................4-351
Table 4H-10. Recommended Absorption Cross Sections of ICl at 298 K......................................4-353
Table 4H-11. Recommended Absorption Cross Sections of IBr at 298 K.......................................4-355
Table 4H-12. Recommended Absorption Cross Sections of INO at 298 K......................................4-356
Table 4H-13. Recommended Absorption Cross Sections of IONO at 298 K.....................................4-358
Table 4H-14. Recommended Absorption Cross Sections of IONO at 298 K.....................................4-359
Table 4H-15. Recommended Absorption Cross Sections of CH3I at 298 K and Temperature Coefficients4-361
Table 4H-16. Recommended Absorption Cross Sections of CH2I2 at 298 K and Temperature Coefficients4-363
Table 4H-17. Recommended Absorption Cross Sections of C2H12 at 298 K and Temperature Coefficients4-365
Table 4H-18. Recommended Absorption Cross Sections of CH2=CH2 at 298 K..................................4-366
Table 4H-19. Recommended Absorption Cross Sections of CH3=CH at 298 K and Temperature Coefficients4-368
Table 4H-20. Recommended Absorption Cross Sections of (CH3)3Cl at 323 K..................................4-371
Table 4H-21. Summary of CF3I Absorption Cross Section Studies ..4-372
Table 4H-22. Recommended Absorption Cross Sections of CF3I at 298 K and Temperature Coefficients4-373
Table 4H-23. Summary of CF3I Quantum Yield Studies ...4-374
Table 4H-24. Recommended Absorption Cross Sections of CF3I at 294 K......................................4-376
Table 4H-25. Recommended Absorption Cross Sections of C2F2I at 323 K......................................4-377
Table 4H-26. Recommended Absorption Cross Sections of n-C2F2I at 298 K....................................4-378
Table 4H-27. Recommended Absorption Cross Sections of CH3ICl at 298 K and Temperature Coefficients4-380
Table 4H-28. Recommended Absorption Cross Sections of CH2BrI at 298 K and Temperature Coefficients4-382
Table 4H-29. Recommended Absorption Cross Sections of CF3BrCF2I at 298 K...............................4-383
Table 4I-1. Recommended Absorption Cross Sections of SO2 at 298 K...4-390
Table 4I-2. Recommended Absorption Cross Sections of H2S at 298 K...4-391
Table 4I-3. Recommended Absorption Cross Sections of CS2 at 298 K..4-392
Table 4I-4. Recommended Absorption Cross Sections of OCS at 225 and 295 K...............................4-394
Table 4I-5. Absorption Cross Sections of SO2F2 at 298 K..4-395
Table 4I-6. Recommended Absorption Cross Sections of NaOH at 298 K.......................................4-399
Table 4I-7. Recommended Absorption Cross Sections of NaCl at 300 K..4-400
Table 4I-8. Recommended Absorption Cross Sections of NaO at 300 K...4-401
Table 4I-9. Recommended Absorption Cross Sections of Na2O at 300 K..4-402
Table 4I-10. Recommended Absorption Cross Sections of NaO3 at 300 K.......................................4-403
Table 4I-11. Recommended Absorption Cross Sections of NaHCO3 at 200 and 300 K.......................4-403
4.1 Format and Uncertainty Estimates

Table 4-1 is a list of the photochemical reactions included in this evaluation and considered to be of atmospheric interest. The ultraviolet (UV) absorption spectra of O$_3$ and O$_2$ largely determine the extent of the penetration of solar radiation into the stratosphere and troposphere. Some comments and references to these spectra and their cross sections, $\sigma(\lambda,T)$, are presented, but only a sample of the data is provided here (for further detail see WMO Report No. 11, WMO Report No. 16). The photodissociation of NO in the O$_3$ Schumann-Runge band spectral range is another important process requiring special treatment and is not discussed in this evaluation (see Frederick and Hudson, Allen and Frederick, WMO Report No. 11, and Minschwaner and Siskind).

Some species included in this evaluation have highly structured spectra, e.g. SO$_2$. Notes are provided for these molecules, but complete photochemical data are not presented in all cases. The species CH$_3$O, NO$_2$, NO$_3$, ClO, BrO, and OClO have complicated spectra, but in view of their importance for atmospheric chemistry a sample of the data is presented in the evaluation. Detailed information on their high-resolution spectra and the temperature dependence of the spectrum should be obtained from the original cited literature.

The absorption cross sections are defined by the following expression of Beer’s Law:

$$I = I_0 \exp(-\sigma(\lambda,T) n L)$$

where I_0 and I are the incident and transmitted light intensity, respectively, σ is the absorption cross section in cm2 molecule$^{-1}$ at wavelength λ and temperature T, n is the concentration in molecule cm$^{-3}$, and L is the pathlength in cm.

Estimates of the uncertainty in $\sigma(\lambda,T)$ are provided within the Notes for many of the molecules included in this evaluation, but not all. The reported uncertainty factors are not rigorous numbers resulting from a detailed statistical error propagation analysis of the available data sets. Rather, they represent a consensus among the panel members as to the reliability of the data, taking into account the difficulty of the measurements and the agreement among the results reported by various groups. The uncertainty in $\sigma(\lambda,T)$ is, in most cases, expected to be wavelength and temperature dependent, e.g. the uncertainty in wavelength regions with weak absorption or at low temperatures representative of the upper troposphere-lower stratosphere are usually more uncertain. The recommended uncertainty factors are primarily based on the wavelength regions most critical to atmospheric photolysis processes.

4.2 Photodissociation Thresholds and Quantum Yields

The threshold energies for the photolysis channels given in the notes, and the corresponding wavelengths, were calculated using the 298 K heats of formation, $\Delta H_f(298 \text{ K})$ given in the Thermochemical Parameters section of this evaluation.

The primary process in the photodissociation of chlorinated hydrocarbons is well established: absorption of ultraviolet radiation in the lowest frequency band is interpreted as an $n-\sigma^*$ transition involving excitation to a repulsive electronic state (anti-bonding in C–Cl), which dissociates by breaking the carbon-chlorine bond (Majer and Simons). As expected, chlorofluoromethanes, which are a particular type of chlorinated hydrocarbons, behave in this fashion (Sandorfy). The quantum yield for photodissociation is expected to be unity for these compounds. There are several studies that show specifically that this is the case for CF$_2$Cl$_2$, CFC$_3$, and CCl$_4$. These studies also indicate that at shorter wavelengths that two halogen atoms can be released simultaneously in the primary process.

The mechanism for the photodissociation of other classes of compounds, such as aldehydes and ketones, in many cases includes multiple product channels, where the different channels may have different impacts on atmospheric chemistry. Photolysis quantum yields may also display a wavelength, pressure, and temperature dependence. Detailed quantum yield studies are presently not available for all molecules included in this evaluation. Quantum yield recommendations are made were possible.
4.3 Web Access to Recommended Data in Text and Graphical Formats

Tables of recommended cross sections in this evaluation can be downloaded from the spectral atlas of the Max-Planck Institute for Chemistry at: http://satellite.mpic.de/spectral_atlas.¹

¹ Cited references:

Table 4-1. Photochemical Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reaction</th>
<th>Reactant</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ Photochemistry</td>
<td>A1. O₃ + hv → O + O</td>
<td>N</td>
<td>D32. HCN + hv → products</td>
</tr>
<tr>
<td></td>
<td>A2. O₁ + hv → O₂ + O</td>
<td>N</td>
<td>D33. CH₃CN + hv → products</td>
</tr>
<tr>
<td></td>
<td>O₁ + hv → O₂ + O(¹D)</td>
<td>N</td>
<td>FO₂ Photochemistry</td>
</tr>
<tr>
<td>HO₂ Photochemistry</td>
<td>B1. HO₂ + hv → products</td>
<td>N</td>
<td>E1. HF + hv → H + F</td>
</tr>
<tr>
<td></td>
<td>B2. H₂O + hv → H + OH</td>
<td>N</td>
<td>E2. FO₂ + hv → products</td>
</tr>
<tr>
<td></td>
<td>B3. H₂O₂ + hv → OH + OH</td>
<td>N</td>
<td>E3. F₂O + hv → products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N,U</td>
<td>E4. F₂O₂ + hv → products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E5. FNO + hv → F+ NO</td>
</tr>
<tr>
<td>NO₃ Photochemistry</td>
<td>C1. NO₂ + hv → NO + O</td>
<td>N</td>
<td>E6. CHF₃ (HFC-23) → products</td>
</tr>
<tr>
<td></td>
<td>C2. NO₁ + hv → NO₂ + O</td>
<td>N</td>
<td>E7. CH₂F₃ (HFC-32) → products</td>
</tr>
<tr>
<td></td>
<td>NO₁ + hv → NO + O₂</td>
<td>N</td>
<td>E8. CHF₂CF₃ (HFC-125) → products</td>
</tr>
<tr>
<td></td>
<td>C3. N₂O + hv → N₂ + O(¹D)</td>
<td>N,U</td>
<td>E9. CH₃FCF₃ (HFC-134a) → products</td>
</tr>
<tr>
<td></td>
<td>C4. N₂O₄ + hv → products</td>
<td>N</td>
<td>E10. CH₃F₂CF₃ (HFC-143a) → products</td>
</tr>
<tr>
<td></td>
<td>C5. N₂O₅ + hv → products</td>
<td>N,U</td>
<td>E11. CH₃CHF₂ (HFC-152a) → products</td>
</tr>
<tr>
<td>Organic Photochemistry</td>
<td>D1. CH₄ + hv → products</td>
<td>N</td>
<td>E12. CF₄ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D2. CH₂O + hv → products</td>
<td>N,R</td>
<td>E13. C₂F₆ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D3. CH₃CHO + hv → products</td>
<td>N</td>
<td>E14. c-C₃F₈ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D5. CH₂O₂ + hv → products</td>
<td>N</td>
<td>E16. C₆F₁₄ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D6. C₂H₅O₂ + hv → products</td>
<td>N</td>
<td>E17. (CF₃)₂C-CF₆ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D7. CH₂CO + hv → products</td>
<td>N</td>
<td>E18. CF₂O + hv → products</td>
</tr>
<tr>
<td></td>
<td>D8. CH₃C(O)O₂ + hv → products</td>
<td>N</td>
<td>E19. COHF + hv → products</td>
</tr>
<tr>
<td></td>
<td>D9. CH₃C(O)CH₂O₂ + hv → products</td>
<td>N</td>
<td>E20. CF₂O₂ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D10. CH₃OOH + hv → products</td>
<td>N</td>
<td>E21. CF₂OH + hv → products</td>
</tr>
<tr>
<td></td>
<td>D11. HOCH₂OOH + hv → products</td>
<td>N</td>
<td>E22. CF₂OOCF₃ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D12. CH₃ONO + hv → products</td>
<td>N</td>
<td>E23. CF₂OCF₃ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D13. CH₃ONO₂ + hv → products</td>
<td>N</td>
<td>E24. CF₃CHO + hv → products</td>
</tr>
<tr>
<td></td>
<td>D14. CH₃O₂NO₂ + hv → products</td>
<td>N</td>
<td>E25. CF₃(C(O)F + hv → products</td>
</tr>
<tr>
<td></td>
<td>D15. CH₃C(O)O₂N₂O₂ + hv → products</td>
<td>N</td>
<td>E26. CF₃C(O)Cl + hv → products</td>
</tr>
<tr>
<td></td>
<td>D16. C₂H₅C(O)O₂N₂O₂ + hv → products</td>
<td>N</td>
<td>E27. CF₂OOO₂ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D17. CH₃=CHCHO + hv → products</td>
<td>N</td>
<td>E28. CF₃C(O)O₂N₂O₂ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D18. CH₂C(CH₃)CH(O) + hv → products</td>
<td>N</td>
<td>E29. CF₃CH₂CHO + hv → products</td>
</tr>
<tr>
<td></td>
<td>D19. CH₃C(O)CH=CH₂ + hv → products</td>
<td>N</td>
<td>E30. CF₃C(O)OH + hv → products</td>
</tr>
<tr>
<td></td>
<td>D20. HOCH₂CHO + hv → products</td>
<td>N</td>
<td>E31. CH₃C(O)F + hv → products</td>
</tr>
<tr>
<td></td>
<td>D21. CH₃C(O)CH₃ + hv → products</td>
<td>N</td>
<td>E32. CH₃=CHCF₃ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D22. CH₃C(O)CH₂OH + hv → products</td>
<td>N</td>
<td>E33. CH₃=CFCF₃ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D23. CHOCHO + hv → products</td>
<td>N</td>
<td>E34. CF₂=CF₂ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D24. CH₃C(O)(O)H + hv → products</td>
<td>N</td>
<td>E35. CF₂=CFCF₃ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D25. HC(O)OH + hv → products</td>
<td>N</td>
<td>E36. NF₃ + hv → products</td>
</tr>
<tr>
<td></td>
<td>(HC(O)OH)₂ + hv → products</td>
<td>N</td>
<td>CIO₂ Photochemistry</td>
</tr>
<tr>
<td></td>
<td>D26. CH₃C(O)OH + hv → products</td>
<td>N</td>
<td>F1. Cl₂ + hv → Cl + Cl</td>
</tr>
<tr>
<td></td>
<td>D27. CH₃C(O)OOH + hv → products</td>
<td>N</td>
<td>F2. ClO + hv → Cl + O</td>
</tr>
<tr>
<td></td>
<td>D28. C₂H₅C(O)OH + hv → products</td>
<td>N</td>
<td>F3. ClOO + hv → products</td>
</tr>
<tr>
<td></td>
<td>D29. CH₃C(O)(O)OH + hv → products</td>
<td>N</td>
<td>F4. OClO + hv → O + ClO</td>
</tr>
<tr>
<td></td>
<td>D30. HC(O)OCH₃ + hv → products</td>
<td>N</td>
<td>F5. ClO₁ + hv → products</td>
</tr>
<tr>
<td></td>
<td>D31. HC(O)OC₂H₅ + hv → products</td>
<td>N</td>
<td>F6. Cl₂O + hv → products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N,R,U</td>
<td>F7. ClOOCl + hv → products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N,R,U</td>
<td>F8. ClClO₂ + hv → products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N,U</td>
<td>F9. Cl₂O₃ + hv → products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N,U</td>
<td>F10. Cl₂O₄ + hv → products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N,U</td>
<td>F11. Cl₂O₅ + hv → products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N,U</td>
<td>F12. Cl₂O₇ + hv → products</td>
</tr>
</tbody>
</table>
F13. HCl + hv → H + Cl
DCI + hv → products

F14. HOCl + hv → products

F15. ClONO + hv → Cl + NO

F16. ClONO₂ + hv → products

F17. ClONO₂ + hv → products

F18. ClONO₃ + hv → products

F19. CCl₄ + hv → products

F20. CH₂ClO + hv → products

F21. CHCl₃ + hv → products

F22. CH₂Cl₂ + hv → products

F23. CHCl + hv → products

F24. CH₂Cl₂ + hv → products

F25. CH₃Cl + hv → products

F26. CH₂ClCH₂Cl + hv → products

F27. CH₂ClCH₂Cl + hv → products

F28. CH₂ClCH₂Cl + hv → products

F29. CH₂Cl(CH₂)₂CHCl + hv → products

F30. CCl₂O + hv → products

F31. COCl + hv → products

F32. CCl₂O + hv → products

F33. CFCl₃ + (CFC-11) + hv → products

F34. CF₂Cl₂ + (CFC-12) + hv → products

F35. CF₃Cl + (CFC-13) + hv → products

F36. CF₃CClF₂ + (CFC-113) + hv → products

F37. CF₃CCl₂F₂ + (CFC-114) + hv → products

F38. CF₃CCl₂F₂ + (CFC-115) + hv → products

F39. CHFCl₃ (HCFC-21) + hv → products

F40. CH₂F₂Cl₂ (HCFC-22) + hv → products

F41. CH₃FCI (HCFC-31) + hv → products

F42. CF₃CHCl₂ (HCFC-123) + hv → products

F43. CF₃CHFCl (HCFC-124) + hv → products

F44. CF₃CHCl₂ (HCFC-133a) + hv → products

F45. CH₂FCI₂ (HCFC-141b) + hv → products

F46. CH₂FCI₂ (HCFC-142b) + hv → products

F47. CH₂CICHO + hv → products

F48. CHCl₂CHO + hv → products

F49. CF₂CICHO + hv → products

F50. CFCI₂CHO + hv → products

F51. CCl₂CHO + hv → products

F52. CH₂(CCl₃)Cl + hv → products

F53. CH₂Cl(CCl₃)Cl + hv → products

F54. HCl(CCl₃)Cl + hv → products

F55. CCl₃(O)Cl + hv → products

F56. CF₃CCl₂CH₂Cl (HCFC-225ca) + hv → products

F57. CF₃CClF₂CHCl (HCFC-225cb) + hv → products

F58. CH₃Cl(O)Cl + hv → products

F59. 1,2-C₄C₂Cl₂F₄(E) + hv → Products

F60. 1,2-C₄C₂Cl₂F₄(Z) + hv → Products

BrO₂ Photochemistry

G1. Br₂ + hv → products

G2. HBr + hv → products

G3. BrO + hv → products

G4. OBrO + hv → products

G5. Br₂O + hv → products

IO₃ Photochemistry

H1. I₂ + hv → 2 I

H2. IO + hv → I + O(³P), O(¹D)

H3. OIO + hv → products

H4. HI + hv → products

H5. HOI + hv → OH + I

H6. ICl + hv → I + Cl

H7. IBr + hv → I + Br

H8. INO + hv → I + NO₂

H9. INO₂ + hv → I + NO₂

H10. IONO₂ + hv → products

H11. CH₃I + hv → CH₃ + I

H12. CH₂I₂ + hv → CH₂ + I

H13. C₂H₄I + hv → C₂H₄ + I

H14. CH₃CHI₂ + hv → Products

H15. CH₃CH₂CH₂I + hv → Products

H16. CH₂CHCH₂I + hv → Products

H17. n-C₃H₄I + hv → C₃H₄ + I

H18. (CH₃)₂CHCH₂I + hv → (CH₃)₂CCH₂ + I

H19. (CH₃)₂Cl + hv → (CH₃)₂C + I

H20. n-C₃H₇I + hv → C₃H₇ + I

4-9
H21. CF3I + hv → CF3 + I
H22. CF2I2 + hv → products
H23. C3F5I + hv → C3F5 + I
H24. n-C3F7I + hv → C3F7 + I
H25. n-C4F9I + hv → C4F9 + I
H26. n-C6F13I + hv → C6F13 + I
H27. CH3Cl + hv → CH2Cl + I
H28. CH2BrI + hv → products
H29. CF2BrCF2I + hv → products

SO2 Photochemistry
I1. SO2 + hv → SO + O
I2. SO3 + hv → SO2 + O
I3. H2S + hv → HS + H
I4. H2SO4 + hv → products

Metal Photochemistry
J1. NaOH + hv → Na + OH
J2. NaCl + hv → Na + Cl
J3. NaO + hv → Na + O
J4. NaO2 + hv → NaO + O
J5. NaO3 + hv → NaO2 + O
J6. NaHCO3 + hv → Na + HCO3

Notes:
“R” indicates that the spectrum recommendation has been revised.
“U” indicates that the recommended uncertainty factor has been revised.
“N” indicates that the note has been revised.
Gray shading indicates a new entry.
SECTION 4A. O\textsubscript{x} PHOTOCHEMISTRY

A1. O_2 (molecular Oxygen)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Wavelength (nm)</th>
<th>Resolution (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_2 + hv \rightarrow O(^3P) + O(^3P)$</td>
<td>121.657</td>
<td>0.01</td>
<td>298</td>
</tr>
<tr>
<td>$O(^3P) + O(^3D)$</td>
<td>8 – 103</td>
<td>0.01</td>
<td>295</td>
</tr>
<tr>
<td>$O(^3D) + O(^3D)$</td>
<td>30 – 131</td>
<td>0.01</td>
<td>295</td>
</tr>
<tr>
<td>$O(^3P) + O(^3S)$</td>
<td>105 – 190</td>
<td>0.085</td>
<td>298</td>
</tr>
<tr>
<td>$O(^3S) + O(^3S)$</td>
<td>47 – 99</td>
<td>0.5</td>
<td>295</td>
</tr>
</tbody>
</table>

(Recommendation: 10-6, Note: 15-10, Evaluated: 10-6)

Absorption Cross Sections: The photodissociation of molecular oxygen in the stratosphere is due primarily to the absorption of solar radiation in the 200–240 nm wavelength region, i.e., within the Herzberg continuum, which arises from the $A^3 \Sigma_g^+ \leftarrow X^3 \Sigma_g^-$ transition. Between 240 and 300 nm the absorption spectrum is also due to the electronic transition from the ground $X^3 \Sigma_g^-$ state to excited electronic states $A^3 \Sigma_u^+ \leftarrow X^3 \Sigma_g^-$ (Herzberg I), $c^3 \Sigma_u^+ \leftarrow X^3 \Sigma_g^-$ (Herzberg II), and $A^3 \Delta_u \leftarrow X^3 \Sigma_g^-$ (Herzberg III). The 175–205 nm region, the O_2 Schumann-Runge (B$^4 \Sigma_u^+ \leftarrow X^3 \Sigma_g^-$) band spectral range, is also very important, since solar radiation penetrates efficiently into the stratosphere at these wavelengths. The Schumann-Runge band system is composed of rotational lines with widths on the order of 1 cm$^{-1}$. The peak absorption cross sections in the Schumann-Runge system span ~5 orders of magnitude.

Table 4A.1. Summary of O_2 Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Molecule</th>
<th>Wavelength (nm)</th>
<th>Resolution (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preston70</td>
<td>1940</td>
<td>O_2</td>
<td>121.567</td>
<td>0.01</td>
<td>298</td>
</tr>
<tr>
<td>Clark72</td>
<td>1952</td>
<td>O_2</td>
<td>8 – 103</td>
<td>0.01</td>
<td>295</td>
</tr>
<tr>
<td>Watanabe et al.82</td>
<td>1952</td>
<td>O_2</td>
<td>121.57</td>
<td>0.085</td>
<td>298</td>
</tr>
<tr>
<td>Weissler and Lee85</td>
<td>1952</td>
<td>O_2</td>
<td>30 – 131</td>
<td>0.01</td>
<td>295</td>
</tr>
<tr>
<td>Watanabe et al.83</td>
<td>1953</td>
<td>O_2</td>
<td>105 – 190</td>
<td>0.085</td>
<td>298</td>
</tr>
<tr>
<td>Aboud et al.1</td>
<td>1955</td>
<td>O_2</td>
<td>11 – 87</td>
<td>0.1</td>
<td>295</td>
</tr>
<tr>
<td>Lee48</td>
<td>1955</td>
<td>O_2</td>
<td>20 – 110</td>
<td>0.01</td>
<td>295</td>
</tr>
<tr>
<td>Wainfan et al.80</td>
<td>1955</td>
<td>O_2</td>
<td>47 – 99</td>
<td>0.5</td>
<td>295</td>
</tr>
<tr>
<td>Watanabe and Marmo64</td>
<td>1956</td>
<td>O_2</td>
<td>85 – 110</td>
<td>0.01</td>
<td>298</td>
</tr>
<tr>
<td>Tanaka et al.78</td>
<td>1959</td>
<td>O_2</td>
<td>85 – 110</td>
<td>0.01</td>
<td>298</td>
</tr>
<tr>
<td>Ditchburn and Young77</td>
<td>1962</td>
<td>O_2</td>
<td>85 – 250</td>
<td>0.01</td>
<td>298</td>
</tr>
<tr>
<td>Cook and Metzger25</td>
<td>1964</td>
<td>O_2</td>
<td>60 – 103</td>
<td>0.05</td>
<td>295</td>
</tr>
<tr>
<td>Cook et al.14</td>
<td>1964</td>
<td>O_2</td>
<td>83 – 103</td>
<td>0.05</td>
<td>295</td>
</tr>
<tr>
<td>Metzger and Cook56</td>
<td>1964</td>
<td>O_2</td>
<td>110 – 167</td>
<td>0.05</td>
<td>298</td>
</tr>
<tr>
<td>Huffman et al.39</td>
<td>1964</td>
<td>O_2</td>
<td>60 – 164</td>
<td>0.05</td>
<td>295</td>
</tr>
<tr>
<td>Samson and Cairns71</td>
<td>1964</td>
<td>O_2</td>
<td>30 – 104</td>
<td>0.01</td>
<td>298</td>
</tr>
<tr>
<td>Samson and Cairns72</td>
<td>1965</td>
<td>O_2</td>
<td>20 – 54</td>
<td>0.01</td>
<td>298</td>
</tr>
<tr>
<td>Goldstein and Mastrap11</td>
<td>1966</td>
<td>O_2</td>
<td>127 – 175</td>
<td>0.04</td>
<td>298</td>
</tr>
<tr>
<td>Blake et al.12</td>
<td>1966</td>
<td>O_2</td>
<td>125 – 235</td>
<td>0.02</td>
<td>298</td>
</tr>
<tr>
<td>Hudson et al.35</td>
<td>1966</td>
<td>O_2</td>
<td>159 – 195</td>
<td>0.0075</td>
<td>300, 600, 900</td>
</tr>
<tr>
<td>Matsunaga and Watanabe55</td>
<td>1967</td>
<td>O_2</td>
<td>85 – 108</td>
<td>0.03</td>
<td>298</td>
</tr>
<tr>
<td>Ogawa54</td>
<td>1968</td>
<td>O_2</td>
<td>121.6</td>
<td>0.009</td>
<td>298</td>
</tr>
<tr>
<td>Huffman78</td>
<td>1969</td>
<td>O_2</td>
<td>30 – 122</td>
<td>Review</td>
<td>295</td>
</tr>
<tr>
<td>Ackerman et al.4</td>
<td>1969</td>
<td>O_2</td>
<td>176 – 191</td>
<td>0.001</td>
<td>300</td>
</tr>
<tr>
<td>Shardanand74</td>
<td>1969</td>
<td>O_2</td>
<td>200 – 280</td>
<td>0.25</td>
<td>298</td>
</tr>
<tr>
<td>Ackerman et al.3</td>
<td>1970</td>
<td>O_2</td>
<td>176 – 201</td>
<td>0.001</td>
<td>300</td>
</tr>
<tr>
<td>Ackerman2</td>
<td>1971</td>
<td>O_2</td>
<td>116 – 244</td>
<td>Review</td>
<td>298</td>
</tr>
<tr>
<td>Bennett et al.10</td>
<td>1971</td>
<td>O_2</td>
<td>58.4</td>
<td>0.1</td>
<td>295</td>
</tr>
<tr>
<td>Hasson and Nichols33</td>
<td>1971</td>
<td>O_2</td>
<td>192 – 243</td>
<td>0.07</td>
<td>298</td>
</tr>
<tr>
<td>Ogawa55</td>
<td>1971</td>
<td>O_2</td>
<td>181 – 235</td>
<td>0.0075</td>
<td>298</td>
</tr>
<tr>
<td>Hudson and Mahle36</td>
<td>1972</td>
<td>O_2</td>
<td>176 – 210</td>
<td>0.1</td>
<td>150, 200, 250, 300</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Molecule</td>
<td>Wavelength (nm)</td>
<td>Resolution (nm)</td>
<td>Temperature (K)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Starr and Loewenstein</td>
<td>1972</td>
<td>O₂</td>
<td>58.4</td>
<td>0.07</td>
<td>298</td>
</tr>
<tr>
<td>Brolley et al.</td>
<td>1973</td>
<td>O₂</td>
<td>58.4</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Ogawa and Ogawa</td>
<td>1975</td>
<td>O₂(0Δ)</td>
<td>108–160,</td>
<td>0.014</td>
<td>298</td>
</tr>
<tr>
<td>Bertrand et al.</td>
<td>1975</td>
<td>O₂</td>
<td>123.6, 147</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Kockarts</td>
<td>1976</td>
<td>O₂</td>
<td>176–203</td>
<td>J-calc-SR</td>
<td>160–300</td>
</tr>
<tr>
<td>Shardenand and Prasad Rao</td>
<td>1977</td>
<td>O₂</td>
<td>200–250</td>
<td>0.25</td>
<td>300</td>
</tr>
<tr>
<td>Cole and Dexter</td>
<td>1978</td>
<td>O₂</td>
<td>5–34</td>
<td>0.02</td>
<td>298</td>
</tr>
<tr>
<td>Brion et al.</td>
<td>1979</td>
<td>O₂</td>
<td>4–248(e,e)</td>
<td>0.2</td>
<td>298</td>
</tr>
<tr>
<td>Frederick and Mentall</td>
<td>1982</td>
<td>O₂</td>
<td>176–243</td>
<td>0.12</td>
<td>200, 250, 300</td>
</tr>
<tr>
<td>Herman and Mentall</td>
<td>1982</td>
<td>O₂</td>
<td>187–225</td>
<td>0.12</td>
<td>not stated</td>
</tr>
<tr>
<td>Anderson and Hall</td>
<td>1983</td>
<td>O₂</td>
<td>191–207</td>
<td>0.012</td>
<td>295, 575</td>
</tr>
<tr>
<td>Gibson et al.</td>
<td>1983</td>
<td>O₂</td>
<td>140–174</td>
<td>0.01</td>
<td>295</td>
</tr>
<tr>
<td>Lewis et al.</td>
<td>1983</td>
<td>O₂</td>
<td>121.4–121.9</td>
<td>0.01</td>
<td>84, 203, 288, 366</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1983</td>
<td>O₂</td>
<td>179.3–201.5</td>
<td>0.0013</td>
<td>300</td>
</tr>
<tr>
<td>Cheung et al.</td>
<td>1984</td>
<td>O₂</td>
<td>193.5–204</td>
<td>0.0013</td>
<td>299</td>
</tr>
<tr>
<td>Cheung et al.</td>
<td>1984</td>
<td>O₂</td>
<td>193.5–204</td>
<td>0.0013</td>
<td>300</td>
</tr>
<tr>
<td>Pirre et al.</td>
<td>1984</td>
<td>O₂</td>
<td>202–220</td>
<td>0.01</td>
<td>not stated</td>
</tr>
<tr>
<td>Johnston et al.</td>
<td>1984</td>
<td>O₂</td>
<td>205–225</td>
<td>0.2</td>
<td>206–327</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1984</td>
<td>O₂</td>
<td>175–205</td>
<td>SR Atlas</td>
<td>300</td>
</tr>
<tr>
<td>Kley</td>
<td>1984</td>
<td>O₂</td>
<td>121.567</td>
<td>0.01</td>
<td>208–305</td>
</tr>
<tr>
<td>Cheung et al.</td>
<td>1986</td>
<td>O₂</td>
<td>195–241</td>
<td>0.0013</td>
<td>298</td>
</tr>
<tr>
<td>Anderson and Hall</td>
<td>1986</td>
<td>O₂</td>
<td>191–215</td>
<td>0.012</td>
<td>not stated</td>
</tr>
<tr>
<td>Jenouvrier et al.</td>
<td>1986</td>
<td>O₂</td>
<td>205–240</td>
<td>0.05</td>
<td>298</td>
</tr>
<tr>
<td>Jenouvrier et al.</td>
<td>1986</td>
<td>O₂</td>
<td>205–240</td>
<td>0.04</td>
<td>294</td>
</tr>
<tr>
<td>Lewis et al.</td>
<td>1986</td>
<td>O₂</td>
<td>175–205</td>
<td>0.004</td>
<td>295</td>
</tr>
<tr>
<td>Lewis et al.</td>
<td>1986</td>
<td>O₂</td>
<td>175–205</td>
<td>0.004</td>
<td>295</td>
</tr>
<tr>
<td>Nicolet and Kennes</td>
<td>1986</td>
<td>O₂</td>
<td>200–244</td>
<td>J-calc-HC</td>
<td>298</td>
</tr>
<tr>
<td>Saxon and Slanger</td>
<td>1986</td>
<td>O₂</td>
<td>195–300</td>
<td>σ-calc-HC</td>
<td>298</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1987</td>
<td>O₂</td>
<td>179–198</td>
<td>0.0013</td>
<td>79</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>1987</td>
<td>O₂</td>
<td>130–160</td>
<td>0.01</td>
<td>295, 575</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1988</td>
<td>O₂</td>
<td>205–240</td>
<td>recommended</td>
<td>298</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1988</td>
<td>O₂</td>
<td>183–196</td>
<td>0.0013</td>
<td>79</td>
</tr>
<tr>
<td>Murtagh</td>
<td>1988</td>
<td>O₂</td>
<td>175–206</td>
<td>J-cal-SR</td>
<td>150–300</td>
</tr>
<tr>
<td>Pirre et al.</td>
<td>1988</td>
<td>O₂</td>
<td>200–217</td>
<td>0.01</td>
<td>not stated</td>
</tr>
<tr>
<td>Cheung et al.</td>
<td>1989</td>
<td>O₂</td>
<td>175–205</td>
<td>0.0013</td>
<td>78, 300</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1989</td>
<td>O₂</td>
<td>175–205</td>
<td>0.0013</td>
<td>79</td>
</tr>
<tr>
<td>Nicolet and Kennes</td>
<td>1989</td>
<td>O₂</td>
<td>175–202</td>
<td>σ-calc-HC</td>
<td>190–300</td>
</tr>
<tr>
<td>Cheung et al.</td>
<td>1990</td>
<td>O₂</td>
<td>179–202</td>
<td>0.0013</td>
<td>79, 295</td>
</tr>
<tr>
<td>Chiu et al.</td>
<td>1990</td>
<td>O₂</td>
<td>180–196</td>
<td>0.0013</td>
<td>79</td>
</tr>
<tr>
<td>Coquart et al.</td>
<td>1990</td>
<td>O₂</td>
<td>196–205</td>
<td>0.065</td>
<td>219</td>
</tr>
<tr>
<td>Greenblatt et al.</td>
<td>1990</td>
<td>O₂</td>
<td>330–1130</td>
<td>0.6</td>
<td>196, 296</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1990</td>
<td>O₂</td>
<td>184–204</td>
<td>0.0013</td>
<td>295</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1992</td>
<td>O₂</td>
<td>179–240</td>
<td>0.0013</td>
<td>300</td>
</tr>
<tr>
<td>Minschneraer et al.</td>
<td>1992</td>
<td>O₂</td>
<td>175–205</td>
<td>σ-calc-SR</td>
<td>130–500</td>
</tr>
<tr>
<td>Minschneraer et al.</td>
<td>1993</td>
<td>O₂</td>
<td>175–205</td>
<td>σ-calc-SR</td>
<td>205–300</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1994</td>
<td>O₂</td>
<td>240–270</td>
<td>0.06 cm⁻¹</td>
<td>295</td>
</tr>
<tr>
<td>Huestis et al.</td>
<td>1994</td>
<td>O₂</td>
<td>243–258</td>
<td>0.25 cm⁻¹</td>
<td>295</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1995</td>
<td>O₂</td>
<td>240–270</td>
<td>0.06 cm⁻¹</td>
<td>295</td>
</tr>
<tr>
<td>Bao et al.</td>
<td>1995</td>
<td>O₂</td>
<td>248–249</td>
<td>0.4 cm⁻¹</td>
<td>298</td>
</tr>
<tr>
<td>Oshima et al.</td>
<td>1995</td>
<td>O₂</td>
<td>230–280</td>
<td>0.2</td>
<td>310</td>
</tr>
</tbody>
</table>

Review: a status report on absorption cross section measurements.

σ-calc-SC: a calculation of absorption cross sections in the Herzberg Continuum.

σ-calc-SR: a calculation of absorption cross sections of the Schumann-Runge bands.

Measurements of the absorption cross sections in the VUV have mainly been reported at low resolution during the period from 1952 to 1979 as listed in Table 4A-1. High resolution cross sections have been reported by Cole and Dexter,^23^ Brion et al.,^44^ Gibson et al.,^38^ Ahmed et al.,^5^ Wu et al.,^87^ and Yoshino et al.~101^

At the Lyman-α wavelength (121.567 nm), absorption cross section values at 298 K were reported (in cm2 molecule$^{-1}$) by Preston70 (1.17 x 10$^{-20}$), Watanabe et al.82 (1.23 x 10$^{-20}$), Ogawa54 (1.03 x 10$^{-20}$), Kley44 (1.13 x 10$^{-20}$), and Lewis et al.53 (9.1 x 10$^{-21}$). The latter authors measured the temperature dependence of the cross sections in the range 84–366 K. A value of (1.1 ± 0.1) x 10$^{-20}$ cm2 molecule$^{-1}$ is recommended at 298 K. Kley44 measured the pressure dependence of the Lyman-α cross section in the pressure range 20–880 Torr and in the temperature range 208–305 K. The cross sections were parameterized by the following equation:

$$\sigma_{O2} = (1.13 \pm 0.09) \times 10^{-20} + (1.72 \pm 0.21) \times 10^{-23} \times P$$

where P is the pressure in Torr.

In the Herzberg continuum (200–240 nm) Frederick and Mentall,29 Herman and Mentall,34 Anderson and Hall,7,8 and Pierre et al.68,69 estimated O$_2$ absorption cross sections from balloon measurements of solar irradiance in the stratosphere. These authors found the cross sections in the 200–210 nm range to be ~35% smaller than the smallest of the older laboratory results, which are those of Ditchburn and Young.27 Hasson and Nichols,33 Ogawa,55 Shardonand,74 and Shardonand and Prasad Rao.75 The more recent laboratory studies (Johnston et al.45 Cheung et al.18,20 and Jenouvrier et al.40,41) confirm the lower values obtained from solar irradiance measurements. The recommended absorption cross section values between 205 and 240 nm are based on the data of Cheung et al.20 and Jenouvrier et al.40 and were evaluated by Yoshino et al.88 as listed in Table 4A-2. The recommended values from 241–245 nm are from Fally et al.85 (see below). Amoruso et al.6 have also carried out cross section measurements in the wavelength range 208–240 nm of the Herzberg continuum; their values are ~15% lower than those reported by Yoshino et al.88 Coquot et al.20 have reported Herzberg continuum absorption cross sections at 219 K in the wavelength region 196–205 nm of the S-R bands, in agreement with the determinations of Cheung et al.18,20 and Ogawa55 and in line with the data of Yoshino et al.88 Calculations of the absorption continua in the range 195–300 nm were performed by Saxon and Sanger.73 Cross sections at elevated temperatures (up to 1073 K) and pressures (up to 6 bar) were reported by Vattulainen et al.79

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Molecule a</th>
<th>Wavelength (nm)</th>
<th>Resolution (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanger et al.76</td>
<td>1996</td>
<td>O$_2$</td>
<td>242.1–244.2</td>
<td>0.2 cm$^{-1}$</td>
<td>298</td>
</tr>
<tr>
<td>Ahmed et al.5</td>
<td>1996</td>
<td>O$_2$</td>
<td>130, 165</td>
<td>0.05</td>
<td>295, 373, 473, 573</td>
</tr>
<tr>
<td>Amoruso et al.6</td>
<td>1996</td>
<td>O$_2$</td>
<td>208–240</td>
<td>0.001</td>
<td>280</td>
</tr>
<tr>
<td>Vattulainen et al.79</td>
<td>1997</td>
<td>O$_2$</td>
<td>195–260</td>
<td>0.5</td>
<td>293, 873, 1073</td>
</tr>
<tr>
<td>Kanik et al.43</td>
<td>1997</td>
<td>O$_2$</td>
<td>120, 149, 174</td>
<td>0.03</td>
<td>295, 373, 473, 573</td>
</tr>
<tr>
<td>Yoshino et al.99</td>
<td>1998</td>
<td>O$_2$</td>
<td>240–270</td>
<td>0.06 cm$^{-1}$</td>
<td>295</td>
</tr>
<tr>
<td>Yoshino et al.92</td>
<td>1999</td>
<td>O$_2$</td>
<td>240–275</td>
<td>0.06 cm$^{-1}$</td>
<td>295</td>
</tr>
<tr>
<td>Fally et al.28</td>
<td>2000</td>
<td>O$_2$</td>
<td>240–294</td>
<td>2 cm$^{-1}$</td>
<td>288</td>
</tr>
<tr>
<td>Yoshino et al.21</td>
<td>2000</td>
<td>O$_2$</td>
<td>240–275</td>
<td>0.06 cm$^{-1}$</td>
<td>295</td>
</tr>
<tr>
<td>Bogumil et al.13</td>
<td>2003</td>
<td>O$_2$</td>
<td>234–440, 650–800</td>
<td>0.24, 0.48</td>
<td>203, 243, 293</td>
</tr>
<tr>
<td>Wu et al.87</td>
<td>2005</td>
<td>O$_2$</td>
<td>83, 92, 108</td>
<td>0.0008</td>
<td>295, 535</td>
</tr>
<tr>
<td>Yoshino et al.101</td>
<td>2005</td>
<td>O$_2$</td>
<td>130–173</td>
<td>0.066</td>
<td>78, 90, 295</td>
</tr>
</tbody>
</table>

a Entries labeled “O$_2$” refer to molecular oxygen with natural isotopic abundance; studies of specific isotopes are labeled accordingly.

b Review: a status report on absorption cross section measurements.

c Refers to the low lying metastable state of O$_2$.

f J-calc-HC: a calculation of O$_2$ photodissociation coefficients in the Herzberg Continuum.

g σ-calc-HC: a calculation of absorption cross sections in the Herzberg Continuum.

h σ-calc-SR: a calculation of absorption cross sections of the Schumann-Runge bands.
The penetration of solar radiation in the atmosphere in the Schumann-Runge wavelength region was based originally on laboratory cross section measurements using insufficient spectral resolution. Yoshino et al.98 reported high resolution O\textsubscript{2} cross section measurements and band oscillator strengths of the (1,0) – (12,0) S-R bands in the wavelength range 179–202 nm at 300 K, obtaining the first set of results that were not limited by the instrument lineshape. Additional studies at other temperatures, wavelengths, and isotopic compositions have been carried out by Yoshino et al.,90,94-97 Lewis et al.,51,52 Cheung et al.,16,17 and Chiu et al.21 More recently, Yoshino et al.89 reported cross sections of the S-R bands in the window region between the rotational lines for wavelengths between 180 and 195 nm; these measurements supersede the their earlier values reported in Yoshino et al.98

Absorption cross sections of the S-R continuum (130–175 nm) at room temperature were measured by Watanabe et al.,83 Metzger and Cook,56 and Ogawa and Ogawa.66 Measurements of the temperature dependence were reported by Gibson et al.,30 Hudson et al.,35 Wang et al.,81 Kanik et al.,43 and Yoshino et al.101 Minschwaner et al.57 have fit temperature dependent (130<T<500 K) O\textsubscript{2} cross sections between 175 and 204 nm with polynomial expressions, providing an accurate model of the Schumann-Runge band cross sections that incorporates the most recent laboratory data. Detailed photodissociation rates for the Herzberg continuum \(\lambda > 200 \) nm were calculated by Nicolet and Kennes.64 A parameterization in the Herzberg continuum was reported by Nicolet and Kennes.62

For parameterizations of the O\textsubscript{2} absorption in the Schumann-Runge bands used in atmospheric modeling calculations see Kockarts45 and the review in WMO Report No. 16.86 More recent work by Murtagh,59 Nicolet and Kennes,63 and Minschwaner et al.57 incorporates results of the later laboratory measurements into efficient schemes for computing broadband transmission and photolysis rates. Transmission values obtained by Murtagh59 agree well with the WMO86 recommendations, although the high resolution calculations of Minschwaner et al.58 differ with the WMO values by as much as 10–20% at some wavelengths.

Absorption cross section measurements in the region 240–300 nm were performed by Fally et al.28 The different components of the spectrum, namely the discrete bands of the three Herzberg systems I, II, III (A, c, A’ \(\leftrightarrow \) X), the Herzberg continuum, and the collision-induced Wulf bands were reported separately. The

Table 4A.2. Recommended Absorption Cross Sections of O\textsubscript{2} between 205 and 245 nm

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>10-24 (\sigma) (cm2)</th>
<th>(\lambda) (nm)</th>
<th>10-24 (\sigma) (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>7.35</td>
<td>226</td>
<td>3.21</td>
</tr>
<tr>
<td>206</td>
<td>7.13</td>
<td>227</td>
<td>2.98</td>
</tr>
<tr>
<td>207</td>
<td>7.05</td>
<td>228</td>
<td>2.77</td>
</tr>
<tr>
<td>208</td>
<td>6.86</td>
<td>229</td>
<td>2.63</td>
</tr>
<tr>
<td>209</td>
<td>6.68</td>
<td>230</td>
<td>2.43</td>
</tr>
<tr>
<td>210</td>
<td>6.51</td>
<td>231</td>
<td>2.25</td>
</tr>
<tr>
<td>211</td>
<td>6.24</td>
<td>232</td>
<td>2.10</td>
</tr>
<tr>
<td>212</td>
<td>6.05</td>
<td>233</td>
<td>1.94</td>
</tr>
<tr>
<td>213</td>
<td>5.89</td>
<td>234</td>
<td>1.78</td>
</tr>
<tr>
<td>214</td>
<td>5.72</td>
<td>235</td>
<td>1.63</td>
</tr>
<tr>
<td>215</td>
<td>5.59</td>
<td>236</td>
<td>1.48</td>
</tr>
<tr>
<td>216</td>
<td>5.35</td>
<td>237</td>
<td>1.34</td>
</tr>
<tr>
<td>217</td>
<td>5.13</td>
<td>238</td>
<td>1.22</td>
</tr>
<tr>
<td>218</td>
<td>4.88</td>
<td>239</td>
<td>1.10</td>
</tr>
<tr>
<td>219</td>
<td>4.64</td>
<td>240</td>
<td>1.01</td>
</tr>
<tr>
<td>220</td>
<td>4.46</td>
<td>241</td>
<td>0.88</td>
</tr>
<tr>
<td>221</td>
<td>4.26</td>
<td>242</td>
<td>0.81</td>
</tr>
<tr>
<td>222</td>
<td>4.09</td>
<td>243</td>
<td>0.39</td>
</tr>
<tr>
<td>223</td>
<td>3.89</td>
<td>244</td>
<td>0.13</td>
</tr>
<tr>
<td>224</td>
<td>3.67</td>
<td>245</td>
<td>0.05</td>
</tr>
<tr>
<td>225</td>
<td>3.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
205–240 nm: Yoshino et al.88
241–245 nm: Fally et al.28
Herzberg continuum cross sections at 240 nm are in good agreement with the values reported by Yoshino et al.88 and Jenouvrier et al.40 The absorption cross sections measured by Fally et al.28 in the range 241–245 nm are entered in Table 4A-2. The absorption cross sections reported by Bogumil et al.53 are roughly five times larger (at 241 nm) than those reported by Fally et al.28 High resolution studies were performed by Yoshino et al.91,99,100 Huestis et al.39 Bao et al.,9 and Slanger et al.76 in the 242 to 248 nm range, where weak absorptions cross sections were reported for some vibrational bands in the Herzberg systems.

The O2 cross section uncertainty is estimated to be 1.2 (1σ) for both the Schumann-Runge bands and continuum regions of its spectrum.

Photolysis Quantum yields and Product studies: The overall quantum yield for photodissociation channel (1), O(1P) + O(3P), is unity, Φ(1) = 1, for 175 < λ < 242 nm. Above the threshold for channel (2), O(1P) + O(3D), at 175 nm, Lee et al.47 and Nee and Lee60 determined the quantum yield of O(3D) to be unity. Thus, Φ(2) = 1, in the wavelength range 139–175 nm. At 157 nm, both product channels (1) and (2) have been observed by Lin et al.54 with a relative yield for channel (1) of 0.55 ± 0.05. At wavelengths shorter than 139 nm Lee et al.57 observed strong variations in Φ(O(3D)), which was confirmed by Nee and Lee60 (116–139 nm), Lee and Nee46 (113–130 nm), and Lee and Nee50 (105–113 nm). Lee et al.47 reported Φ(O(3D)) = Φ(2) = 0.44 ± 0.05 at the Lyman-α line (121.567 nm). Lacoursière et al.46 determined the O(3D) yield across the entire Lyman-α profile from 121.2 to 121.9 nm at a spectral resolution of 0.0012 nm, and found Φ(O(3D)) to be strongly wavelength dependent in this window. Φ(O(3D)) varied from 1.0 at 121.35 nm through a minimum of 0.48 near 121.62 nm. A strong temperature dependence was found by Lewis et al.53 with a minimum yield of 0.28 near 121.62 nm at 84 K.

(18) Cheung, A. S. C.; Yoshino, K.; Parkinson, W. H.; Freeman, D. E. Herzberg continuum cross section of oxygen in the wavelength region 193.5 – 204.0 nm and band oscillator strengths of the (0,0) and (1,0) Schumann-Runge bands Can. J. Phys. 1984, 62, 1752-1762.

(24) Cook, G. R.; Ching, B. K.; Becker, R. A. Absorption by, and photoionization of, N$_2$ and O$_2$ in the 830-1000 Å range. Discuss. Faraday Soc. 1964, 37, 149-158.

(66) Ogawa, S.; Ogawa, M. Absorption cross sections of O$_2$ (a $^1\Delta_g$) and O$_2$(X $^3\Sigma_g^+$) in the region from 1087 to 1700 Å. *Can. J. Phys.* **1975**, *53*, 1845-1852.

(79) Vattulainen, J.; Wallenius, L.; Stenberg, J.; Hernberg, R.; Limn, V. Experimental determination of SO\textsubscript{2}, C\textsubscript{3}H\textsubscript{3}, and O\textsubscript{2} UV absorption cross sections at elevated temperatures and pressures. *Appl. Spectrosc.* 1997, 51, 1311-1315.

(84) Watanabe, K.; Marmo, F. F. Photoionization and total absorption cross section of gases. II. O\textsubscript{2} and N\textsubscript{2} in the region 850-1500 Å. *J. Chem. Phys.* 1956, 25, 965-971.

A2. O₃ (Ozone)

\[
\text{O}_3 + \text{hv} \rightarrow \text{O}^1\Pi + \text{O}_2 (\Sigma^+_g) \quad 101 \text{ kJ mol}^{-1} \quad 1180 \text{ nm} \quad (1)
\]

\[
\rightarrow \text{O}^3\Pi + \text{O}_2 (\alpha^1\Delta_g) \quad 195 \text{ kJ mol}^{-1} \quad 612 \text{ nm} \quad (2)
\]

\[
\rightarrow \text{O}^1\Pi + \text{O}_2 (\beta^1\Sigma^+_g) \quad 258 \text{ kJ mol}^{-1} \quad 463 \text{ nm} \quad (3)
\]

\[
\rightarrow \text{O}^1\Delta + \text{O}_2 (\Sigma^+_g) \quad 291 \text{ kJ mol}^{-1} \quad 411 \text{ nm} \quad (4)
\]

\[
\rightarrow \text{O}^1\Delta + \text{O}_2 (\alpha^1\Delta_g) \quad 386 \text{ kJ mol}^{-1} \quad 310 \text{ nm} \quad (5)
\]

\[
\rightarrow \text{O}^1\Delta + \text{O}_2 (\beta^1\Sigma^+_g) \quad 448 \text{ kJ mol}^{-1} \quad 267 \text{ nm} \quad (6)
\]

\[
\rightarrow 3 \text{ O}^1\Pi \quad 595 \text{ kJ mol}^{-1} \quad 201 \text{ nm} \quad (7)
\]

\[
\rightarrow \text{O}^1S + \text{O}_2 (\alpha^1\Delta_g) \quad 610 \text{ kJ mol}^{-1} \quad 196 \text{ nm} \quad (8)
\]

(Recommendation: 10-6, Note: 15-10, Evaluated: 10-6)

Absorption Cross Sections. The O₃ absorption cross sections in the 200–790 nm region can be separated into four systems: the Hartley band (200–300 nm), the Huggins bands (300–370 nm), the Chappuis band (370–790 nm), and the Wulf bands extending towards longer wavelengths. The Hartley band is the strongest band and peaks around 255 nm. Although its overall shape is very smooth, there is residual vibrational structure in the region 250–260 nm. The Huggins band consists of a series of individual peaks and is marked with a drastic change of absorption cross sections (over more than five orders of magnitude) and strong temperature dependence. The Chappuis band is composed of a vibrational band progression superimposed on a continuous absorption in the visible region and is about a thousand times weaker than the Hartley band. The very weak near infrared part of the Chappuis band is clearly structured and corresponds to a different electronic transition (called the “Wulf bands”).

Photolysis of ozone in the Hartley system occurs predominantly via the two spin-allowed channels (1) and (5) (Ball et al.⑩) whereas channels (2), (3) and (4) are spin forbidden. Channels (2) and (4) have been identified from photolysis in the Huggins band (Silvente et al.⑩ and Denzer et al.⑩).

For the three main bands in the 200–790 nm region, there have been many different measurements of the absorption spectrum and cross sections at various experimental (temperature and pressure) and instrumental conditions (resolution) during the last century as given in Table 4A-3. The available measurements can be organized into three groups: (A) measurements of absolute cross sections at single wavelengths (e.g. at the Hg resonance line at 253.65 nm), (B) measurements of absolute cross sections over broad spectral regions (typically covering a few hundred nm), (C) measurements of relative O₃ absorption spectra over broad spectral regions that have been scaled to absolute spectra using results from other studies (Type A or B), (D) measurements of the O₃ cross section at a single wavelength relative to the O₃ cross section at another wavelength.

Back to Index
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Spectral Range (nm)</th>
<th>Type</th>
<th>Resolution (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ny and Choong</td>
<td>1933</td>
<td>213–353</td>
<td>B</td>
<td>0.05</td>
<td>298</td>
</tr>
<tr>
<td>Vassy and Vassy</td>
<td>1948</td>
<td>450–601</td>
<td>A</td>
<td>not stated</td>
<td>291, 231, 193, 168</td>
</tr>
<tr>
<td>Vigroux</td>
<td>1953</td>
<td>230–793</td>
<td>B</td>
<td>0.05</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td></td>
<td>245–345</td>
<td></td>
<td></td>
<td>181–393</td>
</tr>
<tr>
<td>Inn and Tanaka</td>
<td>1953</td>
<td>200–750</td>
<td>B</td>
<td>0.5</td>
<td>290</td>
</tr>
<tr>
<td>Tanaka et al.</td>
<td>1953</td>
<td>105–220</td>
<td>B</td>
<td>0.5</td>
<td>300</td>
</tr>
<tr>
<td>Ogawa and Cook</td>
<td>1958</td>
<td>53–131</td>
<td>C</td>
<td>not stated</td>
<td>295</td>
</tr>
<tr>
<td>Inn and Tanaka</td>
<td>1959</td>
<td>200–350</td>
<td>B</td>
<td>–0.05</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400–750</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Hearn</td>
<td>1961</td>
<td>253.7–577.0</td>
<td>A</td>
<td>0.01–0.09</td>
<td>295</td>
</tr>
<tr>
<td>DeMore and Raper</td>
<td>1964</td>
<td>210–300</td>
<td>B</td>
<td>0.2</td>
<td>77, 273</td>
</tr>
<tr>
<td>Vigroux</td>
<td>1967</td>
<td>304–341</td>
<td>B</td>
<td>0.05</td>
<td>291</td>
</tr>
<tr>
<td>Griggs</td>
<td>1968</td>
<td>200–360</td>
<td>B</td>
<td>0.1</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450–850</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Vigroux</td>
<td>1969</td>
<td>230–270</td>
<td>B</td>
<td>0.1</td>
<td>291</td>
</tr>
<tr>
<td>Simons et al.</td>
<td>1973</td>
<td>300–370</td>
<td>B</td>
<td>0.4</td>
<td>195, 300, 333</td>
</tr>
<tr>
<td>Astholz et al.</td>
<td>1982</td>
<td>210–320</td>
<td>B</td>
<td>3</td>
<td>300, 500, 720, 900</td>
</tr>
<tr>
<td>Davenport</td>
<td>1982</td>
<td>253–370</td>
<td>B</td>
<td>not stated</td>
<td>206, 225, 271, 298</td>
</tr>
<tr>
<td>McPeters and Bass</td>
<td>1982</td>
<td>300–310</td>
<td>C</td>
<td>0.02</td>
<td>229, 245, 295</td>
</tr>
<tr>
<td>Daumont et al.</td>
<td>1983</td>
<td>310–350</td>
<td>B</td>
<td>0.012</td>
<td>223, 294</td>
</tr>
<tr>
<td>Brion et al.</td>
<td>1983</td>
<td>310–350</td>
<td>B</td>
<td>0.012</td>
<td>223, 294</td>
</tr>
<tr>
<td>Brion et al.</td>
<td>1984</td>
<td>310–350</td>
<td>B</td>
<td>0.012</td>
<td>223, 294</td>
</tr>
<tr>
<td>Freeman et al.</td>
<td>1984</td>
<td>250–350</td>
<td>C*</td>
<td>0.002</td>
<td>195</td>
</tr>
<tr>
<td>Bass and Paur</td>
<td>1985</td>
<td>230–350</td>
<td>C*</td>
<td><0.025</td>
<td>200, 298</td>
</tr>
<tr>
<td>Paur and Bass</td>
<td>1985</td>
<td>245–340</td>
<td>C*</td>
<td><0.025</td>
<td>203, 218, 228, 243, 273, 298</td>
</tr>
<tr>
<td>Freeman et al.</td>
<td>1985</td>
<td>281–335</td>
<td>A</td>
<td>0.003</td>
<td>195, 228, 293</td>
</tr>
<tr>
<td>Molina and Molina</td>
<td>1986</td>
<td>185–350</td>
<td>B</td>
<td>0.07</td>
<td>226, 263, 298</td>
</tr>
<tr>
<td>Mauersberger et al.</td>
<td>1986</td>
<td>253.7</td>
<td>A</td>
<td>not stated</td>
<td>297.5</td>
</tr>
<tr>
<td>Mauersberger et al.</td>
<td>1987</td>
<td>253.7</td>
<td>A</td>
<td>not stated</td>
<td>297.5</td>
</tr>
<tr>
<td>Barnes and Mauersberger</td>
<td>1987</td>
<td>237.7</td>
<td>A,C</td>
<td>not stated</td>
<td>195, 221, 237, 253, 273, 297, 318, 335, 351</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1988</td>
<td>238.2–344.4</td>
<td>A,C*</td>
<td>0.13–0.003</td>
<td>195, 228, 295</td>
</tr>
<tr>
<td>Malicet et al.</td>
<td>1989</td>
<td>253.36</td>
<td>A</td>
<td>not stated</td>
<td>229, 295</td>
</tr>
<tr>
<td>Cacciani et al.</td>
<td>1989</td>
<td>339–355</td>
<td>B</td>
<td>0.012</td>
<td>220, 293</td>
</tr>
<tr>
<td>Amoruso et al.</td>
<td>1990</td>
<td>590–610</td>
<td>B</td>
<td>0.05</td>
<td>230, 299</td>
</tr>
<tr>
<td>Daumont et al.</td>
<td>1992</td>
<td>195–345</td>
<td>B*</td>
<td>0.01</td>
<td>295</td>
</tr>
<tr>
<td>Anderson and Mauersberger</td>
<td>1992</td>
<td>543.5–632.8</td>
<td>A</td>
<td>not stated</td>
<td>295</td>
</tr>
<tr>
<td>Anderson et al.</td>
<td>1993</td>
<td>750–975</td>
<td>A</td>
<td>not stated</td>
<td>295</td>
</tr>
<tr>
<td>Brion et al.</td>
<td>1993</td>
<td>195–345</td>
<td>B*</td>
<td>0.01</td>
<td>218, 228, 243, 295, 273</td>
</tr>
<tr>
<td>Yoshino et al.</td>
<td>1993</td>
<td>185–254</td>
<td>A</td>
<td>0.13–0.003</td>
<td>195, 228, 295</td>
</tr>
<tr>
<td>Burkholder and Talukdar</td>
<td>1994</td>
<td>407–763</td>
<td>C*</td>
<td>0.2</td>
<td>220, 240, 260, 280, 298</td>
</tr>
<tr>
<td>Malicet et al.</td>
<td>1995</td>
<td>195–345</td>
<td>C*</td>
<td>0.01</td>
<td>218, 228, 243, 273, 295, 295, 298</td>
</tr>
<tr>
<td>Mason et al.</td>
<td>1996</td>
<td>110–172</td>
<td>C*</td>
<td>0.05</td>
<td>298</td>
</tr>
<tr>
<td>Brion et al.</td>
<td>1998</td>
<td>345–830</td>
<td>B*</td>
<td>0.01</td>
<td>295</td>
</tr>
<tr>
<td>Burrows et al.</td>
<td>1999</td>
<td>231–794</td>
<td>B*</td>
<td>0.2–0.4</td>
<td>202, 221, 241, 273, 293</td>
</tr>
</tbody>
</table>
Earlier reviews of the measured absorption cross sections were presented by Inn and Tanaka, Ackermann, Hudson, Nicolet, Brion et al., Steinfeld et al., Bacis et al., Matsumi and Kawasaki, and the WMO Report No. 16, which was the basis for the JPL-97-4 evaluation. Orphal has recently critically reviewed the available laboratory measurements up to 2003, and the JPL 10-6 evaluation is partly based on that review. Relevant for that evaluation are the measurements of type B and C, particularly those studies whose data were digitally available (marked with an asterisk *). Unfortunately, the recommended data set for the JPL-97-4 evaluation of Molina and Molina was not considered in his review.

In the Hartley and Huggins bands (about 240–325 nm) there is generally very good agreement (better than 2-3%) between the data measured at room temperature (293–300 K) by Bass and Paur and Paur and Bass, Molina and Molina, Freeman et al., Yoshino et al., the Reims-team (Daumont et al., Brion et al., Malicet et al., and Brion et al.), Yoshino et al., the Bremen-team (Burrows et al., Voigt et al., Bogumil et al., Gorshelev et al., Petersen et al., and Viallon et al.) and Blom, Reins et al., and Viallon et al. The older data by Ny and Choong, Inn and Tanaka, and Vigroux are about 8% greater than the data of Molina and Molina. The vibrational structure between 240 and 270 nm was observed in most studies, except those of Inn and Tanaka, DeMore and Raper, Davenport, and Astholz et al., who used lower resolution instruments.

Measurements of absorption cross sections in the shorter wavelength VUV region were performed by Tanaka et al., Ogawa and Cook, and Mason et al. At the Lyman-α wavelength, 121.567 nm, an absorption cross section of 2.32×10^{-17} cm2 molecule$^{-1}$ was cited in the review by Ackermann. Ogawa and Cook measured 2.28×10^{-17} cm2 molecule$^{-1}$ whereas Mason et al. reported 2.99×10^{-17} cm2 molecule$^{-1}$. The latter more recent value is recommended and entered in Table 4A-4.

A comparison of the O$_3$ cross-sections at the Hg-line wavelength 253.7 nm was performed by Orphal involving 13 absolute measurements and a mean value of $(114.1 \pm 0.9) \times 10^{-19}$ cm2 molecule$^{-1}$. Viallon et al. has since reported a cross section value of $(112.7 \pm 0.97) \times 10^{-19}$ cm2 molecule$^{-1}$. The temperature dependence of the cross sections at 253.7 nm has been measured by Barnes and Mauersberger between 195 and 351 K and by Malicet et al. at 229 and 295 K. It has to be noted that the data of Bass and Paur and Bass are normalized to the absolute value 114.7×10^{-19} cm2 molecule$^{-1}$ at 253.7 nm and 295 K measured by Hearn. In the range 230–260 nm, the data of the Reims-team (Daumont-Brion-Malicet-Brion) are generally lower (up to 2.5%) than the data of Molina and Molina, Bass and Paur, and the Bremen-team (Burrows-Voigt-Bogumil-Gorshelev-Serdyuchenko). Furthermore, the data of Voigt et al. show a strong baseline shift below 255 nm and in the range 310–320 nm; in addition, the spectra are very noisy in the Hartley band maximum. The data of Bogumil et al. contain periodic artifacts on the order of 0.5–1.0% in the range 240–270 nm and a stray light feature around 305 nm on the order of 2%.

Below 225 nm the room temperature cross sections of Molina and Molina, DeMore and Raper, and the Reims-team (Daumont-Brion-Malicet) agree within 1-2%, but are 2-5% larger than the measurements of

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Spectral Range (nm)</th>
<th>Type</th>
<th>Resolution (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voigt et al.</td>
<td>2001</td>
<td>230–850</td>
<td>C*</td>
<td>5 cm$^{-1}$</td>
<td>203, 223, 246, 280, 293</td>
</tr>
<tr>
<td>Bogumil et al.</td>
<td>2001</td>
<td>230–2400</td>
<td>C*</td>
<td>0.17–1.44</td>
<td>203, 293</td>
</tr>
<tr>
<td>Bogumil et al.</td>
<td>2003</td>
<td>230–1070</td>
<td>C*</td>
<td>0.2–0.4</td>
<td>203, 223, 243, 273, 293</td>
</tr>
<tr>
<td>Enami et al.</td>
<td>2004</td>
<td>759–768</td>
<td>A</td>
<td>0.002</td>
<td>214–5, 245, 260, 273, 296–8</td>
</tr>
<tr>
<td>El Helou et al.</td>
<td>2005</td>
<td>540–1080</td>
<td>A</td>
<td>4 cm$^{-1}$</td>
<td>144, 150, 175, 222–225, 291–294</td>
</tr>
<tr>
<td>Fuchs et al.</td>
<td>2009</td>
<td>404</td>
<td>D</td>
<td>0.5</td>
<td>296</td>
</tr>
<tr>
<td>Axson et al.</td>
<td>2011</td>
<td>350–470</td>
<td>C</td>
<td>0.27–0.5</td>
<td>296</td>
</tr>
<tr>
<td>Petersen et al.</td>
<td>2012</td>
<td>244.06, 248.32, 257.34</td>
<td>D</td>
<td>–0.002</td>
<td>295</td>
</tr>
<tr>
<td>Gorshelev et al.</td>
<td>2014</td>
<td>213–1100</td>
<td>C</td>
<td>0.02–0.06</td>
<td>293</td>
</tr>
<tr>
<td>Serdyuchenko et al.</td>
<td>2014</td>
<td>213–1100</td>
<td>C</td>
<td>0.02–0.06</td>
<td>193–293</td>
</tr>
<tr>
<td>Viallon et al.</td>
<td>2015</td>
<td>244.06, 248.32, 253.65, 257.34</td>
<td>A</td>
<td>–0.002 atomic line for 253.65</td>
<td>296</td>
</tr>
</tbody>
</table>
Yoshino et al. Other reported values measured by Ny and Choong, Inn and Tanaka, Astholz et al., and Griggs differ up to 15%.

In the Huggins bands (310–350 nm) the studies differ in spectral resolution, which is mostly relevant only to atmospheric remote sensing. At wavelengths larger than 310 nm the vibrational structure becomes pronounced. In the range 310–340 nm, the agreement between the different studies is rather good (about 2%) for the data of Bass and Paur, the Reims-team (Daumont-Brion-Malicet-Brion), Burrows et al., Gorsheliev et al., and Serdyuchenko et al., although important differences (up to 13%) due to wavelength shifts and spectral resolution are reported by Orphal. The data of Bass and Paur and of the Reims-team (Daumont-Brion-Malicet-Brion) show wavelength shifts of more than 0.02 nm. The data of Voigt et al. and Bogumil et al. contain systematic baseline drifts. Above 312 nm, the data of Molina and Molina, which are listed every 0.5 nm up to 350 nm, occasionally miss the maxima and minima of the peaks. The reported values by Cacciani et al. are typically 5–8% lower than the values of Molina and Molina in the range 339–355 nm.

The O₃ absorption cross sections in the 350–450 nm region between the Huggins and Chappuis bands are very small and the available measurements of absolute values scatter significantly. They have been measured by Brion et al., the Bremen team (Burrows-Voigt-Bogumil-Gorsheliev-Serdyuchenko), Fuchs et al. (at 404 nm), and Axson et al. At the minimum near 378 nm, the reported absolute cross sections at 298 K vary between 5 × 10⁻²³ cm² molecule⁻¹ from Voigt et al. and 5 × 10⁻²⁴ cm² molecule⁻¹ from Brion et al.

Absorption cross section measurements of the Chappuis band of O₃ in the wavelength range 450–750 nm have been reported by Burkholder and Talukdar, Brion et al., the Bremen team (Burrows-Voigt-Bogumil-Gorsheliev-Serdyuchenko), El Helou et al., and at single wavelengths by Hearn. Anderson and Mauersberger, Anderson et al., and Enami et al. At the peak of the Chappuis band near 602 nm, the values agree within a few percent, although the data of the Bremen-team (Burrows-Voigt-Bogumil) are consistently larger than those of Brion et al. (by 2%) and Burkholder and Talukdar (by 4%) (the latter data are scaled using the measurements of Anderson and Mauersberger). Note that there are pronounced deviations of data from Burkholder and Talukdar in the region 425–490 nm. The older values of Vassy and Vassy, Vigroux, Inn and Tanaka, Griggs, and Amoruso deviate up to 20%.

Absorption cross sections in the Wulf band region (wavelength >750 nm) have been reported by Anderson et al., Burkholder and Talukdar, the Bremen-team (Burrows-Voigt-Bogumil-Gorsheliev-Serdyuchenko), Enami et al., and El Helou et al. The data measured at room temperature by the latter group are in excellent agreement (within 0.25%) with those of Anderson et al.

The temperature dependence of the O₃ cross sections has also been studied by several of the groups mentioned above and tabulated in Table 4A-3. In the critical review, Orphal calculated and compared the integrated cross sections for 5 temperatures in the range 203–295 K in the different spectral regions of the O₃ spectrum. At all temperatures the agreement of the integrated cross sections in the Hartley band is better than 2% and less good agreement in the Chappuis band (4%). In particular, the integrated cross sections of Burkholder and Talukdar lie systematically below the other measurements by about 3% and the data of Burrows et al. are always higher by 2%. In the Huggins bands and the blue tail of the Chappuis band the integrated cross sections scatter by several percent (up to 5%), indicating systematic differences between the available data. The Hartley band integrated cross sections remain constant in the temperature range 203–293 K within the experimental uncertainties. The integrated cross sections in the Huggins bands decrease by more than 30% between 298 K and 203 K and the differential cross sections of the bands increase significantly.

In the Hartley band most studies report a slight (0.9–1.6%) increase of the cross section below 260 nm between room temperature and low temperatures 202–298 K, while Yoshino et al. concluded that the temperature effect is negligible. Above 260 nm the cross section decreases significantly at lower temperatures. This effect is due to the changing populations of the various vibrational and rotational quantum states of ozone and has been analyzed by Simons et al. The cross section values are not linearly proportional to the temperature; instead the effect is larger at the maxima than it is at the minima of the spectral features.

The absorption cross sections in the Huggins bands (310–350 nm) of O₃ decrease strongly with decreasing temperatures. Additionally, they depend on instrumental line shape and differences in wavelength calibration so that discrepancies up to 20% at the lowest temperatures are observed between the various studies. Comparison of the spectra obtained in the temperature range 220–229 K show good agreement (~3% at 325 nm, ~5% at 340 nm) with the data of Bass and Paur, Molina and Molina, the Brion team (Daumont-Brion-Malicet-Brion), and Burrows et al. The data of Voigt et al. and Bogumil et al. display sudden baseline jumps and are consistently lower than the other cited data sets. Voigt et al. observed in the region
335–380 nm the presence of “hot bands”, which disappear with decreasing temperature, and “cold bands”, which become more pronounced at lower temperatures.

In the Chappuis band, the available cross sections agree in showing a very small increase (1%) with decreasing temperature in the wavelength range 550–560 nm. However there is strong disagreement in the relative temperature dependence of the cross sections in the wings (400–550 nm and 650–790 nm) of the Chappuis band. Burkholder and Talukdar report a decrease from 4% at 520 nm to 40% at 420 nm between 298 and 220 K, while Burrows et al. observe a decrease at 420 nm to 70% at 221 K, and Bogumil et al. a decrease of 20% at 223 K. These discrepancies could be due to baseline problems in the different measurements. It was also noted by the Bremen-team (Burrows-Voigt-Bogumil-Serdyuchenko) that in the wings the differential cross sections increase up to 10% between 298 and 203 K. In addition, the band structures between 400 and 500 nm shift toward shorter wavelengths with decreasing temperature. El Helou et al. found the cross sections of the Wulf bands to be highly temperature dependent, increasing up to 91% upon reducing the temperature to 150 K.

Three different models have been proposed to reproduce the temperature dependence of the O₃ cross sections in the entire ultraviolet and visible regions within the experimental uncertainties. The first model was developed for the Hartley band by Adler-Golden and uses an exponential function. The second model, developed by Bass and Paur, uses a quadratic polynomial to be applied in the Hartley and Huggins bands. The third model of Voigt et al. uses a double exponential function. The accuracy of the models was checked by Orphal, who concluded that the experimental data are better reproduced using a quadratic polynomial.

The pressure dependence of the O₃ absorption cross sections was investigated by Hearn in the Hartley band and by Voigt et al. in the entire spectral region 240–790 nm. Both groups did not find experimental or theoretical support for pressure dependence, although Voigt et al. proposed that temperature variations of the cross sections around 400 nm might be due to the formation of a weakly bound O₂-O₃ complex.

The recommended absorption cross sections are listed in Table 4A-4, averaged over atmospheric intervals at 218 K and at room temperature (293–298 K). It has to be noted that cross sections are listed over 500 cm⁻¹ intervals in the region 185–300 nm, over 1 nm intervals in the region 300–321 nm, over 2 nm intervals in the region 321.5–326.5 nm, and over 5 nm intervals in the region 330–825 nm. The 218 K values measured by the Reims-team (Daumont-Brion-Malicet-Brion) are only listed for the range 196–340 nm. The room temperature data were selected for the range 185–233 nm from the data of Molina and Molina, for the range 323–310 nm from Burrows et al., and for the range 310–825 nm from the Reims team (Daumont-Brion-Malicet-Brion).

The uncertainty factor for the room temperature O₃ cross section is estimated to be 1.02 (1σ) near the peaks of the Hartley and Chappuis bands and the strong Huggins peaks. The estimated uncertainty in the 360–400 nm region is greater, 1.1 (1σ), primarily due to the spread in the available data sets.
Table 4A-4. Recommended Absorption Cross Sections of O$_3$ at 218 and 293–298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>218 K</th>
<th>293–298 K</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>293–298 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>121.567 (Lyman α)</td>
<td>2990</td>
<td>62.2</td>
<td>412.5–417.5</td>
<td>0.00295</td>
<td>185.185–186.916</td>
<td>281.690</td>
</tr>
<tr>
<td>186.916–186.679</td>
<td>57.6</td>
<td>417.5–422.5</td>
<td>0.00569</td>
<td>188.679–190.476</td>
<td>52.6</td>
<td>422.5–427.5</td>
</tr>
<tr>
<td>190.476–192.308</td>
<td>47.7</td>
<td>427.5–432.5</td>
<td>0.00882</td>
<td>192.308–194.175</td>
<td>42.9</td>
<td>432.5–437.5</td>
</tr>
<tr>
<td>194.175–196.078</td>
<td>38.5</td>
<td>437.5–442.5</td>
<td>0.01655</td>
<td>196.078–198.020</td>
<td>34.4</td>
<td>442.5–447.5</td>
</tr>
<tr>
<td>198.020–200.000</td>
<td>32.0</td>
<td>447.5–452.5</td>
<td>0.02180</td>
<td>200.000–202.020</td>
<td>31.2</td>
<td>452.5–457.5</td>
</tr>
<tr>
<td>202.020–204.082</td>
<td>32.4</td>
<td>457.5–462.5</td>
<td>0.03662</td>
<td>204.082–206.186</td>
<td>36.2</td>
<td>462.5–467.5</td>
</tr>
<tr>
<td>206.186–208.333</td>
<td>43.2</td>
<td>467.5–472.5</td>
<td>0.04102</td>
<td>208.333–210.526</td>
<td>54.2</td>
<td>472.5–477.5</td>
</tr>
<tr>
<td>210.526–212.766</td>
<td>69.6</td>
<td>477.5–482.5</td>
<td>0.07542</td>
<td>212.766–215.054</td>
<td>90.6</td>
<td>482.5–487.5</td>
</tr>
<tr>
<td>215.054–217.391</td>
<td>119</td>
<td>487.5–492.5</td>
<td>0.08162</td>
<td>217.391–219.780</td>
<td>155</td>
<td>492.5–497.5</td>
</tr>
<tr>
<td>219.780–222.222</td>
<td>201</td>
<td>497.5–502.5</td>
<td>0.12102</td>
<td>222.222–224.719</td>
<td>256</td>
<td>502.5–507.5</td>
</tr>
<tr>
<td>224.719–227.273</td>
<td>323</td>
<td>507.5–512.5</td>
<td>0.15822</td>
<td>227.273–229.885</td>
<td>403</td>
<td>512.5–517.5</td>
</tr>
<tr>
<td>229.885–232.558</td>
<td>492</td>
<td>517.5–522.5</td>
<td>0.18322</td>
<td>232.558–235.294</td>
<td>589</td>
<td>522.5–527.5</td>
</tr>
<tr>
<td>235.294–238.095</td>
<td>692</td>
<td>527.5–532.5</td>
<td>0.26722</td>
<td>238.095–240.964</td>
<td>799</td>
<td>532.5–537.5</td>
</tr>
<tr>
<td>240.964–243.902</td>
<td>905</td>
<td>537.5–542.5</td>
<td>0.29522</td>
<td>243.902–246.914</td>
<td>995</td>
<td>542.5–547.5</td>
</tr>
<tr>
<td>246.914–250.000</td>
<td>1074</td>
<td>547.5–552.5</td>
<td>0.33722</td>
<td>250.000–253.165</td>
<td>1116</td>
<td>552.5–557.5</td>
</tr>
<tr>
<td>253.165–256.410</td>
<td>1136</td>
<td>557.5–562.5</td>
<td>0.39822</td>
<td>256.410–259.740</td>
<td>1105</td>
<td>562.5–567.5</td>
</tr>
<tr>
<td>259.740–263.158</td>
<td>1047</td>
<td>567.5–572.5</td>
<td>0.46722</td>
<td>263.158–266.667</td>
<td>952</td>
<td>572.5–577.5</td>
</tr>
<tr>
<td>266.667–270.270</td>
<td>823</td>
<td>577.5–582.5</td>
<td>0.46422</td>
<td>270.270–273.973</td>
<td>681</td>
<td>582.5–587.5</td>
</tr>
<tr>
<td>273.973–277.778</td>
<td>531</td>
<td>587.5–592.5</td>
<td>0.44722</td>
<td>277.778–281.690</td>
<td>391</td>
<td>592.5–597.5</td>
</tr>
<tr>
<td>281.690–285.714</td>
<td>271</td>
<td>597.5–602.5</td>
<td>0.51322</td>
<td>285.714–289.855</td>
<td>175</td>
<td>602.5–607.5</td>
</tr>
<tr>
<td>289.855–294.118</td>
<td>105</td>
<td>607.5–612.5</td>
<td>0.47822</td>
<td>294.118–298.507</td>
<td>59.4</td>
<td>612.5–617.5</td>
</tr>
<tr>
<td>298.507–299.5</td>
<td>40.7</td>
<td>617.5–622.5</td>
<td>0.40622</td>
<td>299.5–300.5</td>
<td>35.1</td>
<td>622.5–627.5</td>
</tr>
<tr>
<td>300.5–301.5</td>
<td>30.5</td>
<td>627.5–632.5</td>
<td>0.35622</td>
<td>301.5–302.5</td>
<td>26.9</td>
<td>632.5–637.5</td>
</tr>
<tr>
<td>302.5–303.5</td>
<td>22.9</td>
<td>637.5–642.5</td>
<td>0.29722</td>
<td>303.5–304.5</td>
<td>20.6</td>
<td>642.5–647.5</td>
</tr>
<tr>
<td>304.5–305.5</td>
<td>17.3</td>
<td>647.5–652.5</td>
<td>0.25122</td>
<td>305.5–306.5</td>
<td>15.6</td>
<td>652.5–657.5</td>
</tr>
<tr>
<td>306.5–307.5</td>
<td>13.3</td>
<td>657.5–662.5</td>
<td>0.21022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\Phi(\lambda, T) = \left(\frac{q_1}{q_1 + q_2} \right) \times A_1 \times \exp \left(-\frac{X_1 - \lambda}{\omega_1} \right)^4 + \left(\frac{q_2}{q_1 + q_2} \right) \times A_2 \times \left(\frac{T}{300} \right)^2 \times \exp \left(-\frac{X_2 - \lambda}{\omega_2} \right)^2 \]

\[+ A_3 \times \left(\frac{T}{300} \right)^{1.5} \times \exp \left(-\frac{X_3 - \lambda}{\omega_3} \right)^2 + c \]

\text{Eqn 4-1}

Note:

T = 298 K, 185.185–323.585 nm, Molina and Molina \cite{Molina1998}
T = 293 K, 232.558–309.5 nm, Burrows et al. \cite{Burrows1998}

Photolysis Quantum Yields and Product Studies. The recommendation for the O\(^{1}\)D quantum yield from ozone photolysis as a function of wavelength and temperature, based on the review of Matsumi et al. \cite{Matsumi1998} is given by the expression (Eqn 4-1)
where \(q_i = \exp \left(-\frac{v_i}{RT} \right) \) and \(X_{1-3}, A_{1-3}, \omega_{0-1}, v_{1-2} \) and \(c \) are best-fit parameters given in Table 4A-5, \(\lambda \) is in nm, \(T \) is in K, and \(R = 0.695 \) (cm\(^{-1}\) K\(^{-1}\)). The parameter \(c \) is assumed to be temperature and wavelength independent. This expression is valid only for the wavelength range 306–328 nm and temperature range 200–320 K.

Table 4A-5. Parameters for the Calculation of \(O(\text{I}D) \) Quantum Yields

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(i = 1)</th>
<th>(i = 2)</th>
<th>(i = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_i) (nm)</td>
<td>304.225</td>
<td>314.957</td>
<td>310.737</td>
</tr>
<tr>
<td>(\omega_i) (nm)</td>
<td>5.576</td>
<td>6.601</td>
<td>2.187</td>
</tr>
<tr>
<td>(A_i)</td>
<td>0.8036</td>
<td>8.9061</td>
<td>0.1192</td>
</tr>
<tr>
<td>(v_i) (cm(^{-1}))</td>
<td>0</td>
<td>825.518</td>
<td>–</td>
</tr>
<tr>
<td>(c)</td>
<td>0.0765</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

At room temperature (298 K) the uncertainties of the quantum yield values calculated with the above expression are estimated to be ±10% (1σ) for \(\Phi(\lambda, 298 \) K) > 0.4, while the uncertainties are estimated to be ±0.04 for \(\Phi(\lambda, 298 \) K) < 0.4. At temperatures other than room temperature, the uncertainties are estimated to be ±15% for \(\Phi(\lambda, T) \geq 0.4 \) and ±0.06 for \(\Phi(\lambda, T) < 0.4 \).

In the wavelength range 329–340 nm the recommended value of \(\Phi(O^{(\text{I}D))} = 0.08 \pm 0.04 \), independent of temperature. For \(\lambda > 340 \) nm, the quantum yield may be non-zero but no recommendation is made. For the wavelength range 220–305 nm, the recommended \(O(\text{I}D) \) quantum yield is 0.90, independent of temperature, based on the study by Takahashi et al.\(^{69} \) and the review by Matsumi and Kawasaki.\(^{49} \) The quantum yield for \(O(\text{I}D) \) formation in the range 193–225 nm was measured by Nishida et al.\(^{56} \) who found that the \(O(\text{I}D) \) yield decreased from 0.90 ± 0.12 (225 nm) to 0.48 ± 0.03 (193 nm). A simple expression in the wavelength range 193–225 nm was derived

\[
\Phi_{O(\text{I}D)}(\lambda) = 1.37 \times 10^{-2} \lambda - 2.16
\]

Matsumi et al.\(^{48} \) derived the recommended values for the temperature and wavelength dependences of \(\Phi(O^{(\text{I}D)} \) using the following procedure: the measured \(O(\text{I}D) \) quantum yields at 298 K between 306 and 328 nm from eight studies (Talukdar et al.,\(^{73} \) Takahashi et al.,\(^{70} \) Ball et al.,\(^{10} \) Armerding et al.,\(^{6} \) Bauer et al.,\(^{14} \) which superseded the data of Silvente et al.\(^{64} \) from the same group, Brock and Watson,\(^{22} \) Trolier and Wiesenfeld,\(^{75} \) and Smith et al.\(^{66} \) were normalized using \(\Phi(O^{(\text{I}D)} = 0.79 \) at 308 nm. This value was derived from the studies listed in Table 1 of Matsumi et al.\(^{48} \) The renormalized data were then averaged. The wavelength dependence quantum yield data at various temperatures reported by Talukdar et al.,\(^{72,73} \) Takahashi et al.,\(^{70} \) Hancock and Hofzumahaus\(^{38} \) (this includes all the data from the Oxford group), Bauer et al.,\(^{14} \) and Smith et al.\(^{66} \) were normalized to the value at 308 nm given above. These normalized data were used to obtain the best fit parameters for Eqn. 4-1 for the wavelength range 306–328 nm and temperature range 200–320 K. Because of the large number of studies upon which the 298 K evaluation is based, the averaged 298 K data were given a larger weight in the fitting procedure than the data at other temperatures. The recommended \(O(\text{I}D) \) quantum yields calculated from Eqn. 4-1 using the fitting parameters given in Table 4A-5 are shown in Figure 4-1 for 200, 253 and 298 K in the wavelength range 306–328 nm (solid lines).

Products and yields from \(O_3 \) photodissociation at 157.6 nm were measured by Taherian and Slangen.\(^{58} \) The primary atomic oxygen yield was measured to be 1.90 ± 0.30, of which 71% is \(O(\text{P}) \) and 29% \(O(\text{I}D) \).

Turnipseed et al.\(^{76} \) measured the quantum yield for \(O(\text{P}) \) and \(O(\text{I}D) \) formation from 193 nm photolysis to be 0.57 ± 0.14 and 0.46 ± 0.29, respectively, and at 222 nm they observed a quantum yield of 0.13 ± 0.02 for \(O(\text{P}) \) and 0.87 ± 0.04 for \(O(\text{I}D) \).

Lee et al.\(^{44} \) reported an upper limit of <0.1% for the quantum yield for the formation of \(O(\text{I}S) \) via channel (8) in the 170–240 nm range. Takahashi et al.\(^{71} \) measured the quantum yield of \(O(\text{S}) \) formation to be (2.5 ± 1.1) \(\times 10^{-3} \) in the 193 nm photolysis of \(O_3 \), while Nakayama et al.\(^{54} \) reported (1.4 ± 0.4) \(\times 10^{-4} \) and (5 ± 3) \(\times 10^{-5} \) for the \(O(\text{I}S) \) formation at 215 and 220 nm, respectively.
Figure 4A-1. Recommended $O^\text{(1D)}$ quantum yields calculated from Eqn. 4-1 using the fitting parameters given in Table 4A-5 for 200, 253 and 298 K in the wavelength range 306–328 nm (solid lines), based on Matsumi et al. \(^\text{48}\) Contributions from different photolysis channels are indicated: region I corresponds to $O^\text{(1D)}$ formed via channel (5), $O^\text{(1D)} + O_2(a^1\Delta_g)$, region II (vertical hatching) represents the contribution of the hot-band excitation process via channel (5), while region III (diagonal hatching) corresponds to the contribution of $O^\text{(1D)}$ via the spin-forbidden channel (4), $O^\text{(1D)} + O_2(X^3\Sigma_g^-)$.

(6) Armerding, W.; Comes, F. J.; Schulke, B. $O^\text{(1D)}$ quantum yields of ozone photolysis in the UV from 300 nm to its threshold at 355 nm. J. Phys. Chem. 1995, 99, 3137-3143.
(10) Ball, S. M.; Hancock, G.; Martin, S. E.; Pinot de Moira, J. C. A direct measurement of the O(1D) quantum yields from the photodissociation of ozone between 300 and 328 nm. Chem. Phys. Lett. 1997, 264, 531-538.

(38) Hancock, G.; Hofzumahaus, A. Experimental Study of the Altitude Dependence of the Tropospheric Ozone Photolysis Frequency, J(O(1D)) Between 0 and 12 km Height (ATOP), EU R and D Programme Environment and Climate ENV4-CT95-0158, 1997.

4.4 Bibliography – Ox Photochemistry

Armerding, W.; Comes, F. J.; Schulke, B. O(1D) quantum yields of ozone photolysis in the UV from 300 nm to its threshold at 355 nm. J. Phys. Chem. 1995, 99, 3137-3143.

Ball, S. M.; Hancock, G.; Martin, S. E.; Pinot de Moira, J. C. A direct measurement of the O(1D) quantum yields from the photodissociation of ozone between 300 and 328 nm. Chem. Phys. Lett. 1997, 264, 531-538.

Hancock, G.; Hofzumahaus, A. Experimental Study of the Altitude Dependence of the Tropospheric Ozone Photolysis Frequency, J(Ο(1D)) Between 0 and 12 km Height (ATOP), EU R and D Programme Environment and Climate ENV4-CT95-0158, 1997.

4-37
SECTION 4B. HOx PHOTOCHEMISTRY

B1. HO₂ (hydroperoxyl radical)

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>368</td>
</tr>
<tr>
<td>195</td>
<td>402</td>
</tr>
<tr>
<td>200</td>
<td>423</td>
</tr>
<tr>
<td>205</td>
<td>427</td>
</tr>
<tr>
<td>210</td>
<td>415</td>
</tr>
<tr>
<td>215</td>
<td>385</td>
</tr>
<tr>
<td>220</td>
<td>341</td>
</tr>
<tr>
<td>225</td>
<td>288</td>
</tr>
<tr>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>235</td>
<td>173</td>
</tr>
<tr>
<td>240</td>
<td>122</td>
</tr>
<tr>
<td>245</td>
<td>79.7</td>
</tr>
<tr>
<td>250</td>
<td>48.0</td>
</tr>
<tr>
<td>255</td>
<td>26.3</td>
</tr>
<tr>
<td>260</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Note: Tyndall et al.¹⁵ review

Absorption Cross Sections: UV absorption cross sections of HO₂ in the wavelength range 190–260 nm have been measured at room temperature by Paukert and Johnston,¹² Hochanadel et al.,⁴ Cox and Burrows,¹ McAdam et al.,¹⁰ Kurylo et al.,⁵ Moortgat et al.,¹¹ Dagaut and Kurylo,³ Lightfoot and Jemi-Alade,⁶ who measured the cross sections at temperatures up to 777 K, Crowley et al.,² Maricq and Szente,⁹ Roehl et al.,¹³ and Sander et al.¹⁴ The HO₂ absorption cross section studies have been evaluated in reviews by Lightfoot et al.,⁷ Wallington et al.,¹⁶ and Tyndall et al.¹⁵ Discrepancies in the shape of the HO₂ spectrum and its absolute cross sections, particularly around 200 nm, exist among the available studies. Tyndall et al.¹⁵ recommend absolute HO₂ cross sections based on a comparison of absorption cross sections for HO₂, CH₃O₂ and C₂H₅O₂ at 240 nm obtained by Roehl et al., Lightfoot and Jemi-Alade, and Maricq and Szente combined with the measurements by Crowley et al.² at 240 nm. Tyndall et al.¹⁵ used the expression

\[
\sigma = \frac{\sigma_{\text{med}}}{1 - b} \exp \left\{ -a \ln \left(\frac{v - b}{v_{\text{med}} - b} \right) \right\}
\]

where \(\sigma_{\text{med}} = 1.64 \times 10^{-18} \) cm² molecule⁻¹, \(a = 4.91 \), \(b = 30612 \) cm⁻¹ and \(v_{\text{med}} = 50260 \) cm⁻¹ that reproduces the HO₂ spectrum over the wavelength range 190–250 nm. They recommend that the spectrum be treated as temperature independent over the range 200–300 K. The recommended HO₂ cross sections in Table 4B-1 are taken from the Tyndall et al.¹⁵ review.

Photolysis Quantum Yield and Product Studies: Lee⁶ detected O(¹D) as a primary photodissociation product of HO₂ at 193 and 248 nm with a quantum yield that is about 15 times larger at the longer wavelength. An absolute quantum yield for O(¹D) production has not been reported.

B2. H$_2$O (water)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_{a} (kJ mol$^{-1}$)</th>
<th>λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O + hv \rightarrow O(3P) + H$_2$</td>
<td>486</td>
<td>246</td>
</tr>
<tr>
<td>\rightarrow OH(X$^3\Pi$) + H</td>
<td>496</td>
<td>242</td>
</tr>
<tr>
<td>\rightarrow O(1D) + H$_2$</td>
<td>684</td>
<td>175</td>
</tr>
<tr>
<td>\rightarrow OH(A$^2\Sigma^+$) + H</td>
<td>893</td>
<td>134</td>
</tr>
<tr>
<td>\rightarrow O(3P) + H + H</td>
<td>927</td>
<td>129</td>
</tr>
</tbody>
</table>

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV absorption spectrum of water vapor can be divided up into four main regions: (i) a broad continuum at wavelengths 145–190 nm with a maximum around 165 nm and the cross sections falling off rapidly toward longer wavelengths; (ii) a second continuum centered around 128 nm, which shows some diffuse vibrational structure; (iii) between 124–100 nm the absorption spectrum is dominated by progressions of sharp structured rovibronic peaks associated with Rydberg transitions; (iv) below 100 nm the spectrum is also a continuum consisting of two diffuse bands with maxima near 90 and 65 nm. In the atmosphere, water vapor is photodissociated mainly by the solar Lyman-α line (121.667 nm). The absorption cross sections and the photochemistry of water vapor were reviewed by Hudson, Hudson and Kiefer, Calvert and Pitts, and Okabe. Table 4-B2 summarizes the studies performed since 1950.
Table 4B-2. Summary of H_2O Vapor Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Molecule</th>
<th>Wavelength (nm)</th>
<th>Resolution (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilkinson and Johnston33</td>
<td>1950</td>
<td>H_2O</td>
<td>143–186</td>
<td>0.1</td>
<td>303</td>
</tr>
<tr>
<td>Watanabe and Zelikoff22</td>
<td>1953</td>
<td>H_2O</td>
<td>106–185</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Wainfan et al.30</td>
<td>1955</td>
<td>H_2O</td>
<td>47–100</td>
<td>1.0</td>
<td>298</td>
</tr>
<tr>
<td>Harrison et al.30</td>
<td>1959</td>
<td>H_2O</td>
<td>154–200</td>
<td>0.3</td>
<td>295</td>
</tr>
<tr>
<td>Thompson et al.47</td>
<td>1963</td>
<td>H_2O</td>
<td>150–200</td>
<td>0.3</td>
<td>295</td>
</tr>
<tr>
<td>Metzger and Cook34</td>
<td>1964</td>
<td>H_2O</td>
<td>58.4–99</td>
<td>0.1</td>
<td>295</td>
</tr>
<tr>
<td>Watanabe and Jursa31</td>
<td>1964</td>
<td>H_2O</td>
<td>85–111</td>
<td>0.1</td>
<td>295</td>
</tr>
<tr>
<td>Laufer and McInrady28</td>
<td>1965</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>120–185</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Schürgers and Welge41</td>
<td>1968</td>
<td>H_2O</td>
<td>120–183</td>
<td>0.25</td>
<td>298</td>
</tr>
<tr>
<td>de Reilhac and Damany13</td>
<td>1970</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>11.1–41.7</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Bennett et al.3</td>
<td>1971</td>
<td>H_2O</td>
<td>58.4</td>
<td>0.1</td>
<td>295</td>
</tr>
<tr>
<td>Katayama et al.26</td>
<td>1973</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>58–105</td>
<td>0.05</td>
<td>298</td>
</tr>
<tr>
<td>Branton and Brion4</td>
<td>1974</td>
<td>H_2O</td>
<td>12–113, 138, 177, 248</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Gürtler et al.19</td>
<td>1977</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>60–125</td>
<td>0.003</td>
<td>298</td>
</tr>
<tr>
<td>Phillips et al.40</td>
<td>1977</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>18–79</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Tan et al.34</td>
<td>1978</td>
<td>H_2O</td>
<td>21–124, 138, 155, 177, 207</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>DeMore16</td>
<td>1979</td>
<td>H_2O</td>
<td>184.9</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Lee29</td>
<td>1980</td>
<td>H_2O</td>
<td>105–137</td>
<td>0.2</td>
<td>294</td>
</tr>
<tr>
<td>Nicolet37</td>
<td>1981</td>
<td>H_2O</td>
<td>121.6</td>
<td>Calc J</td>
<td>230</td>
</tr>
<tr>
<td>Lewis et al.11</td>
<td>1983</td>
<td>H_2O</td>
<td>121.4–121.9</td>
<td>0.005</td>
<td>235, 292, 367</td>
</tr>
<tr>
<td>Kley27</td>
<td>1984</td>
<td>H_2O</td>
<td>121.6</td>
<td>0.005</td>
<td>298</td>
</tr>
<tr>
<td>Camy-Peyret et al.7</td>
<td>1985</td>
<td>H_2O</td>
<td>396.0–606.1</td>
<td>0.0127 cm$^{-1}$</td>
<td>300</td>
</tr>
<tr>
<td>Mandin et al.32</td>
<td>1986</td>
<td>H_2O</td>
<td>606.1–757.6</td>
<td>0.0127 cm$^{-1}$</td>
<td>300</td>
</tr>
<tr>
<td>Lee and Suto30</td>
<td>1986</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>50–190</td>
<td>0.2</td>
<td>295</td>
</tr>
<tr>
<td>Chan et al.9</td>
<td>1993</td>
<td>H_2O</td>
<td>6.2–206.6</td>
<td>0.5</td>
<td>298</td>
</tr>
<tr>
<td>Yoshino et al.34</td>
<td>1996</td>
<td>H_2O</td>
<td>120–188</td>
<td>0.0070</td>
<td>295</td>
</tr>
<tr>
<td>Brownswald et al.5</td>
<td>1997</td>
<td>H_2O</td>
<td>121.6</td>
<td>0.002</td>
<td>300</td>
</tr>
<tr>
<td>Cantrell et al.8</td>
<td>1997</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>184–193</td>
<td>0.2</td>
<td>273–353</td>
</tr>
<tr>
<td>Hofzumahaus et al.21</td>
<td>1997</td>
<td>H_2O</td>
<td>184.9</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Creasey et al.14</td>
<td>2000</td>
<td>H_2O</td>
<td>184.9</td>
<td>0.1</td>
<td>298</td>
</tr>
<tr>
<td>Chung et al.12</td>
<td>2001</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>140–195</td>
<td>0.1</td>
<td>295, 275, 250</td>
</tr>
<tr>
<td>The Harvard-Smithsonian Center for Astrophysics1</td>
<td>2001</td>
<td>H_2O</td>
<td>107.2–108.0, 111.2–111.8, 123.3–124.5</td>
<td>0.0002</td>
<td>295, 80</td>
</tr>
<tr>
<td>Vatsa and Volpp50</td>
<td>2001</td>
<td>H_2O</td>
<td>121.567</td>
<td>0.0006</td>
<td>300</td>
</tr>
<tr>
<td>Coheur et al.13</td>
<td>2002</td>
<td>H_2O</td>
<td>385–758</td>
<td>0.06 cm$^{-1}$</td>
<td>291.3</td>
</tr>
<tr>
<td>Tanaka et al.45</td>
<td>2002</td>
<td>H_2O</td>
<td>606.5–688.7</td>
<td>0.06 cm$^{-1}$</td>
<td>298</td>
</tr>
<tr>
<td>Fally et al.17</td>
<td>2003</td>
<td>H_2O</td>
<td>384.6–769.2</td>
<td>0.06 cm$^{-1}$</td>
<td>289 ± 2</td>
</tr>
<tr>
<td>Mérienne et al.33</td>
<td>2003</td>
<td>H_2O</td>
<td>769.2–1081.1</td>
<td>0.03 cm$^{-1}$</td>
<td>292 ± 3</td>
</tr>
<tr>
<td>Parkinson and Yoshino59</td>
<td>2003</td>
<td>H_2O</td>
<td>181–199</td>
<td>0.0066</td>
<td>295</td>
</tr>
<tr>
<td>Cheng et al.10</td>
<td>2004</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>125–145</td>
<td>0.01</td>
<td>300</td>
</tr>
<tr>
<td>Fillion et al.18</td>
<td>2004</td>
<td>$\text{H}_2\text{O, D}_2\text{O}$</td>
<td>99.9–113.9</td>
<td>0.01 cm$^{-1}$</td>
<td>298</td>
</tr>
<tr>
<td>Tanaka et al.46</td>
<td>2004</td>
<td>H_2O</td>
<td>584.1–688.7</td>
<td>0.06 cm$^{-1}$</td>
<td>298</td>
</tr>
<tr>
<td>Aldener et al.2</td>
<td>2005</td>
<td>H_2O</td>
<td>870–955</td>
<td>0.01 cm$^{-1}$</td>
<td>298</td>
</tr>
<tr>
<td>Mota et al.36</td>
<td>2005</td>
<td>H_2O</td>
<td>114.8–193.9</td>
<td>0.075</td>
<td>298</td>
</tr>
<tr>
<td>Kassi et al.25</td>
<td>2005</td>
<td>H_2O</td>
<td>747.5–751.2</td>
<td>0.06 cm$^{-1}$</td>
<td>298</td>
</tr>
</tbody>
</table>

The cross sections in the VUV band in the range 6 to 110 nm measured by Katayama et al.26 Gürtler et al.19 Phillips et al.40 Tan et al.44 Lee and Suto.30 Chan et al.9 are in good agreement, whereas the data of Wainfan...
et al., Metzger and Cook, de Reilhac and Damany, Bennett et al., and Branton and Brion show substantial deviations.

In the strong structured region between 100 and 125 nm, cross sections were measured at low resolution by Watanabe and Zelikoff, Watanabe and Jursa, Tan et al., Lee, Lee and Suto, Chan et al., and at high resolution by Gürtler et al., Lewis et al., The Harvard-Smithsonian Center for Astrophysics, Fillion et al., and Mota et al.

Absorption cross sections were reported at the Lyman-α wavelength, 121.567 nm, in units 10^-17 cm^2 molecule^-1, to be 1.44 ± 0.04 by Watanabe and Zelikoff, 1.1 ± 0.3 by Nicolet, 1.5 ± 0.1 by Gürtler et al., 1.55 ± 0.1 by Lewis et al., 1.59 ± 0.1 by Kley, 1.42 ± 0.1 by Lee, 1.3 ± 0.05 by Chan et al., 1.4 ± 0.03 by Yoshino et al., 1.6 ± 0.1 by Brownword et al., and 1.6 ± 0.1 by Vatsa and Volpp. An average value (1.48 ± 0.10) × 10^-17 cm^2 molecule^-1 for the absorption cross section at the Lyman-α wavelength 121.567 nm is recommended.

In the weak structured region between 125 and 140 nm, measurements at low resolution were reported by Watanabe and Zelikoff, Laufer and McNesby, Schürgers and Welge, Branton and Brion, Tan et al., Lee, Lee and Suto, Chan et al., and at high resolution by Yoshino et al., Cheng et al., and Mota et al.

In the broad continuum at long wavelengths 145–190 nm, measurements at low resolution were performed by Wilkinson and Johnston, Watanabe and Zelikoff, Harrison et al., Thompson et al., Laufer and McNesby, Schürgers and Welge, Branton and Brion, Tan et al., Lee and Suto, Chan et al., and at high resolution by Yoshino et al., Chung et al., and Mota et al.

In the tail of the absorption band in the wavelength range 185–200 nm, measurements were reported by Cantrell et al., Creasey et al., Chung et al., Parkinson and Yoshino, and Mota et al. At the 184.94 nm Hg line, absorption cross sections were measured, in units 10^-20 cm^2 molecule^-1, to be 7.8 by DeMore, 7.14 ± 0.2 by Cantrell et al., 7.22 ± 0.22 by Creasey et al., 10.1 ± 0.1 by Yoshino et al., 7.0 by Hofzumahaus et al., and 7.3 (a value measured by J. Crowley, cited by Hofzumahaus et al.) Based on the latter studies, the recommended value for the absorption cross section at 184.94 nm is (7.1 ± 0.2) × 10^-20 cm^2 molecule^-1 at 298 K.

High resolution spectra of water vapor and complete sets of line parameters have been measured in the visible region by Camy-Peyret et al. (369–606 nm), Mandin et al. (606–758 nm), Fally et al. (385–769 nm), Coheur et al. (385–769 nm), and for H2O by Tanaka et al. (584–689 nm), and Tanaka et al. (606–689 nm); in the near infrared by Mérienne et al. (769–1081 nm), Aldener et al. (926–952 nm), and Kassi et al. (747–752 nm).

The recommended absorption cross sections listed in Table 4B-3 are taken from Yoshino et al. for the range 121–182 nm, from Cantrell et al. for the range 183–191 nm, and from the interpolated data of Parkinson and Yoshino for the range 192–198 nm.

Photolysis Quantum Yield and Product Studies: Stief et al. reported a relative quantum yield of process (2) Φ2[H + OH(X^2Π)] = 0.89, and process (3) Φ2[H + O(1D)] = 0.11 for the wavelength interval 105–145 nm, and Φ2[H + OH(X^2Π)] ≥ 0.99 and Φ2[H + O(1D)] ≤ 0.01 for the interval 145–185 nm. Lee measured the quantum yield of the emission of OH(A^2Σ) → OH(X^2Π) produced in process (4), varying between 2 and 11% in the wavelength range 105–135 nm. The quantum yield shows a maximum of 11% at 130 nm, decreasing slowly with decreasing wavelengths. Ung measured the relative quantum yields Φ2[H + OH(X^2Π)] = 0.92 and Φ2[H + O(1D)] = 0.08 for the photolysis at 147 nm. At the Lyman-α wavelength (121.567 nm) a quantum yield for H atoms, Φ2, of 1.02 was determined by Slanger and Black. They also measured a quantum yield for processes (2) + (4), Φ2[H + OH(X^2Π)] + Φ2[OH(A^2Σ) + H], of 0.78, for process (3), Φ2[O(1D) + H2], of 0.10, and for process (5), Φ2[O(1P) + H + H], of 0.12. Chou also measured HTO at 174 nm and estimated Φ2 ≤ 0.003 for the formation of HT + O(1P) and Φ2 ~ 1 for the processes leading to H + OT and T + OH. Mordant et al. determined the absolute branching for the photodissociation channels at 121.567 nm as Φ2[H + OH(X^2Π)] = 0.64, Φ2[O(1D) + H2] = 0.11, Φ2[OH(A^2Σ) + H] = 0.14, and Φ2[O(1P) + H + H] = 0.11.
Table 4B-3. Recommended Absorption Cross Sections of H$_2$O Vapor at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>121.0</td>
<td>624</td>
<td>133.0</td>
<td>494</td>
<td>151</td>
<td>141</td>
<td>176</td>
<td>284</td>
</tr>
<tr>
<td>121.5</td>
<td>1276</td>
<td>133.5</td>
<td>513</td>
<td>152</td>
<td>165</td>
<td>177</td>
<td>240</td>
</tr>
<tr>
<td>121.567</td>
<td>1480</td>
<td>134.0</td>
<td>424</td>
<td>153</td>
<td>197</td>
<td>178</td>
<td>193</td>
</tr>
<tr>
<td>122.0</td>
<td>1689</td>
<td>134.5</td>
<td>382</td>
<td>154</td>
<td>211</td>
<td>179</td>
<td>140</td>
</tr>
<tr>
<td>122.5</td>
<td>826</td>
<td>135.0</td>
<td>367</td>
<td>155</td>
<td>236</td>
<td>180</td>
<td>90.0</td>
</tr>
<tr>
<td>123.0</td>
<td>283</td>
<td>135.5</td>
<td>310</td>
<td>156</td>
<td>266</td>
<td>181</td>
<td>54.6</td>
</tr>
<tr>
<td>123.5</td>
<td>589</td>
<td>136.0</td>
<td>251</td>
<td>157</td>
<td>295</td>
<td>182</td>
<td>32.9</td>
</tr>
<tr>
<td>124.0</td>
<td>1332</td>
<td>136.5</td>
<td>257</td>
<td>158</td>
<td>327</td>
<td>183</td>
<td>16.9</td>
</tr>
<tr>
<td>124.5</td>
<td>663</td>
<td>137.0</td>
<td>204</td>
<td>159</td>
<td>354</td>
<td>184</td>
<td>12.1</td>
</tr>
<tr>
<td>125.0</td>
<td>619</td>
<td>137.5</td>
<td>195</td>
<td>160</td>
<td>385</td>
<td>185</td>
<td>6.78</td>
</tr>
<tr>
<td>125.5</td>
<td>693</td>
<td>138.0</td>
<td>177</td>
<td>161</td>
<td>413</td>
<td>186</td>
<td>4.39</td>
</tr>
<tr>
<td>126.0</td>
<td>706</td>
<td>138.5</td>
<td>129</td>
<td>162</td>
<td>434</td>
<td>187</td>
<td>2.71</td>
</tr>
<tr>
<td>126.5</td>
<td>768</td>
<td>139.0</td>
<td>126</td>
<td>163</td>
<td>456</td>
<td>188</td>
<td>1.77</td>
</tr>
<tr>
<td>127.0</td>
<td>800</td>
<td>139.5</td>
<td>125</td>
<td>164</td>
<td>480</td>
<td>199</td>
<td>1.08</td>
</tr>
<tr>
<td>127.5</td>
<td>780</td>
<td>140</td>
<td>100</td>
<td>165</td>
<td>499</td>
<td>190</td>
<td>0.672</td>
</tr>
<tr>
<td>128.0</td>
<td>854</td>
<td>141</td>
<td>82.3</td>
<td>166</td>
<td>509</td>
<td>191</td>
<td>0.464</td>
</tr>
<tr>
<td>128.5</td>
<td>820</td>
<td>142</td>
<td>64.1</td>
<td>167</td>
<td>510</td>
<td>192</td>
<td>0.30</td>
</tr>
<tr>
<td>129.0</td>
<td>777</td>
<td>143</td>
<td>57.1</td>
<td>168</td>
<td>508</td>
<td>193</td>
<td>0.21</td>
</tr>
<tr>
<td>129.5</td>
<td>819</td>
<td>144</td>
<td>56.4</td>
<td>169</td>
<td>502</td>
<td>194</td>
<td>0.16</td>
</tr>
<tr>
<td>130.0</td>
<td>718</td>
<td>145</td>
<td>58.0</td>
<td>170</td>
<td>492</td>
<td>195</td>
<td>0.13</td>
</tr>
<tr>
<td>130.5</td>
<td>733</td>
<td>146</td>
<td>65.8</td>
<td>171</td>
<td>470</td>
<td>196</td>
<td>0.11</td>
</tr>
<tr>
<td>131.0</td>
<td>699</td>
<td>147</td>
<td>75.2</td>
<td>172</td>
<td>435</td>
<td>197</td>
<td>0.10</td>
</tr>
<tr>
<td>131.5</td>
<td>601</td>
<td>148</td>
<td>84.9</td>
<td>173</td>
<td>394</td>
<td>198</td>
<td>0.09</td>
</tr>
<tr>
<td>132.0</td>
<td>667</td>
<td>149</td>
<td>101</td>
<td>174</td>
<td>353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.5</td>
<td>538</td>
<td>150</td>
<td>120</td>
<td>175</td>
<td>319</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
121.567 nm: average value (see note)

121–182 nm: data integrated from Yoshino et al.54

183–191 nm: Cantrell et al.8

192–198 nm: data interpolated from Parkinson and Yoshino39

(47) Thompson, B. A.; Hartock, P.; Reeves Jr., R. R. Ultraviolet absorption coefficients of CO$_2$, CO, O$_2$, H$_2$O, N$_2$O, NH$_3$, NO, SO$_2$, and CH$_4$ between 1850 and 4000 Å. *J. Geophys. Res.* 1963, 68, 6431-6436.

B3. H$_2$O$_2$ (hydrogen peroxide)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ΔH</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O$_2$ + hv → OH + OH</td>
<td>215 kJ mol$^{-1}$</td>
<td>557 nm</td>
</tr>
<tr>
<td>→ H$_2$O + O(3D)</td>
<td>333 kJ mol$^{-1}$</td>
<td>359 nm</td>
</tr>
<tr>
<td>→ H + HO$_2$</td>
<td>369 kJ mol$^{-1}$</td>
<td>324 nm</td>
</tr>
</tbody>
</table>

(Recommendation: 90-1, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: Absorption cross sections of hydrogen peroxide, H$_2$O$_2$, have been reported by a number of groups as summarized in Table 4B-4. The H$_2$O$_2$ spectrum is continuous and the absorption cross sections decrease monotonically from 180 nm toward longer wavelengths. The cross section data from the studies performed after 1972 at wavelengths <350 nm are in reasonable agreement. Studies prior to 1977 are not considered for the recommendation. Nicovich and Wine11 measured cross sections relative to the absolute values at 202.6 nm, $\sigma = 4.32 \times 10^{-19}$ cm2, and 228.8 nm, $\sigma = 1.86 \times 10^{-19}$ cm2, recommended in DeMore et al.1 Knight et al.7 normalized their spectra to the spectra of Nicovich and Wine11 between 250 nm and 280 nm. The spectra measured by Knight et al.7 at $\lambda >290$ nm are in excellent agreement with those reported by Nicovich and Wine11 at all the temperatures studied. Kahan et al.6 measured the absorption spectrum at 297 K between 353 and 410 nm, i.e., longer wavelengths than in previous studies, and quantified the spectrum using online absorption measurements at 213.9 nm (Zn line). Their absolute cross sections show a significant discontinuity with the recommended spectrum at shorter wavelengths. The Kahan et al.
study demonstrates that \(\text{H}_2\text{O}_2 \) absorbs at the longer wavelengths and would contribute to the atmospheric photolysis loss of \(\text{H}_2\text{O}_2 \). However, due to the apparent disagreement with the previous absolute spectrum measurements at shorter wavelengths, a recommendation in this wavelength region is not given. The recommended 2\(\sigma \) uncertainty factors are 1.1 for the wavelength range 190 to 300 nm and 1.25 for the wavelength range 300 to 350 nm.

Vatsa and Volpp\(^{21}\) measured the Lyman-\(\alpha \) (121.567 nm) absorption cross section to be \(9.8 \times 10^{-18} \) cm\(^2\) molecule\(^{-1}\), which is recommended. Primarily because there is only a single study at Lyman-\(\alpha \) rather large uncertainty factor of 1.4 is recommended.

Table 4B-4. Summary of \(\text{H}_2\text{O}_2 \) Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Wavelength Range (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urey et al.(^{17})</td>
<td>1929</td>
<td>215–275</td>
<td>298</td>
</tr>
<tr>
<td>Fergusson et al.(^2)</td>
<td>1936</td>
<td>220–290</td>
<td>298</td>
</tr>
<tr>
<td>Holt et al.(^5)</td>
<td>1948</td>
<td>155–220</td>
<td>298</td>
</tr>
<tr>
<td>Schumb et al.(^14)</td>
<td>1955</td>
<td>200–400</td>
<td>298</td>
</tr>
<tr>
<td>Schürgers and Welge(^15)</td>
<td>1968</td>
<td>125–200</td>
<td>298</td>
</tr>
<tr>
<td>Troe(^{16})</td>
<td>1969</td>
<td>220–290</td>
<td>300</td>
</tr>
<tr>
<td>Hochenadel et al.(^4)</td>
<td>1972</td>
<td>185–260</td>
<td>298</td>
</tr>
<tr>
<td>Molina et al.(^10)</td>
<td>1977</td>
<td>210–350</td>
<td>296</td>
</tr>
<tr>
<td>Lin et al.(^5)</td>
<td>1978</td>
<td>195–350</td>
<td>296</td>
</tr>
<tr>
<td>Molina and Molina(^9)</td>
<td>1981</td>
<td>190–350</td>
<td>298</td>
</tr>
<tr>
<td>Vaghjiani and Ravishankara(^{18})</td>
<td>1989</td>
<td>210–345</td>
<td>297</td>
</tr>
<tr>
<td>Vatsa and Volpp(^{21})</td>
<td>2001</td>
<td>121.567</td>
<td>300</td>
</tr>
<tr>
<td>Knight et al.(^7)</td>
<td>2002</td>
<td>250–350</td>
<td>273, 296, 343</td>
</tr>
<tr>
<td>Kahan et al.(^6)</td>
<td>2012</td>
<td>353–410</td>
<td>297</td>
</tr>
</tbody>
</table>

The recommended 298 K absorption cross section values for wavelengths <260 nm in Table 4B-5 are the mean of the data from Lin et al.,\(^8\) Molina and Molina,\(^9\) Nicovich and Wine,\(^{11}\) and Vaghjiani and Ravishankara.\(^{18}\) Molina and Molina\(^9\) supersedes the results of Molina et al.\(^{10}\)

The temperature dependence of the absorption spectrum has been measured by Nicovich and Wine\(^{11}\) and Knight et al.\(^7\) The results of Nicovich and Wine and Knight et al. are in excellent agreement. Nicovich and Wine\(^{11}\) parameterized the temperature dependence for wavelengths >260 nm as the sum of two temperature dependent components, \(\sigma_0 \) and \(\sigma_1 \), using the expression given in Table 4B-6. In this parameterization, \(\sigma_0 \) represents absorption from the ground vibrational state and \(\sigma_1 \) represents absorption from the O-O stretch vibrational level. The expression given in Table 4B-6 is recommended and the 298 K cross section values obtained from this parameterization for wavelengths >260 nm are given in Table 4B-5.
Table 4B-5. Recommended Absorption Cross Sections of H$_2$O$_2$ Vapor at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>67.2</td>
</tr>
<tr>
<td>195</td>
<td>56.4</td>
</tr>
<tr>
<td>200</td>
<td>47.5</td>
</tr>
<tr>
<td>205</td>
<td>40.8</td>
</tr>
<tr>
<td>210</td>
<td>35.7</td>
</tr>
<tr>
<td>215</td>
<td>30.7</td>
</tr>
<tr>
<td>220</td>
<td>25.8</td>
</tr>
<tr>
<td>225</td>
<td>21.7</td>
</tr>
<tr>
<td>230</td>
<td>18.2</td>
</tr>
<tr>
<td>235</td>
<td>15.0</td>
</tr>
<tr>
<td>240</td>
<td>12.4</td>
</tr>
<tr>
<td>245</td>
<td>10.2</td>
</tr>
<tr>
<td>250</td>
<td>8.3</td>
</tr>
<tr>
<td>255</td>
<td>6.7</td>
</tr>
<tr>
<td>260</td>
<td>5.3</td>
</tr>
<tr>
<td>265</td>
<td>4.2</td>
</tr>
<tr>
<td>270</td>
<td>3.3</td>
</tr>
<tr>
<td>275</td>
<td>2.6</td>
</tr>
<tr>
<td>280</td>
<td>2.0</td>
</tr>
<tr>
<td>285</td>
<td>1.5</td>
</tr>
<tr>
<td>290</td>
<td>1.2</td>
</tr>
<tr>
<td>295</td>
<td>0.90</td>
</tr>
<tr>
<td>300</td>
<td>0.68</td>
</tr>
<tr>
<td>305</td>
<td>0.51</td>
</tr>
<tr>
<td>310</td>
<td>0.38</td>
</tr>
<tr>
<td>315</td>
<td>0.28</td>
</tr>
<tr>
<td>320</td>
<td>0.20</td>
</tr>
<tr>
<td>325</td>
<td>0.15</td>
</tr>
<tr>
<td>330</td>
<td>0.11</td>
</tr>
<tr>
<td>335</td>
<td>0.084</td>
</tr>
<tr>
<td>340</td>
<td>0.064</td>
</tr>
<tr>
<td>345</td>
<td>0.049</td>
</tr>
<tr>
<td>350</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Note:
<260 nm: mean of the data from Lin et al.,8 Molina and Molina,9 Nicovich and Wine,11 and Vaghjiani and Ravishankara18
260–350 nm: Nicovich and Wine,11 parameterization

Table 4B-6. Mathematical Expression for Absorption Cross Sections of H$_2$O$_2$ as a Function of Temperature

$$10^{21} \sigma(\lambda, T) = \chi \sum_{n=0}^{7} A_n \lambda^n + (1 - \chi) \sum_{n=0}^{4} B_n \lambda^n$$

where T: temperature K; λ: nm; $\chi = (1 + \exp(-1265/T))^{-1}$

$A_0 = 6.4761 \times 10^4$
$B_0 = 6.8123 \times 10^3$
$A_1 = -9.2170972 \times 10^2$
$B_1 = -5.1351 \times 10^1$
$A_2 = 4.535649$
$B_2 = 1.1522 \times 10^{-1}$
$A_3 = -4.4589016 \times 10^{-3}$
$B_3 = -3.0493 \times 10^{-5}$
$A_4 = -4.035101 \times 10^{-5}$
$B_4 = -1.0924 \times 10^{-7}$
$A_5 = 1.6878206 \times 10^{-7}$
$A_6 = -2.652014 \times 10^{-10}$
$A_7 = 1.5534675 \times 10^{-13}$

Range 260–350 nm; 200–400 K
Photolysis Quantum Yields and Product Studies. The photodissociation quantum yield is thought to be unity. At and above 248 nm, the major photodissociation process is that leading to OH, i.e., the quantum yield for OH production is 2 (Vaghjiani and Ravishankara, 1992; Vaghjiani et al., 1993; Riffault et al., 1993). At 248 nm Vaghjiani and Ravishankara reported $\Phi(\text{OH}) = 2.09 \pm 0.36$, $\Phi(\text{O}) < 0.002$, and $\Phi(\text{H}) < 0.0002$. Schifman et al. reported a slightly lower value for $\Phi(\text{OH})$ at 248 nm of 1.58 ± 0.23; at 193 nm they obtained $\Phi(\text{OH}) = 1.22 \pm 0.13$. At 222 nm Vaghjiani et al. measured $\Phi(\text{OH}) = 2.02 \pm 0.35$, $\Phi(\text{O}) < 0.002$, and $\Phi(\text{H}) = 0.024 \pm 0.012$. At 193 nm they obtained $\Phi(\text{OH}) = 1.51 \pm 0.18$, $\Phi(\text{O}) < 0.02$, and $\Phi(\text{H}) = 0.16 \pm 0.04$. Riffault et al. reported $\Phi(\text{OH})$ values of 1.93 ± 0.39 at 308 nm and 1.96 ± 0.50 at 320 nm. In addition, Gerlach-Meyer et al. reported $\Phi(\text{H}) = 0.12 \pm 0.01$ and Schifman et al. reported $\Phi(\text{OH}) = 1.22 \pm 0.13$ for 193 nm photolysis in reasonable agreement with Vaghjiani et al. An OH quantum yield of 2 for $\lambda > 230$ nm is recommended. For 193 nm $\Phi(\text{OH}) = 1.7$ and $\Phi(\text{H}) = 0.15$ are recommended.

4.5 Bibliography – HO$_x$ Photochemistry

4-49

Thompson, B. A.; Harteeck, P.; Reeves Jr., R. R. Ultraviolet absorption coefficients of CO$_2$, CO, O$_2$, H$_2$O, N$_2$O, NH$_3$, NO, SO$_2$, and CH$_4$ between 1850 and 4000 A. *J. Geophys. Res.* **1963**, *68*, 6431-6436.

SECTION 4C. NO\textsubscript{x} PHOTOCHEMISTRY

C1. NO\textsubscript{2} (nitrogen dioxide)

\begin{align*}
\text{NO}_2 + \text{hv} & \rightarrow \text{NO} + \text{O}(^3\text{P}) \quad 301 \text{ kJ mol}^{-1} \quad 398 \text{ nm} \quad (1) \\
& \rightarrow \text{NO} + \text{O}(^1\text{D}) \quad 490 \text{ kJ mol}^{-1} \quad 244 \text{ nm} \quad (2)
\end{align*}

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV/vis absorption spectrum of nitrogen dioxide, NO\textsubscript{2}, in the 200–800 nm region can be separated into two principal systems: the D-X band below 250 nm and the broad B-X and A-X bands between 300 and 800 nm with a maximum around 400 nm. The forbidden C-X transition also contributes to the visible spectrum. There is enormous spectral fine structure superimposed on the broad visible system. Due to the complexity of the electronic states of NO\textsubscript{2}, it is not presently possible to predict its spectrum from molecular quantum theory within the accuracy of the experimental measurements. The absorption spectrum and cross sections of NO\textsubscript{2} have been extensively studied during the last century as summarized in Table 4C-1.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>(\lambda) Range (nm)</th>
<th>Type*</th>
<th>Resolution (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmes and Daniels21</td>
<td>1934</td>
<td>265–436</td>
<td>B</td>
<td>1</td>
<td>298</td>
</tr>
<tr>
<td>Dixon11</td>
<td>1940</td>
<td>400–700</td>
<td>A</td>
<td>1.5 and 4.0</td>
<td>295</td>
</tr>
<tr>
<td>Hall and Blacet16</td>
<td>1952</td>
<td>240–500</td>
<td>A</td>
<td>0.2–0.5</td>
<td>298</td>
</tr>
<tr>
<td>Nakayama et al.32</td>
<td>1959</td>
<td>108–270</td>
<td>A</td>
<td>0.02</td>
<td>300</td>
</tr>
<tr>
<td>Jones and Bayes24</td>
<td>1973</td>
<td>297–579</td>
<td>B</td>
<td>0.2</td>
<td>300</td>
</tr>
<tr>
<td>Johnston and Graham23</td>
<td>1974</td>
<td>190–420</td>
<td>A</td>
<td>1.3</td>
<td>294</td>
</tr>
<tr>
<td>Bass et al.2</td>
<td>1976</td>
<td>185–410</td>
<td>B</td>
<td>0.015–0.04</td>
<td>235 and 298</td>
</tr>
<tr>
<td>Harker et al.18</td>
<td>1977</td>
<td>375–420</td>
<td>B</td>
<td>0.1</td>
<td>296</td>
</tr>
<tr>
<td>Hicks et al.20</td>
<td>1979</td>
<td>425–450 at single (\lambda)</td>
<td>B</td>
<td>0.04</td>
<td>235 and 298</td>
</tr>
<tr>
<td>Schneider et al.39</td>
<td>1987</td>
<td>200–700</td>
<td>A</td>
<td>0.04</td>
<td>298</td>
</tr>
<tr>
<td>Leroy et al.28</td>
<td>1987</td>
<td>427–450</td>
<td>B</td>
<td>0.04</td>
<td>235 and 298</td>
</tr>
<tr>
<td>Koffend et al.27</td>
<td>1987</td>
<td>391–414/ intervals</td>
<td>B</td>
<td>0.005</td>
<td>251 and 300</td>
</tr>
<tr>
<td>Calvert et al.5</td>
<td>1987</td>
<td>404.7</td>
<td>B</td>
<td>1.6</td>
<td>223, 273, 298, 325, 347, 370, 406, 496, 566</td>
</tr>
<tr>
<td>Davidson et al.9</td>
<td>1988</td>
<td>264–649</td>
<td>A</td>
<td>1.5 0.3–2.6 cm(^{-1})</td>
<td>233, 243, 253, 263, 273, 298, and up to 397</td>
</tr>
<tr>
<td>Corcoran et al.7</td>
<td>1992</td>
<td>450–650 470–616</td>
<td>A, B</td>
<td>0.075 0.008</td>
<td>295, 573, 673</td>
</tr>
<tr>
<td>Amoruso et al.1</td>
<td>1993</td>
<td>440–460</td>
<td>B</td>
<td>0.134</td>
<td>220 and 298</td>
</tr>
<tr>
<td>Harwood and Jones19</td>
<td>1994</td>
<td>313–568</td>
<td>A</td>
<td>0.54</td>
<td>213, 225, 233, 243, 253, 263, 273, 298</td>
</tr>
<tr>
<td>Mérienne et al.30</td>
<td>1995</td>
<td>300–500</td>
<td>A</td>
<td>0.01–0.015</td>
<td>293</td>
</tr>
<tr>
<td>Coquart et al.9</td>
<td>1995</td>
<td>400–500</td>
<td>B</td>
<td>0.01</td>
<td>220, 240, 293</td>
</tr>
<tr>
<td>Vandaele et al.43</td>
<td>1996</td>
<td>380–830</td>
<td>A</td>
<td>2.0 cm(^{-1})</td>
<td>294</td>
</tr>
<tr>
<td>Frost et al.12</td>
<td>1996</td>
<td>370–497</td>
<td>A</td>
<td>0.5–2.0 cm(^{-1})</td>
<td>220</td>
</tr>
<tr>
<td>Jenouvrier et al.22</td>
<td>1996</td>
<td>200–300</td>
<td>B</td>
<td>0.01</td>
<td>293</td>
</tr>
<tr>
<td>Mihalcea et al.31</td>
<td>1996</td>
<td>395, 670</td>
<td>B</td>
<td>0.001</td>
<td>296-774</td>
</tr>
<tr>
<td>Harder et al.17</td>
<td>1997</td>
<td>350–585 (294 K) 350–560</td>
<td>A</td>
<td>0.15 cm(^{-1})</td>
<td>217, 230.2, 238.6, 293.8</td>
</tr>
</tbody>
</table>

4-53
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>λ, Range (nm)</th>
<th>Type*</th>
<th>Resolution (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshino et al.</td>
<td>1997</td>
<td>360–470</td>
<td>B</td>
<td>0.14 cm⁻¹</td>
<td>298.5</td>
</tr>
<tr>
<td>Mérienne et al.</td>
<td>1997</td>
<td>200–400</td>
<td>A</td>
<td>0.05</td>
<td>220</td>
</tr>
<tr>
<td>Vandaele et al.</td>
<td>1998</td>
<td>238–1000</td>
<td>A</td>
<td>2.0 cm⁻¹</td>
<td>220 and 294</td>
</tr>
<tr>
<td>Burrows et al.</td>
<td>1998</td>
<td>231–794</td>
<td>C</td>
<td>0.2–0.4</td>
<td>221, 241, 273, 293</td>
</tr>
<tr>
<td>Orphal et al.</td>
<td>1998</td>
<td>667–1111</td>
<td>B</td>
<td>0.012 cm⁻¹</td>
<td>298</td>
</tr>
<tr>
<td>Gierczak et al.</td>
<td>1999</td>
<td>413.4</td>
<td>B</td>
<td>1</td>
<td>259, 298, 323, 348, 385</td>
</tr>
<tr>
<td>Voigt et al.</td>
<td>2002</td>
<td>250–800</td>
<td>A</td>
<td>0.5–1.0 cm⁻¹</td>
<td>223, 246, 260, 280, 293</td>
</tr>
<tr>
<td>Vandaele et al.</td>
<td>2002</td>
<td>385–925</td>
<td>A</td>
<td>0.05–0.1 cm⁻¹</td>
<td>220, 240, 294</td>
</tr>
<tr>
<td>Bogumil et al.</td>
<td>2003</td>
<td>230–1070</td>
<td>C</td>
<td>0.2–0.4</td>
<td>203, 223, 243, 273, 293</td>
</tr>
<tr>
<td>Nizkorodov et al.</td>
<td>2004</td>
<td>415–525</td>
<td>B</td>
<td>0.06 cm⁻¹</td>
<td>215, 230, 250, 273, 298</td>
</tr>
</tbody>
</table>

* The studies summarized in Table 4C-1 are organized into three measurement categories: **Type A**, absolute cross section measurements over a broad spectral region (typically covering a few hundred nm); **Type B**, absolute cross section measurements at specific wavelengths or over narrow spectral ranges; and **Type C**, relative NO₂ absorption spectrum measurements over broad spectral region (typically a few hundred nm) that have been scaled to absolute cross section values using results from other studies.

In the earlier studies, the NO₂ ultraviolet-visible absorption cross section measurements were limited to lower spectral resolution. Since 1992, however, several sets of high resolution measurements, including temperature and pressure dependence studies, have been reported by several groups, which mainly aimed at improving the accuracy of atmospheric measurements, in particular, for the atmospheric remote sensing of NO₂. However, a number of laboratory measurements were also obtained at spectral resolutions that are limited by instrumental techniques.

The JPL-97-04⁴⁰ recommendation for the absorption cross sections of NO₂ was based on the work of Bass et al.,⁴¹ Schneider et al.,⁴⁰ and Davidson et al.⁴² Although at room temperature the agreement between these three sets of measurements is good (within 5% between 305 and 345 nm and within 10% at the longer wavelengths), serious non-uniform wavelength calibration errors are apparent in the wavelength range 400–500 nm as described by Schneider et al.⁴⁰ At shorter wavelengths and for temperatures below 298 K the agreement among these three sets of data is poor. A possible cause for the discrepancies is the presence of N₂O₄, which is the weakly bound NO₂ dimer present in equilibrium with the monomer. The ratio of the abundance of the two species is concentration and temperature dependent. Corrections were needed to account for the presence of N₂O₄ at wavelengths below 400 nm and especially near 200 nm where N₂O₄ absorbs strongly.

Kirmse et al.⁴³ analyzed the spectra reported between 1976 and 1995 and concatenated selected (and corrected) cross sections to create a “new standard” spectrum in the range 300–708 nm at a resolution of 0.05 nm, and another spectrum extending to 908 nm at a lower resolution of 1 nm. This high resolution “new standard” spectrum consisted of the Mérienne et al.⁴⁰ cross sections from 300 to 500 nm, the Corcoran et al.⁷ cross sections from 500 to 600 nm, and the Schneider et al.⁴⁰ cross sections from 600 to 710 nm. A critical review and evaluation of the cross section studies was performed by Orphal⁴⁴ and Orphal,⁴⁵ covering most studies published since 1995. In his evaluations Orphal¹⁴,⁴⁵ considered baseline problems, wavelength calibration and integrated cross sections (after convolution of high resolution cross sections of 0.1 nm or better). In addition, Vandaele et al.⁴² derived temperature and pressure dependent parameters from high resolution spectral data obtained since 1995.

At room temperature (295 ± 3 K) there is agreement to better than 2–3% among the absolute cross sections over the wavelength range covered by the measurements of Mérienne et al.,⁴⁰ Coquart et al.,⁵ Vandaele et al.,⁴³ Jenouvrier et al.,²² Yoshino et al.,⁴⁷ Mérienne et al.,⁴⁰ Vandaele et al.,⁴⁴ Bogumil et al.,⁶ and Nizkorodov et al.⁴³ Many of these studies differ in spectral resolution, an issue relevant to atmospheric remote sensing applications. The cross sections of Harwood and Jones¹⁹ are 6–8% below most of the other studies, while the data of Harder et al.¹⁷ are systematically 2–5% higher than the data of Vandaele et al.⁴⁴ (1998) and show a systematic baseline drift of up to 10% at the lowest temperature.
The high pressure cross section data of Vandaele et al.41 (2002) and Vandaele et al.42 (2003) are nearly 4\% smaller than the Vandaele et al.43 (1996) and Vandaele et al.44 (1998) data. The cross sections of Burrows et al.4 are about 6–8\% lower than most recent high resolution studies (Mérienne-95, Mérienne-97, Harder, Vandaele-96, Vandaele-98). The data of Voigt et al.45 show several artificial peaks (probably Xenon lamp stray light) of a few percent and baseline shifts up to 10\% (partly due to residual NO\textsubscript{2}O\textsubscript{4} absorption) at lower temperatures. The spectra of Bogumil et al.3 were scaled to absolute values using the integrated cross section of Vandaele et al.44 (1998).

The temperature effect on the NO\textsubscript{2} absorption cross sections has been studied by only a few research teams, as given in Table 4C-1. The variation of the absorption consists mainly in an increase of the differential absorption cross sections with decreasing temperature. In his analysis of the temperature dependence of the cross sections in the 300–700 nm region, Orphal35 (2003) observed a tilt in the baseline with decreasing temperature in the data of Davidson et al.,
Burrows et al.,
and Bogumil et al.3 but less pronounced in the data of Harwood and Jones,
Harder et al.,
and Vandaele et al.41 (2002). This is due to a change in the thermal population of the lower vibrational and rotational states causing large discrepancies in the relative change and the absolute magnitude of the absorption cross sections. The comparison of the high resolution absolute cross sections at temperatures below ambient reveals significant discrepancies in absolute magnitude of cross sections due to spectral resolution, baseline differences and possible wavelength calibration. For the temperatures 242 ± 2 and 220 ± 3 K, the overall agreement is within 15\% in the region 350–500 nm, however outside this range the discrepancies are much larger. The integrated cross sections for the range 400–500 nm were calculated by Orphal35 (2003) to be (4.50 ± 0.10) × 10-17 cm-1 molecule-1 nm and are independent of temperature, as recently shown by Nizkorodov et al.33 for the temperature range 215–298 K.

Orphal35 (2003) and Vandaele et al.42 (2003) compared the spectra after degrading the high resolution spectra to a lower resolution. At 220 K the best agreement (within 1.6\%) is obtained between the data of Coquart et al., Mérienne et al.
Vandaele et al.44 (1998). The data of Harder et al.17 differ by 3.7\% from the Vandaele et al.41 (1998) data below 500 nm but seem to contain more noise at longer wavelengths. The data of Voigt et al.45 show larger disagreement, which is different in every temperature data set. At 223 K their data are 22\% lower than the Vandaele et al.44 (1998) values.

The temperature dependence of the NO\textsubscript{2} cross sections in the entire ultraviolet and visible regions can be reproduced within the experimental uncertainties using analytical expressions, at least at low and moderate spectral resolutions (i.e., 0.05 nm and less). Linear functions were proposed by Davidson et al., Kirmse et al.,
and Vandaele et al.41 (2002), a quadratic polynomial by Burrows et al.,
and a double exponential function by Voigt et al.45 For the high resolution spectra Nizkorodov et al.33 concluded that a linear temperature dependence is not valid and a successful parameterization requires further work.

The NO\textsubscript{2} cross sections vary as a function of total pressure but these effects are only observed at high spectral resolution, i.e., better than 0.01 nm, as investigated by Harder et al., Wennberg et al.,
Vandaele et al.44 (1998), Voigt et al., Vandaele et al.45 (2002), and Nizkorodov et al.33 using NO\textsubscript{2}/N\textsubscript{2} (or air) mixtures at total pressures up to 1 atm. Nizkorodov et al.33 showed that a simple Lorentzian broadening model with linear dependence of the Lorentz width on pressure provides an adequate description of the pressure broadening effects in NO\textsubscript{2}.

The current recommendation is based on the data of Vandaele et al.44 (1998). Table 4C-2 lists recommended cross sections for 294 and 220 K averaged over atmospherically relevant intervals.

\textit{Photolysis Quantum Yield and Product Studies:} A number of NO\textsubscript{2} photolysis quantum yield studies in the atmospherically important 300–470 nm region have been reported: Jones and Bayes24 for the wavelength range 295–445 nm and at 492 nm, 546 nm and 579 nm; Gaedtke and Troe13 in the range 313–416 nm; Harker et al.18 for the range 375–420 nm at 1 nm intervals; Davenport3 for the range 390–420 nm at 223 and 300 K; Gardner et al.14 for the range 334–404 nm at 298 K, and at 404 nm at 273 and 370 K; and Roehl et al.38 in the range 388–411 nm at 248 and 298 K. In the range 360–398 nm the Φ\textsubscript{1} values show a wide scatter, with differences of as much as 60\%, especially for the data of Harker et al.18 Although Gardner et al.14 obtained values of Φ\textsubscript{1} between 0.89 ± 0.05 and 0.97 ± 0.06 in the range 379–397 nm, they made a critical assessment of the quantum yield data and recommended that Φ\textsubscript{1} is near unity at wavelengths up to and slightly beyond the dissociation limit of λ\textsubscript{o} = 397.95 nm (Jost et al.23) and then rapidly decreases to near zero at 424 nm. However, Roehl et al.38 determined Φ\textsubscript{1} = (0.93 ± 0.10) in the range 388–398 nm at 298 K, and Φ\textsubscript{1} = (0.90 ± 0.10) at 248 K. Troe40 conducted a critical reanalysis of the quantum yield data of Gardner et al.14 and Roehl et al.38 below λ\textsubscript{o} and concluded that certain secondary reactions were not correctly accounted for, and recommended corrections for both data sets. The recommended quantum yield values in Table 4C-3 are based on the data of Roehl et al.38 as corrected by Troe.40
Table 4C-2. Recommended Absorption Cross Sections of NO$_2$ at 220 and 294 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ(220 K) (cm2)</th>
<th>10^{20} σ(294 K) (cm2)</th>
<th>λ (nm)</th>
<th>10^{20} σ(220 K) (cm2)</th>
<th>10^{20} σ(294 K) (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240.964–243.902</td>
<td>4.14</td>
<td>5.77</td>
<td>442.5–447.5</td>
<td>47.9</td>
<td>48.8</td>
</tr>
<tr>
<td>243.902–246.914</td>
<td>0.961</td>
<td>2.79</td>
<td>447.5–452.5</td>
<td>49.3</td>
<td>49.8</td>
</tr>
<tr>
<td>246.914–250.000</td>
<td>0.859</td>
<td>1.62</td>
<td>452.5–457.5</td>
<td>40.6</td>
<td>41.6</td>
</tr>
<tr>
<td>250.000–253.165</td>
<td>0.191</td>
<td>0.998</td>
<td>457.5–462.5</td>
<td>43.5</td>
<td>43.6</td>
</tr>
<tr>
<td>253.165–256.410</td>
<td>0.496</td>
<td>1.05</td>
<td>462.5–467.5</td>
<td>41.5</td>
<td>41.4</td>
</tr>
<tr>
<td>256.410–259.740</td>
<td>0.872</td>
<td>1.28</td>
<td>467.5–472.5</td>
<td>32.7</td>
<td>33.7</td>
</tr>
<tr>
<td>259.740–263.158</td>
<td>1.26</td>
<td>1.58</td>
<td>472.5–477.5</td>
<td>38.8</td>
<td>38.7</td>
</tr>
<tr>
<td>263.158–266.667</td>
<td>1.77</td>
<td>2.05</td>
<td>477.5–482.5</td>
<td>33.4</td>
<td>33.7</td>
</tr>
<tr>
<td>266.667–270.270</td>
<td>2.36</td>
<td>2.64</td>
<td>482.5–487.5</td>
<td>24.0</td>
<td>25.4</td>
</tr>
<tr>
<td>270.270–273.973</td>
<td>3.03</td>
<td>3.24</td>
<td>487.5–492.5</td>
<td>30.9</td>
<td>30.8</td>
</tr>
<tr>
<td>273.973–277.778</td>
<td>3.94</td>
<td>4.07</td>
<td>492.5–497.5</td>
<td>29.4</td>
<td>29.4</td>
</tr>
<tr>
<td>277.778–281.690</td>
<td>5.16</td>
<td>5.21</td>
<td>497.5–502.5</td>
<td>16.7</td>
<td>18.2</td>
</tr>
<tr>
<td>281.690–285.714</td>
<td>6.29</td>
<td>6.23</td>
<td>502.5–507.5</td>
<td>24.4</td>
<td>24.3</td>
</tr>
<tr>
<td>285.714–289.855</td>
<td>7.72</td>
<td>7.59</td>
<td>507.5–512.5</td>
<td>22.8</td>
<td>23.1</td>
</tr>
<tr>
<td>289.855–294.118</td>
<td>9.64</td>
<td>9.51</td>
<td>512.5–517.5</td>
<td>14.8</td>
<td>16.0</td>
</tr>
<tr>
<td>294.118–298.507</td>
<td>11.6</td>
<td>11.5</td>
<td>517.5–522.5</td>
<td>17.7</td>
<td>16.1</td>
</tr>
<tr>
<td>298.507–303.030</td>
<td>13.2</td>
<td>13.2</td>
<td>522.5–527.5</td>
<td>17.5</td>
<td>17.9</td>
</tr>
<tr>
<td>303.030–307.692</td>
<td>16.0</td>
<td>16.1</td>
<td>527.5–532.5</td>
<td>14.9</td>
<td>15.3</td>
</tr>
<tr>
<td>307.692–312.5</td>
<td>18.5</td>
<td>18.8</td>
<td>532.5–537.5</td>
<td>9.71</td>
<td>10.6</td>
</tr>
<tr>
<td>312.5–317.5</td>
<td>20.8</td>
<td>21.6</td>
<td>537.5–542.5</td>
<td>10.3</td>
<td>10.8</td>
</tr>
<tr>
<td>317.5–322.5</td>
<td>24.2</td>
<td>25.3</td>
<td>542.5–547.5</td>
<td>12.6</td>
<td>12.7</td>
</tr>
<tr>
<td>322.5–327.5</td>
<td>27.2</td>
<td>28.7</td>
<td>547.5–552.5</td>
<td>10.4</td>
<td>11.0</td>
</tr>
<tr>
<td>327.5–332.5</td>
<td>29.4</td>
<td>31.7</td>
<td>552.5–557.5</td>
<td>7.40</td>
<td>7.97</td>
</tr>
<tr>
<td>332.5–337.5</td>
<td>33.0</td>
<td>35.8</td>
<td>557.5–562.5</td>
<td>5.56</td>
<td>6.05</td>
</tr>
<tr>
<td>337.5–342.5</td>
<td>37.0</td>
<td>40.2</td>
<td>562.5–567.5</td>
<td>8.62</td>
<td>8.70</td>
</tr>
<tr>
<td>342.5–347.5</td>
<td>38.6</td>
<td>41.8</td>
<td>567.5–572.5</td>
<td>8.25</td>
<td>8.48</td>
</tr>
<tr>
<td>347.5–352.5</td>
<td>43.5</td>
<td>46.2</td>
<td>572.5–577.5</td>
<td>4.12</td>
<td>4.71</td>
</tr>
<tr>
<td>352.5–357.5</td>
<td>47.7</td>
<td>49.7</td>
<td>577.5–582.5</td>
<td>4.11</td>
<td>4.47</td>
</tr>
<tr>
<td>357.5–362.5</td>
<td>49.2</td>
<td>50.9</td>
<td>582.5–587.5</td>
<td>4.60</td>
<td>4.69</td>
</tr>
<tr>
<td>362.5–367.5</td>
<td>53.7</td>
<td>54.9</td>
<td>587.5–592.5</td>
<td>5.14</td>
<td>5.39</td>
</tr>
<tr>
<td>367.5–372.5</td>
<td>55.2</td>
<td>56.1</td>
<td>592.5–597.5</td>
<td>3.82</td>
<td>4.08</td>
</tr>
<tr>
<td>372.5–377.5</td>
<td>58.4</td>
<td>59.0</td>
<td>597.5–602.5</td>
<td>3.71</td>
<td>3.95</td>
</tr>
<tr>
<td>377.5–382.5</td>
<td>58.5</td>
<td>59.3</td>
<td>602.5–607.5</td>
<td>1.56</td>
<td>1.85</td>
</tr>
<tr>
<td>382.5–387.5</td>
<td>59.2</td>
<td>60.1</td>
<td>607.5–612.5</td>
<td>2.38</td>
<td>2.54</td>
</tr>
<tr>
<td>387.5–392.5</td>
<td>62.4</td>
<td>63.0</td>
<td>612.5–617.5</td>
<td>3.47</td>
<td>3.53</td>
</tr>
<tr>
<td>392.5–397.5</td>
<td>58.5</td>
<td>59.7</td>
<td>617.5–622.5</td>
<td>2.39</td>
<td>2.57</td>
</tr>
<tr>
<td>397.5–402.5</td>
<td>64.0</td>
<td>64.4</td>
<td>622.5–627.5</td>
<td>1.77</td>
<td>1.96</td>
</tr>
<tr>
<td>402.5–407.5</td>
<td>57.0</td>
<td>58.2</td>
<td>627.5–632.5</td>
<td>1.00</td>
<td>1.21</td>
</tr>
<tr>
<td>407.5–412.5</td>
<td>61.8</td>
<td>62.4</td>
<td>632.5–637.5</td>
<td>1.23</td>
<td>1.33</td>
</tr>
<tr>
<td>412.5–417.5</td>
<td>58.3</td>
<td>59.1</td>
<td>637.5–642.5</td>
<td>1.48</td>
<td>1.53</td>
</tr>
<tr>
<td>417.5–422.5</td>
<td>59.3</td>
<td>59.9</td>
<td>642.5–647.5</td>
<td>1.86</td>
<td>1.92</td>
</tr>
<tr>
<td>422.5–427.5</td>
<td>56.0</td>
<td>57.0</td>
<td>647.5–652.5</td>
<td>1.24</td>
<td>1.35</td>
</tr>
<tr>
<td>427.5–432.5</td>
<td>53.7</td>
<td>54.4</td>
<td>652.5–657.5</td>
<td>0.755</td>
<td>0.873</td>
</tr>
<tr>
<td>432.5–437.5</td>
<td>55.5</td>
<td>55.9</td>
<td>657.5–662.5</td>
<td>0.508</td>
<td>0.566</td>
</tr>
<tr>
<td>437.5–442.5</td>
<td>47.5</td>
<td>48.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Vandaele et al. (1998)
Table 4C.3. Recommended Quantum Yields for NO\(_2\) Photolysis

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(\Phi(298,\text{K}))</th>
<th>(\Phi(248,\text{K}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 – 398</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>399</td>
<td>0.95</td>
<td>0.94</td>
</tr>
<tr>
<td>400</td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td>401</td>
<td>0.75</td>
<td>0.69</td>
</tr>
<tr>
<td>402</td>
<td>0.62</td>
<td>0.56</td>
</tr>
<tr>
<td>403</td>
<td>0.53</td>
<td>0.44</td>
</tr>
<tr>
<td>404</td>
<td>0.44</td>
<td>0.34</td>
</tr>
<tr>
<td>405</td>
<td>0.37</td>
<td>0.28</td>
</tr>
<tr>
<td>406</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td>407</td>
<td>0.26</td>
<td>0.18</td>
</tr>
<tr>
<td>408</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>409</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>410</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>411</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>412</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>413</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>414</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>415</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>416</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>417</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>418</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>419</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>420</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>422</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note:
Roehl et al.\(^{38}\) as corrected by Troe\(^{40}\)

(40) Troe, J. Are primary quantum yields of NO2 photolysis at \(\lambda \leq 398 \) nm smaller than unity? Z. Phys. Chem. 2000, 214, 573-581.

C2. NO3 (nitrate radical)
\[
\text{NO}_3 + \text{hv} \rightarrow \text{NO} + \text{O}_2 \quad \text{16 kJ mol}^{-1} \quad 7320 \text{ nm (1)} \\
\rightarrow \text{NO}_2 + \text{O}(\text{P}) \quad \text{208 kJ mol}^{-1} \quad 574 \text{ nm (2)}
\]

(Recommendation: 06-2; Note: 10-6; Evaluated: 10-6)

Absorption Cross Sections: The visible absorption spectrum of the NO3 radical contains \(\sim \)20 diffuse bands between 400 and 700 nm, Figure 4C-1. The most intense features are the bands for the 0-0 and 1-0 transitions in the symmetric N=O stretching vibration in the excited state that are centered at 662 and 623 nm, respectively. The absorption cross section of the 0-0 band at 662 nm is of special interest, since it is commonly used to monitor NO3 both in the laboratory and in the atmosphere.

The absorption cross sections of NO3 have been the subject of many laboratory studies. The spectroscopy of NO3 has been reviewed by Wayne et al.\(^{21}\) Although there is good agreement for the positions of the absorption features, the range in reported absolute cross sections is nearly a factor of two. The studies and reported cross sections values at the 662 nm peak are summarized in Table 4C-4.

Table 4C-4. Summary of NO3 Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>NO3 source Technique</th>
<th>T (K)</th>
<th>(\lambda) (nm)</th>
<th>Resolution (nm)</th>
<th>(\sigma(662 \text{ nm})) (10(^{-15}) cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Schott and Davidson(^ {19})</td>
<td>1958</td>
<td>\text{NO}_2 \text{O}_3 \text{ Shock pyrolysis}</td>
<td>600, 650, 825, 1025</td>
<td>366–652</td>
<td>3.6</td>
<td>1.15 ± 0.4 (^a)</td>
</tr>
<tr>
<td>2 Johnston and Graham(^ {8})</td>
<td>1974</td>
<td>\text{NO}_2 + \text{O}_3 \text{ Equilibrium constant calculation}</td>
<td>295</td>
<td>450–680</td>
<td>0.7</td>
<td>0.347 (±50%) (^b) 1.48 (^b)</td>
</tr>
<tr>
<td>3 Graham and Johnston(^ {6})</td>
<td>1978</td>
<td>\text{NO}_2 + \text{O}_3 \text{ Modulated photolysis}</td>
<td>298</td>
<td>400–704</td>
<td>0.83</td>
<td>1.708</td>
</tr>
<tr>
<td>4 Mitchell et al.(^ {11})</td>
<td>1980</td>
<td>\text{NO}_2 + \text{O}_3 \text{ Dual beam spectrometer}</td>
<td>294 ± 4</td>
<td>498–671</td>
<td>0.05</td>
<td>1.21 ± 0.20</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>NO₃ source Technique</td>
<td>T (K)</td>
<td>λ (nm)</td>
<td>Resolution (nm)</td>
<td>σ(662 nm) (10⁻¹⁷ cm²)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>----------------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Marinelli et al.¹⁰</td>
<td>1982</td>
<td>NO₂ + O₃ Tunable dye laser abs.</td>
<td>296</td>
<td>654–671</td>
<td>0.05</td>
<td>1.90</td>
</tr>
<tr>
<td>Ravishankara and Wine¹⁶</td>
<td>1983</td>
<td>F + HNO₃ Discharge flow, dye laser</td>
<td>298</td>
<td>565–673</td>
<td>0.05</td>
<td>1.78 ± 0.23</td>
</tr>
<tr>
<td>Cox et al.⁴</td>
<td>1984</td>
<td>Cl + ClONO₂ Modulated photolysis, diode array spectrometer</td>
<td>296</td>
<td>662</td>
<td>0.4</td>
<td>1.63 ± 0.15</td>
</tr>
<tr>
<td>Burrows et al.¹</td>
<td>1985</td>
<td>F + HNO₃, Cl + HNO₃ Modulated photolysis</td>
<td>298</td>
<td>615–670</td>
<td>1</td>
<td>1.85 ± 0.56</td>
</tr>
<tr>
<td>Ravishankara and Mauldin¹⁵</td>
<td>1986</td>
<td>F + HNO₃ Discharge flow, dye laser abs.</td>
<td>298</td>
<td>652.5–672.5</td>
<td>0.05</td>
<td>1.90 ± 0.22</td>
</tr>
<tr>
<td>Sander¹⁷</td>
<td>1986</td>
<td>Cl + ClONO₂ Flash photolysis, diode array spectrometer, F + HNO₃ Discharge flow</td>
<td>298</td>
<td>220</td>
<td>~0.4</td>
<td>2.28 ± 0.12</td>
</tr>
<tr>
<td>Canosa-Mas et al.²</td>
<td>1987</td>
<td>F + HNO₃ Discharge flow</td>
<td>296 ± 3</td>
<td>662</td>
<td>1.1</td>
<td>2.23 ± 0.35</td>
</tr>
<tr>
<td>Cantrell et al.³</td>
<td>1987</td>
<td>NO₃ + O₃ Fourier transform spectroscopy</td>
<td>348</td>
<td>323</td>
<td></td>
<td>2.06 ± 0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>298</td>
<td></td>
<td>2.13 ± 0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>271</td>
<td></td>
<td>2.02 ± 0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>253</td>
<td></td>
<td>2.08 ± 0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>232</td>
<td></td>
<td>1.84 ± 0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>215</td>
<td></td>
<td>2.22 ± 0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>215–348</td>
<td></td>
<td>2.02 ± 0.24</td>
</tr>
<tr>
<td>Yokelson et al.²²</td>
<td>1994</td>
<td>Cl + ClONO₂ Flash photolysis, diode array spectrometer</td>
<td>298</td>
<td>440–720</td>
<td>~0.1</td>
<td>2.23 ± 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>258</td>
<td></td>
<td>2.49 ± 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230</td>
<td></td>
<td>2.76 ± 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td>2.99 ± 0.14</td>
</tr>
<tr>
<td>Wängberg et al.²⁰</td>
<td>1997</td>
<td>N₂O₅ ↔ NO₃ + NO₃ + NO₃ Differential optical absorption spectroscopy</td>
<td>279.6–294.2</td>
<td>603–682</td>
<td>0.42</td>
<td>scaled to 2.10 d</td>
</tr>
<tr>
<td>Orphal et al.¹³</td>
<td>2003</td>
<td>N₂O₅ + O₃ Fourier transform spectroscopy</td>
<td>294</td>
<td>465–794</td>
<td></td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>308</td>
<td></td>
<td>2.30 ± 0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>318</td>
<td></td>
<td>2.16 ± 0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>333</td>
<td></td>
<td>1.98 ± 0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>353</td>
<td></td>
<td>1.96 ± 0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>373</td>
<td></td>
<td>1.68 ± 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>388</td>
<td></td>
<td>1.60 ± 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.55 ± 0.12</td>
</tr>
</tbody>
</table>

a. Estimate for 300 K by Wayne et al.²¹ from the data of Schott and Davidson.¹⁹
b. Improvement by Graham and Johnston⁶ using their more actual kinetic data.
c. The overall uncertainty (± 15%) includes the uncertainty of the absorbance measurement (± 5%) and the uncertainty of σ(ClONO₂) (± 10%). The value for σ(662 nm) obtained by the flash photolysis method is preferred by Sander¹⁷ over that obtained by the discharge flow method.
d. Recommendation by Wayne et al.²¹

The JPL02-25¹⁸ evaluation recommended a cross section value of (2.00 ± 0.25) × 10⁻¹⁷ cm² molecule⁻¹ at 662 nm derived from an average of the results from studies 5, 6, and 8-12 given in Table 4C-4. The recommendation by Wayne et al.²¹ averaged the data of the more recent studies, studies 9-12, and resulted in
a slightly higher value of \((2.10 \pm 0.20) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}\). Higher values for the absorption cross section at 662 nm were obtained in the more recent studies by Yokelson et al.22 and Orphal et al.13 Here, the results from Sander17 and Yokelson et al.22 are averaged to derive a recommended cross section of \((2.25 \pm 0.15) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}\) at 662 nm. The recommended absorption cross sections at other wavelengths in Table 4C-5 are taken from Sander17 after normalization to this value, which is actually only a reduction of 1.3% from the originally reported data.

The studies of the absorption spectrum temperature dependence indicate an increase of the 662 nm peak absorption cross section with decreasing temperature. Ravishankara and Mauldin15 reported an increase of 42% between 298 and 220 K. Sander17 reported an increase of 17% between 298 and 230 K. Yokelson et al.22 reported increases of 34% between 298 and 200 K and 24% between 298 and 230 K. Osthoff et al.14 reported a decrease of 48% between 298 and 388 K. Cantrell et al.1 reported a temperature independent cross section over the temperature range 210–348 K of \(2.06 \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}\) that is in disagreement with the findings from the other studies. Osthoff et al.14 combined their data with the data from Yokelson et al.22 and modified the parameterization given by Yokelson et al.22 for the peak cross section temperature dependence slightly as:

\[
\sigma(662 \text{ nm}, T) = (4.582 \pm 0.096) - [(0.00796 \pm 0.0031) \times T] \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}
\]

for the range 220–388 K. Orphal et al.13 interpreted the temperature dependence as resulting from changes in the ground vibrational state population of NO\textsubscript{3} (D\textsubscript{3h} symmetry) and derived a formula for the cross section ratio as function of temperature

\[
\frac{\sigma(T)}{\sigma(298 K)} = \left[1 - \exp(-1096.4/T) - 2 \exp(-529.5/T)\right] / \left[1 - \exp(-1096.4/298.0) - 2 \exp(-529.5/298.0)\right]
\]

where the values of 1096.4 K and 529.5 K are the vibrational energies of 762 cm\(^{-1}\) and 368 cm\(^{-1}\) divided by the Boltzmann constant. There is excellent agreement between the calculated temperature dependence using the Orphal model and the empirical relationships from Yokelson et al.22 and Osthoff et al.14.

Photolysis Quantum Yield and Product Studies: The quantum yields \(\Phi_1\) and \(\Phi_2\) have been measured by Graham and Johnston,6 and at higher spectral resolution by Magnotta and Johnston,9 who report the product of the cross section times the quantum yield in the 400 to 630 nm range. The total quantum yield value, \(\Phi_1 + \Phi_2\), computed from the results of Magnotta and Johnston9 and the cross sections of Graham and Johnston,6 is about 1.5 for \(\lambda < 585 \text{ nm}\), based on the nearly constant yield of the major product \(\text{O}^{(3P)}\), and a quantum yield for the NO production \(\Phi_1\) near zero. Because systematic errors seem to exist in these data, in their review Wayne et al.21 normalized \(\Phi_2\) quantum yields to unity at \(\lambda < 585 \text{ nm}\). The quantum yield for the NO production, \(\Phi_1\), increases from zero at 585 nm to a maximum of \(\Phi_1 = 0.35\) at 595 nm, where \(\Phi_2 = 0.65\). At longer wavelengths both \(\Phi_1\) and \(\Phi_2\) decrease to a value of zero at \(\lambda = 640 \text{ nm}\). Orlando et al.12 measured the \(\text{O}^{(3P)}\) and NO quantum yields in the photolysis of NO\textsubscript{3} between 570 and 635 nm. They qualitatively confirm the earlier measurements by Johnston and coworkers but provide more accurate data for both channels. The \(\text{O}^{(3P)}\) quantum yield was found to be unity in the wavelength range 570–585 and to decrease to 0.1 at 635 nm. They observed anomalously low \(\text{O}^{(3P)}\) yields in the region of the strong absorption band near 623 nm. The quantum yields for NO formation were <0.10 at 580 nm and 0.20 ± 0.10 near 590 nm. The wavelength dependence of \(\Phi_1\) and \(\Phi_2\) are similar to those recommended in the review of Wayne et al.21.

In a molecular beam study, Davis et al.5 investigated the photodissociation processes of NO\textsubscript{3} over the wavelength range 532–662 nm and determined a sharp threshold for the dissociation of internally cold NO\textsubscript{3} into NO\textsubscript{2} and \(\text{O}^{(3P)}\) at 587 nm. At shorter wavelengths, e.g. 585 nm, the NO + O\textsubscript{2} yield dropped to <0.05. At excitation energies just below this threshold, i.e., \(\lambda = 588 \text{ nm}\), a large quantum yield (0.70 ± 0.10) for a concerted three-center rearrangement was observed, resulting in NO + O\textsubscript{3}(\(\Sigma_g^+, 1\Delta\)). The yield of this NO + O\textsubscript{2} process decreases at longer wavelengths to zero at 613 nm. At \(\lambda > 588 \text{ nm}\) the O + NO\textsubscript{2} channel yield arises from vibrational excitation of the ground electronic state of NO\textsubscript{3}. These results imply that for thermally equilibrated NO\textsubscript{3} the branching ratios for dissociation of both channels (1) and (2) will strongly depend on temperature, especially near the threshold wavelength.

Johnston et al.7 re-analyzed the available laboratory data relevant to NO\textsubscript{3} photolysis, including quantum yield data for NO and NO\textsubscript{2} formation, fluorescence, and threshold energies reported in the molecular beam study. Their model reproduces the wavelength dependent quantum yield values for \(\Phi(\text{O} + \text{NO}_2), \Phi(\text{NO} + \text{O}_2)\) and \(\Phi(\text{fluorescence})\) at 190, 230, and 298 K. At 298 K the calculated \(\Phi(\text{O} + \text{NO}_2)\) quantum yields agree reasonably well with those obtained by Orlando et al.,12 but shows a systematic offset in the wavelength range 605–620 nm. The calculated \(\Phi(\text{NO} + \text{O}_2)\) product yield agrees with those reported by Magnotta and Johnston9 within the scatter of the experimental data.

4-61
The recommended quantum yields in Table 4C-6 over the wavelength range 685–640 nm at 190, 230, and 298 K are taken from Johnston et al.7 For \(\lambda < 585 \) nm, \(\Phi(O + NO_2) = 1 \), and \(\Phi(NO + O_2) = 0 \) and for \(\lambda > 640 \) nm \(\Phi(O + NO_2) \) and \(\Phi(NO + O_2) \) are zero. Photodissociation rates have been calculated by Johnston et al.7 for overhead sun in the stratosphere to be

\[
\begin{align*}
J(NO + O_2) &= 0.0201 \text{ s}^{-1} \\
J(NO_2 + O) &= 0.156 \text{ s}^{-1}
\end{align*}
\]

Table 4C-5. Recommended Absorption Cross Sections of NO\(_3\) at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>403 0</td>
<td>506</td>
<td>436 2</td>
<td>431</td>
<td>426 3</td>
<td>421</td>
<td>416 4</td>
<td>411</td>
<td>406 5</td>
<td>401</td>
</tr>
<tr>
<td>219 5</td>
<td>214</td>
<td>209 6</td>
<td>204</td>
<td>199 7</td>
<td>194</td>
<td>189 8</td>
<td>184</td>
<td>179 9</td>
<td>174</td>
</tr>
<tr>
<td>113 10</td>
<td>108</td>
<td>103 11</td>
<td>98</td>
<td>93 12</td>
<td>88</td>
<td>83 13</td>
<td>78</td>
<td>73 14</td>
<td>68</td>
</tr>
<tr>
<td>58 15</td>
<td>53</td>
<td>48 16</td>
<td>43</td>
<td>38 17</td>
<td>33</td>
<td>28 18</td>
<td>23</td>
<td>18 19</td>
<td>13</td>
</tr>
<tr>
<td>13 20</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\Delta(\text{NO})(\text{cm}) &\Delta(\text{O})(\text{cm}) \\
J(NO + O_2) &= 0.0201 \text{ s}^{-1} \\
J(NO_2 + O) &= 0.156 \text{ s}^{-1}
\end{align*}
\]
Table 4C-6. Recommended Product Channel Quantum Yields in the Photolysis of NO₃ at 298, 230, and 190 K

<table>
<thead>
<tr>
<th>λ</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>585</td>
<td>0.0</td>
<td>586</td>
<td>15.2</td>
<td>587</td>
<td>39.1</td>
<td>588</td>
<td>97.1</td>
<td>589</td>
<td>128.0</td>
</tr>
<tr>
<td>591</td>
<td>220.0</td>
<td>592</td>
<td>249.0</td>
<td>593</td>
<td>303.0</td>
<td>594</td>
<td>328.0</td>
<td>595</td>
<td>359.0</td>
</tr>
<tr>
<td>597</td>
<td>318.0</td>
<td>598</td>
<td>323.0</td>
<td>599</td>
<td>314.0</td>
<td>600</td>
<td>291.0</td>
<td>601</td>
<td>296.0</td>
</tr>
<tr>
<td>603</td>
<td>283.0</td>
<td>604</td>
<td>280.0</td>
<td>605</td>
<td>264.0</td>
<td>606</td>
<td>271.0</td>
<td>607</td>
<td>268.0</td>
</tr>
<tr>
<td>609</td>
<td>248.0</td>
<td>610</td>
<td>236.0</td>
<td>611</td>
<td>205.0</td>
<td>612</td>
<td>200.0</td>
<td>613</td>
<td>190.0</td>
</tr>
<tr>
<td>615</td>
<td>166.0</td>
<td>616</td>
<td>160.0</td>
<td>617</td>
<td>141.0</td>
<td>618</td>
<td>143.0</td>
<td>619</td>
<td>139.0</td>
</tr>
<tr>
<td>621</td>
<td>127.0</td>
<td>622</td>
<td>122.0</td>
<td>623</td>
<td>117.0</td>
<td>624</td>
<td>113.0</td>
<td>625</td>
<td>109.0</td>
</tr>
</tbody>
</table>

Note:
403–691 nm: data from Sander normalized to 2.25 × 10⁻¹⁷ cm² molecule⁻¹ at 662 nm
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>623</td>
<td>117.0</td>
<td>57.6</td>
<td>26.5</td>
<td>64.3</td>
<td>19.7</td>
<td>6.07</td>
</tr>
<tr>
<td>624</td>
<td>106.0</td>
<td>49.6</td>
<td>21.9</td>
<td>55.2</td>
<td>16.2</td>
<td>4.8</td>
</tr>
<tr>
<td>625</td>
<td>98.5</td>
<td>44.5</td>
<td>19.0</td>
<td>48.7</td>
<td>13.8</td>
<td>3.94</td>
</tr>
<tr>
<td>626</td>
<td>92.3</td>
<td>40.6</td>
<td>16.8</td>
<td>44.2</td>
<td>12.2</td>
<td>3.39</td>
</tr>
<tr>
<td>627</td>
<td>84.8</td>
<td>36.0</td>
<td>14.5</td>
<td>39.3</td>
<td>10.5</td>
<td>2.83</td>
</tr>
<tr>
<td>628</td>
<td>73.9</td>
<td>29.9</td>
<td>11.5</td>
<td>33.9</td>
<td>8.67</td>
<td>2.26</td>
</tr>
<tr>
<td>629</td>
<td>69.9</td>
<td>27.4</td>
<td>10.2</td>
<td>29.4</td>
<td>7.23</td>
<td>1.81</td>
</tr>
<tr>
<td>630</td>
<td>64.9</td>
<td>24.7</td>
<td>9.01</td>
<td>26.4</td>
<td>6.29</td>
<td>1.53</td>
</tr>
<tr>
<td>631</td>
<td>57.8</td>
<td>21.3</td>
<td>7.52</td>
<td>23.6</td>
<td>5.45</td>
<td>1.29</td>
</tr>
<tr>
<td>632</td>
<td>50.8</td>
<td>17.8</td>
<td>6.02</td>
<td>19.5</td>
<td>4.29</td>
<td>0.969</td>
</tr>
<tr>
<td>633</td>
<td>46.6</td>
<td>15.9</td>
<td>5.23</td>
<td>17.7</td>
<td>3.8</td>
<td>0.838</td>
</tr>
<tr>
<td>634</td>
<td>42.6</td>
<td>14.2</td>
<td>4.54</td>
<td>16.1</td>
<td>3.36</td>
<td>0.724</td>
</tr>
<tr>
<td>635</td>
<td>37.3</td>
<td>12.0</td>
<td>3.73</td>
<td>14.6</td>
<td>2.97</td>
<td>0.624</td>
</tr>
<tr>
<td>636</td>
<td>32.3</td>
<td>9.86</td>
<td>2.93</td>
<td>11.9</td>
<td>2.3</td>
<td>0.462</td>
</tr>
<tr>
<td>637</td>
<td>29.4</td>
<td>8.7</td>
<td>2.52</td>
<td>10.7</td>
<td>2.02</td>
<td>0.396</td>
</tr>
<tr>
<td>638</td>
<td>26.6</td>
<td>7.66</td>
<td>2.16</td>
<td>9.57</td>
<td>1.77</td>
<td>0.338</td>
</tr>
<tr>
<td>639</td>
<td>23.5</td>
<td>6.53</td>
<td>1.78</td>
<td>8.56</td>
<td>1.54</td>
<td>0.288</td>
</tr>
<tr>
<td>640</td>
<td>20.3</td>
<td>5.38</td>
<td>1.41</td>
<td>7.15</td>
<td>1.24</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Note:
Johnston et al. 7

Figure 4C-1. Absorption Spectrum of NO₃

(19) Schott, G.; Davidson, N. Shock waves in chemical kinetics: The decomposition of N$_2$O$_5$ at high temperatures. J. Am. Chem. Soc. 1958, 80, 1841-1853.

C3. N$_2$O (nitrous oxide)

\[
\begin{align*}
\text{N}_2\text{O} + \text{hv} & \rightarrow \text{N}_2 + \text{O}^\text{(I)} \quad 356.5 \text{ kJ mol}^{-1} \quad 336 \text{ nm} \\
& \rightarrow \text{N}_2 + \text{O}^\text{(II)} \quad 168 \text{ kJ mol}^{-1} \quad 713 \text{ nm} \\
& \rightarrow \text{N}^\text{(I)} + \text{NO}^\text{(II)} \quad 482 \text{ kJ mol}^{-1} \quad 248 \text{ nm} \\
& \rightarrow \text{N}_2 + \text{O}^\text{(I)} \quad 571 \text{ kJ mol}^{-1} \quad 210 \text{ nm}
\end{align*}
\]

(Recommendation: 06-2; Note: 15-10; Evaluated: 15-10)

Absorption Cross Sections: The VUV/UV absorption spectrum of nitrous oxide, N$_2$O, has been measured in numerous studies covering the wavelength range 108–315 nm at temperatures between 194 and 302 K. A summary of the available spectroscopic studies is given in Table 4C-7.
The N$_2$O spectrum has a broad absorption band between 160 and 260 nm with the peak near 182 nm ($\sigma_{\text{max}} = (1.24-1.47) \times 10^{-19}$ cm2 molecule$^{-1}$) and a stronger but weaker band between 137 and 160 nm with the maximum near 145 nm ($\sigma_{\text{max}} = (5.6-10) \times 10^{-19}$ cm2 molecule$^{-1}$). There is good agreement between the results from Selwyn et al.23 and Hubrich and Stuhl.10 The agreement over the entire 160–260 nm band is better than 15% and the difference at 182 nm is 5% with the data of Selwyn et al.23 being greater. The results of Mérienne et al.14 and Rontu Carlon et al.22 are in excellent agreement, better than 5% and 3%, respectively, with those of Selwyn et al.23 The results of Cantrell et al.3 and Creasey et al.5 at 184.9 mm are also in good agreement with the results of Selwyn et al.23 The high resolution absorption spectrum reported by Yoshino et al.29 shows the diffuse vibrational structure around the maximum and their absolute cross sections are close to those reported by Hubrich and Stuhl.10 At wavelengths >250 nm, there are large discrepancies between the results from Bates and Hayes3 and Johnston and Selwyn2. The recommended cross sections listed in Table 4C-8 are based on the room temperature results at 160, 165, and 170 nm of Hubrich and Stuhl10 and the room temperature data between 173–240 nm from Selwyn et al.23

The VUV absorption spectrum of N$_2$O has been measured by Hitchcock et al.9 (16.8–155 nm) and Chan et al.4 (6.1–168 nm). The absorption cross section at 123.6 nm was measured by Bertrand et al.2. The cross section results from Chan et al. and Hitchcock et al. agree to within 6% at 124 nm, while the value reported by Bertrand et al. is less by nearly a factor of 3. The reason for the difference is unknown. The recommended Lyman-α cross section is adopted from SPARC.13 which used a linear interpolation of the Chan et al. cross section data at 118 and 124 nm to obtain a Lyman-α cross section of 2.4×10^{-17} cm2 molecule$^{-1}$ with an uncertainty factor of 1.5 (2σ).

The temperature dependence of the N$_2$O absorption cross section in the atmospherically relevant wavelength region has been measured by Selwyn et al.23 Hubrich and Stuhl.10 Mérienne et al.14 and Rontu Carlon et al.22 These studies report a decrease in absorption cross section with decreasing temperature. The Hubrich and Stuhl data has considerable scatter in the spectrum wavelength dependence and is not considered in the recommendation. The Rontu Carlon et al. study is in excellent agreement, to within 3%, with the JPL10-6 recommendation at 202.206, 206.200, and 213.857 nm. There is a systematic difference in the cross section temperature dependence at 228.8 nm between the Mérienne et al. and Rontu Carlon et al. data and that of JPL10-6, where the difference is ~18% at 210 K. The empirical cross section parameterization given by Selwyn et al.23 given in Table 4C-9 is recommended.

On the basis of the Selwyn et al., Mérienne et al., and Rontu Carlon et al. studies, an uncertainty factor of 1.08 (2σ) is recommended for the 298 K absorption cross sections over the wavelength range 185–220 nm.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength range (nm)</th>
<th>Resolution (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romand and Mayence21</td>
<td>1949</td>
<td>291</td>
<td>139–231</td>
<td>–</td>
</tr>
<tr>
<td>Zelikoff et al.32</td>
<td>1953</td>
<td>298</td>
<td>108–210</td>
<td>0.085</td>
</tr>
<tr>
<td>Zelikoff and Aschenbrand11</td>
<td>1954</td>
<td>298</td>
<td>184.9</td>
<td>–</td>
</tr>
<tr>
<td>Thompson et al.26</td>
<td>1963</td>
<td>298</td>
<td>190–240</td>
<td>–</td>
</tr>
<tr>
<td>Bates and Hays1</td>
<td>1967</td>
<td>298</td>
<td>190–315</td>
<td>–</td>
</tr>
<tr>
<td>Bertrand et al.2</td>
<td>1975</td>
<td>298</td>
<td>123.6</td>
<td>–</td>
</tr>
<tr>
<td>Johnston and Selwyn12</td>
<td>1975</td>
<td>298</td>
<td>210–300</td>
<td>–</td>
</tr>
<tr>
<td>Selwyn et al.23</td>
<td>1977</td>
<td>194, 225, 243, 263, 302</td>
<td>173–240</td>
<td>0.7, 0.075</td>
</tr>
<tr>
<td>Hitchcock et al.9</td>
<td>1980</td>
<td>298</td>
<td>16.8–155</td>
<td>0.5</td>
</tr>
<tr>
<td>Hubrich and Stuhl10</td>
<td>1980</td>
<td>208, 298</td>
<td>160–250</td>
<td>0.3</td>
</tr>
<tr>
<td>Selwyn and Johnston24</td>
<td>1981</td>
<td>150–500</td>
<td>172–197</td>
<td>0.003, 0.05, 0.07</td>
</tr>
<tr>
<td>Yoshino et al.29</td>
<td>1984</td>
<td>295–299</td>
<td>169.6–222.6</td>
<td>0.0006</td>
</tr>
<tr>
<td>Mérienne et al.14</td>
<td>1990</td>
<td>220, 240, 296</td>
<td>200–240</td>
<td>0.02</td>
</tr>
<tr>
<td>Chan et al.4</td>
<td>1994</td>
<td>298</td>
<td>6.1–168</td>
<td>0.5</td>
</tr>
<tr>
<td>Cantrell et al.3</td>
<td>1997</td>
<td>298, 353</td>
<td>184.9</td>
<td><0.2</td>
</tr>
<tr>
<td>Creasey et al.5</td>
<td>2000</td>
<td>298</td>
<td>184.9</td>
<td>–</td>
</tr>
<tr>
<td>von Hessberg et al.28</td>
<td>2004</td>
<td>233, 283</td>
<td>180–218</td>
<td>0.7, 1.1</td>
</tr>
<tr>
<td>Rontu Carlon et al.22</td>
<td>2010</td>
<td>210–350</td>
<td>184.95, 202.206, 206.200, 213.857, 228.8</td>
<td>atomic lines</td>
</tr>
</tbody>
</table>

Table 4C-7. Summary of N$_2$O Cross Section Studies

The N$_2$O spectrum has a broad absorption band between 160 and 260 nm with the peak near 182 nm ($\sigma_{\text{max}} = (1.24–1.47) \times 10^{-19}$ cm2 molecule$^{-1}$) and a stronger but weaker band between 137 and 160 nm with the maximum near 145 nm ($\sigma_{\text{max}} = (5.6–10) \times 10^{-19}$ cm2 molecule$^{-1}$). There is good agreement between the results from Selwyn et al.23 and Hubrich and Stuhl.10 The agreement over the entire 160–260 nm band is better than 15% and the difference at 182 nm is 5% with the data of Selwyn et al.23 being greater. The results of Mérienne et al.14 and Rontu Carlon et al.22 are in excellent agreement, better than 5% and 3%, respectively, with those of Selwyn et al.23 The results of Cantrell et al.3 and Creasey et al.5 at 184.9 mm are also in good agreement with the results of Selwyn et al.23 The high resolution absorption spectrum reported by Yoshino et al.29 shows the diffuse vibrational structure around the maximum and their absolute cross sections are close to those reported by Hubrich and Stuhl.10 At wavelengths >250 nm, there are large discrepancies between the results from Bates and Hayes3 and Johnston and Selwyn.12 The recommended cross sections listed in Table 4C-8 are based on the room temperature results at 160, 165, and 170 nm of Hubrich and Stuhl.10 and the room temperature data between 173–240 nm from Selwyn et al.23

The VUV absorption spectrum of N$_2$O has been measured by Hitchcock et al.9 (16.8–155 nm) and Chan et al.4 (6.1–168 nm). The absorption cross section at 123.6 nm was measured by Bertrand et al.2. The cross section results from Chan et al. and Hitchcock et al. agree to within 6% at 124 nm, while the value reported by Bertrand et al. is less by nearly a factor of 3. The reason for the difference is unknown. The recommended Lyman-α cross section is adopted from SPARC.13 which used a linear interpolation of the Chan et al. cross section data at 118 and 124 nm to obtain a Lyman-α cross section of 2.4×10^{-17} cm2 molecule$^{-1}$ with an uncertainty factor of 1.5 (2σ).

The temperature dependence of the N$_2$O absorption cross section in the atmospherically relevant wavelength region has been measured by Selwyn et al.23 Hubrich and Stuhl.10 Mérienne et al.14 and Rontu Carlon et al.22 These studies report a decrease in absorption cross section with decreasing temperature. The Hubrich and Stuhl data has considerable scatter in the spectrum wavelength dependence and is not considered in the recommendation. The Rontu Carlon et al. study is in excellent agreement, to within 3%, with the JPL10-6 recommendation at 202.206, 206.200, and 213.857 nm. There is a systematic difference in the cross section temperature dependence at 228.8 nm between the Mérienne et al. and Rontu Carlon et al. data and that of JPL10-6, where the difference is ~18% at 210 K. The empirical cross section parameterization given by Selwyn et al.23 given in Table 4C-9 is recommended.

On the basis of the Selwyn et al., Mérienne et al., and Rontu Carlon et al. studies, an uncertainty factor of 1.08 (2σ) is recommended for the 298 K absorption cross sections over the wavelength range 185–220 nm.
The uncertainty factor at lower temperatures is estimated to be slightly greater with a value of 1.12 (2σ) at 200 K.

Isotopomer specific cross sections for 14N14NO, 15N14NO, 14N15NO, 15N15NO over the wavelength range 181–218 nm have been reported by von Hessberg et al.28 at 233 and 283 K. They observed a slight decrease in the absorption cross sections of 14N15NO and 15N14NO compared to those of 14N14NO and 15N15NO. They also observed a systematic decrease in absorption cross section with decreasing temperature.

Photolysis Quantum Yield and Product Studies: The quantum yield for photodissociation is unity in the range 140–230 nm and the photoproducts are almost exclusively N$_2$ and O(1D) (Zelikoff and Aschenbrand,31 Greiner,7 Paraskevopoulos and Cvetanovic,16 Preston and Barr,17 and Simonaitis et al.25). The yield of N(4S) and NO(3P) is less than 1% (Greenblatt and Ravishankaraa). Nishida et al.15 reported the yield of O(3P) at 193 nm to be 0.005 ± 0.002.

Several groups have investigated the isotopic fractionation of N$_2$O resulting from photolysis in the UV. Fractionation factors have been measured following photolysis at select wavelengths in the 193–213 nm range by Turatti et al.27 (using high resolution FTIR spectroscopy), Röckmann et al.19 (using a modified isotope ratio mass spectrometric technique), Rahn et al.18 (utilizing isotope ratio mass spectrometry), and Zhang et al.33 (using low resolution FTIR spectroscopy). Röckmann et al.20 utilized a broadband photolysis source centered around 200 nm that simulated stratospheric actinic fluxes. The results are in reasonably good agreement and indicate that the fractionation factors increase with increasing wavelength between 193 and 213 nm. Furthermore, the fractionation factors show a clear dependence on the position of the 18N atom, in agreement with the theoretical zero point energy model of Yung and Miller.30 However, the Yung and Miller calculations underestimate the laboratory results by about a factor of two. A more detailed Hermite propagation model used by Johnson et al.11 achieved better agreement with experimental enrichment factors. Analysis of the isotopic composition of stratospheric air samples yields results that are in qualitative agreement with the laboratory results, confirming that photolysis is the predominant sink for N$_2$O.8,20 On the other hand, the fractionation factors measured in the atmospheric samples are smaller than those reported from the laboratory studies, indicating the influence of atmospheric diffusion and mixing (Röckmann et al.20).

Table 4C-8. Recommended Absorption Cross Sections of N$_2$O at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>4.30</td>
<td>188</td>
<td>12.5</td>
<td>206</td>
<td>1.65</td>
<td>224</td>
<td>0.0375</td>
</tr>
<tr>
<td>165</td>
<td>5.61</td>
<td>189</td>
<td>11.7</td>
<td>207</td>
<td>1.38</td>
<td>225</td>
<td>0.0303</td>
</tr>
<tr>
<td>170</td>
<td>8.30</td>
<td>190</td>
<td>11.1</td>
<td>208</td>
<td>1.16</td>
<td>226</td>
<td>0.0239</td>
</tr>
<tr>
<td>175</td>
<td>11.3</td>
<td>191</td>
<td>10.4</td>
<td>209</td>
<td>0.980</td>
<td>227</td>
<td>0.0190</td>
</tr>
<tr>
<td>174</td>
<td>11.9</td>
<td>192</td>
<td>9.75</td>
<td>210</td>
<td>0.755</td>
<td>228</td>
<td>0.0151</td>
</tr>
<tr>
<td>175</td>
<td>12.6</td>
<td>193</td>
<td>8.95</td>
<td>211</td>
<td>0.619</td>
<td>229</td>
<td>0.0120</td>
</tr>
<tr>
<td>176</td>
<td>13.4</td>
<td>194</td>
<td>8.11</td>
<td>212</td>
<td>0.518</td>
<td>230</td>
<td>0.00955</td>
</tr>
<tr>
<td>177</td>
<td>14.0</td>
<td>195</td>
<td>7.57</td>
<td>213</td>
<td>0.421</td>
<td>231</td>
<td>0.00760</td>
</tr>
<tr>
<td>178</td>
<td>13.9</td>
<td>196</td>
<td>6.82</td>
<td>214</td>
<td>0.342</td>
<td>232</td>
<td>0.00605</td>
</tr>
<tr>
<td>179</td>
<td>14.4</td>
<td>197</td>
<td>6.10</td>
<td>215</td>
<td>0.276</td>
<td>233</td>
<td>0.00478</td>
</tr>
<tr>
<td>180</td>
<td>14.6</td>
<td>198</td>
<td>5.35</td>
<td>216</td>
<td>0.223</td>
<td>234</td>
<td>0.00360</td>
</tr>
<tr>
<td>181</td>
<td>14.6</td>
<td>199</td>
<td>4.70</td>
<td>217</td>
<td>0.179</td>
<td>235</td>
<td>0.00301</td>
</tr>
<tr>
<td>182</td>
<td>14.7</td>
<td>200</td>
<td>4.09</td>
<td>218</td>
<td>0.142</td>
<td>236</td>
<td>0.00240</td>
</tr>
<tr>
<td>183</td>
<td>14.6</td>
<td>201</td>
<td>3.58</td>
<td>219</td>
<td>0.115</td>
<td>237</td>
<td>0.00191</td>
</tr>
<tr>
<td>184</td>
<td>14.4</td>
<td>202</td>
<td>3.09</td>
<td>220</td>
<td>0.0922</td>
<td>238</td>
<td>0.00152</td>
</tr>
<tr>
<td>185</td>
<td>14.3</td>
<td>203</td>
<td>2.67</td>
<td>221</td>
<td>0.0739</td>
<td>239</td>
<td>0.00123</td>
</tr>
<tr>
<td>186</td>
<td>13.6</td>
<td>204</td>
<td>2.30</td>
<td>222</td>
<td>0.0588</td>
<td>240</td>
<td>0.00101</td>
</tr>
<tr>
<td>187</td>
<td>13.1</td>
<td>205</td>
<td>1.95</td>
<td>223</td>
<td>0.0474</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
160–170 nm: Hubrich and Stuhl10
173–240 nm: Selwyn et al.23
\[
\ln(\sigma(\lambda, T)) = \sum_{n=0}^{4} A_n \lambda^n + (T - 300) \exp \left(\sum_{n=0}^{3} B_n \lambda^n \right)
\]

where \(T \) = temperature (K) and \(\lambda \) = wavelength (nm)

\[
A_0 = 68.21023, \quad B_0 = 123.4014
\]
\[
A_1 = -4.071805, \quad B_1 = -2.116255
\]
\[
A_2 = 4.301146 \times 10^{-2}, \quad B_2 = 1.111572 \times 10^{-2}
\]
\[
A_3 = -1.777846 \times 10^{-4}, \quad B_3 = -1.881058 \times 10^{-5}
\]
\[
A_4 = 2.520672 \times 10^{-7}
\]

Ranges of applicability: 173 nm < \(\lambda \) < 240 nm; 194 K < \(T \) < 302 K

Table 4C-9. Recommended Expression for the Absorption Cross Sections of N₂O as a Function of Temperature

<table>
<thead>
<tr>
<th>No.</th>
<th>A_n</th>
<th>B_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>68.21023</td>
<td>123.4014</td>
</tr>
<tr>
<td>1</td>
<td>-4.071805</td>
<td>-2.116255</td>
</tr>
<tr>
<td>2</td>
<td>4.301146 \times 10^{-2}</td>
<td>1.111572 \times 10^{-2}</td>
</tr>
<tr>
<td>3</td>
<td>-1.777846 \times 10^{-4}</td>
<td>-1.881058 \times 10^{-5}</td>
</tr>
<tr>
<td>4</td>
<td>2.520672 \times 10^{-7}</td>
<td></td>
</tr>
</tbody>
</table>

(20) Röckmann, T. J.; Kaiser, J.; Brenninkmeijer, C. A. M.; Crowley, J. N.; Borchers, R.; Brand, W. A.; Crutzen, P. J. Isotopic enrichment of nitrous oxide (12N14NO, 14N15NO, 14N14N18O) in the stratosphere and in the laboratory. *J. Geophys. Res.* 2001, 106, 10403-10410.

(26) Thompson, B. A.; Hartack, P.; Reeves Jr., R. R. Ultraviolet absorption coefficients of CO$_2$, CO, O$_2$, H$_2$O, N$_2$O, NH$_3$, NO, SO$_2$, and CH$_4$ between 1850 and 4000 Å. *J. Geophys. Res.* 1963, 68, 6431-6436.

(28) von Hessberg, P.; Kaiser, J.; Enghoff, M. B.; McLinden, C. A.; Sorensen, S. L.; Rockmann, T.; Johnson, M. S. Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: 14N14NO, 14N15NO, 15N14NO and 15N15NO. *Atmos. Chem. Phys.* 2004, 4, 1237-1253.

C4. N$_2$O$_4$ (dinitrogen tetraoxide)

<table>
<thead>
<tr>
<th>N$_2$O$_4$ + hv → 2 NO$_2$</th>
<th>57 kJ mol$^{-1}$</th>
<th>2090 nm</th>
</tr>
</thead>
</table>

(Recommendation: 06-2; Note: 10-6; Evaluated: 10-6)

Absorption Cross Sections: The UV/vis absorption spectrum of dinitrogen tetraoxide, N$_2$O$_4$, has been derived from absorption measurements of NO$_2$-N$_2$O$_4$ mixtures. The available studies are summarized in Table 4C-10. The N$_2$O$_4$ absorption spectrum consists of a band between 300 and 400 nm with a maximum at ~340 nm, a second less pronounced maximum near ~265 nm, and a strong absorption at shorter wavelengths with a maximum near 190 nm. For the wavelength region 185–360 nm, there is good agreement for the shape of the absorption spectrum but there are discrepancies in the absolute absorption cross sections. In the region below 240 nm, there is good agreement between the absorption cross sections of Bass et al.4 and Schneider et al.8 whereas the values reported by Mérienne et al.6 are lower by ~30%. In the region between 250 and 300 nm, the results of Vandaele et al.9 are systematically lower than the results of Mérienne et al.6 by ~15% whereas the results of Bass et al.1 are higher by ~30%. In the region 300–380 nm, Harwood and Jones3 reported a systematic study of the temperature dependence of the N$_2$O$_4$ absorption spectrum. The absorption cross sections near the peak at 340 nm show a weak dependence on temperature over the range 213–253 K. There is good agreement between the results of Hall and Blacet,2 the low-temperature data of Harwood and Jones,3 and the results of Vandaele et al.9 with the absorption cross sections at 340 nm agreeing to within 5%. Bass et al.1 and Mérienne et al.6 report cross section values at 340 nm that are 25% and 15% higher, respectively. The recommended cross section values in Table 4C-11 are averages over 2 nm intervals of the high resolution (0.01–0.03 nm) spectrum reported by Vandaele et al.9 between 252 and 390 nm at 220 K.

Photolysis Quantum Yield and Product Studies: No recommendation.

Back to Index
Table 4C-10. Summary of N$_2$O$_4$ Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength (nm)</th>
<th>10^{20} σ(340 nm) (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmes and Danielsd</td>
<td>1934</td>
<td>273</td>
<td>265–405</td>
<td>~43</td>
</tr>
<tr>
<td>Hall and Blacetc</td>
<td>1952</td>
<td>298</td>
<td>240–390</td>
<td>69</td>
</tr>
<tr>
<td>Nakayama et al.g</td>
<td>1959</td>
<td>300</td>
<td>197</td>
<td>–</td>
</tr>
<tr>
<td>Bass et al.l</td>
<td>1976</td>
<td>273</td>
<td>185–390</td>
<td>82.8</td>
</tr>
<tr>
<td>Schneider et al.h</td>
<td>1987</td>
<td>298</td>
<td>198–230</td>
<td>–</td>
</tr>
<tr>
<td>Harwood and Jonesk</td>
<td>1994</td>
<td>213, 225</td>
<td>320–405</td>
<td>64.2</td>
</tr>
<tr>
<td>Mérienne et al.n</td>
<td>1997</td>
<td>220</td>
<td>200–390</td>
<td>78.1</td>
</tr>
<tr>
<td>Vandaele et al.r</td>
<td>1998</td>
<td>220</td>
<td>250–455</td>
<td>68.1</td>
</tr>
</tbody>
</table>

* (as given in Johnston and Grahamm)

Table 4C-11. Recommended Absorption Cross Sections of N$_2$O$_4$ at 220 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>252</td>
<td>64.8</td>
<td>288</td>
<td>27.5</td>
<td>324</td>
<td>47.5</td>
<td>360</td>
<td>26.8</td>
</tr>
<tr>
<td>254</td>
<td>65.1</td>
<td>290</td>
<td>25.0</td>
<td>326</td>
<td>51.9</td>
<td>362</td>
<td>22.5</td>
</tr>
<tr>
<td>256</td>
<td>64.7</td>
<td>292</td>
<td>22.9</td>
<td>328</td>
<td>55.9</td>
<td>364</td>
<td>18.7</td>
</tr>
<tr>
<td>258</td>
<td>64.8</td>
<td>294</td>
<td>21.0</td>
<td>330</td>
<td>59.7</td>
<td>366</td>
<td>15.4</td>
</tr>
<tr>
<td>260</td>
<td>64.3</td>
<td>296</td>
<td>19.5</td>
<td>332</td>
<td>63.0</td>
<td>368</td>
<td>12.5</td>
</tr>
<tr>
<td>262</td>
<td>63.2</td>
<td>298</td>
<td>18.5</td>
<td>334</td>
<td>65.7</td>
<td>370</td>
<td>10.0</td>
</tr>
<tr>
<td>264</td>
<td>61.8</td>
<td>300</td>
<td>17.9</td>
<td>336</td>
<td>67.3</td>
<td>372</td>
<td>8.13</td>
</tr>
<tr>
<td>266</td>
<td>60.0</td>
<td>302</td>
<td>18.0</td>
<td>338</td>
<td>68.1</td>
<td>374</td>
<td>6.50</td>
</tr>
<tr>
<td>268</td>
<td>57.9</td>
<td>304</td>
<td>18.5</td>
<td>340</td>
<td>68.1</td>
<td>376</td>
<td>5.33</td>
</tr>
<tr>
<td>270</td>
<td>55.2</td>
<td>306</td>
<td>19.3</td>
<td>342</td>
<td>66.8</td>
<td>378</td>
<td>4.24</td>
</tr>
<tr>
<td>272</td>
<td>52.3</td>
<td>308</td>
<td>20.8</td>
<td>344</td>
<td>64.4</td>
<td>380</td>
<td>3.52</td>
</tr>
<tr>
<td>274</td>
<td>49.3</td>
<td>310</td>
<td>22.9</td>
<td>346</td>
<td>61.3</td>
<td>382</td>
<td>2.93</td>
</tr>
<tr>
<td>276</td>
<td>46.2</td>
<td>312</td>
<td>25.3</td>
<td>348</td>
<td>57.3</td>
<td>384</td>
<td>2.47</td>
</tr>
<tr>
<td>278</td>
<td>43.0</td>
<td>314</td>
<td>28.3</td>
<td>350</td>
<td>52.5</td>
<td>386</td>
<td>2.16</td>
</tr>
<tr>
<td>280</td>
<td>39.7</td>
<td>316</td>
<td>31.9</td>
<td>352</td>
<td>47.3</td>
<td>388</td>
<td>1.89</td>
</tr>
<tr>
<td>282</td>
<td>36.4</td>
<td>318</td>
<td>35.3</td>
<td>354</td>
<td>42.1</td>
<td>390</td>
<td>1.78</td>
</tr>
<tr>
<td>284</td>
<td>33.3</td>
<td>320</td>
<td>39.1</td>
<td>356</td>
<td>36.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>30.3</td>
<td>322</td>
<td>43.2</td>
<td>358</td>
<td>31.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

Vandaele et al.r

(9) Vandaele, A. C.; Hermans, D.; Simon, P. C.; Carleer, M.; Colin, R.; Fally, S.; Mérienne, M.-F.; Jenouvrier, A.; Coquart, B. Measurements of the NO$_2$ absorption cross-section from 42000 cm$^{-1}$ to

4-70

C5. **N\(_2\)O\(_5\) (dinitrogen pentoxide)**

Absorption Cross Sections: The UV/vis absorption spectrum of dinitrogen pentoxide, N\(_2\)O\(_5\), exhibits an absorption maximum at 160 nm with continuously decreasing absorption cross sections toward longer wavelengths. The absorption cross sections of N\(_2\)O\(_5\) have been measured in a number of studies that are summarized in Table 4C-12. The room temperature values from Yao et al.\(^{14}\) and Harwood et al.\(^{3,5}\) agree to within 10-20% at wavelengths above 250 nm. Below 250 nm, the cross sections reported by Yao et al.\(^{14}\) that were recommended in the JPL-1997 evaluation are systematically higher than those reported by Harwood et al.\(^{3}\) by up to a factor of ~2 at 208 nm. A possible explanation for this discrepancy was proposed by Harwood et al.\(^{3}\) as due to contributions to the measured absorption by HNO\(_3\) impurities. Harwood et al.\(^{3}\) used N\(_2\)O\(_5\) samples containing less than 1% HNO\(_3\) impurity. This explanation was later confirmed by the measurements of Osborne et al.\(^{11}\) who also used thoroughly purified N\(_2\)O\(_5\) samples and reported absorption cross sections in agreement with those of Harwood et al.\(^{3}\) at 210–240 nm but at a lower temperature.

The recommended absorption cross sections listed in Table 4C-13 are the mean of the data from Yao et al.\(^{14}\) and Osborne\(^{11}\) for 200–208 nm, the mean of the data from Yao et al.\(^{14}\), Osborne et al.\(^{11}\) and Harwood et al.\(^{3}\) for 210–240 nm, the data of Harwood et al.\(^{3}\) for 242–398 nm, and the data of Harwood et al.\(^{3}\) for 400–420 nm.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmes and Daniels(^{6})</td>
<td>1934</td>
<td>273</td>
<td>265, 280</td>
</tr>
<tr>
<td>Jones and Wulf(^{9})</td>
<td>1937</td>
<td>273</td>
<td>285–380</td>
</tr>
<tr>
<td>Johnston and Graham(^{5})</td>
<td>1974</td>
<td>298</td>
<td>210–290</td>
</tr>
<tr>
<td>Johnston et al.(^{7})</td>
<td>1974</td>
<td>298</td>
<td>200–360</td>
</tr>
<tr>
<td>Graham(^{3})</td>
<td>1975</td>
<td>298</td>
<td>205–310</td>
</tr>
<tr>
<td>Yao et al.(^{14})</td>
<td>1982</td>
<td>225, 243, 263, 277</td>
<td>290–380</td>
</tr>
<tr>
<td>Yao et al.(^{14})</td>
<td>1982</td>
<td>298-300</td>
<td>200–380</td>
</tr>
<tr>
<td>Harwood et al.(^{5})</td>
<td>1992</td>
<td>273, 295</td>
<td>280–380</td>
</tr>
<tr>
<td>Harwood et al.(^{3})</td>
<td>1993</td>
<td>233–295</td>
<td>240–420</td>
</tr>
<tr>
<td>Harwood et al.(^{3})</td>
<td>1998</td>
<td>295</td>
<td>208–398</td>
</tr>
<tr>
<td>Osborne et al.(^{11})</td>
<td>2000</td>
<td>195</td>
<td>152–240</td>
</tr>
</tbody>
</table>

Photolysis Quantum Yield and Product Studies: There are several studies of N\(_2\)O\(_5\) primary photolysis products for wavelengths between 248 and 352.5 nm as summarized in Table 4C-14. The NO\(_3\) radical is produced with unity quantum yield at wavelengths >300 nm. At shorter wavelengths the NO\(_3\) quantum yield decreases to a value of ~0.71 at 248 nm and the O(\(^{3}\)P) atom quantum increases. The study of Oh et al.\(^{10}\) indicates that the primary photolysis products other than NO\(_3\) are a wavelength dependent mixture of NO\(_2\), NO\(_2\)\(^*\) and NO + O, where NO\(_2\)\(^*\) represents electronically excited NO\(_2\) that is most likely the \(^{3}\)B\(_3\) state. For atmospheric model calculations unit photolysis quantum yields of NO\(_3\) and NO\(_2\) are recommended for wavelengths >300 nm.
Table 4C-13. Recommended Absorption Cross Sections at 300 K and Temperature Coefficients for N$_2$O$_5$

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>A</th>
<th>B (K)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>A</th>
<th>B (K)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>A</th>
<th>B (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>910</td>
<td>270</td>
<td>16.2</td>
<td>202</td>
<td>842</td>
<td>272</td>
<td>14.9</td>
<td>204</td>
<td>771</td>
<td>274</td>
<td>13.7</td>
</tr>
<tr>
<td>206</td>
<td>682</td>
<td>276</td>
<td>12.4</td>
<td>208</td>
<td>585</td>
<td>278</td>
<td>11.4</td>
<td>210</td>
<td>480</td>
<td>280</td>
<td>10.5</td>
</tr>
<tr>
<td>212</td>
<td>381</td>
<td>282</td>
<td>9.59</td>
<td>214</td>
<td>322</td>
<td>284</td>
<td>8.74</td>
<td>216</td>
<td>267</td>
<td>286</td>
<td>7.94</td>
</tr>
<tr>
<td>218</td>
<td>220</td>
<td>288</td>
<td>7.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>181</td>
<td>290</td>
<td>6.52</td>
<td>222</td>
<td>151</td>
<td>292</td>
<td>5.88</td>
<td>224</td>
<td>129</td>
<td>294</td>
<td>5.29</td>
</tr>
<tr>
<td>226</td>
<td>113</td>
<td>296</td>
<td>4.75</td>
<td>228</td>
<td>98.4</td>
<td>298</td>
<td>4.26</td>
<td>230</td>
<td>88.2</td>
<td>300</td>
<td>3.81</td>
</tr>
<tr>
<td>232</td>
<td>80.5</td>
<td>302</td>
<td>3.40</td>
<td>234</td>
<td>74.0</td>
<td>304</td>
<td>3.03</td>
<td>236</td>
<td>69.2</td>
<td>306</td>
<td>2.70</td>
</tr>
<tr>
<td>238</td>
<td>64.6</td>
<td>308</td>
<td>2.40</td>
<td>240</td>
<td>59.8</td>
<td>310</td>
<td>2.13</td>
<td>242</td>
<td>53.1</td>
<td>312</td>
<td>1.90</td>
</tr>
<tr>
<td>244</td>
<td>49.3</td>
<td>314</td>
<td>1.68</td>
<td>246</td>
<td>45.6</td>
<td>316</td>
<td>1.49</td>
<td>248</td>
<td>41.9</td>
<td>318</td>
<td>1.33</td>
</tr>
<tr>
<td>250</td>
<td>38.6</td>
<td>320</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>35.5</td>
<td>322</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>32.6</td>
<td>324</td>
<td>0.930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>29.9</td>
<td>326</td>
<td>0.826</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>27.5</td>
<td>328</td>
<td>0.735</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>25.2</td>
<td>330</td>
<td>0.654</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>23.1</td>
<td>332</td>
<td>0.582</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>21.1</td>
<td>334</td>
<td>0.518</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>19.4</td>
<td>336</td>
<td>0.462</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>17.8</td>
<td>338</td>
<td>0.412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Absorption cross sections:
200–208 nm: mean of the data from Yao et al.14 and Osborne et al.11
210 nm: smoothed value
212–234 nm: mean of the data from Yao et al.,14 Osborne et al.,11 and Harwood et al.3
236–240 nm: smoothed values
242–384 nm: data from Harwood et al.3
386–420 nm: smoothed extrapolation of Harwood et al.3 and Harwood et al.4 data

Temperature coefficients:
Harwood et al.4 (260–410 nm), $\log_{10}(\sigma) = A(\lambda) + 1000B(\lambda)/T$; valid over the range 233–295 K
Table 4C.14. Summary of N$_2$O$_5$ Photolysis Quantum Yield Results

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>λ (nm)</th>
<th>Φ(NO$_3$)</th>
<th>Φ(O$^\bullet$P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swanson et al.13*</td>
<td>1984</td>
<td>248</td>
<td>0.73 ± 0.12</td>
<td>–</td>
</tr>
<tr>
<td>Ravishankara et al.12*</td>
<td>1986</td>
<td>248</td>
<td>0.77 ± 0.10</td>
<td>0.72 ± 0.09</td>
</tr>
<tr>
<td>Harwood et al.3</td>
<td>1998</td>
<td>248</td>
<td>0.64 ± 0.20</td>
<td>–</td>
</tr>
<tr>
<td>Ravishankara et al.12</td>
<td>1986</td>
<td>266</td>
<td>–</td>
<td>0.38 ± 0.08</td>
</tr>
<tr>
<td>Ravishankara et al.12</td>
<td>1986</td>
<td>287</td>
<td>–</td>
<td>0.21 ± 0.03</td>
</tr>
<tr>
<td>Ravishankara et al.12</td>
<td>1986</td>
<td>289</td>
<td>–</td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>Barker et al.1</td>
<td>1985</td>
<td>290</td>
<td>0.8 ± 0.2</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Harwood et al.3</td>
<td>1998</td>
<td>308</td>
<td>0.96 ± 0.15</td>
<td>–</td>
</tr>
<tr>
<td>Swanson et al.13</td>
<td>1984</td>
<td>350</td>
<td>0.84 ± 0.09</td>
<td>–</td>
</tr>
<tr>
<td>Harwood et al.3</td>
<td>1998</td>
<td>352.5</td>
<td>1.03 ± 0.15</td>
<td>–</td>
</tr>
</tbody>
</table>

Note:
* The reported NO$_3$ quantum yields of (0.89 ± 0.15) by Swanson et al.13 and (0.96 ± 0.13) by Ravishankara et al.12 have been scaled using the currently recommended NO$_3$ absorption cross section at 662 nm.

C6. HONO (nitrous acid)

HONO + hv → OH + NO

Φ(NO$_3$) = 207 kJ mol$^{-1}$

Φ(O$^\bullet$P) = 579 nm

HONO + hv → H + NO$_2$

Φ(NO$_3$) = 330 kJ mol$^{-1}$

Φ(O$^\bullet$P) = 362 nm

(Recommended: 06-2; Note: 10-6; Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of nitrous acid, HONO, consists of a highly structured absorption band between 300 and 400 nm due to vibrational progressions in the A$^1A''$ ← X$^1A'$ transition, with a maximum intensity near 354 nm and a stronger continuous absorption band at shorter wavelengths with a maximum near 205 nm. A summary of the HONO room temperature absorption cross section studies for the near UV band is given in Table 4C.15.
Table 4C-15. Summary of HONO Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Wavelength Range (nm)</th>
<th>Resolution (nm)</th>
<th>(10^{-20}) (\sigma) (354 nm) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnston and Graham⁸</td>
<td>1974</td>
<td>300–399</td>
<td>0.87</td>
<td>12.3</td>
</tr>
<tr>
<td>Cox and Derwent⁹</td>
<td>1976</td>
<td>200–394</td>
<td><0.1</td>
<td>56.0</td>
</tr>
<tr>
<td>Perner¹²</td>
<td>1977</td>
<td>310–388</td>
<td>0.6</td>
<td>55.2</td>
</tr>
<tr>
<td>Stockwell and Calvert¹³</td>
<td>1978</td>
<td>310–396</td>
<td><1</td>
<td>49.6</td>
</tr>
<tr>
<td>Platt et al.¹¹</td>
<td>1980</td>
<td>336–376</td>
<td>0.8</td>
<td>47</td>
</tr>
<tr>
<td>Kenner et al.⁹</td>
<td>1986</td>
<td>184–274</td>
<td>0.38</td>
<td>–</td>
</tr>
<tr>
<td>Vasudev¹⁵</td>
<td>1990</td>
<td>310–393</td>
<td>–</td>
<td>(49.7)³⁵</td>
</tr>
<tr>
<td>Bongartz et al.³</td>
<td>1991</td>
<td>300–400</td>
<td>0.1 (λ<375 nm)</td>
<td>64.2²⁷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.8 (λ<375 nm)</td>
<td></td>
</tr>
<tr>
<td>Bongartz et al.²</td>
<td>1994</td>
<td>300–400</td>
<td>0.1 (λ<375 nm)</td>
<td>54.9²⁹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.8 (λ<375 nm)</td>
<td></td>
</tr>
<tr>
<td>Febo et al.⁶</td>
<td>1996</td>
<td>50–380</td>
<td>1</td>
<td>49.7²²</td>
</tr>
<tr>
<td>Pagsberg et al.¹⁰</td>
<td>1997</td>
<td>348–376</td>
<td>0.06</td>
<td>50.2</td>
</tr>
<tr>
<td>Brust et al.⁴</td>
<td>2000</td>
<td>323–394</td>
<td>0.5</td>
<td>38.9</td>
</tr>
<tr>
<td>Stutz et al.¹⁴</td>
<td>2000</td>
<td>291–404</td>
<td>0.061 ± 0.003</td>
<td>52.2</td>
</tr>
<tr>
<td>Wang and Zhang¹⁶</td>
<td>2000</td>
<td>352.2</td>
<td><0.1</td>
<td>48.9</td>
</tr>
<tr>
<td>Gratien et al.⁷</td>
<td>2009</td>
<td>300–400</td>
<td>0.18</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
* Normalized to the spectrum of Stockwell and Calvert¹³
** Bongartz et al.² corrected their 1991 results by a factor of 0.855

There is good agreement among the various data sets for the peak positions and discrepancies in the peak cross sections are generally a consequence of the differences in measurement spectral resolution. Stutz et al.¹⁴ normalized the cross section data from earlier studies to a resolution of 1 nm, resulting in an agreement of better than 10% between their results and those of Bongartz et al.², Pagsberg et al.¹⁰, and Vasudev.¹⁵ The measurements of Stockwell and Calvert¹³ are in reasonable agreement with the more recent studies. The cross sections from Cox and Derwent⁹ are greater by ~26% (presumably due to uncorrected NO₂ absorption) and those from Johnston and Graham⁸ are less by 70% (presumably due to non-equilibrium of the NO/NO₂/H₂O mixture during the measurement) than the more recent studies. The source of the discrepancy with the measurements of Brust et al.⁴ is unknown. Gratien et al.⁷ performed simultaneous measurements of HONO absorption spectra in the IR and UV and confirmed that the UV cross sections of Bongartz et al.² and Stutz et al.¹⁴ are consistent to within 5% with independent infrared studies and that the UV cross sections of Brust et al.⁴ are underestimated by ~22%.

The short wavelength absorption band was measured by Cox and Derwent⁵ (200–300 nm, <0.1 nm resolution) and Kenner et al.⁹ (184–274 nm, 0.38 nm resolution). The reported spectra are in quantitative agreement over the wavelength range 220–270 nm. The sharp peak at 215 nm reported by Cox and Derwent⁵, however, was not observed by Kenner et al.⁹ who provide a number of arguments for the correctness of their results.

The recommended absorption cross sections in Table 4C-16 are a combination of data as follows: for the wavelength region 184–274 nm data was taken from Kenner et al.⁹ as read from a figure in their paper; for the wavelength region 296–396 nm data was taken from Stutz et al.¹⁴ for the wavelength regions 296–325 nm and 374–396 nm averages over 1 nm intervals of the Stutz et al.¹⁴ high resolution spectrum are reported; and for the highly structured region 326–370 nm averages over 0.5 nm intervals were used.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield of HONO at wavelengths above the dissociation threshold are unity. The OH radical quantum yield at 365 ± 5 nm was determined by Cox and Derwent⁵ to be (0.92 ± 0.16). Wollenhaupt et al.¹⁷ determined an upper limit of 0.01 for the quantum yield of H atom formation for photolysis at 351 nm. The OH(A) quantum yield from HONO laser photolysis at 193 nm was measured to be 1.8 × 10⁻⁵ by Kenner et al.⁹. The H + NO₂ (X²A₁, A²B₂, B²B₁, C²A₂) product channels in the photodissociation of HONO at 193.3 nm were examined by Amaral et al.¹ and branching ratios of the NO₂ electronic states estimated to be X²A₁ : A²B₂ : B²B₁ : C²A₂ = 0.13 : 0.21 : 0.66, respectively.
<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>85.0</td>
<td>296</td>
<td>0.326</td>
<td>335.5</td>
<td>6.55</td>
<td>360.0</td>
<td>6.87</td>
</tr>
<tr>
<td>186</td>
<td>95.0</td>
<td>297</td>
<td>0.565</td>
<td>336.0</td>
<td>5.33</td>
<td>360.5</td>
<td>6.32</td>
</tr>
<tr>
<td>188</td>
<td>106</td>
<td>298</td>
<td>0.517</td>
<td>336.5</td>
<td>4.36</td>
<td>361.0</td>
<td>6.05</td>
</tr>
<tr>
<td>190</td>
<td>124</td>
<td>299</td>
<td>0.429</td>
<td>337.0</td>
<td>4.23</td>
<td>361.5</td>
<td>5.95</td>
</tr>
<tr>
<td>192</td>
<td>143</td>
<td>300</td>
<td>0.617</td>
<td>337.5</td>
<td>5.13</td>
<td>362.0</td>
<td>5.98</td>
</tr>
<tr>
<td>194</td>
<td>162</td>
<td>301</td>
<td>0.690</td>
<td>338.0</td>
<td>9.38</td>
<td>362.5</td>
<td>6.35</td>
</tr>
<tr>
<td>196</td>
<td>179</td>
<td>302</td>
<td>0.579</td>
<td>338.5</td>
<td>16.52</td>
<td>363.0</td>
<td>7.39</td>
</tr>
<tr>
<td>198</td>
<td>196</td>
<td>303</td>
<td>0.925</td>
<td>339.0</td>
<td>14.32</td>
<td>363.5</td>
<td>9.22</td>
</tr>
<tr>
<td>200</td>
<td>210</td>
<td>304</td>
<td>1.04</td>
<td>339.5</td>
<td>9.96</td>
<td>364.0</td>
<td>11.49</td>
</tr>
<tr>
<td>202</td>
<td>219</td>
<td>305</td>
<td>1.57</td>
<td>340.0</td>
<td>7.79</td>
<td>364.5</td>
<td>12.71</td>
</tr>
<tr>
<td>204</td>
<td>223</td>
<td>306</td>
<td>1.29</td>
<td>340.5</td>
<td>8.51</td>
<td>365.0</td>
<td>12.82</td>
</tr>
<tr>
<td>205</td>
<td>224</td>
<td>307</td>
<td>0.916</td>
<td>341.0</td>
<td>16.13</td>
<td>365.5</td>
<td>13.19</td>
</tr>
<tr>
<td>206</td>
<td>223</td>
<td>308</td>
<td>1.45</td>
<td>341.5</td>
<td>31.52</td>
<td>366.0</td>
<td>14.84</td>
</tr>
<tr>
<td>208</td>
<td>220</td>
<td>309</td>
<td>2.01</td>
<td>342.0</td>
<td>29.40</td>
<td>366.5</td>
<td>18.43</td>
</tr>
<tr>
<td>210</td>
<td>213</td>
<td>310</td>
<td>1.51</td>
<td>342.5</td>
<td>18.47</td>
<td>367.0</td>
<td>25.08</td>
</tr>
<tr>
<td>212</td>
<td>204</td>
<td>311</td>
<td>2.07</td>
<td>343.0</td>
<td>11.43</td>
<td>367.5</td>
<td>35.18</td>
</tr>
<tr>
<td>214</td>
<td>193</td>
<td>312</td>
<td>2.42</td>
<td>343.5</td>
<td>8.29</td>
<td>368.0</td>
<td>43.56</td>
</tr>
<tr>
<td>216</td>
<td>179</td>
<td>313</td>
<td>2.25</td>
<td>344.0</td>
<td>7.59</td>
<td>368.5</td>
<td>41.37</td>
</tr>
<tr>
<td>218</td>
<td>164</td>
<td>314</td>
<td>3.35</td>
<td>344.5</td>
<td>8.18</td>
<td>369.0</td>
<td>31.45</td>
</tr>
<tr>
<td>220</td>
<td>150</td>
<td>315</td>
<td>2.54</td>
<td>345.0</td>
<td>8.77</td>
<td>369.5</td>
<td>21.72</td>
</tr>
<tr>
<td>222</td>
<td>135</td>
<td>316</td>
<td>1.61</td>
<td>345.5</td>
<td>9.10</td>
<td>370</td>
<td>15.05</td>
</tr>
<tr>
<td>224</td>
<td>121</td>
<td>317</td>
<td>3.21</td>
<td>346.0</td>
<td>9.64</td>
<td>370</td>
<td>9.49</td>
</tr>
<tr>
<td>226</td>
<td>108</td>
<td>318</td>
<td>4.49</td>
<td>346.5</td>
<td>8.87</td>
<td>372</td>
<td>7.96</td>
</tr>
<tr>
<td>228</td>
<td>94.5</td>
<td>319</td>
<td>3.19</td>
<td>347.0</td>
<td>7.80</td>
<td>373</td>
<td>6.30</td>
</tr>
<tr>
<td>230</td>
<td>84.5</td>
<td>320</td>
<td>4.66</td>
<td>347.5</td>
<td>7.06</td>
<td>374</td>
<td>4.59</td>
</tr>
<tr>
<td>232</td>
<td>74.0</td>
<td>321</td>
<td>5.96</td>
<td>348.0</td>
<td>6.63</td>
<td>375</td>
<td>3.55</td>
</tr>
<tr>
<td>234</td>
<td>66.0</td>
<td>322</td>
<td>4.05</td>
<td>348.5</td>
<td>6.26</td>
<td>376</td>
<td>3.36</td>
</tr>
<tr>
<td>236</td>
<td>58.0</td>
<td>323</td>
<td>4.56</td>
<td>349.0</td>
<td>6.00</td>
<td>377</td>
<td>3.66</td>
</tr>
<tr>
<td>238</td>
<td>50.0</td>
<td>324</td>
<td>5.89</td>
<td>349.5</td>
<td>6.47</td>
<td>378</td>
<td>4.33</td>
</tr>
<tr>
<td>240</td>
<td>43.0</td>
<td>325</td>
<td>4.05</td>
<td>350.0</td>
<td>9.06</td>
<td>379</td>
<td>5.66</td>
</tr>
<tr>
<td>242</td>
<td>37.0</td>
<td>326</td>
<td>2.65</td>
<td>350.5</td>
<td>14.95</td>
<td>380</td>
<td>7.21</td>
</tr>
<tr>
<td>244</td>
<td>32.0</td>
<td>326.5</td>
<td>3.55</td>
<td>351.0</td>
<td>16.94</td>
<td>381</td>
<td>9.13</td>
</tr>
<tr>
<td>246</td>
<td>27.5</td>
<td>327.0</td>
<td>6.44</td>
<td>351.5</td>
<td>14.07</td>
<td>382</td>
<td>12.44</td>
</tr>
<tr>
<td>248</td>
<td>23.5</td>
<td>327.5</td>
<td>10.26</td>
<td>352.0</td>
<td>12.42</td>
<td>383</td>
<td>17.03</td>
</tr>
<tr>
<td>250</td>
<td>20.0</td>
<td>328.0</td>
<td>9.22</td>
<td>352.5</td>
<td>12.81</td>
<td>384</td>
<td>19.47</td>
</tr>
<tr>
<td>252</td>
<td>17.0</td>
<td>328.5</td>
<td>6.38</td>
<td>353.0</td>
<td>16.34</td>
<td>385</td>
<td>16.09</td>
</tr>
<tr>
<td>254</td>
<td>14.5</td>
<td>329.0</td>
<td>5.20</td>
<td>353.5</td>
<td>28.49</td>
<td>386</td>
<td>10.52</td>
</tr>
<tr>
<td>256</td>
<td>12.3</td>
<td>329.5</td>
<td>6.12</td>
<td>354.0</td>
<td>48.73</td>
<td>387</td>
<td>6.59</td>
</tr>
<tr>
<td>258</td>
<td>10.3</td>
<td>330.0</td>
<td>9.92</td>
<td>354.5</td>
<td>44.34</td>
<td>388</td>
<td>4.30</td>
</tr>
<tr>
<td>260</td>
<td>8.6</td>
<td>330.5</td>
<td>15.06</td>
<td>355.0</td>
<td>27.64</td>
<td>389</td>
<td>2.81</td>
</tr>
<tr>
<td>262</td>
<td>7.3</td>
<td>331.0</td>
<td>14.32</td>
<td>355.5</td>
<td>16.40</td>
<td>390</td>
<td>1.71</td>
</tr>
<tr>
<td>264</td>
<td>6.2</td>
<td>331.5</td>
<td>9.88</td>
<td>356.0</td>
<td>11.13</td>
<td>391</td>
<td>0.992</td>
</tr>
<tr>
<td>266</td>
<td>5.5</td>
<td>332.0</td>
<td>6.94</td>
<td>356.5</td>
<td>9.35</td>
<td>392</td>
<td>0.731</td>
</tr>
<tr>
<td>268</td>
<td>4.3</td>
<td>332.5</td>
<td>6.00</td>
<td>357.0</td>
<td>9.45</td>
<td>393</td>
<td>0.597</td>
</tr>
<tr>
<td>270</td>
<td>3.7</td>
<td>333.0</td>
<td>6.31</td>
<td>357.5</td>
<td>10.08</td>
<td>394</td>
<td>0.528</td>
</tr>
<tr>
<td>272</td>
<td>3.0</td>
<td>333.5</td>
<td>7.11</td>
<td>358.0</td>
<td>9.84</td>
<td>395</td>
<td>0.403</td>
</tr>
<tr>
<td>274</td>
<td>2.5</td>
<td>334.0</td>
<td>8.35</td>
<td>358.5</td>
<td>9.02</td>
<td>396</td>
<td>0.237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>334.5</td>
<td>8.37</td>
<td>359.0</td>
<td>8.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>335.0</td>
<td>7.71</td>
<td>359.5</td>
<td>7.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
184–274 nm: Kenner et al.\(^9\)
296–325 nm: Stutz et al.\(^14\) (average over 1 nm intervals)
326–370 nm: Stutz et al.\(^14\) (average over 0.5 nm intervals)
371–396 nm: Stutz et al.\(^14\) (average over 1 nm intervals)

4-75
HNO₃ (nitric acid)

C7.

\[
\begin{align*}
\text{HNO}_3 + \text{hv} & \rightarrow \text{OH} + \text{NO}_2 & & 206 \text{ kJ mol}^{-1} & & 581 \text{ nm} & (1) \\
& \rightarrow \text{HONO} + \text{O}(^3\text{P}) & & 305 \text{ kJ mol}^{-1} & & 392 \text{ nm} & (2) \\
& \rightarrow \text{H} + \text{NO}_3 & & 427 \text{ kJ mol}^{-1} & & 280 \text{ nm} & (3) \\
& \rightarrow \text{OH} + \text{NO}_2*(^1\text{B}_2) & & \text{---} & & \text{---} & (4) \\
& \rightarrow \text{HONO} + \text{O}(^1\text{D}) & & 494 \text{ kJ mol}^{-1} & & 242 \text{ nm} & (5) \\
& \rightarrow \text{HONO} (a^3\text{A}) + \text{O}(^3\text{P}) & & \text{---} & & \text{---} & (6)
\end{align*}
\]

(Recommendation: 06-2; Note: 15-10; Evaluated: 15-10)

Absorption Cross Sections: The UV absorption spectrum of nitric acid, HNO₃, consists of a strong absorption band between 150 and 240 nm with the maximum near 183 nm and a second band near 270 nm that appears as a shoulder on the long wavelength wing of the strong band. The recommended absorption cross sections and their temperature dependence for the region 192–350 nm listed in Table 4C-17 are taken from the work of Burkholder et al.³ The temperature effect is very important for estimates of atmospheric photodissociation rate coefficients. The results of Burkholder et al.³ agree well (to within 10% above 200 nm) with those of Rattigan et al.¹⁵,¹⁶ at room temperature, whereas Rattigan et al.¹⁵,¹⁶ report significantly smaller cross section values at 239 K (15–30% smaller in the range 220–330 nm and ~50% smaller at 330 nm). The recommended room temperature absorption cross sections are also in very good agreement with the data of Molina and...
Molina12 (<15\% difference up to 310 nm) and in good agreement with the values reported by Biaume1 and Johnston and Graham,8 except at long wavelength. Okabe14 reported cross sections in the 110–190 nm range that are 20–30\% lower than those of Burkholder et al.,3 Biaume,1 and Johnston and Graham8 in the region 185–190 nm. Suto and Lee19 reported cross sections between 105 and 210 nm that are 10–20\% higher than those of Burkholder et al.,3 Biaume,1 and Johnston and Graham8 in the region 185–190 nm, but show excellent agreement with the results of Molina and Molina12 above 185 nm and Burkholder et al.3 above 189 nm.

On the basis of the results from the Biaume, Burkholder et al., Johnston and Graham, and Rattigan et al. \textsuperscript{studies, uncertainty factors for the HNO\textsubscript{3} room temperature absorption cross sections in the wavelength regions 190–200 nm, 205–330 nm, and 335–350 nm are 1.1, 1.06, and 1.2 (2\sigma), respectively. The uncertainty factors at temperatures ≤ 298 K are expected to be greater in the 335–350 nm region, but are difficult to estimate without additional studies.

\textit{Photolysis Quantum Yield and Product Studies}: There have been a number of room temperature HNO\textsubscript{3} photolysis studies conducted at wavelengths between 193 and 320 nm from which quantum yields have been derived. On the basis of end-product analysis, Johnston et al.7 reported a quantum yield of \sim1 for the OH + NO\textsubscript{2} channel in the 200–315 nm range. Margitan and Watson11 used atomic resonance fluorescence to determine the quantum yield for O atom production at 266 nm to be 0.03 and that for H atom production to be ≤ 0.002. Jolly et al.9 measured a quantum yield for OH production of 0.89 ± 0.08 at 222 nm. Turnipseed et al.20 reported OH quantum yields of (0.95 ± 0.09) at 248, (0.90 ± 0.11) at 222 nm, and 0.33 ± 0.06 at 193 nm. Turnipseed et al.20 also reported quantum yields for production of O atoms, O(3P) + O(1D), to be 0.031 ± 0.01, 0.20 ± 0.03 and 0.81 ± 0.13 at 248, 222, and 193 nm, respectively. Both O(3P) and O(1D) atom formation was observed at 222 and 193 nm but only O(3P) was detected at 248 nm. At 193 and 222 nm the O(1D) yield was determined to be 40\% of the total O atom yield, yielding Φ(O(1D)) = 0.28 ± 0.07 at 193 nm. Turnipseed et al.20 reported upper limits for Φ(H(3S)) of ≤ 0.002 at 238 nm, ≤ 0.01 at 222 nm, and ≤ 0.012 at 193 nm. Riffault et al.17 reported Φ(OH) values of 0.88 ± 0.09 at 248 nm and 1.05 ± 0.29 at 308 nm. Schiffman et al.18 reported Φ(OH) = 0.47 ± 0.06 at 193 nm, which is larger than the value reported by Turnipseed et al.20 At 248 nm they report Φ(OH) = 0.75 ± 0.10, which is a smaller value than reported in other studies.

Felder et al.6 used molecular beam/photofragment translational spectroscopy and reported the yield for (OH + NO\textsubscript{2}) to be Φ(OH) = 0.6 ± 0.1 and for (O + HONO) to be Φ(HONO) = 0.4 ± 0.1 at 193 nm. Myers et al.13 also used this technique to measure the primary processes in the photolysis at 193 nm from the different photofragment ions and found evidence for all channels except 4. They determined the branching ratio (OH + NO\textsubscript{2})/(O+HONO) to be 0.50 ± 0.05, Φ(OH) = 0.33 ± 0.04 (in excellent agreement with the value obtained by Turnipseed et al.20). They also reported Φ(O(3P) + O(1D)) = 0.67 ± 0.04, which is lower than the 0.81 ± 0.13 value reported by Turnipseed et al.20 but the latter authors included the contribution of the secondary dissociation of NO\textsubscript{2} produced in channel (1). Their primary yield of O(1D) formation of 0.54 ± 0.04 is much larger than the Φ(O(1D)) yield of 0.28 ± 0.07 measured by Turnipseed et al.20 and this discrepancy remains unexplained. In a study using LIF and REMPI–TOF techniques, Li et al.10 found evidence for the (O(3P) + HONO) channel with a yield of ~0.06.

Band strengths for the OH stretch vibrational overtones of HNO\textsubscript{3} have been reported by Donaldson et al.,5 Zhang et al.,21 and Brown et al.3 Photodissociation of HNO\textsubscript{3} by excitation of the 3\textsubscript{vOH} (~983 nm), 4\textsubscript{vOH} (~755 nm) and 5\textsubscript{vOH} (~618 nm) overtones is a possible source of atmospheric OH radicals. There is good agreement among the various studies. Band strengths (in units of 1020 cm2 molecule-1 cm-1) of 2.63 for 3\textsubscript{vOH} and 0.237 for 4\textsubscript{vOH} were reported by Donaldson et al.5 Zhang et al.21 obtained band strengths of (2.9 ± 0.7) for 3\textsubscript{vOH} and (0.28 ± 0.10) for 4\textsubscript{vOH}. Brown et al.2 measured the band strengths for 4\textsubscript{vOH} to be (0.225 ± 0.015) at 296 K and (0.223 ± 0.015) at 251 K and for 5\textsubscript{vOH} to be (0.0257 ± 0.015) at 296 K and (0.0241 ± 0.035) at 251 K. Although the contribution to the overall atmospheric OH production rate from HNO\textsubscript{3} overtone photodissociation is small, it is larger than estimated by Donaldson et al.4
Table 4C-17. Recommended Absorption Cross Sections at 298 K and Temperature Coefficients for HNO₃

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>10^3 B (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>10^3 B (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>10^3 B (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>1225</td>
<td>0</td>
<td>246</td>
<td>2.06</td>
<td>1.61</td>
<td>300</td>
<td>0.263</td>
<td>3.10</td>
</tr>
<tr>
<td>194</td>
<td>1095</td>
<td>0</td>
<td>248</td>
<td>2.00</td>
<td>1.44</td>
<td>302</td>
<td>0.208</td>
<td>3.24</td>
</tr>
<tr>
<td>196</td>
<td>940</td>
<td>1.70</td>
<td>250</td>
<td>1.97</td>
<td>1.34</td>
<td>304</td>
<td>0.167</td>
<td>3.52</td>
</tr>
<tr>
<td>198</td>
<td>770</td>
<td>1.65</td>
<td>252</td>
<td>1.96</td>
<td>1.23</td>
<td>306</td>
<td>0.133</td>
<td>3.77</td>
</tr>
<tr>
<td>200</td>
<td>588</td>
<td>1.66</td>
<td>254</td>
<td>1.95</td>
<td>1.18</td>
<td>308</td>
<td>0.105</td>
<td>3.91</td>
</tr>
<tr>
<td>202</td>
<td>447</td>
<td>1.69</td>
<td>256</td>
<td>1.95</td>
<td>1.14</td>
<td>310</td>
<td>0.0814</td>
<td>4.23</td>
</tr>
<tr>
<td>204</td>
<td>328</td>
<td>1.74</td>
<td>258</td>
<td>1.93</td>
<td>1.12</td>
<td>312</td>
<td>0.0628</td>
<td>4.70</td>
</tr>
<tr>
<td>206</td>
<td>231</td>
<td>1.77</td>
<td>260</td>
<td>1.91</td>
<td>1.14</td>
<td>314</td>
<td>0.0468</td>
<td>5.15</td>
</tr>
<tr>
<td>208</td>
<td>156</td>
<td>1.85</td>
<td>262</td>
<td>1.87</td>
<td>1.14</td>
<td>316</td>
<td>0.0362</td>
<td>5.25</td>
</tr>
<tr>
<td>210</td>
<td>104</td>
<td>1.97</td>
<td>264</td>
<td>1.83</td>
<td>1.18</td>
<td>318</td>
<td>0.0271</td>
<td>5.74</td>
</tr>
<tr>
<td>212</td>
<td>67.5</td>
<td>2.08</td>
<td>266</td>
<td>1.77</td>
<td>1.22</td>
<td>320</td>
<td>0.0197</td>
<td>6.45</td>
</tr>
<tr>
<td>214</td>
<td>43.9</td>
<td>2.17</td>
<td>268</td>
<td>1.70</td>
<td>1.25</td>
<td>322</td>
<td>0.0154</td>
<td>6.70</td>
</tr>
<tr>
<td>216</td>
<td>29.2</td>
<td>2.17</td>
<td>270</td>
<td>1.62</td>
<td>1.45</td>
<td>324</td>
<td>0.0108</td>
<td>7.16</td>
</tr>
<tr>
<td>218</td>
<td>20.0</td>
<td>2.21</td>
<td>272</td>
<td>1.53</td>
<td>1.49</td>
<td>326</td>
<td>0.00820</td>
<td>7.55</td>
</tr>
<tr>
<td>220</td>
<td>14.9</td>
<td>2.15</td>
<td>274</td>
<td>1.44</td>
<td>1.56</td>
<td>328</td>
<td>0.00613</td>
<td>8.16</td>
</tr>
<tr>
<td>222</td>
<td>11.8</td>
<td>2.06</td>
<td>276</td>
<td>1.33</td>
<td>1.64</td>
<td>330</td>
<td>0.00431</td>
<td>9.75</td>
</tr>
<tr>
<td>224</td>
<td>9.61</td>
<td>1.96</td>
<td>278</td>
<td>1.23</td>
<td>1.69</td>
<td>332</td>
<td>0.00319</td>
<td>9.93</td>
</tr>
<tr>
<td>226</td>
<td>8.02</td>
<td>1.84</td>
<td>280</td>
<td>1.12</td>
<td>1.78</td>
<td>334</td>
<td>0.00243</td>
<td>9.60</td>
</tr>
<tr>
<td>228</td>
<td>6.82</td>
<td>1.78</td>
<td>282</td>
<td>1.01</td>
<td>1.87</td>
<td>336</td>
<td>0.00196</td>
<td>10.5</td>
</tr>
<tr>
<td>230</td>
<td>5.75</td>
<td>1.80</td>
<td>284</td>
<td>0.909</td>
<td>1.94</td>
<td>338</td>
<td>0.00142</td>
<td>10.8</td>
</tr>
<tr>
<td>232</td>
<td>4.87</td>
<td>1.86</td>
<td>286</td>
<td>0.807</td>
<td>2.04</td>
<td>340</td>
<td>0.00103</td>
<td>11.8</td>
</tr>
<tr>
<td>234</td>
<td>4.14</td>
<td>1.90</td>
<td>288</td>
<td>0.709</td>
<td>2.15</td>
<td>342</td>
<td>0.00086</td>
<td>11.8</td>
</tr>
<tr>
<td>236</td>
<td>3.36</td>
<td>1.97</td>
<td>290</td>
<td>0.615</td>
<td>2.27</td>
<td>344</td>
<td>0.00069</td>
<td>9.30</td>
</tr>
<tr>
<td>238</td>
<td>2.93</td>
<td>1.97</td>
<td>292</td>
<td>0.532</td>
<td>2.38</td>
<td>346</td>
<td>0.00050</td>
<td>12.1</td>
</tr>
<tr>
<td>240</td>
<td>2.58</td>
<td>1.97</td>
<td>294</td>
<td>0.453</td>
<td>2.52</td>
<td>348</td>
<td>0.00042</td>
<td>11.9</td>
</tr>
<tr>
<td>242</td>
<td>2.34</td>
<td>1.88</td>
<td>296</td>
<td>0.381</td>
<td>2.70</td>
<td>350</td>
<td>0.00042</td>
<td>9.30</td>
</tr>
<tr>
<td>244</td>
<td>2.16</td>
<td>1.75</td>
<td>298</td>
<td>0.316</td>
<td>2.92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Absorption cross sections
192–350 nm: Burkholder et al.3
Temperature coefficients
Burkholder et al.3
$\sigma(\lambda, T) = \sigma(\lambda, 298 K) \exp (B(\lambda) (T – 298))$, T in K

(1) Biaume, F. Nitric acid vapour absorption cross-section spectrum and its photodissociation in the stratosphere. J. Photochem. 1973, 2, 139-149.

C8. HO2NO2 (peroxynitratic acid)

\[
\begin{align*}
\text{HO}_2\text{NO}_2 + \text{hv} & \rightarrow \text{HO}_2 + \text{NO}_2 \quad 99 \text{ kJ mol}^{-1} \quad 1207 \text{ nm} \quad (1) \\
& \rightarrow \text{OH} + \text{NO}_3 \quad 165 \text{ kJ mol}^{-1} \quad 726 \text{ nm} \quad (2) \\
& \rightarrow \text{O(} ^3\Sigma^+) + \text{HNO}_3 \quad 168 \text{ kJ mol}^{-1} \quad 713 \text{ nm} \quad (3) \\
& \rightarrow \text{H} + \text{NO}_2 + \text{O} \quad 305 \text{ kJ mol}^{-1} \quad 393 \text{ nm} \quad (4) \\
& \rightarrow \text{HO}_2 + \text{NO} + \text{O(} ^3\Pi) \quad 353 \text{ kJ mol}^{-1} \quad 339 \text{ nm} \quad (5) \\
& \rightarrow \text{OH} + \text{NO}_2 + \text{O} \quad 373 \text{ kJ mol}^{-1} \quad 321 \text{ nm} \quad (6) \\
& \rightarrow \text{H} + \text{O(} ^3\Sigma^+) + \text{NO}_3 \quad 594 \text{ kJ mol}^{-1} \quad 201 \text{ nm} \quad (7) \\
& \rightarrow \text{HONO} + \text{O}_2(\Sigma) \quad 131 \text{ kJ mol}^{-1} \quad 911 \text{ nm} \quad (8) \\
& \rightarrow \text{HONO} + \text{O}_2(\Delta) \quad 69 \text{ kJ mol}^{-1} \quad 1744 \text{ nm} \quad (9)
\end{align*}
\]

(Recommendation: 06-2; Note: 15-10; Evaluated: 15-10)

Absorption Cross Sections: The gas-phase UV absorption spectrum of peroxynitratic acid, HO2NO2, has been reported by Cox and Patrick1 (195–265 nm: 284 K), Morel et al.9 (200–290 nm: 298 K), Graham et al.3 (190–330 nm: 269 K), Molina and Molinaa (190–330 nm: 298 K), Singer et al.13 (210–329 nm: 253, 273, and 298 K), and Knight et al.5 (220–350 nm: 273, 296, 318, and 343 K). There is very good agreement (to within 5%) between the results of Molina and Molina8 and Singer et al.13 over the range 210–290 nm, but differences of ~15–60% exist in the wavelength range critical for atmospheric photodissociation (λ ≥ 290 nm). The cross section values from Cox and Patrick1, Graham et al.3, and Morel et al.9 are systematically greater than those of Molina and Molina8 and Singer et al.13 in the 250–270 nm region for normalization to provide absolute cross section data for the long wavelength region. The recommended room temperature absorption cross section data in Table 4C-18 are a combination of data from Molina and Molinaa in the region 190–205 nm, the mean of the data from Molina and Molinaa and Singer et al.13 in the region 210–275 nm, and the data from Knight et al.5 in the region 280–350 nm.

The temperature dependence of the absorption spectrum was examined by Singer et al.13 who found no temperature dependence between 253 and 298 K, and by Knight et al.,5 who reported a systematic increase of the absorption cross sections with increasing temperature. Knight et al.5 parameterized the temperature dependence using a two component model.
\[
\sigma(T, \lambda) = \sigma_0(\lambda)/Q + \sigma_1(\lambda) (1 - 1/Q)
\]

where the partition function is given by \(Q = 1 + \exp(-\Delta E/(0.69T))\) with \(\Delta E = 988\) cm\(^{-1}\) (O-O stretching vibration) and \(T\) is in K. The Knight et al. parameterization is recommended.

On the basis of the results from the Molina and Molina, Singer et al., and Knight et al. studies, an uncertainty factor for the HO\(_2\)NO\(_2\) room temperature absorption cross sections in the wavelength region 190–350 nm, is estimated to be 1.2 (2\(\sigma\)). The uncertainty factor at temperatures <298 K is expected to be greater in the long wavelength region, but is difficult to estimate without additional studies.

Photolysis Quantum Yield and Product Studies: HO\(_2\)NO\(_2\) photodissociates in the UV with a unit quantum yield. MacLeod et al.\(^6\) measured the quantum yield of OH radicals at 248 nm as \(\Phi(\text{OH}) = 0.34 \pm 0.16\) (the sum of channels 2 and 5), relative to the OH yield in the photolysis of H\(_2\)O\(_2\). Roehl et al.\(^10\) determined the quantum yield of NO\(_2\) in the photolysis at 248 nm (relative to the NO\(_2\) yield in the photolysis of HNO\(_3\)) to be \(\Phi(\text{NO}_2) = 0.56 \pm 0.17\) (the sum of channels 1.4 and 5). Jimenez et al.\(^4\) measured the yield of OH and HO\(_2\) (from channels 1 and 6) at 193 and 248 nm (relative to the photolysis of H\(_2\)O\(_2\)) and the yield of NO\(_2\) (relative to the photolysis of ClNO\(_2\)) at 193, 248 and 308 nm over a pressure range of 10 to 84 Torr. Jimenez et al.\(^4\) reported \(\Phi(\text{OH}) = 0.21 \pm 0.12, \Phi(\text{NO}_2) = 0.085 \pm 0.08, \Phi(\text{HO}_2) = 0.56 \pm 0.02, \Phi(\text{ClNO}_2) = 0.89 \pm 0.26, \Phi(\text{NO}_3) = 0.35 \pm 0.03, \Phi(\text{NO}_2) = 0.08 \pm 0.03\) and \(\Phi(\text{NO}_3) = 0.05 \pm 0.02\). Assuming that only channel (2) contributes to OH and NO\(_2\) production, these results imply that at 248 nm the yields of OH and NO\(_2\) are nearly identical, 0.08. This lower yield is in disagreement with the earlier 248 nm results of MacLeod et al.\(^6\) and Roehl et al.\(^10\). The high HO\(_2\) yield (0.89 \pm 0.26) measured at 248 nm by Jimenez et al.\(^4\) overlaps within the experimental uncertainties with the NO\(_2\) yield (0.56 \pm 0.17) of Roehl et al.,\(^10\) assuming that the HO\(_2\) arises from channel (1). It cannot however not be excluded that the difference in NO\(_2\) yields reflects the contribution of channel (6). The recommended quantum yields are given in Table 4C-19 where the values below 200 nm are taken from Jimenez et al.\(^4\) and the values above 200 nm represent an average of the results from Jimenez et al., Roehl et al. and MacLeod et al. The estimated uncertainty in the recommended quantum yields is ±0.2.

The photodissociation of HO\(_2\)NO\(_2\) via excitation of the OH stretch vibrational overtones 2\(v_1\), 3\(v_1\), and 4\(v_1\) in the near IR and visible is a possible atmospheric HO\(_3\) source.\(^15\)\(^12\)\(^2\) The band strengths (in units of \(10^{-20}\) cm\(^2\) molecule\(^{-1}\) cm\(^{-1}\)) of (3.8 \± 0.11) for 3\(v_1\) and (0.30 \± 0.18) for 4\(v_1\) have been reported by Zhang et al.\(^16\) and (3.3 \± 0.7) for 3\(v_1\) by Roehl et al.\(^11\) Stark et al.\(^14\) report greater values for the 3\(v_1\) and 4\(v_1\) band strengths of (5.7 \± 1.1) and (0.49 \± 0.09), respectively. Roehl et al.\(^11\) also measured absolute integrated band strengths and photodissociation quantum yields for 3 dissociative bands in the infrared region: 2\(v_1 + v_1\) (8242 cm\(^{-1}\)), 2\(v_1\) (6900 cm\(^{-1}\)) and 2\(v_1 + 2v_1\) (6252 cm\(^{-1}\)) as a function of temperature. Matthews et al.\(^7\) photolysed HO\(_2\)NO\(_2\) at 390 nm in its first OH-stretching overtone (2\(v_1\)) and reported a quantum yield of 0.30 at 298 K. The temperature dependent cross sections and dissociation quantum yields from Roehl et al.\(^11\) are summarized in Table 4C-20.

Table 4C-18. Recommended Absorption Cross Sections of HO\(_2\)NO\(_2\) at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>1010</td>
<td>260</td>
<td>28.50</td>
<td>300</td>
<td>1.52</td>
<td>328</td>
<td>0.110</td>
</tr>
<tr>
<td>195</td>
<td>816</td>
<td>265</td>
<td>23.00</td>
<td>302</td>
<td>1.28</td>
<td>330</td>
<td>0.0926</td>
</tr>
<tr>
<td>200</td>
<td>563</td>
<td>270</td>
<td>18.05</td>
<td>304</td>
<td>1.05</td>
<td>332</td>
<td>0.0788</td>
</tr>
<tr>
<td>205</td>
<td>367</td>
<td>275</td>
<td>13.40</td>
<td>306</td>
<td>0.853</td>
<td>334</td>
<td>0.0650</td>
</tr>
<tr>
<td>210</td>
<td>239</td>
<td>280</td>
<td>9.29</td>
<td>308</td>
<td>0.702</td>
<td>336</td>
<td>0.0540</td>
</tr>
<tr>
<td>215</td>
<td>161</td>
<td>282</td>
<td>8.11</td>
<td>310</td>
<td>0.551</td>
<td>338</td>
<td>0.0456</td>
</tr>
<tr>
<td>220</td>
<td>117.5</td>
<td>284</td>
<td>6.93</td>
<td>312</td>
<td>0.465</td>
<td>340</td>
<td>0.0372</td>
</tr>
<tr>
<td>225</td>
<td>93.50</td>
<td>286</td>
<td>5.86</td>
<td>314</td>
<td>0.380</td>
<td>342</td>
<td>0.0320</td>
</tr>
<tr>
<td>230</td>
<td>79.20</td>
<td>288</td>
<td>4.91</td>
<td>316</td>
<td>0.313</td>
<td>344</td>
<td>0.0268</td>
</tr>
<tr>
<td>235</td>
<td>68.25</td>
<td>290</td>
<td>3.95</td>
<td>318</td>
<td>0.265</td>
<td>346</td>
<td>0.0228</td>
</tr>
<tr>
<td>240</td>
<td>58.10</td>
<td>292</td>
<td>3.37</td>
<td>320</td>
<td>0.216</td>
<td>348</td>
<td>0.0198</td>
</tr>
<tr>
<td>245</td>
<td>48.95</td>
<td>294</td>
<td>2.78</td>
<td>322</td>
<td>0.184</td>
<td>350</td>
<td>0.0168</td>
</tr>
<tr>
<td>250</td>
<td>41.25</td>
<td>296</td>
<td>2.30</td>
<td>324</td>
<td>0.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>35.00</td>
<td>298</td>
<td>1.91</td>
<td>326</td>
<td>0.128</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
190–205 nm: Molina and Molina\(^8\)
210–275 nm: mean of the data from Molina and Molina\(^8\) and Singer et al.\(^13\)
Table 4C-19. Recommended HO2NO2 Photolysis Quantum Yields

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(\Phi) (OH)</th>
<th>(\Phi) (NO)</th>
<th>(\Phi) (HO2)</th>
<th>(\Phi) (NO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td><200</td>
<td>0.3</td>
<td>0.3</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>>200</td>
<td>0.2</td>
<td>0.2</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 4C-20. Photodissociation Band Strengths and Quantum Yields for Several Overtone and Combination Bands of HO2NO2

<table>
<thead>
<tr>
<th>Band</th>
<th>Band center (cm(^{-1}))</th>
<th>(\int \sigma_{\text{diss}} \Phi_0 , d\nu) cm(^2) molecule(^{-1}) cm(^{-1})</th>
<th>Quantum yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>4(v_1)</td>
<td>13105</td>
<td>3.0 \times 10^{21} (a)</td>
<td>1</td>
</tr>
<tr>
<td>3(v_1) + (v_3)</td>
<td>10090</td>
<td>3.3 \times 10^{20} (b)</td>
<td>1</td>
</tr>
<tr>
<td>2(v_1)</td>
<td>8240</td>
<td>1.21 \times 10^{21} (b)</td>
<td>0.76</td>
</tr>
<tr>
<td>(v_1) + 2(v_3)</td>
<td>6900</td>
<td>4.09 \times 10^{-18} exp(–826.5/T) (195 K > T > 224 K) (b)</td>
<td>0.14</td>
</tr>
<tr>
<td>(v_1) + 2(v_3)</td>
<td>6250</td>
<td>1.87 \times 10^{-19} exp(–1410.7/T) (195 K > T > 240 K) (b)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Note:
- a) Data from Zhang et al.\(^{16}\)
- b) Data from Roehl et al.\(^{11}\)

(9) Morel, O.; Simonaitis, R.; Heicklen, J. Ultraviolet absorption spectra of \(\text{HO}_2\text{NO}_2 \), \(\text{CCl}_3\text{NO}_2 \), \(\text{CCl}_2\text{FO}_2\text{NO}_2 \), and \(\text{CH}_2\text{O}_2\text{NO}_2 \). *Chem. Phys. Lett.* 1980, 73, 38-41.

(16) Zhang, H.; Roehl, C. M.; Sander, S. P.; Wennberg, P. O. Intensity of the second and third OH overtones of \(\text{H}_2\text{O}_2 \), \(\text{HNO}_3 \), and \(\text{HO}_2\text{NO}_2 \). *J. Geophys. Res.* **2000**, *105*, 14593-14598.
4.6 Bibliography – NO\textsubscript{x} Photochemistry

Amoruso, A.; Crescentini, L.; Fiocco, G.; Volpe, M. New measurements of the NO\textsubscript{2} absorption cross section in the 440- to 460-nm region and estimates of the NO\textsubscript{2}-N\textsubscript{2}O\textsubscript{4} equilibrium constant. J. Geophys. Res. 1993, 98, 16857-16863.

Biaume, F. Nitric acid vapour absorption cross-section spectrum and its photodissociation in the stratosphere. J. Photochem. 1973, 2, 139-149.

Brown, S. S.; Wilson, R. W.; Ravishankara, A. R. Absolute intensities for third and fourth overtone absorptions in HNO\textsubscript{3} and H\textsubscript{2}O\textsubscript{2} measured by cavity ring down spectroscopy. J. Phys. Chem. A 2000, 104, 4963-4976, doi:10.1021/jp000439d.

Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Absorption spectrum of NO\textsubscript{3} and kinetics of the reactions of NO\textsubscript{3} with NO\textsubscript{2}, Cl, and several stable atmospheric species at 298 K. J. Phys. Chem. 1985, 89, 4848-4856.

Coquart, B.; Jenouvrier, A.; Merienne, M. F. The NO\textsubscript{2} absorption spectrum. II. Cross-sections at low temperatures in the 400-500 nm region. J. Atmos. Chem. 1995, 21, 251-261.

Corcoran, T. C.; Beiting, E. J.; Mitchell, M. O. High-resolution absolute absorption cross sections of NO\textsubscript{2} at 295, 573, and 673 K at visible wavelengths. J. Mol. Spectrosc. 1992, 154, 119-128.

Cox, R. A.; Patrick, R. Kinetics of the reaction HO\textsubscript{2} + NO\textsubscript{2}(+M) = HO\textsubscript{2}NO\textsubscript{2} using molecular modulation spectrometry. Int. J. Chem. Kinet. 1979, 11, 635-648.

4-85

Schott, G.; Davidson, N. Shock waves in chemical kinetics: The decomposition of N2O5 at high temperatures. J. Am. Chem. Soc. 1958, 80, 1841-1853.

von Hessberg, P.; Kaiser, J.; Enghoff, M. B.; McLinden, C. A.; Sorensen, S. L.; Rockmann, T.; Johnson, M. S. Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: 14N14NO, 15N14NO, 14N15NO and 15N15NO. Atmos. Chem. Phys. 2004, 4, 1237-1253.

Wangberg, I.; Etzkorn, T.; Barnes, I.; Platt, U.; Becker, K. H. Absolute determination of the temperature behavior of the NO\textsubscript{2} + NO\textsubscript{3} + (M) ↔ NO\textsubscript{2}O + (M) equilibrium. J. Phys. Chem. A 1997, 101, 9694-9698.

Zhang, H.; Roehl, C. M.; Sander, S. P.; Wennberg, P. O. Intensity of the second and third OH overtones of H\textsubscript{2}O, HNO\textsubscript{3}, and HO\textsubscript{2}NO\textsubscript{2}. J. Geophys. Res. 2000, 105, 14593-14598.
SECTION 4D. ORGANIC PHOTOCHEMISTRY

D1. CH₄ (methane)

CH₄ + hv → Products

(New Entry)

Absorption Cross Sections. CH₄ (methane) has negligible UV absorption. Its VUV absorption spectrum has been extensively studied at and around Lyman-α, 121.567 nm, including studies by Watanabe et al.¹⁵ (120–144 nm), Ditchburn⁶ (27–151 nm), Sun and Weissler¹³ (37–131 nm), Laufer and McNesby⁹ (113–143 nm), Backx et al.² (13.8–144 nm), Mount et al.¹² (137–160 nm), Lee and Chiang¹¹, Lee et al.¹⁰ (120–153 nm), Au et al.¹ (5.6–165 nm), Brownsword et al.³ (121.6 nm), Vatsa and Volpp¹⁴ (121.567 nm), Kameta et al.⁷ (52–125 nm), and Chen and Wu⁵ (120–142 nm). The measured or interpolated values are in reasonable agreement at 121.567 nm, to within 20%. The recommended Lyman-α cross section at 298 K, adopted from Chapter 3 of the SPARC⁸ (2013) lifetime report, is 1.85 × 10⁻¹⁷ cm² molecule⁻¹ with an uncertainty factor of 1.3 (2σ).

D2. CH$_2$O (formaldehyde)

CH$_2$O + hv \rightarrow H + HCO
\rightarrow H$_2$ + CO
\rightarrow H + H + CO

363 kJ mol$^{-1}$ 330 nm (1)
331 kJ mol$^{-1}$ 361 nm (2)
423 kJ mol$^{-1}$ 283 nm (3)

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections. The UV absorption spectrum of formaldehyde (CH$_2$O) displays a highly structured absorption band (the formally electric-dipole forbidden $S_1 \leftarrow S_0$ transition gives rise to the $A^1A_2 \rightarrow X^1A_1$ band system, which becomes allowed through vibronic coupling) between 240 and 380 nm. The absorption spectrum of formaldehyde has been measured in many studies at temperatures between 222 and 353 K as summarized in Table 4D-1.

Table 4D-1. Summary of CH$_2$O Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength range (nm)</th>
<th>Resolution (nm)</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>McMillan5</td>
<td>1966</td>
<td>348</td>
<td>202–374</td>
<td>1</td>
<td>air</td>
</tr>
<tr>
<td>McQuigg and Calvert2</td>
<td>1969</td>
<td>300</td>
<td>220–370</td>
<td>1</td>
<td>air</td>
</tr>
<tr>
<td>Calvert et al.4</td>
<td>1972</td>
<td>298</td>
<td>290–360</td>
<td>1</td>
<td>air</td>
</tr>
<tr>
<td>Bass et al.1</td>
<td>1980</td>
<td>223, 296</td>
<td>258–360</td>
<td>0.05</td>
<td>air</td>
</tr>
<tr>
<td>Moortgat et al.23</td>
<td>1980</td>
<td>285</td>
<td>215–370</td>
<td>0.5</td>
<td>air</td>
</tr>
<tr>
<td>Moortgat et al.26</td>
<td>1983</td>
<td>220–353</td>
<td>253–353</td>
<td>5</td>
<td>air</td>
</tr>
</tbody>
</table>
| Cantrell et al.6 | 1990 | 223, 233, 243,
253,263, 273,
283, 293, 296 | 300–385.8 | 1.0 cm$^{-1}$
(~0.011) | vacuum |
| Rogers31 | 1990 | 296 | 235–365 | 0.01–0.04 | vacuum |
| Meller and Moortgat23 | 2000 | 223, 298 | 224–373 | ~0.025 | air |
| Chen and Zhu4 | 2003 | 293 | 290–330 | 0.0014 | air |
| Bogumil et al.2 | 2003 | 293 | 247–400 | 0.25 | air |
| Pope et al.29 | 2005 | 263, 294 | 313–320 | 0.1 cm$^{-1}$
(~0.001) | air/vacuum |
| Pope et al.30 | 2005 | 294 | 308–320 | 0.1 cm$^{-1}$
(~0.001) | air/vacuum |
| Co et al.11 | 2005 | 220, 298 | 351–356 | 0.0003 | vacuum |
| Smith et al.12 | 2006 | 245, 294 | 300–340 | 0.0035 | air/vacuum |
| Gratien et al.17 | 2007 | 296 | 240–370 | 0.15 | air |
| Gratien et al.18 | 2007 | 294 | 300–360 | 0.18 | air |
| Gorrotxategi Carbajo et al.16 | 2008 | 245, 294 | 300–330 | 0.0035 | air/vacuum |
| Tatum Ernst et al.35 | 2012 | 294 ± 2 | 304–330 | 0.09 cm$^{-1}$
(~0.001) | air |

Meller and Moortgat23 have reviewed the cross section studies prior to 2000 including descriptions of the techniques, experimental details of CH$_2$O generation and the absorption measurements, and a comparison of the various results. The CH$_2$O absorption cross sections are a strong function of the measurement resolution and this needs to be considered when comparing results from the various studies. Low resolution spectra were obtained by McMillan5 and Moortgat et al.23 whereas medium resolution measurements were reported by Bass et al.1, Rogers31 and Bogumil et al.2. The spectrum reported by Cantrell et al.6 was measured with a resolution of 0.011 nm over the 300–358 nm region in the temperature range 223–293 K using Fourier transform spectroscopy. Meller and Moortgat23 reported a spectrum at ~0.025 nm resolution over the entire UV absorption band (224–373 nm) at 298 and 223 K using diode array spectroscopy. In general, the agreement between the medium and higher resolution data is good, although the cross section data of Bass et al.1 and Rogers31 are systematically lower than those of Meller and Moortgat23. The spectrum reported by
A high resolution CH$_2$O spectrum, near the Doppler broadening limit of 0.07 cm$^{-1}$, was measured by Pope et al.29,30 in the range 308–320 nm using tunable UV laser absorption spectroscopy at 263 and 294 K. In a later study from the same laboratory, Smith et al.32 extended the high resolution measurements (0.35 cm$^{-1}$) from 300 to 340 nm at 294 and 245 K. The high resolution CH$_2$O spectrum measured by Pope et al.29,30 is in excellent agreement with the spectral features reported by Cantrell et al.6 and Meller and Moortgat23 after convolution with the lower resolution instrument functions. Rotationally resolved absorption cross sections in the narrow spectral region 351–356 nm were measured by Co et al.11 using Fourier Transform spectroscopy with an apodized resolution of 0.027 cm$^{-1}$. They observed a strong pressure dependence of the rotational lines over the pressure range 75 to 400 Torr and determined a pressure broadening coefficient in dry air of 1.8×10^{-4} cm$^{-1}$ Torr$^{-1}$ for several isolated lines in the $2^6_6^2$ band.

Gratien et al.17,18 measured UV (0.15 nm resolution) and IR absorption cross sections simultaneously and compared the Integrated Band Intensities (IBI) of the main vibronic bands with previously published UV and IR data. The IBIs measured by Gratien et al.18 in the region 300–360 nm compare well (within ~7%) with the IBI data derived from Meller and Moortgat23 but are ~20% lower than the IBIs calculated from the Cantrell et al.6 and Rogers31 data. Gratien et al.18 attribute the difference to the IR band strength given in the HITRAN database, which is based on the data from Cantrell et al.6 In a second study, Gratien et al.17 compared the IBIs of 9 different band sections in the 300 to 360 nm region with more recent studies. In general, the IBI data of Gratien et al.17 are in excellent agreement (within 2%) with the high resolution results of Smith et al.32 It was also shown that the IBI data for 8 band sections measured by Smith et al.32 are 2 to 14% larger than the data of Meller and Moortgat.23 The IBIs for the bands studied by Pope et al.29,30 (313.5–316.5 and 316.5–319.7 nm) are 4 and 13% larger, respectively, than the data of Meller and Moortgat.23 On the other hand the IBI for the 351.7–355.5 nm band studied by Co et al.11 is 12% larger than the values of Cantrell et al.6 and Rogers31 but in excellent agreement with those of Meller and Moortgat23 and Gratien et al.17 The study by Tatum Ernst et al.35 used tunable UV laser absorption to measure the CH$_2$O spectrum at high resolution (0.09 cm$^{-1}$) over the wavelength range 304–330 nm at 294 K. Significant differences exist in the resolved line peak heights and depth between lines obtained in this study and the high resolution studies of Pope et al.,29,30 and Smith et al.,35 (the Tatum Ernst et al. dataset shows greater spectrum structure). This leads to discrepancies in the band strengths between this work and previous high resolution studies that is not presently understood. Tatum Ernst et al.35 estimate the cross section uncertainty in their study to be ~10% (1σ).

In general, the consistency between the absorption cross section data of Smith et al.,32 Gratien et al.,17 and Pope et al.29,30 in the range 300 to 360 nm demonstrate that the previously recommended absorption cross sections reported by Meller and Moortgat23 are too low by about 7–10%. The presently recommended cross sections in Table 4D-2 where taken from Meller and Moortgat23 averaged over 1 nm intervals and scaled up by 8%. Table 4D-3 includes the scaled data averaged over intervals used in atmospheric modeling. Higher resolution cross section data can be obtained from the (studies cited in Table 4D-1). The estimated cross section uncertainty is expected to be a function of wavelength and measurement resolution. The recommended uncertainty factor for the band strengths is estimated to be 1.1 (2σ).

The temperature dependence of the CH$_2$O absorption cross sections has been studied by Bass et al.,1 Moortgat et al.,25 Cantrell et al.,6 Meller and Moortgat,23 Pope et al.,29,30 Co et al.,11 and Smith et al.12 (see Table 4D-1). Temperature effects are the strongest at the maximum of the absorption bands where the lower temperatures result in larger absorptions. This effect is reversed in the wings of the absorption bands where higher temperatures result in a higher absorption. A linear parameterization of the absorption cross section temperature dependence between 223 and 323 K was derived by Meller and Moortgat23

$$\sigma(\lambda, T) = \sigma(\lambda, 298 \text{K}) + \Gamma(\lambda) \times (T - 298)$$

Values of $\Gamma(\lambda)$ from Meller and Moortgat23 where scaled up by 8% and the values averaged over 1nm intervals and intervals used in atmospheric modeling are listed in Table 4D-2 and Table 4D-3, respectively.

VUV absorption cross sections for the wavelength region 60–185 nm have been obtained by Gentieu and Mentall,14 Mentall et al.,24 and Glicker and Stief15 using optical methods and by Cooper et al.12 for the region 6–261 nm using (e,e) dipole spectroscopy.
Photolysis Quantum Yields and Product Studies: The quantum yield studies by McQuigg et al.22 and Calvert et al.5 established that over the wavelength range 290–360 nm the radical yield increases with decreasing wavelength. More precise wavelength dependent quantum yield studies using monochromatic light sources were performed by Lewis et al.,20 Marling,21 Horowitz and Calvert,19 Clark et al.,10 Moortgat et al.,27 and Tang et al.34 Moortgat and Warneck28 and Moortgat et al.25,26 measured the yields of CO and H2 in air (giving $\Phi_1(\text{H} + \text{HCO}) + \Phi_2(\text{H} + \text{CO})$ and $\Phi_2(\text{H}_2 + \text{CO})$) as a function of wavelength (253–353 nm) and pressure (380–800 Torr) at 300 K and 220 K. These studies showed that the yield of CO was essentially unity between 290 and 330 nm at all pressures with no systematic temperature dependence. For $\lambda > 330$ nm, both temperature and pressure have a significant effect on $\Phi_2(\text{H} + \text{CO})$ but a negligible effect on $\Phi_1(\text{H} + \text{HCO})$. At $\lambda < 290$ nm the total CO yield was found to decrease to a value of 0.76 at 240 nm.

Smith et al.33 measured relative quantum yields at 50 mbar for the production of the radical products H and HCO using NO-chemical amplification and subsequent detection of NO2 with chemical ionization mass spectrometry. These authors measured the quantum yields in the range 269 to 339 nm with sufficient resolution (± 0.62 nm) to observe structure in the wavelength dependence, that was previously unreported, that is believed to provide evidence for a competition among the various dissociation pathways. The measured $\Phi_1(\text{H} + \text{HCO})$ yields were normalized to a value of 0.753 at 303.75 nm based on the JPL 97-4 recommendation13 and agree with the previous determinations reported by Horowitz and Calvert19 and Moortgat et al.26 However at $\lambda > 320$ nm the $\Phi_1(\text{H} + \text{HCO})$ yields reported by Smith et al.33 are larger than the values recommended by DeMore et al.15 resulting in a larger (~8%) overall rate of radical production.

Pope et al.29,30 and Gorrotxategi Carbajo et al.16 used cavity ring-down spectroscopy to measure HCO radical absorption coefficients and CH2O absorption cross sections from which absolute HCO quantum yields were calculated. The absolute HCO radical signal was calibrated against the HCO radical produced from the Cl + HCHO \rightarrow HCO + Cl2 reaction following the photolysis of Cl2/CH2O/N2 mixtures. In the 303–309 nm range Φ_{HCO} $\pm 0.6 \pm 0.1$ was obtained which is 25% lower than the JPL 06-2 recommendation and the data reported by Smith et al.33 In the wavelength range 314–330 nm the Φ_{HCO} values (0.06 to 0.11) agree to within the quoted uncertainties with the JPL 06-2 recommendation.

The experimental technique used by Gorrotxategi Carbajo et al.16 measured the product of the high resolution absolute absorption cross section (identical as measured by Smith et al.33) and the absolute HCO quantum yield, $\Phi_{\text{HCO}}(\lambda)\sigma_{\text{CH2O}}(\lambda)$, in the interval 302.6–331.0 nm with a wavelength resolution of 0.005 nm. It is important to note that a separate calculation of the product $\Phi_{\text{HCO}}\sigma_{\text{CH2O}}$ using single data of Φ_{HCO} and σ_{CH2O} at a given wavelength result in much lower $\Phi_{\text{HCO}}\sigma_{\text{CH2O}}$ values (up to a factor 2) than obtained by the direct combined technique.

Tatum Ernst et al.36 used pulsed laser photolysis combined with pulsed laser induced fluorescence detection of OH radicals (conversion of H + HCO to OH by reaction with NO2) to determine a high resolution action spectrum, i.e., the product of the CH2O cross section and H + HCO quantum yield, over the wavelength range 304 to 329 nm. $\Phi_1(\text{H} + \text{HCO})$ yields were determined using the CH2O cross section data reported in Tatum Ernst et al.36 and an absolute value of 0.69 at 31750 cm$^{-1}$. The quantum yields for the individual absorption bands in this region are in reasonable agreement with previous determinations and earlier JPL recommendations, although differences between individual absorption bands that were not noted in previous studies were reported.

Troe37 used theoretical calculations to evaluate the quantum yields for the molecular and radical photolysis processes at $\lambda > 310$ nm. An analytical representation was provided that enables extrapolation into temperature and pressure ranges that are not easily accessible experimentally.

The recommended quantum yields at standard pressure (1 atmosphere) and 300 K are listed in Table 4D-4 are based on a polynomial fit over the wavelength range 250–338 nm of the data for $\Phi_1(\text{H} + \text{HCO})$ from Lewis et al.,20 Marling,21 Horowitz and Calvert,19 Clark et al.,10 Tang et al.,34 Moortgat et al.,26 Smith et al.,33 Pope et al.,29,30 Gorrotxategi Carbajo et al.,16 and Tatum Ernst et al.36

$$\Phi_1(\text{H} + \text{HCO}) = a_0 + a_1\lambda + a_2\lambda^2 + a_3\lambda^3 + a_4\lambda^4$$

where

$$a_0 = 557.95835182$$
$$a_1 = -7.31994058026$$
$$a_2 = 0.03553521598$$
$$a_3 = -7.54849718 \times 10^{-5}$$
$$a_4 = 5.91001021 \times 10^{-8}$$
\[\Phi_2(H_2 + CO) = \left[\frac{1}{1 - \Phi_1(\lambda) + \alpha(\lambda, T) \times P} \right] \]

where pressure, \(P \), is in atmospheres and \(\alpha(\lambda, T) \) is the quenching coefficient whose values at 300 K are calculated from \(\Phi_1 \) and \(\Phi_2 \):

\[\alpha(\lambda, 300 \text{ K}) = \frac{1}{\Phi_2(\lambda, 300 \text{ K})} - \frac{1}{1 - \Phi_1(\lambda)} \]

At temperatures between 220 and 300 K the quenching coefficient \(\alpha(\lambda, T) \) can be calculated using

\[\alpha(\lambda, T) = \alpha(\lambda, 300 \text{ K}) \times \left[1 + 0.05 \times (\lambda - 329) \times \left(\frac{300 - T}{80} \right) \right] \]

The formulae given above for the pressure and temperature dependence of the quantum yields are recommended.

Table 4D-2. Recommended Absorption Cross Sections of CH₂O at 298 K and Temperature Coefficients Averaged over 1 nm Intervals

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(10^{24} \Gamma(\lambda)) (cm² K⁻¹)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(10^{24} \Gamma(\lambda)) (cm² K⁻¹)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(10^{24} \Gamma(\lambda)) (cm² K⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>226</td>
<td>0.0193</td>
<td>–</td>
<td>276</td>
<td>2.800</td>
<td>-2.203</td>
<td>326</td>
<td>7.42</td>
<td>-6.091</td>
</tr>
<tr>
<td>227</td>
<td>0.0182</td>
<td>–</td>
<td>277</td>
<td>1.70</td>
<td>2.088</td>
<td>327</td>
<td>4.72</td>
<td>5.875</td>
</tr>
<tr>
<td>228</td>
<td>0.0191</td>
<td>–</td>
<td>278</td>
<td>1.11</td>
<td>1.541</td>
<td>328</td>
<td>1.32</td>
<td>5.472</td>
</tr>
<tr>
<td>229</td>
<td>0.0205</td>
<td>–</td>
<td>279</td>
<td>2.65</td>
<td>-2.751</td>
<td>329</td>
<td>3.37</td>
<td>-3.615</td>
</tr>
<tr>
<td>230</td>
<td>0.0221</td>
<td>–</td>
<td>280</td>
<td>2.53</td>
<td>-0.7344</td>
<td>330</td>
<td>4.17</td>
<td>-2.347</td>
</tr>
<tr>
<td>231</td>
<td>0.0356</td>
<td>–</td>
<td>281</td>
<td>1.68</td>
<td>0.6048</td>
<td>331</td>
<td>1.52</td>
<td>4.220</td>
</tr>
<tr>
<td>232</td>
<td>0.0362</td>
<td>–</td>
<td>282</td>
<td>1.05</td>
<td>0.8737</td>
<td>332</td>
<td>0.374</td>
<td>1.935</td>
</tr>
<tr>
<td>233</td>
<td>0.0283</td>
<td>–</td>
<td>283</td>
<td>0.778</td>
<td>0.0054</td>
<td>333</td>
<td>0.231</td>
<td>0.4633</td>
</tr>
<tr>
<td>234</td>
<td>0.0351</td>
<td>–</td>
<td>284</td>
<td>4.61</td>
<td>-9.418</td>
<td>334</td>
<td>0.172</td>
<td>-0.2462</td>
</tr>
<tr>
<td>235</td>
<td>0.0392</td>
<td>–</td>
<td>285</td>
<td>4.37</td>
<td>-1.944</td>
<td>335</td>
<td>0.104</td>
<td>-0.0054</td>
</tr>
<tr>
<td>236</td>
<td>0.0582</td>
<td>–</td>
<td>286</td>
<td>2.26</td>
<td>1.714</td>
<td>336</td>
<td>0.136</td>
<td>0.3510</td>
</tr>
<tr>
<td>237</td>
<td>0.0833</td>
<td>–</td>
<td>287</td>
<td>1.24</td>
<td>0.8208</td>
<td>337</td>
<td>0.414</td>
<td>0.3553</td>
</tr>
<tr>
<td>238</td>
<td>0.0614</td>
<td>–</td>
<td>288</td>
<td>3.42</td>
<td>-5.084</td>
<td>338</td>
<td>2.07</td>
<td>1.728</td>
</tr>
<tr>
<td>239</td>
<td>0.0737</td>
<td>–</td>
<td>289</td>
<td>3.48</td>
<td>-1.310</td>
<td>339</td>
<td>5.94</td>
<td>-7.114</td>
</tr>
<tr>
<td>240</td>
<td>0.0845</td>
<td>–</td>
<td>290</td>
<td>1.26</td>
<td>1.844</td>
<td>340</td>
<td>3.40</td>
<td>5.962</td>
</tr>
<tr>
<td>241</td>
<td>0.0837</td>
<td>–</td>
<td>291</td>
<td>1.99</td>
<td>-1.253</td>
<td>341</td>
<td>1.06</td>
<td>6.332</td>
</tr>
<tr>
<td>242</td>
<td>0.133</td>
<td>–</td>
<td>292</td>
<td>0.860</td>
<td>1.247</td>
<td>342</td>
<td>0.544</td>
<td>1.313</td>
</tr>
<tr>
<td>243</td>
<td>0.172</td>
<td>–</td>
<td>293</td>
<td>3.36</td>
<td>-5.300</td>
<td>343</td>
<td>2.07</td>
<td>-3.226</td>
</tr>
<tr>
<td>244</td>
<td>0.118</td>
<td>–</td>
<td>294</td>
<td>7.72</td>
<td>-11.03</td>
<td>344</td>
<td>1.37</td>
<td>0.2020</td>
</tr>
<tr>
<td>245</td>
<td>0.142</td>
<td>–</td>
<td>295</td>
<td>4.38</td>
<td>4.133</td>
<td>345</td>
<td>0.471</td>
<td>2.986</td>
</tr>
<tr>
<td>246</td>
<td>0.176</td>
<td>–</td>
<td>296</td>
<td>2.68</td>
<td>2.290</td>
<td>346</td>
<td>0.128</td>
<td>0.5843</td>
</tr>
<tr>
<td>247</td>
<td>0.163</td>
<td>–</td>
<td>297</td>
<td>1.47</td>
<td>1.498</td>
<td>347</td>
<td>0.0476</td>
<td>-0.3035</td>
</tr>
<tr>
<td>248</td>
<td>0.253</td>
<td>–</td>
<td>298</td>
<td>4.56</td>
<td>-5.328</td>
<td>348</td>
<td>0.0818</td>
<td>-0.7171</td>
</tr>
<tr>
<td>249</td>
<td>0.343</td>
<td>–</td>
<td>299</td>
<td>3.42</td>
<td>1.598</td>
<td>349</td>
<td>0.0408</td>
<td>-0.6048</td>
</tr>
<tr>
<td>250</td>
<td>0.278</td>
<td>0.219</td>
<td>300</td>
<td>1.04</td>
<td>4.608</td>
<td>350</td>
<td>0.0389</td>
<td>-0.7862</td>
</tr>
<tr>
<td>251</td>
<td>0.220</td>
<td>0.191</td>
<td>301</td>
<td>1.76</td>
<td>-2.779</td>
<td>351</td>
<td>0.0966</td>
<td>-0.1307</td>
</tr>
<tr>
<td>252</td>
<td>0.364</td>
<td>-0.0778</td>
<td>302</td>
<td>0.920</td>
<td>-2.511</td>
<td>352</td>
<td>0.790</td>
<td>0.3974</td>
</tr>
<tr>
<td>253</td>
<td>0.312</td>
<td>0.109</td>
<td>303</td>
<td>3.26</td>
<td>-3.888</td>
<td>353</td>
<td>2.46</td>
<td>-5.746</td>
</tr>
<tr>
<td>254</td>
<td>0.369</td>
<td>0.148</td>
<td>304</td>
<td>7.81</td>
<td>-5.213</td>
<td>354</td>
<td>1.78</td>
<td>0.6480</td>
</tr>
<tr>
<td>255</td>
<td>0.486</td>
<td>0.294</td>
<td>305</td>
<td>5.12</td>
<td>4.507</td>
<td>355</td>
<td>0.752</td>
<td>2.652</td>
</tr>
<tr>
<td>256</td>
<td>0.679</td>
<td>0.182</td>
<td>306</td>
<td>4.63</td>
<td>0.3456</td>
<td>356</td>
<td>0.160</td>
<td>-0.4190</td>
</tr>
<tr>
<td>257</td>
<td>0.478</td>
<td>0.950</td>
<td>307</td>
<td>1.92</td>
<td>3.442</td>
<td>357</td>
<td>0.0372</td>
<td>–</td>
</tr>
</tbody>
</table>
Note: Meller and Moortgat21 (scaled, see text)
\[\sigma(\lambda, T) = \sigma(\lambda, 298 \text{ K}) + \Gamma(\lambda)(T - 298) \] for the temperature range 223–323 K

<table>
<thead>
<tr>
<th>Table 4D-3. Recommended Absorption Cross Sections of CH₂O at 298 K and 223 K and Temperature Dependence Coefficients Averaged over Intervals Used in Atmospheric Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda) (nm)</td>
</tr>
<tr>
<td>226.0</td>
</tr>
<tr>
<td>228.6</td>
</tr>
<tr>
<td>231.2</td>
</tr>
<tr>
<td>233.9</td>
</tr>
<tr>
<td>236.7</td>
</tr>
<tr>
<td>239.5</td>
</tr>
<tr>
<td>242.4</td>
</tr>
<tr>
<td>245.4</td>
</tr>
<tr>
<td>248.5</td>
</tr>
<tr>
<td>251.6</td>
</tr>
<tr>
<td>254.8</td>
</tr>
<tr>
<td>258.1</td>
</tr>
<tr>
<td>261.4</td>
</tr>
<tr>
<td>264.9</td>
</tr>
<tr>
<td>268.5</td>
</tr>
<tr>
<td>272.1</td>
</tr>
<tr>
<td>275.9</td>
</tr>
<tr>
<td>279.7</td>
</tr>
<tr>
<td>283.7</td>
</tr>
<tr>
<td>287.7</td>
</tr>
<tr>
<td>292.0</td>
</tr>
<tr>
<td>296.3</td>
</tr>
<tr>
<td>300.8</td>
</tr>
<tr>
<td>305.4</td>
</tr>
<tr>
<td>310.1</td>
</tr>
<tr>
<td>315</td>
</tr>
<tr>
<td>320</td>
</tr>
</tbody>
</table>
Table 4D-4. Recommended CH₂O Photolysis Quantum Yields at 300 K and 1 Atmosphere

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>Φ (H + HCO)</th>
<th>Φ (H₂ + CO)</th>
<th>λ (nm)</th>
<th>Φ (H + HCO)</th>
<th>Φ (H₂ + CO)</th>
<th>λ (nm)</th>
<th>Φ (H + HCO)</th>
<th>Φ (H₂ + CO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.310</td>
<td>0.490</td>
<td>288</td>
<td>0.669</td>
<td>0.291</td>
<td>326</td>
<td>0.463</td>
<td>0.537</td>
</tr>
<tr>
<td>251</td>
<td>0.308</td>
<td>0.492</td>
<td>289</td>
<td>0.680</td>
<td>0.284</td>
<td>327</td>
<td>0.435</td>
<td>0.565</td>
</tr>
<tr>
<td>252</td>
<td>0.307</td>
<td>0.493</td>
<td>290</td>
<td>0.690</td>
<td>0.278</td>
<td>328</td>
<td>0.406</td>
<td>0.594</td>
</tr>
<tr>
<td>253</td>
<td>0.306</td>
<td>0.494</td>
<td>291</td>
<td>0.700</td>
<td>0.272</td>
<td>329</td>
<td>0.375</td>
<td>0.625</td>
</tr>
<tr>
<td>254</td>
<td>0.305</td>
<td>0.495</td>
<td>292</td>
<td>0.710</td>
<td>0.266</td>
<td>330</td>
<td>0.343</td>
<td>0.657</td>
</tr>
<tr>
<td>255</td>
<td>0.304</td>
<td>0.496</td>
<td>293</td>
<td>0.718</td>
<td>0.262</td>
<td>331</td>
<td>0.310</td>
<td>0.690</td>
</tr>
<tr>
<td>256</td>
<td>0.304</td>
<td>0.496</td>
<td>294</td>
<td>0.726</td>
<td>0.259</td>
<td>332</td>
<td>0.276</td>
<td>0.714</td>
</tr>
<tr>
<td>257</td>
<td>0.303</td>
<td>0.497</td>
<td>295</td>
<td>0.734</td>
<td>0.256</td>
<td>333</td>
<td>0.240</td>
<td>0.730</td>
</tr>
<tr>
<td>258</td>
<td>0.303</td>
<td>0.497</td>
<td>296</td>
<td>0.740</td>
<td>0.254</td>
<td>334</td>
<td>0.203</td>
<td>0.737</td>
</tr>
<tr>
<td>259</td>
<td>0.304</td>
<td>0.496</td>
<td>297</td>
<td>0.746</td>
<td>0.252</td>
<td>335</td>
<td>0.165</td>
<td>0.735</td>
</tr>
<tr>
<td>260</td>
<td>0.307</td>
<td>0.493</td>
<td>298</td>
<td>0.751</td>
<td>0.249</td>
<td>336</td>
<td>0.126</td>
<td>0.724</td>
</tr>
<tr>
<td>261</td>
<td>0.312</td>
<td>0.490</td>
<td>299</td>
<td>0.755</td>
<td>0.245</td>
<td>337</td>
<td>0.085</td>
<td>0.705</td>
</tr>
<tr>
<td>262</td>
<td>0.318</td>
<td>0.487</td>
<td>300</td>
<td>0.758</td>
<td>0.242</td>
<td>338</td>
<td>0.043</td>
<td>0.687</td>
</tr>
<tr>
<td>263</td>
<td>0.325</td>
<td>0.485</td>
<td>301</td>
<td>0.761</td>
<td>0.239</td>
<td>339</td>
<td>0.0</td>
<td>0.665</td>
</tr>
<tr>
<td>264</td>
<td>0.333</td>
<td>0.482</td>
<td>302</td>
<td>0.762</td>
<td>0.238</td>
<td>340</td>
<td>0.0</td>
<td>0.645</td>
</tr>
<tr>
<td>265</td>
<td>0.343</td>
<td>0.477</td>
<td>303</td>
<td>0.762</td>
<td>0.238</td>
<td>341</td>
<td>0.0</td>
<td>0.620</td>
</tr>
<tr>
<td>266</td>
<td>0.354</td>
<td>0.471</td>
<td>304</td>
<td>0.762</td>
<td>0.238</td>
<td>342</td>
<td>0.0</td>
<td>0.590</td>
</tr>
<tr>
<td>267</td>
<td>0.365</td>
<td>0.465</td>
<td>305</td>
<td>0.760</td>
<td>0.240</td>
<td>343</td>
<td>0.0</td>
<td>0.560</td>
</tr>
<tr>
<td>268</td>
<td>0.377</td>
<td>0.458</td>
<td>306</td>
<td>0.758</td>
<td>0.242</td>
<td>344</td>
<td>0.0</td>
<td>0.530</td>
</tr>
<tr>
<td>269</td>
<td>0.390</td>
<td>0.450</td>
<td>307</td>
<td>0.754</td>
<td>0.246</td>
<td>345</td>
<td>0.0</td>
<td>0.505</td>
</tr>
<tr>
<td>270</td>
<td>0.404</td>
<td>0.441</td>
<td>308</td>
<td>0.749</td>
<td>0.251</td>
<td>346</td>
<td>0.0</td>
<td>0.480</td>
</tr>
<tr>
<td>271</td>
<td>0.418</td>
<td>0.432</td>
<td>309</td>
<td>0.744</td>
<td>0.256</td>
<td>347</td>
<td>0.0</td>
<td>0.450</td>
</tr>
<tr>
<td>272</td>
<td>0.433</td>
<td>0.422</td>
<td>310</td>
<td>0.737</td>
<td>0.263</td>
<td>348</td>
<td>0.0</td>
<td>0.425</td>
</tr>
<tr>
<td>273</td>
<td>0.448</td>
<td>0.412</td>
<td>311</td>
<td>0.729</td>
<td>0.271</td>
<td>349</td>
<td>0.0</td>
<td>0.400</td>
</tr>
<tr>
<td>274</td>
<td>0.464</td>
<td>0.401</td>
<td>312</td>
<td>0.720</td>
<td>0.280</td>
<td>350</td>
<td>0.0</td>
<td>0.375</td>
</tr>
<tr>
<td>275</td>
<td>0.479</td>
<td>0.391</td>
<td>313</td>
<td>0.709</td>
<td>0.291</td>
<td>351</td>
<td>0.0</td>
<td>0.350</td>
</tr>
<tr>
<td>276</td>
<td>0.495</td>
<td>0.380</td>
<td>314</td>
<td>0.698</td>
<td>0.302</td>
<td>352</td>
<td>0.0</td>
<td>0.320</td>
</tr>
<tr>
<td>277</td>
<td>0.512</td>
<td>0.371</td>
<td>315</td>
<td>0.685</td>
<td>0.315</td>
<td>353</td>
<td>0.0</td>
<td>0.285</td>
</tr>
<tr>
<td>278</td>
<td>0.528</td>
<td>0.362</td>
<td>316</td>
<td>0.671</td>
<td>0.329</td>
<td>354</td>
<td>0.0</td>
<td>0.250</td>
</tr>
<tr>
<td>279</td>
<td>0.544</td>
<td>0.356</td>
<td>317</td>
<td>0.656</td>
<td>0.344</td>
<td>355</td>
<td>0.0</td>
<td>0.220</td>
</tr>
<tr>
<td>280</td>
<td>0.560</td>
<td>0.347</td>
<td>318</td>
<td>0.639</td>
<td>0.361</td>
<td>356</td>
<td>0.0</td>
<td>0.190</td>
</tr>
<tr>
<td>281</td>
<td>0.576</td>
<td>0.337</td>
<td>319</td>
<td>0.622</td>
<td>0.378</td>
<td>357</td>
<td>0.0</td>
<td>0.160</td>
</tr>
<tr>
<td>282</td>
<td>0.591</td>
<td>0.329</td>
<td>320</td>
<td>0.603</td>
<td>0.397</td>
<td>358</td>
<td>0.0</td>
<td>0.130</td>
</tr>
<tr>
<td>283</td>
<td>0.606</td>
<td>0.321</td>
<td>321</td>
<td>0.583</td>
<td>0.417</td>
<td>359</td>
<td>0.0</td>
<td>0.09</td>
</tr>
<tr>
<td>284</td>
<td>0.620</td>
<td>0.313</td>
<td>322</td>
<td>0.561</td>
<td>0.439</td>
<td>360</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td>285</td>
<td>0.633</td>
<td>0.307</td>
<td>323</td>
<td>0.539</td>
<td>0.461</td>
<td>361</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>286</td>
<td>0.645</td>
<td>0.302</td>
<td>324</td>
<td>0.515</td>
<td>0.485</td>
<td>362</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>0.657</td>
<td>0.296</td>
<td>325</td>
<td>0.489</td>
<td>0.511</td>
<td>363</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Note:

Absorption cross sections and temperature coefficients: Meller and Moortgat \(^{23}\) (scaled, see text).

σ(λ, T) = σ(λ, 298 K) + Γ(λ)(T – 298) for the temperature range 223–323 K.
The recommended quantum yields are based on a fit of the data for $\Phi(H + HCO)$ from Lewis et al.,20 Marling,21 Horowitz and Calvert,19 Clark et al.,10 Tang et al.,34 Moortgat et al.,26 Smith et al.,35 Pope et al.,39,30 and Gorrotxategi Carbajo et al.,16 and for $\Phi(H + CO)$ from Moortgat et al.,26 see text for details.

D3. CH₃CHO (acetalddehyde)

CH₃CHO + hv → CH₃ + HCO 357 kJ mol⁻¹ 335 nm (1)

→ CH₃ + CO 357 kJ mol⁻¹ All (2)

→ CH₃CO + H 374 kJ mol⁻¹ 320 nm (3)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of acetalddehyde, CH₃CHO, has been measured at room temperature by McMillan¹ (200−345 nm), Meyrahn et al.¹⁴ (221−345 nm), Schneider and Moortgat¹⁵ (197−362 nm), Libuda et al.⁸,⁹ (235−360 nm), Martinez et al.¹² (202−365 nm), Limão-Vieira et al.¹⁰ (240−350 nm), and Weaver et al.¹⁶ (290−355 nm). The spectrum at wavelengths >200 nm consists of an absorption band with a peak at 290 nm and diffuse vibrational structure (~12 maxima or shoulders) at wavelengths >260 nm. The agreement between the various cross section studies is very good, mostly 5% or better, except for the results from Meyrahn et al.,¹⁴ which are lower by ~10% in the structured region around the absorption maximum. The recommended cross sections in Table D4-5 are based on the data of Libuda et al.⁸,⁹ (1 nm averages of 0.6 nm resolution data) and Martinez et al.¹² (4 nm averages of 0.5 nm resolution data at 202−278 nm and 1 nm averages at 280−360 nm), for which the agreement is within 5% between 255 and 325 nm.

Back to Index
Spectrum measurements in the VUV have been reported by Lake and Harrison7 (150–180 nm), Lucazeau and Sandorfy11 (118–189 nm), Brint et al.2 (120–180 nm), and Limão-Vieira et al.10 (113–200 nm).

Photolysis Quantum Yield and Product Studies: The photodissociation quantum yield of CH\textsubscript{3}CHO and the product quantum yields are wavelength and pressure dependent. Quantum yield measurements have been reported by Calvert and Pits4 and Weaver et al.15 at isolated wavelengths between 290 and 332 nm.

Quantum yields of CO, CH\textsubscript{4} and CO\textsubscript{2} were determined in the photolysis of trace concentrations of CH\textsubscript{3}CHO in air and N\textsubscript{2} in the spectral range 250–330 nm at 1 atmospheric pressure by Meyrahn et al.,14 which allowed the determination of (\(\Phi_1 + \Phi_2\)), \(\Phi_2\), and \(\Phi_1\). The product quantum yield pressure dependence was also investigated by Meyrahn15 at 270, 303.4 and 313 nm. Horowitz et al.6 and Horowitz and Calvert5 measured the quantum yields of CO, CH\textsubscript{4} and H\textsubscript{2} formation at 290, 300, 313, 320 and 332 nm in the presence of various pressures of O\textsubscript{2} and CO\textsubscript{2} from which \(\Phi_1\) and \(\Phi_2\) were derived. There is evidence from the studies of Meyrahn et al.13,14 and Horowitz et al.6 that some CO\textsubscript{2} is formed from secondary reactions of the CH\textsubscript{3}CO radical that is produced in channel (3). The quantum yield for channel 3 was estimated to be 0.025 at 300 nm and to decrease to zero at 320 nm. Both Meyrahn et al.13,14 and Horowitz et al.5,6 observed a pressure dependence of the product yields, from which Stern-Volmer quenching coefficients were derived. These data were summarized by Calvert et al.3.

The quantum yield recommendation given in Table 4D-6 for room temperature and atmospheric pressure are based on the evaluation by Atkinson and Lloyd4 and the measurements by Horowitz and Calvert,5 Meyrahn et al.,14 and Meyrahn.13

Table 4D-5. Recommended Absorption Cross Sections of CH\textsubscript{3}CHO at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>1020 (\sigma) (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>0.056</td>
<td>206</td>
<td>0.053</td>
<td>210</td>
<td>0.049</td>
<td>214</td>
<td>0.048</td>
</tr>
<tr>
<td>206</td>
<td>0.053</td>
<td>207</td>
<td>0.056</td>
<td>214</td>
<td>0.052</td>
<td>218</td>
<td>0.052</td>
</tr>
<tr>
<td>210</td>
<td>0.049</td>
<td>208</td>
<td>0.056</td>
<td>222</td>
<td>0.065</td>
<td>226</td>
<td>0.096</td>
</tr>
<tr>
<td>214</td>
<td>0.048</td>
<td>209</td>
<td>0.057</td>
<td>230</td>
<td>0.151</td>
<td>234</td>
<td>0.241</td>
</tr>
<tr>
<td>218</td>
<td>0.052</td>
<td>210</td>
<td>0.057</td>
<td>234</td>
<td>0.241</td>
<td>238</td>
<td>0.375</td>
</tr>
<tr>
<td>222</td>
<td>0.065</td>
<td>212</td>
<td>0.058</td>
<td>238</td>
<td>0.375</td>
<td>242</td>
<td>0.639</td>
</tr>
<tr>
<td>226</td>
<td>0.096</td>
<td>213</td>
<td>0.058</td>
<td>242</td>
<td>0.639</td>
<td>246</td>
<td>0.887</td>
</tr>
<tr>
<td>230</td>
<td>0.151</td>
<td>214</td>
<td>0.059</td>
<td>246</td>
<td>0.887</td>
<td>250</td>
<td>1.18</td>
</tr>
<tr>
<td>234</td>
<td>0.241</td>
<td>215</td>
<td>0.059</td>
<td>250</td>
<td>1.18</td>
<td>254</td>
<td>1.57</td>
</tr>
<tr>
<td>238</td>
<td>0.375</td>
<td>217</td>
<td>0.060</td>
<td>254</td>
<td>1.57</td>
<td>258</td>
<td>2.03</td>
</tr>
<tr>
<td>242</td>
<td>0.639</td>
<td>218</td>
<td>0.061</td>
<td>258</td>
<td>2.03</td>
<td>262</td>
<td>2.45</td>
</tr>
<tr>
<td>246</td>
<td>0.887</td>
<td>219</td>
<td>0.061</td>
<td>262</td>
<td>2.45</td>
<td>266</td>
<td>3.06</td>
</tr>
<tr>
<td>250</td>
<td>1.18</td>
<td>220</td>
<td>0.061</td>
<td>266</td>
<td>3.06</td>
<td>270</td>
<td>3.38</td>
</tr>
<tr>
<td>254</td>
<td>1.57</td>
<td>221</td>
<td>0.061</td>
<td>270</td>
<td>3.38</td>
<td>274</td>
<td>4.03</td>
</tr>
<tr>
<td>258</td>
<td>2.03</td>
<td>222</td>
<td>0.062</td>
<td>274</td>
<td>4.03</td>
<td>278</td>
<td>4.15</td>
</tr>
<tr>
<td>262</td>
<td>2.45</td>
<td>223</td>
<td>0.062</td>
<td>278</td>
<td>4.15</td>
<td>280</td>
<td>4.48</td>
</tr>
<tr>
<td>266</td>
<td>3.06</td>
<td>224</td>
<td>0.062</td>
<td>280</td>
<td>4.48</td>
<td>281</td>
<td>4.65</td>
</tr>
<tr>
<td>270</td>
<td>3.38</td>
<td>225</td>
<td>0.063</td>
<td>281</td>
<td>4.65</td>
<td>282</td>
<td>4.66</td>
</tr>
<tr>
<td>274</td>
<td>4.03</td>
<td>226</td>
<td>0.063</td>
<td>282</td>
<td>4.66</td>
<td>283</td>
<td>4.70</td>
</tr>
<tr>
<td>278</td>
<td>4.15</td>
<td>227</td>
<td>0.063</td>
<td>283</td>
<td>4.70</td>
<td>284</td>
<td>4.58</td>
</tr>
<tr>
<td>280</td>
<td>4.48</td>
<td>228</td>
<td>0.064</td>
<td>284</td>
<td>4.58</td>
<td>285</td>
<td>4.46</td>
</tr>
</tbody>
</table>

Note:
202–238 nm: Martinez et al.12
240–360 nm: mean of data from Martinez et al.12 and Libuda et al.8,9
Table 4D-6. Recommended CH₃CHO Photolysis Quantum Yields at 1 bar Total Pressure

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>Φ₁ (CH₃ + HCO)</th>
<th>Φ₂ (CH₄ + CO)</th>
<th>λ (nm)</th>
<th>Φ₁ (CH₃ + HCO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>0.29</td>
<td>0.48</td>
<td>296</td>
<td>0.47</td>
</tr>
<tr>
<td>258</td>
<td>0.30</td>
<td>0.47</td>
<td>298</td>
<td>0.45</td>
</tr>
<tr>
<td>260</td>
<td>0.31</td>
<td>0.45</td>
<td>300</td>
<td>0.43</td>
</tr>
<tr>
<td>262</td>
<td>0.32</td>
<td>0.43</td>
<td>302</td>
<td>0.40</td>
</tr>
<tr>
<td>264</td>
<td>0.34</td>
<td>0.40</td>
<td>304</td>
<td>0.38</td>
</tr>
<tr>
<td>266</td>
<td>0.36</td>
<td>0.37</td>
<td>306</td>
<td>0.35</td>
</tr>
<tr>
<td>268</td>
<td>0.38</td>
<td>0.33</td>
<td>308</td>
<td>0.31</td>
</tr>
<tr>
<td>270</td>
<td>0.41</td>
<td>0.29</td>
<td>310</td>
<td>0.28</td>
</tr>
<tr>
<td>272</td>
<td>0.44</td>
<td>0.25</td>
<td>312</td>
<td>0.24</td>
</tr>
<tr>
<td>274</td>
<td>0.48</td>
<td>0.20</td>
<td>314</td>
<td>0.19</td>
</tr>
<tr>
<td>276</td>
<td>0.53</td>
<td>0.16</td>
<td>316</td>
<td>0.15</td>
</tr>
<tr>
<td>278</td>
<td>0.56</td>
<td>0.09</td>
<td>318</td>
<td>0.12</td>
</tr>
<tr>
<td>280</td>
<td>0.58</td>
<td>0.06</td>
<td>320</td>
<td>0.10</td>
</tr>
<tr>
<td>282</td>
<td>0.59</td>
<td>0.04</td>
<td>322</td>
<td>0.07</td>
</tr>
<tr>
<td>284</td>
<td>0.59</td>
<td>0.03</td>
<td>324</td>
<td>0.05</td>
</tr>
<tr>
<td>286</td>
<td>0.58</td>
<td>0.02</td>
<td>326</td>
<td>0.03</td>
</tr>
<tr>
<td>288</td>
<td>0.56</td>
<td>0.01</td>
<td>328</td>
<td>0.02</td>
</tr>
<tr>
<td>290</td>
<td>0.54</td>
<td>0.01</td>
<td>330</td>
<td>0.01</td>
</tr>
<tr>
<td>292</td>
<td>0.52</td>
<td>0.005</td>
<td>332</td>
<td>0</td>
</tr>
<tr>
<td>294</td>
<td>0.50</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D4. C$_2$H$_5$CHO (propionaldehyde)

\[
\begin{align*}
\text{C}_2\text{H}_5\text{CHO} + \text{hv} & \rightarrow \text{C}_2\text{H}_4 + \text{HCO} & 351 \text{ kJ mol}^{-1} & 341 \text{ nm} \quad (1) \\
& \rightarrow \text{C}_2\text{H}_4 + \text{CO} & -8 \text{ kJ mol}^{-1} & \text{All} \quad (2) \\
& \rightarrow \text{C}_2\text{H}_4 + \text{HCHO} & 129 \text{ kJ mol}^{-1} & 926 \text{ nm} \quad (3) \\
& \rightarrow \text{CH}_3 + \text{CH}_2\text{CHO} & 343 \text{ kJ mol}^{-1} & 349 \text{ nm} \quad (4)
\end{align*}
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of propionaldehyde (C$_2$H$_5$CHO, propanal) has been measured at room temperature by Lucazau and Sandorfy3 (118–190 nm), McMillan2 (220–342 nm), and Martinez et al.6 (262–365 nm). Absorption cross sections have also been reported for isolated wavelengths by Blacet and Crane1 (187–313 nm), Heicklen et al.4 (293–325 nm), and Chen and Zhu5 (280–330 nm). The spectrum at wavelengths >200 nm consists of an absorption band with structured features (~9 maxima or shoulders) at wavelengths >260 nm and maximum absorption at 285 and 293 nm. The agreement between the results from Martinez et al.6 and McMillan2 is excellent, i.e., ≤5% differences, between 238 and 322 nm. At shorter (longer) wavelengths the differences increase to ~30% (~50%). The data points reported by Heicklen et al.4 fit well to these studies although the value reported at 293 nm is 20% smaller. The cross sections reported at 5 nm intervals by Chen and Zhu1 agree to within 10% with those reported by Martinez et al.6, except the data at 285 and 330 nm which are 20% and 30% larger. The recommended absorption cross sections listed in Table 4D-7 are taken from Martinez et al.6 and are 4 nm averages of the 0.5 nm resolution data in the region 202–278 nm and 1 nm averages in the region 280–360 nm.

Photolysis Quantum Yield and Product Studies: Quantum yield measurements have been performed by Heicklen et al.4 and Chen and Zhu.1 Heicklen et al.4 measured the quantum yield of HO$_2$ and C$_2$H$_5$O$_2$ radicals (in air bath gas) using laser photolysis at 294, 302, 312, and 325 nm combined with UV absorption to determine Φ_1. Quantum yields of CO and C$_2$H$_6$ were obtained in steady-state photolysis (at 254, 312, and 334 nm) experiments in O$_2$ where $\Phi_1 = \Phi(\text{CO}) \cdot \Phi(\text{C}_2\text{H}_6)$. A Stern-Volmer pressure dependence of the quantum yields was observed at all wavelengths, i.e., lower quantum yields at higher pressures. At atmospheric pressure, values of $\Phi_1 = 0.22, 0.89, 0.85, 0.50, 0.26,$ and 0.15 were derived at 254, 294, 302, 313, 325, and 334 nm, respectively. Heicklen et al.4 reported $\Phi_2 = 0.33$ for 254 nm photolysis and $\Phi_2 = 0$ at longer wavelengths. The contribution of other primary processes (Φ_1 and Φ_2) was found to increase at wavelengths <265 nm from earlier studies as cited in Calvert and Pitts.2

Chen and Zhu1 measured the quantum yield of HCO radicals (Φ_1) over the wavelength range 280–330 nm using time-resolved cavity ring-down spectroscopy with detection of HCO at 613.8 nm. The reported HCO yields are 0.85 ± 0.06 at 280 nm, 1.01 ± 0.07 at 285 nm, 0.95 ± 0.06 at 290 nm, 0.98 ± 0.06 at 295 nm, 0.92 ± 0.06 at 300 nm, 0.95 ± 0.08 at 305 nm, 0.98 ± 0.11 at 310 nm, 0.91 ± 0.05 at 315 nm, 1.08 ± 0.07 at 320 nm, 1.07 ± 0.14 at 325 nm, and 0.84 ± 0.08 at 330 nm. These values are quoted for zero-pressure but no pressure dependence to the HCO quantum yield at any wavelength was observed for pressures over the range 10–400 Torr N$_2$.

The quantum yield studies by Heicklen et al.4 and Chen and Zhu1 are only in agreement in the narrow wavelength range 290–305 nm. At $\lambda > 305$ nm, the data of Chen and Zhu do not show the decrease of Φ_1 reported by Heicklen et al.4. Because of the discrepancies between these data sets no quantum yield recommendation is given.

Table 4D-7. Recommended Absorption Cross Sections of C$_2$H$_5$CHO at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>0.049</td>
<td>285</td>
<td>5.86</td>
<td>310</td>
<td>3.60</td>
<td>335</td>
<td>0.325</td>
</tr>
<tr>
<td>206</td>
<td>0.049</td>
<td>286</td>
<td>5.82</td>
<td>311</td>
<td>3.53</td>
<td>336</td>
<td>0.280</td>
</tr>
<tr>
<td>210</td>
<td>0.057</td>
<td>287</td>
<td>5.72</td>
<td>312</td>
<td>3.50</td>
<td>337</td>
<td>0.230</td>
</tr>
<tr>
<td>214</td>
<td>0.069</td>
<td>288</td>
<td>5.59</td>
<td>313</td>
<td>3.32</td>
<td>338</td>
<td>0.185</td>
</tr>
<tr>
<td>218</td>
<td>0.080</td>
<td>289</td>
<td>5.52</td>
<td>314</td>
<td>3.06</td>
<td>339</td>
<td>0.166</td>
</tr>
<tr>
<td>222</td>
<td>0.091</td>
<td>290</td>
<td>5.56</td>
<td>315</td>
<td>2.77</td>
<td>340</td>
<td>0.155</td>
</tr>
<tr>
<td>226</td>
<td>0.115</td>
<td>291</td>
<td>5.68</td>
<td>316</td>
<td>2.43</td>
<td>341</td>
<td>0.119</td>
</tr>
<tr>
<td>230</td>
<td>0.163</td>
<td>292</td>
<td>5.81</td>
<td>317</td>
<td>2.18</td>
<td>342</td>
<td>0.076</td>
</tr>
<tr>
<td>234</td>
<td>0.257</td>
<td>293</td>
<td>5.88</td>
<td>318</td>
<td>2.00</td>
<td>343</td>
<td>0.045</td>
</tr>
<tr>
<td>238</td>
<td>0.407</td>
<td>294</td>
<td>5.80</td>
<td>319</td>
<td>1.86</td>
<td>344</td>
<td>0.031</td>
</tr>
<tr>
<td>242</td>
<td>0.622</td>
<td>295</td>
<td>5.57</td>
<td>320</td>
<td>1.83</td>
<td>345</td>
<td>0.025</td>
</tr>
<tr>
<td>246</td>
<td>0.909</td>
<td>296</td>
<td>5.37</td>
<td>321</td>
<td>1.78</td>
<td>346</td>
<td>0.019</td>
</tr>
<tr>
<td>250</td>
<td>1.29</td>
<td>297</td>
<td>5.16</td>
<td>322</td>
<td>1.66</td>
<td>347</td>
<td>0.016</td>
</tr>
<tr>
<td>254</td>
<td>1.75</td>
<td>298</td>
<td>5.02</td>
<td>323</td>
<td>1.58</td>
<td>348</td>
<td>0.014</td>
</tr>
<tr>
<td>258</td>
<td>2.25</td>
<td>299</td>
<td>5.02</td>
<td>324</td>
<td>1.49</td>
<td>349</td>
<td>0.013</td>
</tr>
<tr>
<td>262</td>
<td>2.88</td>
<td>300</td>
<td>5.04</td>
<td>325</td>
<td>1.30</td>
<td>350</td>
<td>0.010</td>
</tr>
<tr>
<td>266</td>
<td>3.43</td>
<td>301</td>
<td>5.09</td>
<td>326</td>
<td>1.13</td>
<td>351</td>
<td>0.008</td>
</tr>
<tr>
<td>270</td>
<td>4.12</td>
<td>302</td>
<td>5.07</td>
<td>327</td>
<td>0.996</td>
<td>352</td>
<td>0.007</td>
</tr>
<tr>
<td>274</td>
<td>4.59</td>
<td>303</td>
<td>4.94</td>
<td>328</td>
<td>0.828</td>
<td>353</td>
<td>0.005</td>
</tr>
<tr>
<td>278</td>
<td>5.17</td>
<td>304</td>
<td>4.69</td>
<td>329</td>
<td>0.685</td>
<td>354</td>
<td>0.004</td>
</tr>
<tr>
<td>280</td>
<td>5.16</td>
<td>305</td>
<td>4.32</td>
<td>330</td>
<td>0.575</td>
<td>355</td>
<td>0.002</td>
</tr>
<tr>
<td>281</td>
<td>5.21</td>
<td>306</td>
<td>4.04</td>
<td>331</td>
<td>0.494</td>
<td>356</td>
<td>0.001</td>
</tr>
<tr>
<td>282</td>
<td>5.35</td>
<td>307</td>
<td>3.81</td>
<td>332</td>
<td>0.466</td>
<td>357</td>
<td>0.001</td>
</tr>
<tr>
<td>283</td>
<td>5.57</td>
<td>308</td>
<td>3.65</td>
<td>333</td>
<td>0.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>5.78</td>
<td>309</td>
<td>3.62</td>
<td>334</td>
<td>0.373</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Martinez et al. 6

D5. CH$_3$O$_2$ (methylperoxy radical)

CH$_3$O$_2$ + hv \rightarrow Products

(1)

(Recommended: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption cross sections of the methylperoxy radical, CH$_3$O$_2$, in the 195–310 nm region have been measured at room temperature by Parkes et al.,21 Hochanadel et al.,3 Parkes,20 Anastasi et al.,2 Kan et al.,11 Cox and Tyndall14 at 250 nm only; Adachi et al.,1 Sander and Watson24 at 250 nm only, Pilling and Smith22 at 254 nm only, Kurylo et al.,12 McAdam et al.,17 Jenkin et al.,10 Wallington et al.,27 Moortgat et al.,19 Dagaut and Kurylo,5 Simon et al.,25 Jenkin and Cox,9 Lightfoot and Jemi-Alade11 who measured the cross sections up to 777 K, Maricq and Wallington,16 Wallington et al.,29 Roehl et al.,23 Fahr et al.,6 and Nielsen et al.19 The absorption cross sections have been evaluated in earlier reviews by Lightfoot et al.13 and Wallington et al.,28 who noted significant discrepancies in both the shapes of the spectra and the absolute magnitude of the cross section values. The ultraviolet absorption spectra have recently been
reevaluated by Tyndall et al., who fit the absorption spectra to a semi-logarithmic Gaussian distribution function suggested by Lightfoot et al. and Maric et al.

\[\sigma = \sigma_{\text{max}} \exp^{-a[\ln(\lambda_{\text{max}}/\lambda)]^2} \]

Screening of the data suggested that most spectra published before 1987 did not constrain the shape of the spectrum very well as indicated by the large relative uncertainty of the width parameter \(a \). The shape was determined by averaging the individual fitting parameters from McAdam et al., Moortgat et al., Simon et al., Lightfoot and Jemi-Alade, Jenkin and Cox, and Maricq and Wallington, which were judged to be most reliable by Tyndall et al. Absolute cross sections were based on relative measurements of absorption cross sections of \(\text{CH}_3\text{O}_2 \) and \(\text{C}_2\text{H}_5\text{O}_2 \) at 240 nm taken under identical conditions (Wallington et al., Maricq and Wallington, Fenter et al., and Roehl et al.), combined with independent calibrations by Dagaut and Kurylo, Simon et al., and Lightfoot and Jemi-Alade. The fit parameters are: \(\sigma_{\text{max}} = 4.26 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1} \); \(a = 44.4 \); \(\lambda_{\text{max}} = 237.3 \text{ nm} \). Table 4D-8 lists the recommended cross sections, which are taken from the review by Tyndall et al.

Photolysis Quantum Yield and Product Studies: The loss of \(\text{CH}_3\text{O}_2 \) due to photolysis in the stratosphere and troposphere is expected to be negligible.

Table 4D-8. Recommended Absorption Cross Sections of \(\text{CH}_3\text{O}_2 \), \(\text{C}_2\text{H}_5\text{O}_2 \), and \(\text{CH}_3\text{C(O)O}_2 \) at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
<th>(\text{CH}_3\text{O}_2)</th>
<th>(\text{C}_2\text{H}_5\text{O}_2)</th>
<th>(\text{CH}_3\text{C(O)O}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>195.0</td>
<td>389</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.0</td>
<td>564</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205.0</td>
<td>165</td>
<td>665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.0</td>
<td>219</td>
<td>195</td>
<td>656</td>
<td></td>
</tr>
<tr>
<td>215.0</td>
<td>276</td>
<td>257</td>
<td>564</td>
<td></td>
</tr>
<tr>
<td>220.0</td>
<td>330</td>
<td>319</td>
<td>451</td>
<td></td>
</tr>
<tr>
<td>225.0</td>
<td>376</td>
<td>374</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>230.0</td>
<td>408</td>
<td>418</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>235.0</td>
<td>424</td>
<td>444</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>240.0</td>
<td>424</td>
<td>452</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>245.0</td>
<td>407</td>
<td>440</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>250.0</td>
<td>378</td>
<td>412</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>255.0</td>
<td>339</td>
<td>372</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>260.0</td>
<td>294</td>
<td>324</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>265.0</td>
<td>248</td>
<td>273</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>270.0</td>
<td>203</td>
<td>222</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>275.0</td>
<td>162</td>
<td>176</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>280.0</td>
<td>126</td>
<td>136</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>285.0</td>
<td>96.1</td>
<td>102</td>
<td>81.2</td>
<td></td>
</tr>
<tr>
<td>290.0</td>
<td>71.5</td>
<td>74.6</td>
<td>57.3</td>
<td></td>
</tr>
<tr>
<td>295.0</td>
<td>52.0</td>
<td>53.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300.0</td>
<td></td>
<td>37.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Tyndall et al. review

(2) Anastasi, C.; Smith, I. W. M.; Parkes, D. A. Flash photolysis study of the spectra of \(\text{CH}_3\text{O}_2 \) and \(\text{C(CH}_3)_3\text{O}_2 \) radicals and the kinetics of their mutual reaction and with NO. *J. Chem. Soc. Faraday Trans.* 1, 1978, 74, 1693-1701.

D6. $\text{C}_2\text{H}_3\text{O}_2$ (ethylperoxy radical)

$\text{C}_2\text{H}_3\text{O}_2 + \text{hv} \rightarrow \text{products}$

(1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption cross sections of the ethylperoxy radical, $\text{C}_2\text{H}_3\text{O}_2$, in the 200–310 nm region have been measured at room temperature by Adachi et al.,\(^1\) Cattell et al.,\(^4\) Wallington et al.,\(^14\) Bauer et al.,\(^3\) Maricq and Wallington,\(^9\) Fenter et al.,\(^5\) Munk et al.,\(^10\) and Nielsen et al.\(^11\) and as a function of temperature by Anastasi et al.,\(^2\) Fenter et al.,\(^6\) and Fauvet et al.\(^7\) The absorption cross sections have been evaluated in reviews by Lightfoot et al.\(^7\) and Wallington et al.,\(^15\) who noted significant discrepancies in the both the shapes of the spectra and the absolute magnitude of the cross section values. The ultraviolet absorption spectra have recently been reevaluated by Tyndall et al.,\(^13\) who fit the absorption spectra to a semi-logarithmic Gaussian distribution function suggested by Lightfoot et al.\(^7\) and Maric et al.\(^8\)

$$\sigma = \sigma_{\text{max}} \exp \left(-a \frac{\lambda_{\text{max}}}{\lambda} \right)^2$$

The shape was determined by averaging the individual fitting parameters from Wallington et al.,\(^15\) Bauer et al.,\(^3\) Maricq and Wallington,\(^9\) and Fenter et al.,\(^5\) which were judged to be most reliable by Tyndall et al.\(^13\) Absolute cross sections were based on relative measurements of absorption cross sections of CH_3O_2 and $\text{C}_2\text{H}_3\text{O}_2$ at 240 nm taken under identical conditions (Wallington et al.,\(^15\) Maricq and Wallington,\(^3\) Fenter et al.,\(^5\) Roehl et al.\(^12\)) and Nielsen et al.\(^11\) combined with independent calibrations. The fitting parameters are $\sigma_{\text{max}} = 4.52 \times 10^{-18}$ cm2 molecule$^{-1}$, $a = 49.0$, $\lambda_{\text{max}} = 239.4$ nm. Table 4D-8 lists the recommended cross sections, which are taken from the review by Tyndall et al.

Photolysis Quantum Yield and Product Studies: The loss of $\text{C}_2\text{H}_3\text{O}_2$ due to photolysis in the stratosphere and troposphere is expected to be negligible.

D7. CH₃CO (acetyl radical)

\[\text{CH}_3\text{CO} + hv \rightarrow \text{Products} \]

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections. The UV absorption spectrum of the acetyl radical, CH₃CO, has been measured by Adachi et al.,¹² Parkes,⁷ Anastasi and Maw,³ Basco and Parmar,⁴ Maricq and Szente,⁶ and Cameron et al.⁵ The spectrum has a very broad band in the range 190–270 nm with maximum near 215 nm. The shapes and magnitudes of the reported spectra differ substantially in the different studies. Adachi et al.¹² and Basco and Parmar⁴ report a peak cross section of \(3.75 \times 10^{-17}\) cm² molecule⁻¹ whereas Maricq and Szente⁶ report a value of \(1.07 \times 10^{-17}\) cm² molecule⁻¹ at 216 nm and Anastasi and Maw⁴ a value of \(0.7 \times 10^{-17}\) cm² molecule⁻¹ at 223 nm. Cameron et al.⁵ measured a cross section of \((1.4 \pm 0.2) \times 10^{-17}\) cm² molecule⁻¹ at 220 nm. Cameron et al.⁵ also measured the spectrum using diode array spectroscopy in the range 190–247 nm; the shape of the spectrum being in reasonable agreement with the spectrum measured by Maricq and Szente.⁶ The spectrum by Cameron et al.⁵ is given by the equation

\[\sigma = \sigma_{\text{max}} \exp\left[-a\ln\left(\frac{\lambda}{\lambda_{\text{max}}}\right)\right] \]

where

\[\sigma_{\text{max}} = 1.549 \times 10^{-17} \quad a = 129.19 \quad \lambda_{\text{max}} = 213.985 \]

The visible absorption spectrum of CH₃CO was measured by Rajakumar et al.⁸ in the wavelength range 490–660 nm using cavity ring-down spectroscopy. The spectrum has a broad continuous band with a broad peak at 535 nm. The spectrum obtained with the H₂O₂ photolysis source (in the presence of CH₃CHO) was used as a reference and fit with an empirical polynomial expression

\[\sigma(\lambda) = A + B\lambda + C\lambda^2 + D\lambda^3 + E\lambda^4 \]

yielding the parameters (\(\sigma\) in units of cm² molecule⁻¹, \(\lambda\) in nm)

\[
\begin{align*}
A &= -6.6124 \times 10^{-17} \\
B &= 4.1946 \times 10^{-19} \\
C &= -9.865 \times 10^{-22} \\
D &= 1.02141 \times 10^{-24} \\
E &= -3.93441 \times 10^{-28}
\end{align*}
\]

The recommended UV absorption cross sections in Table 4D-9 were calculated using the equation from Cameron et al.⁵ The recommended cross sections in the visible region in Table 4D-10 were calculated using the polynomial expression from Rajakumar et al.⁸

Table 4D-9. Recommended UV Absorption Cross Sections of CH₃CO at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>250</td>
<td>210</td>
<td>1480</td>
<td>230</td>
<td>790</td>
</tr>
<tr>
<td>192</td>
<td>339</td>
<td>212</td>
<td>1530</td>
<td>232</td>
<td>666</td>
</tr>
<tr>
<td>194</td>
<td>447</td>
<td>214</td>
<td>1550</td>
<td>234</td>
<td>551</td>
</tr>
<tr>
<td>196</td>
<td>572</td>
<td>216</td>
<td>1530</td>
<td>236</td>
<td>449</td>
</tr>
<tr>
<td>198</td>
<td>711</td>
<td>218</td>
<td>1480</td>
<td>238</td>
<td>359</td>
</tr>
<tr>
<td>200</td>
<td>859</td>
<td>220</td>
<td>1400</td>
<td>240</td>
<td>283</td>
</tr>
<tr>
<td>202</td>
<td>1010</td>
<td>222</td>
<td>1300</td>
<td>242</td>
<td>219</td>
</tr>
<tr>
<td>204</td>
<td>1150</td>
<td>224</td>
<td>1180</td>
<td>244</td>
<td>167</td>
</tr>
<tr>
<td>206</td>
<td>1290</td>
<td>226</td>
<td>1050</td>
<td>246</td>
<td>126</td>
</tr>
<tr>
<td>208</td>
<td>1400</td>
<td>228</td>
<td>921</td>
<td>248</td>
<td>93.1</td>
</tr>
</tbody>
</table>

Note:
using expression from Cameron et al.⁵

D8. CH₃C(O)O₂ (acetylperoxy radical)

CH₃C(O)O₂ + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of the acetylperoxy radical, CH₃C(O)O₂, is continuous with two absorption bands in the 185–300 nm region. The band centered at 245 nm is overlapped by a stronger band that peaks near 207 nm. Absorption cross sections have been measured at room temperature by Addison et al.,¹ Basco and Parmer,² Moortgat et al.,³ Marić and Szente,⁴ and Roehl et al.⁵ The absorption cross sections have been evaluated in reviews by Lightfoot et al.,³ Wallingston et al.,⁶ and Tyndall et al.⁷ and significant discrepancies in the both the shapes of the spectra and the absolute magnitude of the cross section values have been noted. Tyndall et al.⁷ fit the absorption spectrum reasonably well to the sum of two Gaussian shaped absorption bands

\[
\sigma = \sigma_{\text{max1}} \exp^{-a_1 \left(\ln \left(\frac{\lambda}{\lambda_{\text{max1}}} \right)\right)^2} + \sigma_{\text{max2}} \exp^{-a_2 \left(\ln \left(\frac{\lambda}{\lambda_{\text{max2}}} \right)\right)^2}
\]

The optimized fit parameters were determined by averaging the fit parameters from Marić and Szente⁴ and Roehl et al.⁵ which were judged to be the most reliable. It should be noted that the data from Marić and Szente were adjusted for their overcorrection for the contribution of CH₂O₂. Absolute cross sections were based on relative measurements to the absorption cross sections of C₂H₅O₂ at 240 nm. The fitting parameters are

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>7.41</td>
<td>555</td>
<td>10.22</td>
<td>610</td>
<td>4.65</td>
</tr>
<tr>
<td>505</td>
<td>8.36</td>
<td>560</td>
<td>9.87</td>
<td>615</td>
<td>4.05</td>
</tr>
<tr>
<td>510</td>
<td>9.31</td>
<td>565</td>
<td>9.38</td>
<td>620</td>
<td>3.57</td>
</tr>
<tr>
<td>515</td>
<td>9.96</td>
<td>570</td>
<td>8.96</td>
<td>625</td>
<td>3.11</td>
</tr>
<tr>
<td>520</td>
<td>10.45</td>
<td>575</td>
<td>8.44</td>
<td>630</td>
<td>2.96</td>
</tr>
<tr>
<td>525</td>
<td>10.78</td>
<td>580</td>
<td>7.90</td>
<td>635</td>
<td>2.30</td>
</tr>
<tr>
<td>530</td>
<td>10.97</td>
<td>585</td>
<td>7.34</td>
<td>640</td>
<td>1.95</td>
</tr>
<tr>
<td>535</td>
<td>11.03</td>
<td>590</td>
<td>6.78</td>
<td>645</td>
<td>1.64</td>
</tr>
<tr>
<td>540</td>
<td>10.97</td>
<td>595</td>
<td>6.21</td>
<td>650</td>
<td>1.36</td>
</tr>
<tr>
<td>545</td>
<td>10.82</td>
<td>600</td>
<td>5.65</td>
<td>655</td>
<td>1.11</td>
</tr>
<tr>
<td>550</td>
<td>10.58</td>
<td>605</td>
<td>5.10</td>
<td>660</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Note:
using expression from Rajakumar et al.⁸

\[\sigma_{\text{max}1} = 6.29 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1} \quad \sigma_{\text{max}2} = 3.26 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1} \]
\[\lambda_{\text{max}1} = 206.0 \text{ nm} \quad \lambda_{\text{max}2} = 246.1 \text{ nm} \]
\[a_1 = 168.0 \quad a_2 = 64.2. \]

The recommended absorption cross sections in Table 4D-8 are taken from the review by Tyndall et al.\(^7\)

Photolysis Quantum Yield and Product Studies: The loss of CH$_3$(O)O$_2$ in the stratosphere and troposphere due to photolysis is expected to be negligible.

D9. CH$_3$(O)CH$_2$O$_2$ (acetonylperoxy radical)

CH$_3$(O)CH$_2$O$_2$ + hv → Products \((1)\)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of the acetonylperoxy radical, CH$_3$(O)CH$_2$O$_2$, has been measured at room temperature by Cox et al.,\(^2\) Bridier et al.,\(^1\) and Nielsen et al.\(^3\) The spectra from Cox et al.\(^2\) and Nielsen et al.\(^3\) are in good agreement but differ significantly from the spectrum reported by Bridier et al.\(^1\) The spectrum reported by Cox et al.\(^2\) and Nielsen et al.\(^3\) exhibit two absorption features in the 200–340 nm region; a strong band at wavelengths <260 nm and a fairly weak band centered at 300 nm. Nielsen et al.\(^3\) determined the cross section of the acetonylperoxy radical at 240 nm to be \((2.03 \pm 0.22) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}\) relative to the well-established absorption cross section of CH$_2$O$_2$. The cross sections of Cox et al.\(^2\) renormalized to the absolute value at 240 nm of Nielsen et al.\(^3\) are recommended and listed in Table 4D-11.

Photolysis Quantum Yields and Product Studies: No recommendation.
Table 4D-11. Recommended Absorption Cross Sections of $\text{CH}_3\text{C(O)CH}_2\text{O}_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>313</td>
</tr>
<tr>
<td>230</td>
<td>254</td>
</tr>
<tr>
<td>235</td>
<td>228</td>
</tr>
<tr>
<td>240</td>
<td>203</td>
</tr>
<tr>
<td>245</td>
<td>186</td>
</tr>
<tr>
<td>250</td>
<td>157</td>
</tr>
<tr>
<td>255</td>
<td>135</td>
</tr>
<tr>
<td>260</td>
<td>111</td>
</tr>
<tr>
<td>270</td>
<td>101</td>
</tr>
<tr>
<td>280</td>
<td>106</td>
</tr>
<tr>
<td>290</td>
<td>111</td>
</tr>
<tr>
<td>300</td>
<td>112</td>
</tr>
<tr>
<td>310</td>
<td>110</td>
</tr>
<tr>
<td>320</td>
<td>104</td>
</tr>
<tr>
<td>330</td>
<td>92</td>
</tr>
<tr>
<td>340</td>
<td>71</td>
</tr>
<tr>
<td>350</td>
<td>51</td>
</tr>
<tr>
<td>360</td>
<td>33</td>
</tr>
<tr>
<td>370</td>
<td>17</td>
</tr>
<tr>
<td>380</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: Cox et al.,2 normalized to the 240 nm cross section from Nielsen et al.3

D10. CH$_3$OOH (methylhydroperoxide)

CH$_3$OOH + hν \rightarrow CH$_3$O + OH 185 kJ mol$^{-1}$ 645 nm (1)

\rightarrow CH$_3$ + HO$_2$ 292 kJ mol$^{-1}$ 410 nm (2)

\rightarrow CH$_3$O$_2$ + H 358 kJ mol$^{-1}$ 334 nm (3)

\rightarrow CH$_3$OH + O(3P) 179 kJ mol$^{-1}$ 670 nm (4)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CH$_3$OOH (methylhydroperoxide) was measured at room temperature by Cox and Tyndall2 (210–280 nm), Nozière et al.3 (220–250 nm), Molina and Arguello4 (210–350 nm), Vaghjiani and Ravishankara8 (210–365 nm), Blitz et al.1 (210–355 nm), Matthews et al.3 (365–405 nm), and Roehl et al.6 (305–365 nm).

Vaghjiani and Ravishankara8 measured the cross sections of CH$_3$OOH by monitoring the CH$_3$OOH concentration via trapping and titration. These results are recommended and are listed in Table 4D-12. The earlier results of Molina and Arguello4 are consistently 40% higher than the values shown in Table 4D-12. This difference is believed to be due to difficulty in trapping CH$_3$OOH and measuring its concentration. The results of Blitz et al.1 are consistently 30% smaller than the data of Vaghjiani and Ravishankara8 in the range 225–325 nm and are unreliable above 325 nm due to baseline problems during their measurements. The absorption cross sections of Roehl et al.6 determined using action spectroscopy are 8-21 % greater than those measured by Vaghjiani and Ravishankara8. Similar absorption measurements were performed by Matthews et al.3 in the weak tail of the absorption band up to 405 nm. Their cross sections were normalized to the value of Vaghjiani and Ravishankara8 at 355 nm and are included in the recommendation in Table 4D-12.
Matthews et al.\(^3\) also measured the absorption of the 5ν\(_{\text{OH}}\) overtone band near 620 nm as \((3.6 \pm 0.4) \times 10^{-24} \text{ cm}^2 \text{ molecule}^{-1}\).

Photolysis Quantum Yields and Product Studies: CH\(_3\)OOH dissociates to give CH\(_3\)O with unit quantum yield \(\Phi_1 = 1.00 \pm 0.18\) (Vaghjian and Ravishankara\(^9\)). These authors also observed some production of H (quantum yield of 0.038 ± 0.007) and O atoms (quantum yield <0.007) at shorter wavelengths (i.e., 193 nm).

Thelen et al.\(^7\) report unit quantum yields for OH production at 248 and 193 nm that are in agreement with the results of Vaghjian and Ravishankara.\(^8\) Quantum yields for OH and CH\(_3\)O were also measured by Blitz et al.\(^1\) in the wavelength range 223–355 nm. These authors have shown that the quantum yield for both OH and CH\(_3\)O production is unity across this range of wavelengths.

Table 4D-12. Recommended Absorption Cross Sections of CH\(_3\)OOH at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>10(^{20}) (\sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>10(^{20}) (\sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>31.2</td>
<td>310</td>
<td>0.239</td>
</tr>
<tr>
<td>215</td>
<td>20.9</td>
<td>315</td>
<td>0.182</td>
</tr>
<tr>
<td>220</td>
<td>15.4</td>
<td>320</td>
<td>0.137</td>
</tr>
<tr>
<td>225</td>
<td>12.2</td>
<td>325</td>
<td>0.105</td>
</tr>
<tr>
<td>230</td>
<td>9.62</td>
<td>330</td>
<td>0.079</td>
</tr>
<tr>
<td>235</td>
<td>7.61</td>
<td>335</td>
<td>0.061</td>
</tr>
<tr>
<td>240</td>
<td>6.05</td>
<td>340</td>
<td>0.047</td>
</tr>
<tr>
<td>245</td>
<td>4.88</td>
<td>345</td>
<td>0.035</td>
</tr>
<tr>
<td>250</td>
<td>3.98</td>
<td>350</td>
<td>0.027</td>
</tr>
<tr>
<td>255</td>
<td>3.23</td>
<td>355</td>
<td>0.021</td>
</tr>
<tr>
<td>260</td>
<td>2.56</td>
<td>360</td>
<td>0.016</td>
</tr>
<tr>
<td>265</td>
<td>2.11</td>
<td>365</td>
<td>0.012</td>
</tr>
<tr>
<td>270</td>
<td>1.70</td>
<td>370</td>
<td>0.0075</td>
</tr>
<tr>
<td>275</td>
<td>1.39</td>
<td>375</td>
<td>0.0052</td>
</tr>
<tr>
<td>280</td>
<td>1.09</td>
<td>380</td>
<td>0.0040</td>
</tr>
<tr>
<td>285</td>
<td>0.863</td>
<td>385</td>
<td>0.0025</td>
</tr>
<tr>
<td>290</td>
<td>0.691</td>
<td>390</td>
<td>0.0014</td>
</tr>
<tr>
<td>295</td>
<td>0.551</td>
<td>395</td>
<td>0.0010</td>
</tr>
<tr>
<td>300</td>
<td>0.413</td>
<td>400</td>
<td>0.0006</td>
</tr>
<tr>
<td>305</td>
<td>0.313</td>
<td>405</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Note:
- 210–365 nm: data of Vaghjian and Ravishankara\(^9\)
- 370–405, 620 nm: data of Matthews et al.\(^3\)

D11. HOCH$_2$OOH (hydroxymethyl hydroperoxide)

Back to Index

HOCH$_2$OOH + hv → HOCH$_2$O + OH

116 kJ mol$^{-1}$

1028 nm

(1)

Absorption Cross Sections: The UV absorption spectrum of hydroxymethyl hydroperoxide, HOCH$_2$OOH, was measured at 298 K by Bauerle and Moortgat1 in the range 205–360 nm, using a combination of diode array and FTIR spectroscopy. The absorption cross sections were also determined via action spectroscopy of the OH product by Roehl et al.3 in the range 310–360 nm. The cross sections measured by Roehl et al.3 were normalized to the value of Bauerle and Moortgat1 at 320 nm. Their values are in reasonable agreement (within 20%) between 310 and 340 nm but are lower than those of Bauerle and Moortgat1 at longer wavelengths (e.g. 33% at 350 nm). The recommended cross sections listed in Table 4D-13 are taken from Bauerle and Moortgat1 in the range 205–305 nm, and from the average of the values of Bauerle and Moortgat1 and Roehl et al.3 for the region 310–380 nm.

Photolysis Quantum Yields and Product Studies: The photolysis process is assumed to occur with unity quantum yield, Φ_1, at wavelengths greater than 290 nm, in analogy with CH$_3$OOH. Overtone photodissociation spectrum and quantum yields were obtained in the OH-stretching region for the 4ν_{OH} (centered at 750 and 738 nm for the OO–H and RO–H bands, respectively) and 5ν_{OH} (centered at 617 and 604 nm for the OO–H and RO–H bands, respectively) transitions by Fry et al.2. Overtone photodissociation is not expected to be significant under atmospheric conditions.

Table 4D-13. Recommended Absorption Cross Sections of HOCH$_2$OOH at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>26.9</td>
<td>285</td>
<td>0.75</td>
</tr>
<tr>
<td>210</td>
<td>22.6</td>
<td>290</td>
<td>0.63</td>
</tr>
<tr>
<td>215</td>
<td>18.7</td>
<td>295</td>
<td>0.51</td>
</tr>
<tr>
<td>220</td>
<td>15.5</td>
<td>300</td>
<td>0.40</td>
</tr>
<tr>
<td>225</td>
<td>12.5</td>
<td>305</td>
<td>0.29</td>
</tr>
<tr>
<td>230</td>
<td>10.1</td>
<td>310</td>
<td>0.23</td>
</tr>
<tr>
<td>235</td>
<td>7.89</td>
<td>315</td>
<td>0.18</td>
</tr>
<tr>
<td>240</td>
<td>5.98</td>
<td>320</td>
<td>0.13</td>
</tr>
<tr>
<td>245</td>
<td>4.68</td>
<td>325</td>
<td>0.098</td>
</tr>
<tr>
<td>250</td>
<td>3.78</td>
<td>330</td>
<td>0.072</td>
</tr>
<tr>
<td>255</td>
<td>2.88</td>
<td>335</td>
<td>0.056</td>
</tr>
<tr>
<td>260</td>
<td>2.31</td>
<td>340</td>
<td>0.042</td>
</tr>
<tr>
<td>265</td>
<td>1.81</td>
<td>345</td>
<td>0.032</td>
</tr>
<tr>
<td>270</td>
<td>1.48</td>
<td>350</td>
<td>0.025</td>
</tr>
<tr>
<td>275</td>
<td>1.21</td>
<td>355</td>
<td>0.019</td>
</tr>
<tr>
<td>280</td>
<td>0.93</td>
<td>360</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Note:
 - 205–305 nm: Bauerle and Moortgat1
 - 310–380 nm: average of data from Bauerle and Moortgat1 and Roehl et al.3

D12. **CH₂ONO (methylene nitrite)**

CH₂ONO + hv → CH₃O + NO

176 kJ mole⁻¹ 680 nm

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections. The UV/vis absorption spectrum of methylnitrite (CH₂ONO) extends over the wavelength range between 190 and 440 nm and has a strong continuous band in the UV (190–300 nm) with a maximum near 214 nm. A sharply banded region exists in the near UV/vis region (300–440 nm) with nine absorption peaks, the strongest at ~339 nm. The spectrum has been measured at room temperature by McMillan, Taylor et al., and Napier and Norrish. While single wavelength absorption measurements have been reported by Napier and Norrish at 215 and 339 nm at 298 K and by Wiebe and Heicklen at 366 nm for temperatures in the range 298–423 K. Good agreement exists among these studies for the shape of the UV part of the spectrum. However, a slight wavelength shift is apparent (up to 4 nm) in the peak absorptions measured by Taylor et al. and McMillan. Taylor et al. reported the cross section at the short wavelength band maximum near 215 nm to be (4.59 ± 0.58) × 10⁻¹⁸ compared to 4.97 × 10⁻¹⁸ by Napier and Norrish, 4.2 × 10⁻¹⁸ by McMillan, and 4.47 × 10⁻¹⁸ cm² molecule⁻¹ by Marić and Wallington. The cross section of (3.24 ± 0.16) × 10⁻¹⁹ measured by Taylor et al. at 339 ± 1 nm is in agreement with the values of 3.4 × 10⁻¹⁹ and 3.1 × 10⁻¹⁹ cm² molecule⁻¹ reported by Napier and Norrish and McMillan, respectively. The spectrum measured by Taylor et al. is recommended and listed in Table 4D-14.

Photolysis Quantum Yields and Product Studies: The quantum yield for the dissociation in the banded region (300–400 nm) was measured by Wiebe et al. to be Φ₁ = 0.76 at 366 nm.

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²² σ (cm²)</th>
<th>λ (nm)</th>
<th>10²² σ (cm²)</th>
<th>λ (nm)</th>
<th>10²² σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>180</td>
<td>306</td>
<td>6.2</td>
<td>362</td>
<td>15</td>
</tr>
<tr>
<td>195</td>
<td>240</td>
<td>310</td>
<td>9.0</td>
<td>364</td>
<td>17.2</td>
</tr>
<tr>
<td>200</td>
<td>300</td>
<td>312</td>
<td>8.0</td>
<td>366</td>
<td>17.4</td>
</tr>
<tr>
<td>205</td>
<td>370</td>
<td>314</td>
<td>7.0</td>
<td>368</td>
<td>12.4</td>
</tr>
<tr>
<td>210</td>
<td>430</td>
<td>316</td>
<td>10.5</td>
<td>370</td>
<td>12.4</td>
</tr>
<tr>
<td>215</td>
<td>455</td>
<td>318</td>
<td>14</td>
<td>372</td>
<td>12.0</td>
</tr>
<tr>
<td>220</td>
<td>440</td>
<td>320</td>
<td>10</td>
<td>374</td>
<td>10.0</td>
</tr>
<tr>
<td>225</td>
<td>390</td>
<td>322</td>
<td>8.0</td>
<td>376</td>
<td>8.0</td>
</tr>
<tr>
<td>230</td>
<td>340</td>
<td>324</td>
<td>10</td>
<td>378</td>
<td>6.0</td>
</tr>
<tr>
<td>235</td>
<td>280</td>
<td>326</td>
<td>13</td>
<td>380</td>
<td>5.05</td>
</tr>
<tr>
<td>240</td>
<td>230</td>
<td>328</td>
<td>18</td>
<td>382</td>
<td>5.1</td>
</tr>
<tr>
<td>245</td>
<td>180</td>
<td>330</td>
<td>23</td>
<td>384</td>
<td>5.4</td>
</tr>
<tr>
<td>250</td>
<td>140</td>
<td>332</td>
<td>13</td>
<td>386</td>
<td>5.6</td>
</tr>
<tr>
<td>255</td>
<td>105</td>
<td>334</td>
<td>10.2</td>
<td>388</td>
<td>5.2</td>
</tr>
<tr>
<td>260</td>
<td>80</td>
<td>339</td>
<td>32.4</td>
<td>390</td>
<td>4.3</td>
</tr>
<tr>
<td>265</td>
<td>57</td>
<td>342</td>
<td>19</td>
<td>395</td>
<td>1.4</td>
</tr>
<tr>
<td>270</td>
<td>41</td>
<td>345</td>
<td>13</td>
<td>400</td>
<td>0.5</td>
</tr>
<tr>
<td>275</td>
<td>29</td>
<td>348</td>
<td>18</td>
<td>405</td>
<td>0.2</td>
</tr>
<tr>
<td>280</td>
<td>20</td>
<td>350</td>
<td>29</td>
<td>410</td>
<td>0.1</td>
</tr>
<tr>
<td>285</td>
<td>13.5</td>
<td>352</td>
<td>31.5</td>
<td>415</td>
<td>0.045</td>
</tr>
<tr>
<td>290</td>
<td>10.0</td>
<td>354</td>
<td>24</td>
<td>420</td>
<td>0.022</td>
</tr>
<tr>
<td>295</td>
<td>8.0</td>
<td>356</td>
<td>19</td>
<td>425</td>
<td>0.011</td>
</tr>
<tr>
<td>300</td>
<td>6.9</td>
<td>358</td>
<td>15</td>
<td>430</td>
<td>0.006</td>
</tr>
<tr>
<td>302</td>
<td>7.1</td>
<td>360</td>
<td>14</td>
<td>440</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

Note: Taylor et al.

D13. CH$_3$ONO$_2$ (methylnitrate)

CH$_3$ONO$_2$ + hv \rightarrow CH$_3$O + NO$_2$
\rightarrow HCHO + HONO
\rightarrow HCHO + NO + OH
\rightarrow CH$_3$ONO + O(3P)
\rightarrow CH$_3$ + NO$_3$
\rightarrow CH$_2$ONO$_2$ + H
\rightarrow CH$_3$O + NO + O(3P)
\rightarrow CH$_3$ONO + O(1D)

172 kJ mol$^{-1}$ 697 nm (1)
240 kJ mol$^{-1}$ 497 nm (2)
306 kJ mol$^{-1}$ 391 nm (3)
348 kJ mol$^{-1}$ 344 nm (4)
407 kJ mol$^{-1}$ 294 nm (5)
479 kJ mol$^{-1}$ 250 nm (6)
496 kJ mol$^{-1}$ 241 nm (7)

(Remarkation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of methylnitrate (CH$_3$ONO$_2$) displays a strong continuous band in the region (190–250 nm) and a weaker band in the range (250–345 nm). The spectrum was measured at room temperature by McMillan1 (201–323 nm), Maria et al.3 (235–305 nm), Taylor et al.7 (190–330 nm), Roberts and Fajer5 (270–330 nm), Libuda and Zabel2 (235–345 nm) and by Rattigan et al.4 (220–335 nm) over the range 233–294 K, and Talukdar et al.6 (236–334 nm) over the range 240–360 K. Good agreement exists at wavelengths <240 nm between the absorption cross sections measured by Taylor et al.7 and Rattigan et al.4. In the wavelength range 240–340 nm there is good agreement between the measurements of Roberts and Fajer,5 Libuda and Zabel,2 Rattigan et al.4 and Talukdar et al.6. The values of Taylor et al.7 are consistently larger at λ >270 nm. Between 235 and 280 nm the absorption cross sections measured by Talukdar et al.6 are nearly independent of temperature but for λ >290 nm the cross sections decrease with decreasing temperature. At 330 nm the cross sections decrease by almost a factor of two between 298 and 240 K. Talukdar et al.6 parameterized the absorption cross section temperature dependence using the expression

$$\sigma(\lambda, T) = \sigma(\lambda, 298 \text{ K}) \times \exp [B(\lambda) (T – 298)]$$

The absorption cross sections measured at 298 K by Taylor et al.7 are recommended between 190 and 235 nm and those of Talukdar et al.6 in the range 236–344 nm, Table 4D-15. The temperature dependence from Talukdar et al.6 is recommended and the B(λ) coefficients are listed in Table 4D-15.

Photolysis Quantum Yields and Product Studies: The photodissociation quantum yield for CH$_3$ONO$_2$ to produce NO$_2$ and CH$_3$O was measured by Talukdar et al.6 to be $\Phi_1 = 0.91 \pm 0.20$ at 248 nm. Upper limits for the other channels at 248 nm were determined to be $\Phi_2 <0.05$, $\Phi_3 <0.005$, $\Phi_{4s} <0.1$ and $\Phi_5 <0.015 \pm 0.01$. It is expected that the quantum yield Φ_1 is unity at wavelengths >248 nm. Oxygen atoms were measured with a quantum yield of 0.65 ± 0.15 at 193 nm and <0.01 at 248 and 308 nm. Yang et al.8 studied the photodissociation of jet-cooled CH$_3$ONO$_2$ at 193 and 248 nm and found channel (1) to be the principal photolysis product channel with relative yields of 0.7 and 1 at 193 and 248 nm, respectively. They also reported an O(1D) yield of 0.3 at 193 nm.

4-113
Table 4D-15. Recommended Absorption Cross Sections of CH$_3$ONO$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^3 B$</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^3 B$</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^3 B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>1800</td>
<td>–</td>
<td>260</td>
<td>3.07</td>
<td>2.81</td>
<td>304</td>
<td>0.241</td>
<td>5.43</td>
</tr>
<tr>
<td>195</td>
<td>1500</td>
<td>–</td>
<td>262</td>
<td>2.96</td>
<td>2.84</td>
<td>306</td>
<td>0.194</td>
<td>5.67</td>
</tr>
<tr>
<td>200</td>
<td>1180</td>
<td>–</td>
<td>264</td>
<td>2.84</td>
<td>2.89</td>
<td>308</td>
<td>0.154</td>
<td>6.00</td>
</tr>
<tr>
<td>205</td>
<td>700</td>
<td>–</td>
<td>266</td>
<td>2.72</td>
<td>2.94</td>
<td>310</td>
<td>0.121</td>
<td>6.27</td>
</tr>
<tr>
<td>210</td>
<td>360</td>
<td>–</td>
<td>268</td>
<td>2.57</td>
<td>3.01</td>
<td>312</td>
<td>0.0940</td>
<td>6.68</td>
</tr>
<tr>
<td>215</td>
<td>145</td>
<td>–</td>
<td>270</td>
<td>2.42</td>
<td>3.08</td>
<td>314</td>
<td>0.0723</td>
<td>7.13</td>
</tr>
<tr>
<td>220</td>
<td>70</td>
<td>–</td>
<td>272</td>
<td>2.27</td>
<td>3.15</td>
<td>316</td>
<td>0.0548</td>
<td>7.54</td>
</tr>
<tr>
<td>225</td>
<td>33</td>
<td>–</td>
<td>274</td>
<td>2.10</td>
<td>3.24</td>
<td>318</td>
<td>0.0412</td>
<td>8.00</td>
</tr>
<tr>
<td>230</td>
<td>18</td>
<td>–</td>
<td>276</td>
<td>1.94</td>
<td>3.32</td>
<td>320</td>
<td>0.0304</td>
<td>8.88</td>
</tr>
<tr>
<td>235</td>
<td>10</td>
<td>–</td>
<td>278</td>
<td>1.77</td>
<td>3.40</td>
<td>322</td>
<td>0.0228</td>
<td>9.32</td>
</tr>
<tr>
<td>236</td>
<td>8.27</td>
<td>3.35</td>
<td>280</td>
<td>1.61</td>
<td>3.51</td>
<td>324</td>
<td>0.0164</td>
<td>10.3</td>
</tr>
<tr>
<td>238</td>
<td>6.77</td>
<td>3.44</td>
<td>282</td>
<td>1.45</td>
<td>3.61</td>
<td>326</td>
<td>0.01187</td>
<td>10.7</td>
</tr>
<tr>
<td>240</td>
<td>5.66</td>
<td>3.49</td>
<td>284</td>
<td>1.29</td>
<td>3.72</td>
<td>328</td>
<td>0.00868</td>
<td>11.5</td>
</tr>
<tr>
<td>242</td>
<td>4.88</td>
<td>3.45</td>
<td>286</td>
<td>1.14</td>
<td>3.84</td>
<td>330</td>
<td>0.00618</td>
<td>13.8</td>
</tr>
<tr>
<td>244</td>
<td>4.34</td>
<td>3.36</td>
<td>288</td>
<td>1.00</td>
<td>3.96</td>
<td>332</td>
<td>0.00447</td>
<td>15.5</td>
</tr>
<tr>
<td>246</td>
<td>3.97</td>
<td>3.24</td>
<td>290</td>
<td>0.871</td>
<td>4.08</td>
<td>334</td>
<td>0.00311</td>
<td>16.1</td>
</tr>
<tr>
<td>248</td>
<td>3.72</td>
<td>3.10</td>
<td>292</td>
<td>0.754</td>
<td>4.21</td>
<td>336</td>
<td>0.00216</td>
<td>–</td>
</tr>
<tr>
<td>250</td>
<td>3.56</td>
<td>2.97</td>
<td>294</td>
<td>0.642</td>
<td>4.38</td>
<td>338</td>
<td>0.00161</td>
<td>–</td>
</tr>
<tr>
<td>252</td>
<td>3.44</td>
<td>2.88</td>
<td>296</td>
<td>0.519</td>
<td>4.56</td>
<td>340</td>
<td>0.00116</td>
<td>–</td>
</tr>
<tr>
<td>254</td>
<td>3.34</td>
<td>2.82</td>
<td>298</td>
<td>0.435</td>
<td>4.72</td>
<td>342</td>
<td>0.000812</td>
<td>–</td>
</tr>
<tr>
<td>256</td>
<td>3.25</td>
<td>2.79</td>
<td>300</td>
<td>0.364</td>
<td>4.91</td>
<td>344</td>
<td>0.0004687</td>
<td>–</td>
</tr>
<tr>
<td>258</td>
<td>3.16</td>
<td>2.80</td>
<td>302</td>
<td>0.298</td>
<td>5.14</td>
<td></td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

Note:
190–235 nm: Taylor et al.7
236–344 nm: Talukdar et al.6

$B(\lambda)$ are the temperature coefficients in the expression $\sigma(\lambda, T) = \sigma(\lambda, 298 K) \times \exp[B(\lambda)(T - 298)]$, after Talukdar et al.6

D14. CH$_3$O$_2$NO$_2$ (methylperoxynitrinate)

\[
\text{CH}_3\text{O}_2\text{NO}_2 + \text{hv} \rightarrow \text{CH}_3\text{O} + \text{NO}_2 \quad 86 \text{ kJ mol}^{-1} \quad 1391 \text{ nm} \quad (1) \\
\rightarrow \text{CH}_3\text{O} + \text{NO}_3 \quad 135 \text{ kJ mol}^{-1} \quad 886 \text{ nm} \quad (2)
\]

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of CH$_3$O$_2$NO$_2$ (methylperoxynitrinate) has been measured by Cox and Tyndall2 (200–310 nm) at 275 K, Morel et al.3 (200–290 nm) at 296 K, Sander and

4-114
Watson (240–280 nm) at 298 K, and Bridier et al. (200–280 nm) at 298 K. The spectrum has a strong absorption band below 225 nm and a moderate band at longer wavelengths. The reported cross sections are in reasonable agreement in the range 230–250 nm but scatter in the cross section data exists at both shorter and longer wavelengths. The recommended cross sections listed in Table 4D-16 are a smoothed average of the data from the four studies.

Photolysis Quantum Yields and Product Studies: No recommendation.

Table 4D-16. Recommended Absorption Cross Sections of CH$_3$O$_2$NO$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>525</td>
</tr>
<tr>
<td>205</td>
<td>370</td>
</tr>
<tr>
<td>210</td>
<td>235</td>
</tr>
<tr>
<td>215</td>
<td>150</td>
</tr>
<tr>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>225</td>
<td>65</td>
</tr>
<tr>
<td>230</td>
<td>60</td>
</tr>
<tr>
<td>235</td>
<td>55</td>
</tr>
<tr>
<td>240</td>
<td>50</td>
</tr>
<tr>
<td>245</td>
<td>46</td>
</tr>
<tr>
<td>250</td>
<td>40</td>
</tr>
<tr>
<td>255</td>
<td>32</td>
</tr>
<tr>
<td>260</td>
<td>26</td>
</tr>
<tr>
<td>265</td>
<td>20</td>
</tr>
<tr>
<td>270</td>
<td>16</td>
</tr>
<tr>
<td>275</td>
<td>13</td>
</tr>
<tr>
<td>280</td>
<td>10</td>
</tr>
<tr>
<td>285</td>
<td>7</td>
</tr>
<tr>
<td>290</td>
<td>4</td>
</tr>
</tbody>
</table>

Note:

200–290 nm: Smoothed average of the data from Cox and Tyndall, Morel et al., Sander and Watson, and Bridier et al.

(3) Morel, O.; Simonaitis, R.; Heicklen, J. Ultraviolet absorption spectra of HO$_2$NO$_2$, CCl$_3$O$_2$NO$_2$, CCl$_2$FO$_2$NO$_2$, and CH$_3$O$_2$NO$_2$. *Chem. Phys. Lett.* 1980, 73, 38-41.

D15. CH$_3$C(O)O$_2$NO$_2$ (peroxyacetyl nitrate, PAN)

(Recommendation: 06-2, Note 10-6, Evaluated 10-6)

Abstraction Cross Sections. The abstraction cross sections of CH$_3$C(O)O$_2$NO$_2$ (peroxyacetyl nitrate, PAN) have been measured at room temperature by Stephens (220–450 nm), Senum et al. (200–300 nm), Basco and Parmar (210–250 nm), and Libuda and Zabel (219–325 nm) and at 250, 273, and 298 K by Talukdar et al. (196–350 nm). The studies are in reasonable agreement. The data of Talukdar et al. and Libuda and Zabel agree within 10% at wavelengths <300 nm. The data of Stephens and Basco and Parmar are greater by up to 20 and 45%, respectively. The Senum et al. cross sections are systematically less than the data of Talukdar et al. Libuda and Zabel carried out simultaneous UV and IR studies that showed that their measured cross sections needed to be corrected for impurities that are transparent in the UV but contribute to the sample pressure in the absorption cell. The corrections were on the order of 20%. The recommended absorption cross sections listed in Table 4D-17 are taken from Talukdar et al., which are in good agreement

4-115
with those of Libuda and Zabel6 but include a wider spectral coverage and temperature range. The uncertainties in the cross sections are estimated to be of the order of a factor of 2 in the long wavelength region but smaller at shorter wavelengths, decreasing to about 10% at 220 nm.

A systematic decrease of the absorption cross sections with decreasing temperature was observed by Talukdar et al.11 The temperature dependence was parameterized using the expression

$$\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda) (T - 298)$$

The temperature coefficients $B(\lambda)$ are listed in Table 4D-17.

Photolysis Quantum Yields and Product Studies. Photolysis quantum yields for the production of NO$_2$ and NO$_3$ at 248 nm were reported by Mazely et al.7,8 Φ(NO$_2$, 248 nm) = 0.83 ± 0.09 and Φ(NO$_3$, 248 nm) = 0.3 ± 0.1. The NO$_3$ quantum yield was obtained relative to the unity NO$_3$ quantum yield in the photolysis of N$_2$O$_5$ at 248 nm. However, this latter quantum yield was re-measured to be 0.8 ± 0.1 by Harwood et al.,4 so that the Φ(NO$_3$, 248 nm) should be rescaled to 0.24. Quantum yields for the production of NO$_3$ in the photolysis of CH$_3$C(O)O$_2$NO$_2$ at 248 and 308 nm were also measured by Harwood et al.5: Φ(NO$_3$, 248 nm) = 0.19 ± 0.04 and Φ(NO$_3$, 308 nm) = 0.41 ± 0.10. Flowers et al.2 studied the photolysis of PAN at 289 nm and detected NO$_3$ using cavity ring-down spectroscopy. They obtained Φ(NO$_3$, 289 nm) = 0.31 ± 0.08 relative to the unity NO$_3$ quantum yield in the photolysis of N$_2$O$_5$ at that wavelength. In a second study, Flowers et al.3 measured the wavelength dependence of Φ(NO$_3$): at 294 nm (0.29 ± 0.07), 299 nm (0.28 ± 0.07), 308 nm (0.28 ± 0.05), and 312 nm (0.39 ± 0.07). These results indicate that between 289 and 308 nm the NO$_3$ quantum yield is nearly constant with Φ(NO$_3$) = 0.29 ± 0.07. An increase of Φ(NO$_3$) at longer wavelengths cannot be ruled out. The recommend quantum yields are Φ(NO$_2$) = 0.7 and Φ(NO$_3$) = 0.3 for λ > 300 nm.

Table 4D-17. Recommended Absorption Cross Sections of CH$_3$C(O)O$_2$NO$_2$ at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>1020 σ (cm2)</th>
<th>103 B (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>1020 σ (cm2)</th>
<th>103 B (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>1020 σ (cm2)</th>
<th>103 B (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>429</td>
<td>2.02</td>
<td>248</td>
<td>14.6</td>
<td>3.64</td>
<td>300</td>
<td>0.189</td>
<td>8.44</td>
</tr>
<tr>
<td>198</td>
<td>398</td>
<td>1.73</td>
<td>250</td>
<td>12.9</td>
<td>3.76</td>
<td>302</td>
<td>0.152</td>
<td>8.61</td>
</tr>
<tr>
<td>200</td>
<td>361</td>
<td>1.36</td>
<td>252</td>
<td>11.4</td>
<td>3.87</td>
<td>304</td>
<td>0.125</td>
<td>8.76</td>
</tr>
<tr>
<td>202</td>
<td>325</td>
<td>1.07</td>
<td>254</td>
<td>10.0</td>
<td>3.98</td>
<td>306</td>
<td>0.0998</td>
<td>8.87</td>
</tr>
<tr>
<td>204</td>
<td>292</td>
<td>0.86</td>
<td>256</td>
<td>8.86</td>
<td>4.10</td>
<td>308</td>
<td>0.0816</td>
<td>9.01</td>
</tr>
<tr>
<td>206</td>
<td>261</td>
<td>0.75</td>
<td>258</td>
<td>7.80</td>
<td>4.23</td>
<td>310</td>
<td>0.0666</td>
<td>9.13</td>
</tr>
<tr>
<td>208</td>
<td>226</td>
<td>0.71</td>
<td>260</td>
<td>6.85</td>
<td>4.38</td>
<td>312</td>
<td>0.0538</td>
<td>9.30</td>
</tr>
<tr>
<td>210</td>
<td>196</td>
<td>0.75</td>
<td>262</td>
<td>6.01</td>
<td>4.53</td>
<td>314</td>
<td>0.0462</td>
<td>9.46</td>
</tr>
<tr>
<td>212</td>
<td>168</td>
<td>0.84</td>
<td>264</td>
<td>5.23</td>
<td>4.68</td>
<td>316</td>
<td>0.0363</td>
<td>9.57</td>
</tr>
<tr>
<td>214</td>
<td>143</td>
<td>0.97</td>
<td>266</td>
<td>4.54</td>
<td>4.82</td>
<td>318</td>
<td>0.0300</td>
<td>9.75</td>
</tr>
<tr>
<td>216</td>
<td>122</td>
<td>1.12</td>
<td>268</td>
<td>3.94</td>
<td>4.97</td>
<td>320</td>
<td>0.0252</td>
<td>10.0</td>
</tr>
<tr>
<td>218</td>
<td>104</td>
<td>1.29</td>
<td>270</td>
<td>3.37</td>
<td>5.14</td>
<td>322</td>
<td>0.0199</td>
<td>10.2</td>
</tr>
<tr>
<td>220</td>
<td>89.7</td>
<td>1.47</td>
<td>272</td>
<td>2.87</td>
<td>5.34</td>
<td>324</td>
<td>0.0166</td>
<td>10.4</td>
</tr>
<tr>
<td>222</td>
<td>77.7</td>
<td>1.64</td>
<td>274</td>
<td>2.45</td>
<td>5.55</td>
<td>326</td>
<td>0.0140</td>
<td>10.6</td>
</tr>
<tr>
<td>224</td>
<td>67.6</td>
<td>1.81</td>
<td>276</td>
<td>2.07</td>
<td>5.76</td>
<td>328</td>
<td>0.0117</td>
<td>10.7</td>
</tr>
<tr>
<td>226</td>
<td>59.3</td>
<td>1.98</td>
<td>278</td>
<td>1.74</td>
<td>5.98</td>
<td>330</td>
<td>0.0106</td>
<td>10.9</td>
</tr>
<tr>
<td>228</td>
<td>52.0</td>
<td>2.14</td>
<td>280</td>
<td>1.46</td>
<td>6.20</td>
<td>332</td>
<td>0.00857</td>
<td>11.2</td>
</tr>
<tr>
<td>230</td>
<td>45.8</td>
<td>2.30</td>
<td>282</td>
<td>1.21</td>
<td>6.43</td>
<td>334</td>
<td>0.0072*</td>
<td>11.5</td>
</tr>
<tr>
<td>232</td>
<td>40.4</td>
<td>2.46</td>
<td>284</td>
<td>1.01</td>
<td>6.67</td>
<td>336</td>
<td>0.0061*</td>
<td>11.7</td>
</tr>
<tr>
<td>234</td>
<td>35.5</td>
<td>2.63</td>
<td>286</td>
<td>0.810</td>
<td>6.90</td>
<td>338</td>
<td>0.0050*</td>
<td>11.9</td>
</tr>
<tr>
<td>236</td>
<td>31.4</td>
<td>2.80</td>
<td>288</td>
<td>0.648</td>
<td>7.15</td>
<td>340</td>
<td>0.0042*</td>
<td>12.2</td>
</tr>
<tr>
<td>238</td>
<td>27.9</td>
<td>2.96</td>
<td>290</td>
<td>0.537</td>
<td>7.39</td>
<td>342</td>
<td>0.0035*</td>
<td>12.4</td>
</tr>
<tr>
<td>240</td>
<td>24.4</td>
<td>3.11</td>
<td>292</td>
<td>0.447</td>
<td>7.63</td>
<td>344</td>
<td>0.0029*</td>
<td>12.5</td>
</tr>
<tr>
<td>242</td>
<td>21.5</td>
<td>3.25</td>
<td>294</td>
<td>0.369</td>
<td>7.86</td>
<td>346</td>
<td>0.0024*</td>
<td>12.6</td>
</tr>
<tr>
<td>244</td>
<td>18.8</td>
<td>3.39</td>
<td>296</td>
<td>0.297</td>
<td>8.08</td>
<td>348</td>
<td>0.0020*</td>
<td>12.7</td>
</tr>
<tr>
<td>246</td>
<td>16.6</td>
<td>3.52</td>
<td>298</td>
<td>0.245</td>
<td>8.27</td>
<td>350</td>
<td>0.0016*</td>
<td>12.8</td>
</tr>
</tbody>
</table>

Note:
Absorption cross sections σ: 196–350 nm, Talukdar et al.11
Temperature coefficients B: 250–298 K, Talukdar et al.11 ($\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda-298)$)
* Data between 334 and 350 nm were smoothed.

4-116

D16. C2H5C(O)O2NO2 (peroxypropionyl nitrate, PPN)

C2H5C(O)O2NO2 + hν → C2H5C(O)O2 + NO2
C2H5C(O)O2 + NO2 → C2H5C(O)O + NO3

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption cross sections of C2H5C(O)O2NO2 (peroxypropionyl nitrate, PPN) have been measured at room temperature by Senum et al.2 (200–300 nm) and at 253, 273, and 296 K by Harwood et al.1 (210–340 nm). The absorption spectrum shows monotonically decreasing absorption cross sections with increasing wavelength over the range 200–340 nm. The absorption cross sections reported by Harwood et al.1 are larger than those reported by Senum et al.2 over the common wavelength range by ~10% at 210 nm up to ~30% at 300 nm. A wavelength dependent systematic decrease of the absorption cross sections with decreasing temperature was reported by Harwood et al.1 The temperature dependence was parameterized to the empirical expression

\[
\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 296 \text{ K}) + B(\lambda)(T - 296)
\]

The recommended absorption cross sections and temperature coefficients in Table 4D-18 are taken from Harwood et al.1

Photolysis Quantum Yield and Product Studies: Quantum yields for the production of NO3 in the photolysis of C2H5C(O)O2NO2 at 248 and 308 nm were measured by Harwood et al.1 to be \(\Phi_2(248 \text{ nm}) = 0.22 \pm 0.04\) and \(\Phi_2(308 \text{ nm}) = 0.39 \pm 0.04\).
Table 4D-18. Recommended Absorption Cross Sections of C$_2$H$_5$C(O)O$_2$NO$_2$ at 296 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>10^3 B (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>10^3 B (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>10^3 B (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>174</td>
<td>1.22</td>
<td>254</td>
<td>9.27</td>
<td>3.25</td>
<td>298</td>
<td>0.325</td>
<td>10.3</td>
</tr>
<tr>
<td>212</td>
<td>154</td>
<td>1.20</td>
<td>256</td>
<td>8.23</td>
<td>3.47</td>
<td>300</td>
<td>0.273</td>
<td>10.8</td>
</tr>
<tr>
<td>214</td>
<td>135</td>
<td>1.19</td>
<td>258</td>
<td>7.28</td>
<td>3.69</td>
<td>302</td>
<td>0.228</td>
<td>11.2</td>
</tr>
<tr>
<td>216</td>
<td>115</td>
<td>1.20</td>
<td>260</td>
<td>6.44</td>
<td>3.92</td>
<td>304</td>
<td>0.192</td>
<td>11.7</td>
</tr>
<tr>
<td>218</td>
<td>99.9</td>
<td>1.21</td>
<td>262</td>
<td>5.66</td>
<td>4.17</td>
<td>306</td>
<td>0.162</td>
<td>12.2</td>
</tr>
<tr>
<td>220</td>
<td>86.1</td>
<td>1.24</td>
<td>264</td>
<td>4.96</td>
<td>4.42</td>
<td>308</td>
<td>0.136</td>
<td>12.6</td>
</tr>
<tr>
<td>222</td>
<td>74.7</td>
<td>1.27</td>
<td>266</td>
<td>4.35</td>
<td>4.69</td>
<td>310</td>
<td>0.114</td>
<td>13.2</td>
</tr>
<tr>
<td>224</td>
<td>64.8</td>
<td>1.32</td>
<td>268</td>
<td>3.80</td>
<td>4.96</td>
<td>312</td>
<td>0.0962</td>
<td>13.6</td>
</tr>
<tr>
<td>226</td>
<td>56.9</td>
<td>1.37</td>
<td>270</td>
<td>3.31</td>
<td>5.25</td>
<td>314</td>
<td>0.0835</td>
<td>14.2</td>
</tr>
<tr>
<td>228</td>
<td>49.6</td>
<td>1.44</td>
<td>272</td>
<td>2.87</td>
<td>5.54</td>
<td>316</td>
<td>0.0689</td>
<td>14.7</td>
</tr>
<tr>
<td>230</td>
<td>43.6</td>
<td>1.52</td>
<td>274</td>
<td>2.48</td>
<td>5.85</td>
<td>318</td>
<td>0.0571</td>
<td>15.2</td>
</tr>
<tr>
<td>232</td>
<td>38.3</td>
<td>1.60</td>
<td>276</td>
<td>2.14</td>
<td>6.17</td>
<td>320</td>
<td>0.0491</td>
<td>15.8</td>
</tr>
<tr>
<td>234</td>
<td>33.6</td>
<td>1.70</td>
<td>278</td>
<td>1.84</td>
<td>6.49</td>
<td>322</td>
<td>0.0443</td>
<td>16.3</td>
</tr>
<tr>
<td>236</td>
<td>29.5</td>
<td>1.81</td>
<td>280</td>
<td>1.57</td>
<td>6.83</td>
<td>324</td>
<td>0.0354</td>
<td>16.9</td>
</tr>
<tr>
<td>238</td>
<td>25.8</td>
<td>1.93</td>
<td>282</td>
<td>1.33</td>
<td>7.18</td>
<td>326</td>
<td>0.0282</td>
<td>17.5</td>
</tr>
<tr>
<td>240</td>
<td>22.6</td>
<td>2.06</td>
<td>284</td>
<td>1.12</td>
<td>7.54</td>
<td>328</td>
<td>0.0242</td>
<td>18.1</td>
</tr>
<tr>
<td>242</td>
<td>19.8</td>
<td>2.20</td>
<td>286</td>
<td>0.940</td>
<td>7.91</td>
<td>330</td>
<td>0.0206</td>
<td>18.7</td>
</tr>
<tr>
<td>244</td>
<td>17.4</td>
<td>2.35</td>
<td>288</td>
<td>0.790</td>
<td>8.29</td>
<td>332</td>
<td>0.0174</td>
<td>19.3</td>
</tr>
<tr>
<td>246</td>
<td>15.3</td>
<td>2.51</td>
<td>290</td>
<td>0.662</td>
<td>8.68</td>
<td>334</td>
<td>0.0146</td>
<td>19.9</td>
</tr>
<tr>
<td>248</td>
<td>13.5</td>
<td>2.68</td>
<td>292</td>
<td>0.551</td>
<td>9.08</td>
<td>336</td>
<td>0.0107</td>
<td>20.5</td>
</tr>
<tr>
<td>250</td>
<td>11.9</td>
<td>2.86</td>
<td>294</td>
<td>0.462</td>
<td>9.49</td>
<td>338</td>
<td>0.0090</td>
<td>21.2</td>
</tr>
<tr>
<td>252</td>
<td>10.5</td>
<td>3.05</td>
<td>296</td>
<td>0.389</td>
<td>9.91</td>
<td>340</td>
<td>0.0066</td>
<td>21.8</td>
</tr>
</tbody>
</table>

Note:
Absorption cross sections
Harwood et al.1
Temperature coefficients
Harwood et al.1 (253–296 K), ln $\sigma(\lambda, T) = \ln \sigma(\lambda, 298 K) + B(\lambda)(T - 298)$

D17. CH$_2$=CHCHO (propenal, acrolein)

CH$_2$=CHCHO + hv \rightarrow CH$_2$=CH + HCO
\rightarrow C$_2$H$_4$ + CO
\rightarrow CH$_2$=CHCO + H

(\rightarrow C$_2$H$_4$ + CO = 162 kJ mol$^{-1}$, 741 nm (1)
\rightarrow CH$_2$=CHCO + H = 393 kJ mol$^{-1}$, 305 nm (3))

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV/vis absorption spectrum of acrolein (CH$_2$=CHCHO, propenal) has been measured at room temperature by Gardner et al.1 (227–380 nm), Magneron et al.3 (192–431 nm), and Lee et al.2 The UV spectrum displays a broad absorption band between 250 and 400 nm, which is structured at wavelengths above 360 nm. The results of both studies agree to within 10% between 298 and 370 nm (with a few exceptions at 352, 360, 362 and 368 nm). Below 298 nm the differences increase up to ~40% with decreasing wavelength, above 368 nm the differences increase with increasing wavelength up to ~100%. The recommended absorption cross sections in Table 4D-19 are the 2 nm averages from the high resolution data of Magneron et al.3

Photolysis Quantum Yield and Product Studies: The photodecomposition of CH$_2$=CHCHO was studied by Gardner et al.1 at 313 and 334 nm over the pressure range 26–760 Torr air. They found photolysis at high pressures to be very inefficient at both wavelengths but the photolysis quantum yield to increase at low
pressure. At 313 nm the quantum yield for photodissociation Φ_d of acrolein was 0.0065 at 1 atm and 0.081 at 26 Torr. The pressure dependence was described by

$$1/(\Phi_d - 0.004) = 0.086 + 1.613 \times 10^{-17} [M]$$

for concentrations (M) between 8×10^{-17} and 2.6×10^{-16} molecule cm$^{-3}$. The major products observed were CO and C$_2$H$_4$. Magneron et al.3 used broadband photolysis (275–380 nm) of dilute mixtures of acrolein in air to study CH$_2$=CHCHO photodissociation but did not observe any products using long-path FTIR spectroscopy. An effective quantum yield for photolysis $\Phi_{eff} \leq 0.005$ nm was measured by Magneron et al.3 in an outdoor smog chamber.

| Table 4D-19. Recommended Absorption Cross Sections of CH$_2$=CHCHO at 298 K |
|-----------------------------|-----------------------------|-----------------------------|
λ (nm)	$10^{20} \sigma$ (cm2)						
282	0.84	310	3.59	338	5.46	366	3.74
284	0.97	312	3.92	340	5.31	368	3.82
286	1.08	314	4.15	342	5.10	370	2.17
288	1.23	316	4.21	344	5.12	372	1.58
290	1.46	318	4.47	346	5.30	374	1.14
292	1.62	320	4.65	348	5.17	376	1.14
294	1.80	322	5.08	350	5.94	378	1.24
296	1.97	324	5.17	352	5.79	380	1.10
298	2.18	326	5.34	354	4.18	382	0.84
300	2.47	328	5.20	356	3.63	384	0.79
302	2.70	330	5.31	358	3.28	386	1.18
304	2.85	332	5.44	360	3.92	388	0.49
306	3.09	334	5.80	362	3.72	390	0.25
308	3.29	336	6.24	364	2.86		

Note:
Magneron et al.3

D18. CH$_2$=C(CH$_3$)CHO (2-methylpropenal, methacrolein, MACR)

Back to Index

CH$_2$=C(CH$_3$)CHO + hv → CH$_2$=CCH$_3$ + CHO
→ C$_2$H$_6$ + CO
→ H + CH$_2$=C(CH$_3$)CO

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of methacrolein (2-methylpropenal, MACR), CH$_2$=C(CH$_3$)CHO, has been measured using diode array spectroscopy at room temperature by Meller (237–391 nm) (see Keller-Rudek et al.3), Raber and Moortgat5 (331 nm), Gierczak et al.2 (214, 250–395 nm), and Lee et al.4 The spectrum exhibits a broad absorption band between 250 and 390 nm with vibrational structure above 310 nm. A detailed vibrational-electronic analysis was reported by Birge et al.1 The reported spectra are in very good agreement in the region 261-351 nm where the agreement is between ± 1 and 10%. At shorter wavelengths, <260 nm, the differences increase to nearly 100% at 250 nm and the cross sections from Gierczak et al.2 are consistently greater than those of Meller6 and Raber and Moortgat5. The cross sections at the peaks in the structured region reported by Meller6 and Raber and Moortgat5 are consistently higher than those measured by Gierczak et al.2 presumably due to the higher resolution used. At the band maximum, Raber and Moortgat5 reported σ (330.7 nm) = 7.64 $\times 10^{-20}$ cm2 molecule$^{-1}$ and Gierczak et al.2 reported σ (331 nm) = 7.2 $\times 10^{-20}$ cm2 molecule$^{-1}$. Gierczak et al.2 also reported σ (213.86 nm) = (2.21 ± 0.11) $\times 10^{-17}$ cm2 molecule$^{-1}$ (Zn lamp source). The 1 nm averages of the results from Gierczak et al.2 and Meller6 are

4-119
generally (with a few exceptions) within 20% of each other for wavelengths up to 376 nm. Above 380 nm, the results of Gierczak et al.2 are larger with increasing wavelength by up to nearly 80% than the results of Meller.6 A wavelength shift of \(\approx 1 \) nm toward longer wavelengths can be observed above 340 nm in the absorption spectrum of Gierczak et al.2 when compared to the spectrum reported by Meller.6 The recommended absorption cross sections listed in Table 4D-20 are from Gierczak et al.2

Photolysis Quantum Yield and Product Studies: The photodissociation quantum yield for CH\(_2\)=C(CH\(_3\))CHO at atmospherically relevant wavelengths is low. Quantum yields were measured by Raber and Moortgat5 using broad band photolysis in the wavelength range 275–380 nm, and determination of the stable products (CO, CO\(_2\), HCHO, C\(_2\)H\(_4\), C\(_2\)H\(_6\), C\(_2\)H\(_3\)) by FTIR spectroscopy. An upper limit of 0.05 was reported at 760 Torr. Gierczak et al.2 used GC and GC-MS detection of photolysis end-products to determined CH\(_2\)=C(CH\(_3\))CHO quantum yields at 308 nm of 0.008 \(\pm \) 0.001 and 0.005 \(\pm \) 0.001 at 25 and 650 Torr total pressure, respectively. At 351 nm they reported quantum yields of 0.005 \(\pm \) 0.002 and 0.003 \(\pm \) 0.001 at 25 and 650 Torr, respectively. A value of \(\Phi < 0.01 \) is recommended for wavelengths >308 nm.

Table 4D-20. Recommended Absorption Cross Sections of CH\(_2\)=C(CH\(_3\))CHO at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>10(^{20} \sigma) (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.207</td>
<td>280</td>
<td>1.67</td>
<td>320</td>
<td>6.58</td>
<td>360</td>
<td>4.28</td>
</tr>
<tr>
<td>251</td>
<td>0.194</td>
<td>281</td>
<td>1.79</td>
<td>321</td>
<td>6.74</td>
<td>361</td>
<td>4.61</td>
</tr>
<tr>
<td>252</td>
<td>0.187</td>
<td>282</td>
<td>1.90</td>
<td>322</td>
<td>6.83</td>
<td>362</td>
<td>4.98</td>
</tr>
<tr>
<td>253</td>
<td>0.180</td>
<td>283</td>
<td>2.03</td>
<td>323</td>
<td>6.86</td>
<td>363</td>
<td>5.28</td>
</tr>
<tr>
<td>254</td>
<td>0.179</td>
<td>284</td>
<td>2.16</td>
<td>324</td>
<td>6.88</td>
<td>364</td>
<td>5.51</td>
</tr>
<tr>
<td>255</td>
<td>0.177</td>
<td>285</td>
<td>2.28</td>
<td>325</td>
<td>7.07</td>
<td>365</td>
<td>5.75</td>
</tr>
<tr>
<td>256</td>
<td>0.180</td>
<td>286</td>
<td>2.39</td>
<td>326</td>
<td>7.15</td>
<td>366</td>
<td>5.99</td>
</tr>
<tr>
<td>257</td>
<td>0.180</td>
<td>287</td>
<td>2.52</td>
<td>327</td>
<td>7.16</td>
<td>367</td>
<td>6.23</td>
</tr>
<tr>
<td>258</td>
<td>0.186</td>
<td>288</td>
<td>2.68</td>
<td>328</td>
<td>7.03</td>
<td>368</td>
<td>6.48</td>
</tr>
<tr>
<td>259</td>
<td>0.193</td>
<td>289</td>
<td>2.85</td>
<td>329</td>
<td>6.69</td>
<td>369</td>
<td>6.73</td>
</tr>
<tr>
<td>260</td>
<td>0.201</td>
<td>290</td>
<td>2.99</td>
<td>330</td>
<td>6.41</td>
<td>370</td>
<td>6.98</td>
</tr>
<tr>
<td>261</td>
<td>0.211</td>
<td>291</td>
<td>3.13</td>
<td>331</td>
<td>6.08</td>
<td>371</td>
<td>7.23</td>
</tr>
<tr>
<td>262</td>
<td>0.224</td>
<td>292</td>
<td>3.26</td>
<td>332</td>
<td>5.97</td>
<td>372</td>
<td>7.48</td>
</tr>
<tr>
<td>263</td>
<td>0.241</td>
<td>293</td>
<td>3.44</td>
<td>333</td>
<td>6.25</td>
<td>373</td>
<td>7.73</td>
</tr>
<tr>
<td>264</td>
<td>0.263</td>
<td>294</td>
<td>3.61</td>
<td>334</td>
<td>6.38</td>
<td>374</td>
<td>8.00</td>
</tr>
<tr>
<td>265</td>
<td>0.283</td>
<td>295</td>
<td>3.76</td>
<td>335</td>
<td>6.43</td>
<td>375</td>
<td>8.27</td>
</tr>
<tr>
<td>266</td>
<td>0.305</td>
<td>296</td>
<td>3.91</td>
<td>336</td>
<td>6.47</td>
<td>376</td>
<td>8.54</td>
</tr>
<tr>
<td>267</td>
<td>0.333</td>
<td>297</td>
<td>4.04</td>
<td>337</td>
<td>6.51</td>
<td>377</td>
<td>8.81</td>
</tr>
<tr>
<td>268</td>
<td>0.363</td>
<td>298</td>
<td>4.19</td>
<td>338</td>
<td>6.55</td>
<td>378</td>
<td>9.08</td>
</tr>
<tr>
<td>269</td>
<td>0.398</td>
<td>299</td>
<td>4.40</td>
<td>339</td>
<td>6.59</td>
<td>379</td>
<td>9.35</td>
</tr>
<tr>
<td>270</td>
<td>0.436</td>
<td>300</td>
<td>4.58</td>
<td>340</td>
<td>6.63</td>
<td>380</td>
<td>9.62</td>
</tr>
<tr>
<td>271</td>
<td>0.479</td>
<td>301</td>
<td>4.71</td>
<td>341</td>
<td>6.67</td>
<td>381</td>
<td>9.89</td>
</tr>
<tr>
<td>272</td>
<td>0.520</td>
<td>302</td>
<td>4.81</td>
<td>342</td>
<td>6.71</td>
<td>382</td>
<td>10.16</td>
</tr>
<tr>
<td>273</td>
<td>0.567</td>
<td>303</td>
<td>4.92</td>
<td>343</td>
<td>6.75</td>
<td>383</td>
<td>10.43</td>
</tr>
<tr>
<td>274</td>
<td>0.616</td>
<td>304</td>
<td>5.13</td>
<td>344</td>
<td>6.79</td>
<td>384</td>
<td>10.71</td>
</tr>
<tr>
<td>275</td>
<td>0.673</td>
<td>305</td>
<td>5.35</td>
<td>345</td>
<td>6.83</td>
<td>385</td>
<td>10.98</td>
</tr>
<tr>
<td>276</td>
<td>0.732</td>
<td>306</td>
<td>5.50</td>
<td>346</td>
<td>6.87</td>
<td>386</td>
<td>11.25</td>
</tr>
<tr>
<td>277</td>
<td>0.793</td>
<td>307</td>
<td>5.61</td>
<td>347</td>
<td>6.91</td>
<td>387</td>
<td>11.52</td>
</tr>
<tr>
<td>278</td>
<td>0.863</td>
<td>308</td>
<td>5.70</td>
<td>348</td>
<td>6.95</td>
<td>388</td>
<td>11.79</td>
</tr>
<tr>
<td>279</td>
<td>0.936</td>
<td>309</td>
<td>5.87</td>
<td>349</td>
<td>6.99</td>
<td>389</td>
<td>12.06</td>
</tr>
<tr>
<td>280</td>
<td>1.01</td>
<td>310</td>
<td>6.04</td>
<td>350</td>
<td>7.03</td>
<td>390</td>
<td>12.33</td>
</tr>
<tr>
<td>281</td>
<td>1.09</td>
<td>311</td>
<td>6.19</td>
<td>351</td>
<td>7.07</td>
<td>391</td>
<td>12.60</td>
</tr>
<tr>
<td>282</td>
<td>1.18</td>
<td>312</td>
<td>6.28</td>
<td>352</td>
<td>7.11</td>
<td>392</td>
<td>12.87</td>
</tr>
<tr>
<td>283</td>
<td>1.26</td>
<td>313</td>
<td>6.37</td>
<td>353</td>
<td>7.15</td>
<td>393</td>
<td>13.14</td>
</tr>
<tr>
<td>284</td>
<td>1.35</td>
<td>314</td>
<td>6.46</td>
<td>354</td>
<td>7.19</td>
<td>394</td>
<td>13.41</td>
</tr>
<tr>
<td>285</td>
<td>1.45</td>
<td>315</td>
<td>6.55</td>
<td>355</td>
<td>7.23</td>
<td>395</td>
<td>13.68</td>
</tr>
<tr>
<td>286</td>
<td>1.56</td>
<td>316</td>
<td>6.64</td>
<td>356</td>
<td>7.27</td>
<td>396</td>
<td>13.95</td>
</tr>
</tbody>
</table>

Note:
Gierczak et al.2
D19. CH$_3$(O)CH=CH$_2$ (methyl vinyl ketone, MVK)

CH$_3$(O)CH=CH$_2$ + hv \rightarrow CH$_3$-CH=CH$_2$ + CO
\rightarrow CH=CH$_2$ + CH$_3$C(O)
\rightarrow CH=CH$_2$C(O) + CH$_3$

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of methyl vinyl ketone (MVK), CH$_3$(O)CH=CH$_2$, has been measured at room temperature by Schneider and Moortgat (240–398 nm) (see Keller-Rudek et al.4), Raber and Moortgat5 (235–400 nm), Fahr et al.2 (160–260 nm), and Gierczak et al.3 (216.86 nm and 250–395 nm). The absorption band peaking at ~330 nm displays some weak vibrational band structure, which is superimposed on a continuum envelope. A detailed vibrational-electronic analysis was reported by Birge et al.1 The cross sections from Schneider and Moortgat are somewhat smaller around the band maximum at 334 nm (agreement within ~10% between 290 and 365 nm), and larger by up to 50% and smaller by up to ~60% in the short- and long-wavelength tails, respectively, than the results of Gierczak et al.3 Gierczak et al.3 reported σ(213.86 nm) = (6.6 ± 0.04) × 10^{-17} cm2 molecule$^{-1}$ (Zn lamp source). They also measured the spectrum at reduced temperatures (range 250–298 K), and observed a small increase in the peak cross section of <2% at 250 K. Fahr et al.2 reported σ(193 nm) = (3.2 ± 0.2) × 10^{-17} cm2 molecule$^{-1}$. The recommended absorption cross sections in Table 4D-21 are taken from Gierczak et al.3

Photolysis Quantum Yield and Product Studies: Product quantum yields were measured by Raber and Moortgat4 using broadband photolysis in the range 275–380 nm combined with FTIR monitoring of the stable photolysis products (major CO, C$_2$H$_6$ and HCHO; minor CO$_2$, HCOOH, CH$_3$OH, CH$_3$COOH). They report a pressure dependent quantum yield with Φ = 0.05 at 760 Torr and Φ = 0.12 at 54 Torr. Fahr et al.2 used laser photolysis at 193.3 nm and measured the direct formation of CH$_3$ radicals at 216.4 nm and final products. They report a quantum yield close to unity for the formation of CH$_3$ and CH=CH$_2$ radicals. Gierczak et al.3 measured quantum yields for photolysis at 308, 337, and 351 nm by monitoring the disappearance of MVK. They reported Φ = 0.16 at 25 Torr and Φ = 0.04 at 760 Torr at 308 nm, Φ = 0.04 at 25 Torr and Φ = 0.01 at 760 Torr at 337 nm; and Φ = 0.01 independent of pressure at 351 nm. The quantum yield data were fit to the empirical Stern-Volmer type expression

$$\Phi(\lambda, P) = \exp[-0.055(\lambda - 308)] / (5.5 + 9.2 \times 10^{-19}[M])$$

where λ is in nm and [M] in molecule cm$^{-3}$. This parameterization is recommended.
Table 4D-21. Recommended Absorption Cross Sections of CH$_3$C(O)CH=CH$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.241</td>
<td>257</td>
<td>0.275</td>
<td>254</td>
<td>0.241</td>
<td>251</td>
<td>0.241</td>
</tr>
<tr>
<td>251</td>
<td>0.241</td>
<td>258</td>
<td>0.258</td>
<td>255</td>
<td>0.275</td>
<td>252</td>
<td>0.224</td>
</tr>
<tr>
<td>252</td>
<td>0.224</td>
<td>259</td>
<td>0.310</td>
<td>256</td>
<td>0.275</td>
<td>253</td>
<td>0.241</td>
</tr>
<tr>
<td>253</td>
<td>0.241</td>
<td>260</td>
<td>0.327</td>
<td>257</td>
<td>0.275</td>
<td>254</td>
<td>0.241</td>
</tr>
<tr>
<td>254</td>
<td>0.241</td>
<td>261</td>
<td>0.361</td>
<td>258</td>
<td>0.293</td>
<td>255</td>
<td>0.258</td>
</tr>
<tr>
<td>255</td>
<td>0.258</td>
<td>262</td>
<td>0.379</td>
<td>259</td>
<td>0.310</td>
<td>256</td>
<td>0.275</td>
</tr>
<tr>
<td>256</td>
<td>0.275</td>
<td>263</td>
<td>0.396</td>
<td>257</td>
<td>0.275</td>
<td>258</td>
<td>0.293</td>
</tr>
<tr>
<td>257</td>
<td>0.275</td>
<td>264</td>
<td>0.430</td>
<td>259</td>
<td>0.310</td>
<td>259</td>
<td>0.310</td>
</tr>
<tr>
<td>258</td>
<td>0.293</td>
<td>265</td>
<td>0.465</td>
<td>260</td>
<td>0.327</td>
<td>261</td>
<td>0.361</td>
</tr>
<tr>
<td>260</td>
<td>0.327</td>
<td>266</td>
<td>0.499</td>
<td>261</td>
<td>0.361</td>
<td>262</td>
<td>0.379</td>
</tr>
<tr>
<td>261</td>
<td>0.361</td>
<td>267</td>
<td>0.534</td>
<td>262</td>
<td>0.379</td>
<td>263</td>
<td>0.396</td>
</tr>
<tr>
<td>262</td>
<td>0.379</td>
<td>268</td>
<td>0.568</td>
<td>263</td>
<td>0.396</td>
<td>264</td>
<td>0.430</td>
</tr>
<tr>
<td>263</td>
<td>0.396</td>
<td>269</td>
<td>0.620</td>
<td>264</td>
<td>0.430</td>
<td>265</td>
<td>0.465</td>
</tr>
<tr>
<td>264</td>
<td>0.430</td>
<td>270</td>
<td>0.654</td>
<td>265</td>
<td>0.465</td>
<td>266</td>
<td>0.499</td>
</tr>
<tr>
<td>265</td>
<td>0.465</td>
<td>271</td>
<td>0.706</td>
<td>266</td>
<td>0.499</td>
<td>267</td>
<td>0.534</td>
</tr>
<tr>
<td>266</td>
<td>0.499</td>
<td>272</td>
<td>0.757</td>
<td>267</td>
<td>0.534</td>
<td>268</td>
<td>0.568</td>
</tr>
<tr>
<td>267</td>
<td>0.534</td>
<td>273</td>
<td>0.809</td>
<td>268</td>
<td>0.568</td>
<td>269</td>
<td>0.620</td>
</tr>
<tr>
<td>268</td>
<td>0.568</td>
<td>274</td>
<td>0.878</td>
<td>269</td>
<td>0.620</td>
<td>270</td>
<td>0.654</td>
</tr>
<tr>
<td>269</td>
<td>0.620</td>
<td>275</td>
<td>0.929</td>
<td>270</td>
<td>0.654</td>
<td>271</td>
<td>0.706</td>
</tr>
<tr>
<td>270</td>
<td>0.654</td>
<td>276</td>
<td>0.998</td>
<td>271</td>
<td>0.706</td>
<td>272</td>
<td>0.757</td>
</tr>
<tr>
<td>271</td>
<td>0.706</td>
<td>277</td>
<td>1.08</td>
<td>272</td>
<td>0.757</td>
<td>273</td>
<td>0.809</td>
</tr>
<tr>
<td>272</td>
<td>0.757</td>
<td>278</td>
<td>1.15</td>
<td>273</td>
<td>0.809</td>
<td>274</td>
<td>0.878</td>
</tr>
<tr>
<td>273</td>
<td>0.809</td>
<td>279</td>
<td>1.24</td>
<td>274</td>
<td>0.878</td>
<td>275</td>
<td>0.929</td>
</tr>
<tr>
<td>274</td>
<td>0.878</td>
<td>280</td>
<td>1.33</td>
<td>275</td>
<td>0.929</td>
<td>276</td>
<td>0.998</td>
</tr>
<tr>
<td>275</td>
<td>0.929</td>
<td>281</td>
<td>1.41</td>
<td>276</td>
<td>0.998</td>
<td>277</td>
<td>1.08</td>
</tr>
<tr>
<td>276</td>
<td>0.998</td>
<td>282</td>
<td>1.50</td>
<td>277</td>
<td>1.08</td>
<td>278</td>
<td>1.15</td>
</tr>
<tr>
<td>277</td>
<td>1.08</td>
<td>283</td>
<td>1.60</td>
<td>278</td>
<td>1.15</td>
<td>279</td>
<td>1.24</td>
</tr>
<tr>
<td>278</td>
<td>1.15</td>
<td>284</td>
<td>1.70</td>
<td>279</td>
<td>1.24</td>
<td>280</td>
<td>1.33</td>
</tr>
<tr>
<td>279</td>
<td>1.24</td>
<td>285</td>
<td>1.81</td>
<td>280</td>
<td>1.33</td>
<td>281</td>
<td>1.41</td>
</tr>
<tr>
<td>280</td>
<td>1.33</td>
<td>286</td>
<td>1.91</td>
<td>281</td>
<td>1.41</td>
<td>282</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Note:
Gierczak et al.

Absorption Cross Sections

The absorption cross sections of HOCH$_2$CHO (glycolaldehyde, hydroxyacetaldehyde) have been measured at room temperature by Bacher et al.\(^1\) (205–335 nm), Magneron et al.\(^2\) (210–330 nm), and Karunanandan et al.\(^3\) (210–335 nm). The spectrum consists of a strong absorption below 220 nm and a weaker absorption band centered near 280 nm with evidence of vibrational progressions. The measurements performed by Magneron et al.\(^2\) were done at two different laboratories and are nearly identical but reveal significant differences compared to the spectrum measured by Bacher et al.\(^1\) being about 20% at the maximum. The spectrum measured by Karunanandan et al.\(^3\) is in excellent agreement with Magneron et al.\(^2\) at the maximum near 282 nm and at longer wavelengths. At shorter wavelengths the cross sections are consistently larger than those measured by Magneron et al.\(^2\) 15% at 250 nm, 40% at 230 nm and 85% at the minimum near 226 nm. At 184.9 nm the cross section was measured as \((3.85 \pm 0.2) \times 10^{-18}\) cm2 molecule$^{-1}$. The average of the cross sections of Magneron et al.\(^2\) and Karunanandan et al.\(^3\) are recommended and listed in Table 4D-22.

Photolysis Quantum Yields and Product Studies

The broad band photolysis (285 ± 25 nm) of glycolaldehyde in air performed by Bacher et al.\(^1\) revealed an overall quantum yield \(\Phi > 0.5\), relative to a quantum yield of \(\Phi = 0.3\) for the removal of acetone. Product studies by FTIR suggests that channel (1) is the major photolysis channel (65–80%), while channel (2) accounts to 15–20%, and channel (3) contributes up to 15%. The formation of channel (4) was suggested to produce HOCH$_2$CO as a source for OH radicals, whose presence was indirectly invoked due the formation of glyoxal. Magneron et al.\(^3\) also photolysed glycolaldehyde (broadband lamps 275–380 nm) and measured products by FTIR (CO, CO$_2$, HCHO and CH$_2$OH). They observed direct evidence for OH production via channel (3) using OH scavenger and OH tracer species and performed additional photolysis experiments where glycolaldehyde was used an OH source to measure rate constants for OH with a series of dienes. The contribution of channel (2) was estimated to be 10% and that of channels (1) + (2) to be 90%. No evidence was found for channel (4). Karunanandan et al.\(^2\) measured a quantum yield of OH formation at 248 nm of \(\Phi_1 = (7.0 \pm 1.5) \times 10^{-2}\). On the basis of the combined product studies the following quantum yields are recommended: \(\Phi_1 = 0.83, \Phi_2 = 0.10\) and \(\Phi_3 = 0.07\) in the range 248–328 nm.

Table 4D-22. Recommended Absorption Cross Sections of HOCH$_2$CHO at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>20.6</td>
<td>240</td>
<td>1.39</td>
<td>272</td>
<td>6.74</td>
<td>304</td>
<td>2.65</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>210</td>
<td>13.1</td>
<td>242</td>
<td>1.63</td>
<td>274</td>
<td>6.98</td>
<td>306</td>
<td>2.26</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>212</td>
<td>8.15</td>
<td>244</td>
<td>1.77</td>
<td>276</td>
<td>6.98</td>
<td>308</td>
<td>1.88</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>214</td>
<td>4.93</td>
<td>248</td>
<td>2.25</td>
<td>280</td>
<td>6.91</td>
<td>312</td>
<td>1.57</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>216</td>
<td>2.94</td>
<td>248</td>
<td>2.57</td>
<td>280</td>
<td>6.91</td>
<td>312</td>
<td>1.57</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>218</td>
<td>1.72</td>
<td>250</td>
<td>2.94</td>
<td>282</td>
<td>6.92</td>
<td>314</td>
<td>0.94</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>220</td>
<td>1.00</td>
<td>252</td>
<td>3.37</td>
<td>284</td>
<td>6.60</td>
<td>316</td>
<td>0.70</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>222</td>
<td>0.64</td>
<td>254</td>
<td>3.76</td>
<td>286</td>
<td>6.38</td>
<td>318</td>
<td>0.53</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>224</td>
<td>0.45</td>
<td>256</td>
<td>4.15</td>
<td>288</td>
<td>6.09</td>
<td>320</td>
<td>0.40</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>226</td>
<td>0.39</td>
<td>258</td>
<td>4.61</td>
<td>290</td>
<td>5.88</td>
<td>322</td>
<td>0.31</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>228</td>
<td>0.42</td>
<td>260</td>
<td>5.03</td>
<td>292</td>
<td>5.43</td>
<td>324</td>
<td>0.21</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>230</td>
<td>0.53</td>
<td>262</td>
<td>5.33</td>
<td>294</td>
<td>4.87</td>
<td>326</td>
<td>0.14</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>232</td>
<td>0.63</td>
<td>264</td>
<td>5.68</td>
<td>296</td>
<td>4.50</td>
<td>328</td>
<td>0.10</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>234</td>
<td>0.79</td>
<td>266</td>
<td>6.10</td>
<td>298</td>
<td>4.10</td>
<td>330</td>
<td>0.07</td>
<td>238</td>
<td>1.15</td>
</tr>
<tr>
<td>236</td>
<td>0.97</td>
<td>268</td>
<td>6.35</td>
<td>300</td>
<td>3.74</td>
<td>332</td>
<td>0.04</td>
<td>238</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Note: 208–332 nm, average of Magneron et al.\(^3\) and Karunanandan et al.\(^2\)

Back to Index
The absorption spectrum of acetone, CH$_3$C(O)CH$_3$, has been measured at room temperature by Lake and Harrison15 (159–203 nm), Calvert9 (200–300 nm), Meyrahn et al.20,21 (220–368 nm), Schneider and Moortgat (196–366 nm) (see Röth et al.23), Hynes et al.14 (253.7 nm and 260–360 nm), Martinez et al.19 (202–335 nm), Gierczak et al.12 (215–349 nm), Wollenhaupt et al.29 (220–346 nm), and Yujing and Mellouki30 (240–350 nm). Absorption cross sections have also been determined at isolated wavelengths by Braun et al.6 (193 nm, also for CD$_3$C(O)CD$_3$), Seki and Okabe25 (193 nm), Krasnoperov and Mehta17 (216.51 nm), and Gierczak et al.13 (184.9 nm, also for CD$_3$C(O)CD$_3$).

The spectrum below 200 nm is highly structured in the wavelength regions 160–170 nm and 180–195 nm. A broad absorption band was observed between 210 and 340 nm for which higher resolution measurements give evidence for band maxima at ~273 and ~278 nm. The reported absorption cross sections are in excellent agreement with the range of deviations being ≤8% in the 240–320 nm region. The absorption cross section at the spectrum maximum range between 5.2 × 10$^{-20}$ and 4.8 × 10$^{-20}$ cm2 molecule$^{-1}$. In the tails of the absorption band, the various data sets become more divergent with decreasing wavelength with differences of up to ~50% at 220 nm and with increasing wavelength up to more than 100% at 340 nm. The data measured by Meyrahn et al.20,21 are systematically higher at wavelengths >320 nm than the other studies. The absorption cross sections from Martinez et al.19 Gierczak et al.12 Wollenhaupt et al.29 and Yujing and Mellouki30 agree to within 2.5% in the region of the absorption maximum and to within 50% in the short and long wavelength tails of the band.

The absorption spectrum temperature dependence has been studied by Hynes et al.14 (300–340 nm) over the range 261–362 K, Gierczak et al.12 (215–349 nm) over the range 235–298 K, and Gierczak et al.13 (184.9 nm, also for CD$_3$C(O)CD$_3$) over the range 222–296 K. The absorption spectrum has modest temperature dependence at wavelengths >270 nm with the cross sections decreasing with decreasing temperature. At shorter wavelengths the spectrum is essentially independent of temperature, the cross section changes by <5% between 298 and 235 K. Gierczak et al.12 parameterized the temperature dependent cross sections using the expression

$$\sigma(\lambda, T) = \sigma(\lambda, 298 \text{ K})[1 + c_1(\lambda)T + c_2(\lambda)T^2]$$

that was later superseded by Burkholder7 using the expression

$$\sigma(\lambda, T) = \sigma(\lambda, 298 \text{ K})[1 + A(\lambda)T + B_2(\lambda)T^2 + C(\lambda)T^3]$$

The recommended absorption cross sections at 298 K in Table 4D-23 are taken from Gierczak et al.12 and the temperature coefficients A, B, and C derived by Burkholder.7

The absorption cross section of CH$_3$C(O)CH$_3$ at 184.9 nm was observed to decrease very slightly with decreasing temperature between 296 and 222 K leading to an average value of (2.98 ± 0.10) × 10$^{-18}$ cm2 molecule$^{-1}$, whereas that of CD$_3$C(O)CD$_3$ increased noticeably from 3.91 × 10$^{-18}$ cm2 molecule$^{-1}$ (average of six results) at 295 K to 4.61 × 10$^{-18}$ cm2 molecule$^{-1}$ at 232 K, as reported by Gierczak et al.13

Photoysis Quantum Yield and Product Studies: The UV photodissociation of acetone is wavelength, pressure, and temperature dependent. Since JPL 06-2 there has been a number of acetone photodissociation laboratory studies published [Khamaganov et al.15 (248 and 266 nm), Khamaganov et al.16 (248 nm and 266 nm), Nádasdya et al.22 (248 nm and 308 nm), Rajakumar et al.23 (248 nm), Somnitz et al.26,27 (248 nm)]. The focus of these studies has been on the determination of the pressure and temperature dependence of the acetone loss and product (CH$_3$, CH$_2$CO, CO, and CO$_2$) photolysis quantum yields as described further below.
Gardner et al.11 measured acetone loss (\(\Phi_{AC}\)) and formation of the products CO\(_2\), CO, CH\(_3\)OH and H\(_2\)CO following the photolysis of dilute acetone-air mixtures at four wavelengths in the range 279–313 nm as a function of pressure (25–745 Torr) and temperature (271–301 K). At pressures >300 Torr, they observed a near constant quantum yield, \(\Phi_{AC} \approx \Phi_{CO2} = \Phi_{1} = 0.077\), for photolysis wavelengths in the range 279–313 nm with a slight increase at lower pressures. Meyrahn et al.20,21 measured the quantum yields of CO and CO\(_2\) in the photolysis of dilute mixtures of acetone in air at nine wavelengths over the range 250–330 nm. At 1 atm, \(\Phi_{CO2}\) decreased from 1.59 at 250 nm to 0.11 at 310 nm and increased to 0.27 at 330 nm. \(\Phi_{CO}\) decreased from 0.45 at 250 nm to 0.02 at 310 nm and increased to 0.09 at 330 nm. A CO\(_2\) quantum yield larger than unity was explained to result from secondary reactions. Meyrahn et al.20,21 measured the quantum yield of peroxyacetyl nitrate, \(\Phi_{PAN}\), (which is assumed to be a direct measure of \(\Phi_{1}\)) in the photolysis of acetone/air/NO\(_2\) mixtures to decrease from -0.78 in the region 250–260 nm to 0.03 at 330 nm. Meyrahn et al.20,21 also determined \(\Phi_{PAN}\) following the photolysis of acetone/air/NO\(_2\) mixtures at six wavelengths between 280 and 330 nm at total pressures in the range 10–760 Torr. At 760 Torr, \(\Phi_{PAN}\) decreased from a value of 1.00 at 280 nm to 0.06 at 320 nm and increased to 0.13 at 330 nm. A Stern-Volmer type pressure dependence was observed at all wavelengths. The results were explained in terms of the rate of photodissociation from the excited singlet \(^1\)[AC]\(^*\) state of acetone and the competing intersystem crossing to the triplet \(^3\)[AC]\(^*\), both relative to that of collisional quenching, as a function of energy above the dissociation threshold. It was proposed that

\[
\begin{align*}
\text{\(^1\)[AC]\(^*\)} & \rightarrow 2 \text{CH}_3 + \text{CO} \\
\text{\(^3\)[AC]\(^*\)} & \rightarrow \text{CH}_3\text{C(O)} + \text{CH}_3
\end{align*}
\]

Gierczak et al.12 determined \(\Phi_{AC}\) and \(\Phi_{CO2}\) in the laser photolysis of acetone at nine wavelengths in the range 248–337 nm as a function of pressure (25–760 Torr, syn. air) and temperature (195–298 K). For photolysis wavelengths >270 nm, \(\Phi\) followed a Stern-Volmer type pressure dependence and the zero-pressure quantum yield was found to increase with decreasing wavelength to a value of unity near 290 nm. Gierczak et al.12 observed a temperature dependence for the 308 nm quantum yield except for the lowest temperature included in their study, 195 K, and choose to report a temperature independent quantum yield. The studies of Blitz et al.4,5 and Nádasdia et al.22 have since reported temperature dependent quantum yields at 308 nm. The results from these studies are in good agreement. The Gierczak et al.12 results are also in reasonable agreement. The Gierczak et al.12 results at 298 K are nearly identical to those of Emrich and Warneck.9 Gierczak et al.12 and Warneck28 have reported parameterizations for the quantum yields for the photodissociation of acetone dependence on wavelength and pressure.

Aloisio and Francisco4 measured the quantum yield of acetone photodissociation at 248 and 308 nm in the presence and absence of water vapor. The apparent acetone quantum yield decreased from unity to 0.73 ± 0.07 for 248 nm photolysis and from 0.28 ± 0.07 to 0.06 ± 0.04 for 308 nm photolysis with the addition of 9 Torr of H\(_2\)O. Nádasdia et al.25 performed a similar quantum yield study (with and without H\(_2\)O) at 298 K and a total pressure of 133 mbar. They studied the effect for the same photolysis wavelengths and report quantum yields for the loss of acetone to be independent of H\(_2\)O vapor to within their measurement accuracy: 0.945 ± 0.222 (without H\(_2\)O) and 1.021 ± 0.124 (with 12 mbar H\(_2\)O) at 248 nm and two sets of measurements at 308 nm using different acetone and H\(_2\)O concentrations, 0.342 ± 0.028 (without H\(_2\)O) and 0.319 ± 0.018 (with 12 mbar H\(_2\)O) and 0.308 ± 0.024 (without) and 0.320 ± 0.024 (with 4 mbar H\(_2\)O). There is no explanation for the apparent discrepancy between these studies.

Blitz et al.4,5 reported the pressure and temperature (218–295 K) dependent quantum yields of acetone for photolysis wavelengths between 279 and 327.5 nm. Blitz et al.4,5 used a spectroscopic technique to indirectly detect the formation of the CH\(_3\)CO radical that is based on the detection of the OH radical formed in the reaction

\[
\text{CH}_3\text{CO} + \text{O}_2 \rightarrow \text{CH}_3\text{COO}^* \rightarrow \text{OH} + \text{products}
\]

\[
\rightarrow \text{CH}_3\text{COO}^* + \text{M} \rightarrow \text{CH}_3\text{C(O)}\text{O}_2 + \text{M}
\]

The time-resolved studies of Blitz et al.4,5 are more direct and sensitive than earlier studies. They observed “classical” Stern-Volmer behavior at \(\lambda < 302\) nm, but at \(\lambda > 302\) nm an extended form of the Stern-Volmer expression was necessary to fit their data for pressures below 15 Torr; reflecting the dissociation and quenching from both \(^1\)[AC]\(^*\) and \(^3\)[AC]\(^*\) excited states as described in Blitz et al.3 On the basis of the low pressure quantum yield results at wavelengths >300 nm, Blitz et al.4,5 determined that \(\Phi_{\text{CH}_3\text{COO}} = 0.65\) and \(\Phi_{\text{CO}} = 0.35\) at 248 nm from measurements made relative to this reference photolysis wavelength. Their analysis assumes that the acetone quantum yield in the low-pressure limit is unity in the long wavelength photolysis,
the acetone quantum yield at 248 nm is unity, and that the CH$_3$CO quantum yield at 248 nm is independent of pressure. It has been established that the acetone quantum yield at 248 nm is unity and independent of temperature and pressure [Gierczak et al.,12 Khamaganov et al.,16 Aloisio and Francisco,1 Nádasdia et al.,22 and Somnitz et al.27]. Khamaganov et al.16 also report that the acetone quantum yield is only weakly pressure dependent (60–760 Torr) at 266 nm. There is strong evidence now that the CH$_3$:CO, CH$_3$, and CO quantum yields at 248 nm are, however, pressure dependent. For photolysis at 248 nm there is sufficient energy for the nascent energetically excited CH$_3$:CO radical to dissociate via a non-concerted step

\[
\text{CH}_3\text{CO}^* \rightarrow \text{CH}_3 + \text{CO}
\]

or be collisionally quenched

\[
\text{CH}_3\text{CO}^* + \text{M} \rightarrow \text{CH}_3\text{CO} + \text{M}
\]

Khamaganov et al.15 (5–1500 Torr), Somnitz et al.26,27 (20–900 mbar), and Rajakumar et al.23 (60–670 Torr) reported pressure dependent quantum yields for CH$_3$, CO and CO$_2$, and CH$_3$:CO, respectively, over the range of pressures indicated. The results from these studies are in reasonable agreement and report low pressure quantum yields of Φ(CH$_3$) = 1.42 ± 0.15 (Khamaganov et al.15), Φ(CO) = 0.51 (Somnitz et al.27), and Φ(CH$_3$:CO) = 0.535 ± 0.09 (Rajakumar et al.23). Somnitz et al.26,27 have modeled the dissociation process using RRKM theory with a time-dependent master equation approach. The impact of a pressure dependence for the CH$_3$:CO quantum yield at 248 nm on the interpretation of the Blitz et al. quantum yield data at longer wavelengths is at present unclear.

At $\lambda < 310$ nm and 1 atm, there was very good agreement with the data of Gierczak et al.12 and Emrich and Warneck9; however at $\lambda > 310$ nm, the measured quantum yields were significantly smaller. The temperature dependence of Φ_{TOTAL} is quite striking at the longer wavelengths: the ratio of the quantum yields at 295 and 218 K reported by Blitz et al.4,5 are Φ_{TOTAL} (295 K) / Φ_{TOTAL} (218 K) ≈ 4 and ≈ 20 at 310 nm and 322.5 nm, respectively.

A major difference in the study of Blitz et al.4,5 from several of the earlier studies is that the OH radicals are detected before undergoing secondary reactions, so that the OH yields represent the CH$_3$:CO radicals produced. The quantum yields reported from the Gierczak et al.12 and Emrich and Warneck9 studies were based upon the removal of CH$_3$:C(O)CH$_3$, which may be affected by the additional loss of acetone due to the OH + acetone reaction where OH radicals are produced in the reaction of CH$_3$:CO with O$_2$. However, the OH yield in the CH$_3$:CO + O$_2$ reaction is a strong function of pressure and measurements made at pressures >50 Torr are expected to have negligible errors.

The quantum yield data of Blitz et al.4,5 are recommended. The optimized parameterization of the quantum yields for the wavelength range 279–327.5 nm, temperature range 218–295 K and pressure range 0–1000 mbar is as follows:

For $\lambda = 279$–327.5 nm

\[
\Phi_{\text{TOTAL}} (\lambda, [M], T) = \Phi_{\text{CH$_3$CO}} (\lambda, [M], T) + \Phi_{\text{CO}} (\lambda, T); \quad \text{all } \lambda
\]

where

\[
\Phi_{\text{CO}} (\lambda, T) = \frac{1}{(1 + A_0)}
\]

and

\[
A_0 = \frac{a_0}{1 - a_0} \exp[b_0 (\lambda - 248)]
\]

and

\[
a_0 = (0.350 \pm 0.003) (T/295)^{-1.28 \pm 0.03}
\]

and

\[
b_0 = (0.068 \pm 0.002) (T/295)^{-2.65 \pm 0.20}
\]

For $\lambda = 279$–302 nm

\[
\Phi_{\text{CH$_3$CO}} (\lambda, [M], T) = \frac{(1 - \Phi_{\text{CO}} (\lambda, T))}{(1 + A_1 [M])}
\]

where

\[
A_1 = a_1 \exp[-b_1 ((10^7/\lambda) - 33113)]
\]

and

\[
a_1 = (1.600 \pm 0.032) \times 10^{-19} (T/295)^{-2.38 \pm 0.08}
\]

and

\[
b_1 = (0.55 \pm 0.02) \times 10^{-3} (T/295)^{-3.19 \pm 0.13}
\]

For $\lambda = 302$–327.5 nm

\[
\Phi_{\text{CH$_3$CO}} (\lambda, [M], T) = \frac{((1 + A_4 [M] + A_3) / [(1 + A_3 [M] + A_3) (1 + A_4 [M])]) (1 - \Phi_{\text{CO}} (\lambda, T))}{(1 + A_2 [M] + A_3)}
\]

where

\[
A_2 = a_2 \exp[-b_2 ((10^7/\lambda) - 30488)]
\]

and

\[
a_2 = (1.62 \pm 0.06) \times 10^{-17} (T/295)^{-10.03 \pm 0.20}
\]
where [M] is in molecule cm$^{-2}$, λ in nm and T in K. The equations given above have been used to calculate the quantum yields recommended in Table 4D-24.

It is well established that acetone photolysis at wavelengths >300 nm has a strong dependence on pressure and temperature but there remains some uncertainty in the absolute quantum yield values in this wavelength region. The effect of the temperature dependent quantum yields of acetone on the chemistry of the upper troposphere has been modeled by Arnold et al. and shown to be significant. Additional quantum yield studies are desired at atmospherically relevant photolysis wavelengths, >290 nm, as a function of pressure and temperature to reduce uncertainties in model calculations.

Table 4D-23. Recommended Absorption Cross Sections of CH$_3$C(O)CH$_3$ at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^20 σ (cm2)</th>
<th>10^2 A (K$^{-1}$)</th>
<th>10^2 B (K2)</th>
<th>10^2 C (K$^{-3}$)</th>
<th>λ (nm)</th>
<th>10^20 σ (cm2)</th>
<th>10^2 A (K$^{-1}$)</th>
<th>10^2 B (K2)</th>
<th>10^2 C (K$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td>0.167</td>
<td>-10.46</td>
<td>8.346</td>
<td>-16.43</td>
<td>283</td>
<td>4.71</td>
<td>1.137</td>
<td>-1.350</td>
<td>3.272</td>
</tr>
<tr>
<td>216</td>
<td>0.180</td>
<td>-9.192</td>
<td>7.357</td>
<td>-14.51</td>
<td>284</td>
<td>4.62</td>
<td>0.8530</td>
<td>-1.158</td>
<td>2.943</td>
</tr>
<tr>
<td>217</td>
<td>0.196</td>
<td>-6.233</td>
<td>5.039</td>
<td>-10.01</td>
<td>285</td>
<td>4.54</td>
<td>0.6518</td>
<td>-1.023</td>
<td>2.714</td>
</tr>
<tr>
<td>218</td>
<td>0.212</td>
<td>-3.190</td>
<td>2.651</td>
<td>-5.359</td>
<td>286</td>
<td>4.44</td>
<td>0.4907</td>
<td>-0.9154</td>
<td>2.531</td>
</tr>
<tr>
<td>219</td>
<td>0.228</td>
<td>-1.002</td>
<td>0.9314</td>
<td>-2.003</td>
<td>287</td>
<td>4.36</td>
<td>0.3190</td>
<td>-0.7992</td>
<td>2.332</td>
</tr>
<tr>
<td>220</td>
<td>0.246</td>
<td>0.4104</td>
<td>-0.1807</td>
<td>0.1679</td>
<td>288</td>
<td>4.28</td>
<td>0.1109</td>
<td>-0.6586</td>
<td>2.092</td>
</tr>
<tr>
<td>221</td>
<td>0.270</td>
<td>1.567</td>
<td>-1.090</td>
<td>1.936</td>
<td>289</td>
<td>4.15</td>
<td>-0.1230</td>
<td>-0.5036</td>
<td>1.833</td>
</tr>
<tr>
<td>222</td>
<td>0.294</td>
<td>2.962</td>
<td>-2.183</td>
<td>4.058</td>
<td>290</td>
<td>4.06</td>
<td>-0.3698</td>
<td>-0.3426</td>
<td>1.568</td>
</tr>
<tr>
<td>223</td>
<td>0.318</td>
<td>4.839</td>
<td>-3.651</td>
<td>6.909</td>
<td>291</td>
<td>3.95</td>
<td>-0.6430</td>
<td>-0.1615</td>
<td>1.265</td>
</tr>
<tr>
<td>224</td>
<td>0.346</td>
<td>6.940</td>
<td>-5.293</td>
<td>10.09</td>
<td>292</td>
<td>3.82</td>
<td>-0.9625</td>
<td>0.05796</td>
<td>0.8847</td>
</tr>
<tr>
<td>225</td>
<td>0.380</td>
<td>8.598</td>
<td>-6.588</td>
<td>12.60</td>
<td>293</td>
<td>3.71</td>
<td>-1.3161</td>
<td>0.306</td>
<td>0.4472</td>
</tr>
<tr>
<td>226</td>
<td>0.419</td>
<td>9.380</td>
<td>-7.200</td>
<td>13.79</td>
<td>294</td>
<td>3.57</td>
<td>-1.6500</td>
<td>0.535</td>
<td>0.0477</td>
</tr>
<tr>
<td>227</td>
<td>0.456</td>
<td>9.551</td>
<td>-7.336</td>
<td>14.06</td>
<td>295</td>
<td>3.42</td>
<td>-1.9050</td>
<td>0.699</td>
<td>-0.2168</td>
</tr>
<tr>
<td>228</td>
<td>0.492</td>
<td>9.705</td>
<td>-7.462</td>
<td>14.31</td>
<td>296</td>
<td>3.26</td>
<td>-2.084</td>
<td>0.796</td>
<td>-0.3430</td>
</tr>
<tr>
<td>229</td>
<td>0.535</td>
<td>10.08</td>
<td>-7.761</td>
<td>14.89</td>
<td>297</td>
<td>3.11</td>
<td>-2.234</td>
<td>0.867</td>
<td>-0.4086</td>
</tr>
<tr>
<td>230</td>
<td>0.584</td>
<td>10.41</td>
<td>-8.023</td>
<td>15.41</td>
<td>298</td>
<td>2.98</td>
<td>-2.391</td>
<td>0.942</td>
<td>-0.4824</td>
</tr>
<tr>
<td>231</td>
<td>0.637</td>
<td>10.39</td>
<td>-8.002</td>
<td>15.36</td>
<td>299</td>
<td>2.82</td>
<td>-2.590</td>
<td>1.055</td>
<td>-0.6387</td>
</tr>
<tr>
<td>232</td>
<td>0.693</td>
<td>10.01</td>
<td>-7.707</td>
<td>14.79</td>
<td>300</td>
<td>2.67</td>
<td>-2.915</td>
<td>1.277</td>
<td>-1.020</td>
</tr>
<tr>
<td>233</td>
<td>0.750</td>
<td>9.534</td>
<td>-7.332</td>
<td>14.06</td>
<td>301</td>
<td>2.58</td>
<td>-3.421</td>
<td>1.649</td>
<td>-1.709</td>
</tr>
<tr>
<td>234</td>
<td>0.815</td>
<td>9.138</td>
<td>-7.022</td>
<td>13.46</td>
<td>302</td>
<td>2.45</td>
<td>-4.008</td>
<td>2.091</td>
<td>-2.543</td>
</tr>
<tr>
<td>235</td>
<td>0.885</td>
<td>8.851</td>
<td>-6.799</td>
<td>13.02</td>
<td>303</td>
<td>2.30</td>
<td>-4.508</td>
<td>2.465</td>
<td>-3.248</td>
</tr>
<tr>
<td>236</td>
<td>0.956</td>
<td>8.638</td>
<td>-6.634</td>
<td>12.70</td>
<td>304</td>
<td>2.18</td>
<td>-4.858</td>
<td>2.715</td>
<td>-3.699</td>
</tr>
<tr>
<td>237</td>
<td>1.03</td>
<td>8.471</td>
<td>-6.504</td>
<td>12.45</td>
<td>305</td>
<td>2.05</td>
<td>-5.120</td>
<td>2.880</td>
<td>-3.959</td>
</tr>
<tr>
<td>238</td>
<td>1.11</td>
<td>8.318</td>
<td>-6.385</td>
<td>12.22</td>
<td>306</td>
<td>1.89</td>
<td>-5.433</td>
<td>3.062</td>
<td>-4.219</td>
</tr>
<tr>
<td>239</td>
<td>1.21</td>
<td>8.125</td>
<td>-6.235</td>
<td>11.93</td>
<td>307</td>
<td>1.75</td>
<td>-6.010</td>
<td>3.429</td>
<td>-4.805</td>
</tr>
<tr>
<td>240</td>
<td>1.30</td>
<td>7.861</td>
<td>-6.031</td>
<td>11.53</td>
<td>308</td>
<td>1.61</td>
<td>-6.986</td>
<td>4.096</td>
<td>-5.954</td>
</tr>
<tr>
<td>242</td>
<td>1.50</td>
<td>7.268</td>
<td>-5.571</td>
<td>10.64</td>
<td>310</td>
<td>1.36</td>
<td>-8.897</td>
<td>5.415</td>
<td>-8.255</td>
</tr>
<tr>
<td>243</td>
<td>1.60</td>
<td>7.035</td>
<td>-5.390</td>
<td>10.29</td>
<td>311</td>
<td>1.24</td>
<td>-9.823</td>
<td>5.378</td>
<td>-8.097</td>
</tr>
<tr>
<td>244</td>
<td>1.72</td>
<td>6.838</td>
<td>-5.237</td>
<td>9.994</td>
<td>312</td>
<td>1.14</td>
<td>-8.494</td>
<td>5.001</td>
<td>-7.305</td>
</tr>
<tr>
<td>247</td>
<td>2.07</td>
<td>6.326</td>
<td>-4.850</td>
<td>9.256</td>
<td>315</td>
<td>0.837</td>
<td>-8.966</td>
<td>5.240</td>
<td>-7.592</td>
</tr>
<tr>
<td>λ (nm)</td>
<td>$10^{20} \sigma$ (cm2)</td>
<td>$10^3 A$ (K$^{-1}$)</td>
<td>$10^3 B$ (K$^{-3}$)</td>
<td>$10^3 C$ (K$^{-3}$)</td>
<td>λ (nm)</td>
<td>$10^{20} \sigma$ (cm2)</td>
<td>$10^3 A$ (K$^{-1}$)</td>
<td>$10^3 B$ (K$^{-3}$)</td>
<td>$10^3 C$ (K$^{-3}$)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>248</td>
<td>2.20</td>
<td>6.210</td>
<td>-4.763</td>
<td>9.091</td>
<td>306</td>
<td>0.760</td>
<td>-9.409</td>
<td>5.528</td>
<td>-8.076</td>
</tr>
<tr>
<td>249</td>
<td>2.33</td>
<td>6.099</td>
<td>-4.680</td>
<td>8.936</td>
<td>317</td>
<td>0.684</td>
<td>-9.584</td>
<td>5.588</td>
<td>-8.085</td>
</tr>
<tr>
<td>250</td>
<td>2.47</td>
<td>5.972</td>
<td>-4.587</td>
<td>8.763</td>
<td>318</td>
<td>0.598</td>
<td>-9.736</td>
<td>5.596</td>
<td>-7.946</td>
</tr>
<tr>
<td>251</td>
<td>2.60</td>
<td>5.832</td>
<td>-4.486</td>
<td>8.576</td>
<td>319</td>
<td>0.523</td>
<td>-10.39</td>
<td>5.958</td>
<td>-8.433</td>
</tr>
<tr>
<td>252</td>
<td>2.74</td>
<td>5.697</td>
<td>-4.389</td>
<td>8.399</td>
<td>320</td>
<td>0.455</td>
<td>-11.80</td>
<td>6.869</td>
<td>-9.933</td>
</tr>
<tr>
<td>253</td>
<td>2.87</td>
<td>5.581</td>
<td>-4.306</td>
<td>8.249</td>
<td>321</td>
<td>0.411</td>
<td>-13.48</td>
<td>7.962</td>
<td>-11.75</td>
</tr>
<tr>
<td>254</td>
<td>3.01</td>
<td>5.483</td>
<td>-4.235</td>
<td>8.120</td>
<td>322</td>
<td>0.348</td>
<td>-14.59</td>
<td>8.600</td>
<td>-12.67</td>
</tr>
<tr>
<td>255</td>
<td>3.15</td>
<td>5.385</td>
<td>-4.164</td>
<td>7.989</td>
<td>323</td>
<td>0.294</td>
<td>-14.98</td>
<td>8.670</td>
<td>-12.47</td>
</tr>
<tr>
<td>256</td>
<td>3.30</td>
<td>5.261</td>
<td>-4.075</td>
<td>7.825</td>
<td>324</td>
<td>0.248</td>
<td>-15.39</td>
<td>8.743</td>
<td>-12.27</td>
</tr>
<tr>
<td>257</td>
<td>3.44</td>
<td>5.101</td>
<td>-3.961</td>
<td>7.620</td>
<td>325</td>
<td>0.210</td>
<td>-16.28</td>
<td>9.187</td>
<td>-12.77</td>
</tr>
<tr>
<td>258</td>
<td>3.57</td>
<td>4.932</td>
<td>-3.843</td>
<td>7.410</td>
<td>326</td>
<td>0.174</td>
<td>-17.09</td>
<td>9.588</td>
<td>-13.21</td>
</tr>
<tr>
<td>259</td>
<td>3.69</td>
<td>4.802</td>
<td>-3.756</td>
<td>7.262</td>
<td>327</td>
<td>0.141</td>
<td>-17.21</td>
<td>9.471</td>
<td>-12.68</td>
</tr>
<tr>
<td>261</td>
<td>3.94</td>
<td>4.744</td>
<td>-3.730</td>
<td>7.239</td>
<td>329</td>
<td>0.0913</td>
<td>-16.66</td>
<td>8.672</td>
<td>-10.62</td>
</tr>
<tr>
<td>262</td>
<td>4.07</td>
<td>4.734</td>
<td>-3.729</td>
<td>7.246</td>
<td>330</td>
<td>0.0740</td>
<td>-15.94</td>
<td>7.979</td>
<td>-9.099</td>
</tr>
<tr>
<td>263</td>
<td>4.20</td>
<td>4.651</td>
<td>-3.674</td>
<td>7.155</td>
<td>331</td>
<td>0.0586</td>
<td>-13.93</td>
<td>6.340</td>
<td>-5.829</td>
</tr>
<tr>
<td>264</td>
<td>4.32</td>
<td>4.482</td>
<td>-3.559</td>
<td>6.956</td>
<td>332</td>
<td>0.0465</td>
<td>-10.93</td>
<td>3.969</td>
<td>-1.214</td>
</tr>
<tr>
<td>265</td>
<td>4.41</td>
<td>4.271</td>
<td>-3.416</td>
<td>6.712</td>
<td>333</td>
<td>0.0375</td>
<td>-8.186</td>
<td>1.847</td>
<td>2.840</td>
</tr>
<tr>
<td>266</td>
<td>4.49</td>
<td>4.087</td>
<td>-3.296</td>
<td>6.513</td>
<td>334</td>
<td>0.0311</td>
<td>-6.530</td>
<td>0.6289</td>
<td>5.067</td>
</tr>
<tr>
<td>267</td>
<td>4.56</td>
<td>3.983</td>
<td>-3.234</td>
<td>6.420</td>
<td>335</td>
<td>0.0248</td>
<td>-5.692</td>
<td>0.1022</td>
<td>5.880</td>
</tr>
<tr>
<td>268</td>
<td>4.64</td>
<td>3.969</td>
<td>-3.235</td>
<td>6.440</td>
<td>336</td>
<td>0.0199</td>
<td>-4.656</td>
<td>-0.5382</td>
<td>6.860</td>
</tr>
<tr>
<td>269</td>
<td>4.72</td>
<td>4.009</td>
<td>-3.273</td>
<td>6.524</td>
<td>337</td>
<td>0.0162</td>
<td>-2.090</td>
<td>-2.355</td>
<td>10.09</td>
</tr>
<tr>
<td>270</td>
<td>4.79</td>
<td>4.025</td>
<td>-3.294</td>
<td>6.577</td>
<td>338</td>
<td>0.0135</td>
<td>3.113</td>
<td>-6.237</td>
<td>17.33</td>
</tr>
<tr>
<td>271</td>
<td>4.87</td>
<td>3.935</td>
<td>-3.240</td>
<td>6.494</td>
<td>339</td>
<td>0.0113</td>
<td>11.01</td>
<td>-12.26</td>
<td>28.77</td>
</tr>
<tr>
<td>272</td>
<td>4.91</td>
<td>3.704</td>
<td>-3.085</td>
<td>6.231</td>
<td>340</td>
<td>0.0912</td>
<td>20.02</td>
<td>-19.22</td>
<td>42.15</td>
</tr>
<tr>
<td>273</td>
<td>4.94</td>
<td>3.378</td>
<td>-2.861</td>
<td>5.845</td>
<td>341</td>
<td>0.0729</td>
<td>27.20</td>
<td>-24.83</td>
<td>53.03</td>
</tr>
<tr>
<td>274</td>
<td>4.94</td>
<td>3.061</td>
<td>-2.645</td>
<td>5.473</td>
<td>342</td>
<td>0.0583</td>
<td>29.63</td>
<td>-26.80</td>
<td>56.96</td>
</tr>
<tr>
<td>275</td>
<td>4.94</td>
<td>2.854</td>
<td>-2.508</td>
<td>5.243</td>
<td>343</td>
<td>0.0494</td>
<td>25.97</td>
<td>-24.04</td>
<td>51.78</td>
</tr>
<tr>
<td>276</td>
<td>4.93</td>
<td>2.790</td>
<td>-2.474</td>
<td>5.201</td>
<td>344</td>
<td>0.0365</td>
<td>16.35</td>
<td>-16.63</td>
<td>37.55</td>
</tr>
<tr>
<td>277</td>
<td>4.92</td>
<td>2.816</td>
<td>-2.505</td>
<td>5.276</td>
<td>345</td>
<td>0.00301</td>
<td>3.774</td>
<td>-6.858</td>
<td>18.72</td>
</tr>
<tr>
<td>278</td>
<td>4.94</td>
<td>2.820</td>
<td>-2.518</td>
<td>5.316</td>
<td>346</td>
<td>0.00235</td>
<td>-2.414</td>
<td>-1.987</td>
<td>9.304</td>
</tr>
<tr>
<td>279</td>
<td>4.92</td>
<td>2.692</td>
<td>-2.433</td>
<td>5.175</td>
<td>347</td>
<td>0.00158</td>
<td>7.880</td>
<td>-9.888</td>
<td>24.53</td>
</tr>
<tr>
<td>280</td>
<td>4.91</td>
<td>2.389</td>
<td>-2.222</td>
<td>4.803</td>
<td>348</td>
<td>0.00111</td>
<td>29.52</td>
<td>-26.61</td>
<td>56.78</td>
</tr>
<tr>
<td>281</td>
<td>4.86</td>
<td>1.963</td>
<td>-1.922</td>
<td>4.272</td>
<td>349</td>
<td>0.00107</td>
<td>41.03</td>
<td>-35.51</td>
<td>73.95</td>
</tr>
<tr>
<td>282</td>
<td>4.79</td>
<td>1.517</td>
<td>-1.612</td>
<td>3.726</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Gierczak et al.12 parameterization of the temperature dependence revised by Burkholder,7 $\sigma(T, \lambda) = \sigma(298~K, \lambda) (1 + A T + B T^2 + C T^3)$ for $T = 235–298~K$
<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>Φ(218 K)</th>
<th>Φ(248 K)</th>
<th>Φ(273 K)</th>
<th>Φ(295 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>279</td>
<td>0.680</td>
<td>0.579</td>
<td>0.571</td>
<td>0.617</td>
</tr>
<tr>
<td>280</td>
<td>0.663</td>
<td>0.558</td>
<td>0.551</td>
<td>0.597</td>
</tr>
<tr>
<td>281</td>
<td>0.644</td>
<td>0.536</td>
<td>0.530</td>
<td>0.578</td>
</tr>
<tr>
<td>282</td>
<td>0.621</td>
<td>0.513</td>
<td>0.509</td>
<td>0.559</td>
</tr>
<tr>
<td>283</td>
<td>0.594</td>
<td>0.489</td>
<td>0.489</td>
<td>0.540</td>
</tr>
<tr>
<td>284</td>
<td>0.565</td>
<td>0.465</td>
<td>0.468</td>
<td>0.521</td>
</tr>
<tr>
<td>285</td>
<td>0.534</td>
<td>0.441</td>
<td>0.448</td>
<td>0.502</td>
</tr>
<tr>
<td>286</td>
<td>0.500</td>
<td>0.417</td>
<td>0.427</td>
<td>0.483</td>
</tr>
<tr>
<td>287</td>
<td>0.465</td>
<td>0.393</td>
<td>0.407</td>
<td>0.464</td>
</tr>
<tr>
<td>288</td>
<td>0.430</td>
<td>0.369</td>
<td>0.388</td>
<td>0.446</td>
</tr>
<tr>
<td>289</td>
<td>0.394</td>
<td>0.345</td>
<td>0.368</td>
<td>0.428</td>
</tr>
<tr>
<td>290</td>
<td>0.359</td>
<td>0.322</td>
<td>0.350</td>
<td>0.411</td>
</tr>
<tr>
<td>291</td>
<td>0.324</td>
<td>0.300</td>
<td>0.331</td>
<td>0.394</td>
</tr>
<tr>
<td>292</td>
<td>0.291</td>
<td>0.279</td>
<td>0.314</td>
<td>0.377</td>
</tr>
<tr>
<td>293</td>
<td>0.260</td>
<td>0.258</td>
<td>0.297</td>
<td>0.361</td>
</tr>
<tr>
<td>294</td>
<td>0.231</td>
<td>0.239</td>
<td>0.280</td>
<td>0.345</td>
</tr>
<tr>
<td>295</td>
<td>0.205</td>
<td>0.221</td>
<td>0.264</td>
<td>0.330</td>
</tr>
<tr>
<td>296</td>
<td>0.180</td>
<td>0.203</td>
<td>0.249</td>
<td>0.315</td>
</tr>
<tr>
<td>297</td>
<td>0.158</td>
<td>0.187</td>
<td>0.235</td>
<td>0.301</td>
</tr>
<tr>
<td>298</td>
<td>0.138</td>
<td>0.172</td>
<td>0.221</td>
<td>0.287</td>
</tr>
<tr>
<td>299</td>
<td>0.121</td>
<td>0.158</td>
<td>0.208</td>
<td>0.274</td>
</tr>
<tr>
<td>300</td>
<td>0.105</td>
<td>0.144</td>
<td>0.195</td>
<td>0.261</td>
</tr>
<tr>
<td>301</td>
<td>0.0915</td>
<td>0.132</td>
<td>0.183</td>
<td>0.249</td>
</tr>
<tr>
<td>302</td>
<td>0.0794</td>
<td>0.121</td>
<td>0.125</td>
<td>0.237</td>
</tr>
<tr>
<td>303</td>
<td>0.0735</td>
<td>0.101</td>
<td>0.105</td>
<td>0.213</td>
</tr>
<tr>
<td>304</td>
<td>0.0557</td>
<td>0.0810</td>
<td>0.0873</td>
<td>0.184</td>
</tr>
<tr>
<td>305</td>
<td>0.0421</td>
<td>0.0646</td>
<td>0.0728</td>
<td>0.159</td>
</tr>
<tr>
<td>306</td>
<td>0.0317</td>
<td>0.0514</td>
<td>0.0608</td>
<td>0.137</td>
</tr>
<tr>
<td>307</td>
<td>0.0239</td>
<td>0.0409</td>
<td>0.0508</td>
<td>0.119</td>
</tr>
<tr>
<td>308</td>
<td>0.0180</td>
<td>0.0325</td>
<td>0.0426</td>
<td>0.103</td>
</tr>
<tr>
<td>309</td>
<td>0.0135</td>
<td>0.0258</td>
<td>0.0358</td>
<td>0.0887</td>
</tr>
<tr>
<td>310</td>
<td>0.0101</td>
<td>0.0205</td>
<td>0.0301</td>
<td>0.0769</td>
</tr>
<tr>
<td>311</td>
<td>0.00762</td>
<td>0.0164</td>
<td>0.0255</td>
<td>0.0669</td>
</tr>
<tr>
<td>312</td>
<td>0.00574</td>
<td>0.0131</td>
<td>0.0216</td>
<td>0.0584</td>
</tr>
<tr>
<td>313</td>
<td>0.00433</td>
<td>0.0105</td>
<td>0.0184</td>
<td>0.0511</td>
</tr>
<tr>
<td>314</td>
<td>0.00328</td>
<td>0.00842</td>
<td>0.0158</td>
<td>0.0449</td>
</tr>
<tr>
<td>315</td>
<td>0.00249</td>
<td>0.00679</td>
<td>0.0136</td>
<td>0.0396</td>
</tr>
<tr>
<td>316</td>
<td>0.00190</td>
<td>0.00550</td>
<td>0.0117</td>
<td>0.0350</td>
</tr>
<tr>
<td>317</td>
<td>0.00145</td>
<td>0.00447</td>
<td>0.0101</td>
<td>0.0311</td>
</tr>
<tr>
<td>318</td>
<td>0.00111</td>
<td>0.00365</td>
<td>0.00882</td>
<td>0.0278</td>
</tr>
<tr>
<td>319</td>
<td>0.000858</td>
<td>0.00299</td>
<td>0.00771</td>
<td>0.0248</td>
</tr>
<tr>
<td>320</td>
<td>0.000664</td>
<td>0.00246</td>
<td>0.00676</td>
<td>0.0223</td>
</tr>
<tr>
<td>321</td>
<td>0.000515</td>
<td>0.00204</td>
<td>0.00595</td>
<td>0.0201</td>
</tr>
<tr>
<td>322</td>
<td>0.000400</td>
<td>0.00169</td>
<td>0.00526</td>
<td>0.0181</td>
</tr>
<tr>
<td>323</td>
<td>0.000312</td>
<td>0.00141</td>
<td>0.00466</td>
<td>0.0164</td>
</tr>
<tr>
<td>324</td>
<td>0.000244</td>
<td>0.00117</td>
<td>0.00414</td>
<td>0.0149</td>
</tr>
<tr>
<td>325</td>
<td>0.000191</td>
<td>0.000983</td>
<td>0.00369</td>
<td>0.0135</td>
</tr>
<tr>
<td>326</td>
<td>0.000149</td>
<td>0.000826</td>
<td>0.00329</td>
<td>0.0124</td>
</tr>
<tr>
<td>327</td>
<td>0.000117</td>
<td>0.000696</td>
<td>0.00295</td>
<td>0.0113</td>
</tr>
</tbody>
</table>

Note:
Blitz et al.4,5 calculated using the expression given in the text

(7) Burkholder, J. B., personal communication to the NASA JPL Panel.

D22. CH$_3$C(O)CH$_2$OH (hydroxyacetone, acetol)

\[
\begin{align*}
\text{CH}_3\text{C(O)CH}_2\text{OH} + \text{hv} & \rightarrow \text{CH}_3\text{C(O)} + \text{CH}_2\text{OH} \\
& \rightarrow \text{HOCH}_2\text{C(O)} + \text{CH}_3 \\
& \rightarrow \text{HOCH}_2 + \text{CO} + \text{CH}_3 \\
& \rightarrow \text{HO} + \text{CH}_2\text{C(O)CH}_3 \\
\end{align*}
\]

(1) 376 kJ mol^{-1}, (2) 376 kJ mol^{-1}, (3) 335 kJ mol^{-1}, (4) 335 kJ mol^{-1}

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption cross sections of CH$_3$C(O)CH$_2$OH (hydroxyacetone, acetol) have been measured by Meller and Crowley5 at 296 K in the range 207–333 nm; by Orlando et al.6 at 298 K over the range 235–340 nm; and by Butkovskaya et al.2 at 294 K over the range 240–350 nm using a static method, and at 328 K over the range 250–350 nm using a dynamic method. Dillon et al.4 measured the cross section at 184.9 nm and 358 K to be $(5.4 \pm 0.1) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$ whereas Baasandorj et al.1 reported a value of $(5.43 \pm 0.08) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$ at 298 K. The spectrum shows an absorption band with the maximum near 266 nm. The shape of the measured spectra are in excellent agreement except for the spectrum obtained by Butkovskaya et al.2 using the dynamic method. The maxima cross sections reported by Butkovskaya et al.2 are 15% and 24% lower for the static and dynamic methods, respectively, than the values obtained by Orlando et al.6; the maximum reported by Meller and Crowley5 is 11% lower than that of Orlando et al.6 Large discrepancies between the measured spectra exist at $\lambda > 310$ nm.

In Table 4D-25 are listed the averages over 1 nm intervals of the cross sections of Orlando et al.6 and Butkovskaya et al.2 (static) in the wavelength range 240–310 nm; at 311–336 nm, only those of Orlando et al.6.

Photolysis Quantum Yield and Product Studies: Quantum yields for removal of hydroxyacetone were estimated by Orlando et al.6 to be 0.65 ± 0.25 for the photolysis in the 240–420 nm band. They also suggested that $0.3 \pm 0.2 < \Phi_1 + \Phi_2 < 0.6$ for wavelengths larger than 290 nm. Products detected were CO, CO$_2$, CH$_2$O, CH$_3$COOH, CH$_3$COOH, HCOOH and CH$_3$OH. These authors concluded that at most 50% of the photolysis occurred via channel (1). Direct observation of OH radicals, presumably arising form channel (4), was made by Chowdhury et al.3 at 148 nm. Photolysis of hydroxyacetone at 193 nm was performed by Chowdhury et al.3 and appears to occur by process (2) with the initial formation of HOCH$_2$CO yielding OH and ketene.
Table 4D-25. Absorption Cross Sections of CH$_3$C(O)CH$_2$OH at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>2.43</td>
<td>264</td>
<td>6.06</td>
<td>288</td>
<td>3.03</td>
<td>312</td>
<td>0.219</td>
</tr>
<tr>
<td>241</td>
<td>2.60</td>
<td>265</td>
<td>6.07</td>
<td>289</td>
<td>2.80</td>
<td>313</td>
<td>0.192</td>
</tr>
<tr>
<td>242</td>
<td>2.78</td>
<td>266</td>
<td>6.09</td>
<td>290</td>
<td>2.58</td>
<td>314</td>
<td>0.177</td>
</tr>
<tr>
<td>243</td>
<td>2.97</td>
<td>267</td>
<td>6.09</td>
<td>291</td>
<td>2.37</td>
<td>315</td>
<td>0.157</td>
</tr>
<tr>
<td>244</td>
<td>3.15</td>
<td>268</td>
<td>6.07</td>
<td>292</td>
<td>2.18</td>
<td>316</td>
<td>0.142</td>
</tr>
<tr>
<td>245</td>
<td>3.34</td>
<td>269</td>
<td>6.04</td>
<td>293</td>
<td>2.00</td>
<td>317</td>
<td>0.133</td>
</tr>
<tr>
<td>246</td>
<td>3.54</td>
<td>270</td>
<td>5.98</td>
<td>294</td>
<td>1.82</td>
<td>318</td>
<td>0.117</td>
</tr>
<tr>
<td>247</td>
<td>3.73</td>
<td>271</td>
<td>5.90</td>
<td>295</td>
<td>1.65</td>
<td>319</td>
<td>0.104</td>
</tr>
<tr>
<td>248</td>
<td>3.91</td>
<td>272</td>
<td>5.82</td>
<td>296</td>
<td>1.49</td>
<td>320</td>
<td>0.095</td>
</tr>
<tr>
<td>249</td>
<td>4.11</td>
<td>273</td>
<td>5.72</td>
<td>297</td>
<td>1.34</td>
<td>321</td>
<td>0.087</td>
</tr>
<tr>
<td>250</td>
<td>4.29</td>
<td>274</td>
<td>5.61</td>
<td>298</td>
<td>1.19</td>
<td>322</td>
<td>0.078</td>
</tr>
<tr>
<td>251</td>
<td>4.50</td>
<td>275</td>
<td>5.49</td>
<td>299</td>
<td>1.07</td>
<td>323</td>
<td>0.072</td>
</tr>
<tr>
<td>252</td>
<td>4.67</td>
<td>276</td>
<td>5.37</td>
<td>300</td>
<td>0.955</td>
<td>324</td>
<td>0.067</td>
</tr>
<tr>
<td>253</td>
<td>4.83</td>
<td>277</td>
<td>5.22</td>
<td>301</td>
<td>0.874</td>
<td>325</td>
<td>0.063</td>
</tr>
<tr>
<td>254</td>
<td>4.98</td>
<td>278</td>
<td>5.05</td>
<td>302</td>
<td>0.772</td>
<td>326</td>
<td>0.056</td>
</tr>
<tr>
<td>255</td>
<td>5.14</td>
<td>279</td>
<td>4.87</td>
<td>303</td>
<td>0.682</td>
<td>327</td>
<td>0.053</td>
</tr>
<tr>
<td>256</td>
<td>5.31</td>
<td>280</td>
<td>4.68</td>
<td>304</td>
<td>0.603</td>
<td>328</td>
<td>0.051</td>
</tr>
<tr>
<td>257</td>
<td>5.46</td>
<td>281</td>
<td>4.48</td>
<td>305</td>
<td>0.535</td>
<td>329</td>
<td>0.047</td>
</tr>
<tr>
<td>258</td>
<td>5.59</td>
<td>282</td>
<td>4.28</td>
<td>306</td>
<td>0.477</td>
<td>330</td>
<td>0.044</td>
</tr>
<tr>
<td>259</td>
<td>5.69</td>
<td>283</td>
<td>4.09</td>
<td>307</td>
<td>0.424</td>
<td>331</td>
<td>0.041</td>
</tr>
<tr>
<td>260</td>
<td>5.79</td>
<td>284</td>
<td>3.89</td>
<td>308</td>
<td>0.377</td>
<td>332</td>
<td>0.038</td>
</tr>
<tr>
<td>261</td>
<td>5.87</td>
<td>285</td>
<td>3.69</td>
<td>309</td>
<td>0.333</td>
<td>333</td>
<td>0.036</td>
</tr>
<tr>
<td>262</td>
<td>5.96</td>
<td>286</td>
<td>3.48</td>
<td>310</td>
<td>0.291</td>
<td>334</td>
<td>0.034</td>
</tr>
<tr>
<td>263</td>
<td>6.02</td>
<td>287</td>
<td>3.26</td>
<td>311</td>
<td>0.249</td>
<td>335</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Note:
240–310 nm: average of Orlando et al.6 Butkovskaya et al.2 (static)
311–335 nm: Orlando et al.6 (at $\lambda > 326$ nm smoothed)

D23. CHOCHO (glyoxal)

CHOCHO + hv → HCO + HCO
→ H2 + 2 CO
→ HCHO + CO
→ H + CO + HCO

300 kJ mol\(^{-1}\)
−8 kJ mol\(^{-1}\)
−7 kJ mol\(^{-1}\)
364 kJ mol\(^{-1}\)

399 nm
All
All
329 nm

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV/vis absorption spectrum of glyoxal, CHOCHO, has been measured in a number of studies. The spectrum has two absorption bands in the wavelength region >220 nm; a weak band with evidence of diffuse vibrational structure in the 220–350 nm region, and a stronger and highly structured band at wavelengths >360 nm with a maximum near 455 nm. The absorption cross sections, particularly in the visible absorption band, are resolution dependent and comparison of results from the various studies need to take this into consideration. The room temperature absorption spectrum of glyoxal has been reported by Plum et al.\(^{(11)}\) (230–460 nm), Langford and Moore\(^{(6)}\) (308 nm), Zhu et al.\(^{(15)}\) (193, 248, 308, and 351 nm), Chen and Zhu\(^{(3)}\) (290–420 nm, in 10 nm intervals), Orlando and Tyndall\(^{(9)}\) (210–450 nm, 0.6 nm resolution), Horowitz et al.\(^{(5)}\) (210–480 nm, 0.25 nm resolution), Zhu and Johnston\(^{(14)}\) (436–442 nm), and Volkamer et al.\(^{(13)}\) (250–526 nm). Orlando and Tyndall\(^{(9)}\) and Horowitz et al.\(^{(3)}\) reported absorption spectra obtained using diode array spectroscopy and their spectra are in good agreement, i.e., to better than 10% between 240 and 440 nm. The absorption cross sections from Chen and Zhu\(^{(3)}\) differ from these studies by 10 to 50% depending on the wavelength. However, the absorption cross sections reported by Zhu et al.\(^{(15)}\) at 248, 308, and 351 nm agree very well with the data of Horowitz et al.\(^{(5)}\) and Orlando and Tyndall.\(^{(9)}\) A strong absorption feature at wavelengths <200 nm indicated by the 193 nm measurement of Zhu et al.\(^{(15)}\) (\(\sigma = 4.8 \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1}\)) was also reported by Orlando and Tyndall.\(^{(9)}\) The cross section data from Plum et al.\(^{(11)}\) are systematically less, by roughly 10 to 25%, than reported in the more recent studies with larger differences in the region of the absorption minimum near 350 nm and at the shorter wavelengths.

Volkamer et al.\(^{(13)}\) reported the highest available resolution absorption spectra of glyoxal to date which were obtained using Fourier transform spectroscopy at 1 cm\(^{-1}\) (250–526 nm) and 0.06 cm\(^{-1}\) (368–526 nm) resolution. The high-resolution spectrum has more pronounced differential vibrational fine structure in the visible absorption band leading to higher absorption cross sections than reported in the lower resolution studies. The absorption cross sections reported by Volkamer et al.\(^{(13)}\) are systematically 10% greater than those reported by Horowitz et al.\(^{(3)}\) and Orlando and Tyndall\(^{(9)}\) (where comparison is possible). The differences in the absorption cross sections are most apparent in the short wavelength band. The UV spectrum reported by Volkamer et al.\(^{(13)}\) is consistent with IR spectral parameters which were obtained by simultaneous recording of UV and IR spectra using the same glyoxal sample fillings of the absorption cell. Zhu and Johnston\(^{(14)}\) report an absorption cross section at the absorption maximum near 440.7 nm (440.1 nm in the Volkamer et al. spectrum) of \(4.6 \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1}\) that was obtained at high resolution using cavity ring-down spectroscopy. Their cross section value is in poor agreement with the high resolution data of Volkamer et al.\(^{(13)}\) which is a factor of two greater. The recommended room temperature absorption cross sections in Table 4D-26 are averages over 1 nm intervals of the high resolution spectrum from Volkamer et al.\(^{(13)}\) and are appropriate for use in atmospheric photolysis rate calculations. Studies requiring higher resolution data should consult the original literature.

Photolysis Quantum Yield and Product Studies: The photodissociation of CHOCHO as well as the photolysis product channel yields are wavelength and pressure dependent. Calvert and Pitts\(^{(2)}\) have summarized the CHOCHO quantum yield data prior to 1966. On the basis of the work by Calvert and Layne\(^{(1)}\) and Parmenent\(^{(10)}\) it was established that the HCHO + CO photolysis channel (3) was dominant with yields between 0.84 and 0.6 over the wavelength range 254 to 435 nm. There was little experimental evidence for the HCO + HCO radical channel (1) occurring and it was incorrectly concluded to be negligible. Plum et al.\(^{(11)}\) has since reported the effective quantum yield for CHOCHO photolysis at wavelengths >290 nm to be 0.029, based on measured photolysis rates in an environmental chamber relative to NO\(_{2}\) where \(J_{\text{CHOCHO/NO}}\) was found to be 0.008 ± 0.005. An effective atmospheric photolysis rate was measured using solar radiation in the EUPHORE outdoor chamber to be \(J_{\text{shu}} = 1.04 ± 0.10 \times 10^{-4} \text{ s}^{-1}\), corresponding to an effective quantum yield for glyoxal loss of 0.035 ± 0.007 \(7.8\) in reasonable agreement with the value reported by Plum et al.\(^{(11)}\)

Langford and Moore\(^{(6)}\) measured HCO produced in the photolysis of glyoxal in 1000 Torr N\(_2\) at 305 nm by direct HCO resonance absorption and deduced a total HCO yield of 0.8 ± 0.4 at 305 nm. Using cavity ring-down spectroscopy, Zhu et al.\(^{(15)}\) reported HCO quantum yields of 1.5 (\(\Phi = 0.75\)) for photolysis at 351 nm, 0.69 at 308 nm, 0.52 at 248 nm and 0.42 at 193 nm. In a later study Chen and Zhu\(^{(3)}\) reported zero pressure
HCO yields, $\Phi_0(\lambda)$, at 10 nm intervals, that increase from 0.50 ± 0.01 at 290 nm to a maximum of 2.01 ± 0.08 at 390 nm and that decrease to 0.74 ± 0.08 at 400 nm, 0.56 ± 0.04 at 410 nm, and 0.48 ± 0.03 at 420 nm. HCO quantum yields were found to be independent of the N$_2$ buffer gas pressure (10–400 Torr) for photolysis in the 290–370 nm region. In the wavelength region 380–420 nm the HCO quantum yield decreased with increasing pressure. They reported HCO quantum yields at 760 Torr N$_2$ to be 0.49 at 380 nm, 0.54 nm at 390 nm, 0.32 at 400 nm, 0.22 at 410 nm and 0.14 at 420 nm. Feierabend et al.4 measured quantum yields for the production of HCO at 85 discrete wavelengths in the wavelength range 290–420 nm at pressures between 50 and 550 Torr (N$_2$) at 298 K using pulsed laser photolysis combined with cavity ring-down spectroscopy detection of HCO. $\Phi_0(\lambda)$ varied smoothly with wavelength with a maximum value of ~1.8 in the range 300–385 nm with values decreasing to near 0 at 420 nm and 0.4 at 290 nm. The high precision of the measurements enabled the pressure dependence of the HCO quantum yield to be determined at each wavelength using the Stern-Volmer relationship

$$\frac{1}{\Phi(\lambda, P)} = \frac{1}{\Phi_0(\lambda)} + \frac{k_q(\lambda)}{k_d(\lambda)[N_2]}$$

where k_q is the collisional quenching rate coefficient and k_d is the rate coefficient for the dissociation of glyoxal. The wavelength dependence of the rate coefficient ratio was fit to the expression

$$k_q/k_d(\lambda) = 2.3 \times 10^{-20} + 1.5 \times 10^{-19} \exp(-0.4 \Delta E)$$

where $\Delta E = ((28571/\lambda) - 72.5)$ (kcal mol$^{-1}$), λ is the photolysis wavelength (nm), and 72.5 kcal mol$^{-1}$ is the threshold for glyoxal photodissociation (there is a small barrier to dissociation on the triplet surface). The $\Phi_0(\lambda)$ values from the Feierabend et al.4 work are in good agreement with the values reported by Chen and Zhu.5

Tadić et al.12 photolysed glyoxal with broadband fluorescent lamps, which selectively overlapped with the two absorption bands, and measured the CO, HCHO and HCOOH end products. Using 275–380 nm irradiation, the quantum yield for glyoxal loss was found to be $\Phi_T = 0.97 ± 0.05$ and independent of pressure. The absolute quantum yields obtained for 390–470 nm radiation, covering the visible absorption band, were found to be pressure dependent with values ranging from $\Phi_T = 0.12$ at 100 Torr to $\Phi_T = 0.04$ at 700 Torr and was described by the Stern-Volmer expression

$$\frac{1}{\Phi_T} = 6.80 + [251.8 \times 10^{-4} P(\text{Torr})]$$

The direct HCO quantum yield measurements of Feierabend et al.4 and Chen and Zhu5 combined with the end product yield results of Tadić et al.12 indicate that dissociation into 2 HCO radicals is the most important pathway under atmospheric conditions. On the basis of their HCO quantum yield data, Feierabend et al. reported a set of revised wavelength dependent quantum yields for channels (1), (2) and (3) from those of Tadić et al.12 which were recommended in JPL 06-2. The revised quantum yields are recommended and given in Table 4D-27. Although glyoxal has a very low effective quantum yield, photolysis is an important removal path in the atmosphere.

Table 4D-26. Recommended Absorption Cross Sections of CHOCHO at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1.73</td>
<td>306</td>
<td>3.22</td>
<td>362</td>
<td>0.706</td>
<td>418</td>
<td>7.87</td>
<td>474</td>
<td>0.108</td>
</tr>
<tr>
<td>251</td>
<td>1.52</td>
<td>307</td>
<td>3.20</td>
<td>363</td>
<td>0.639</td>
<td>419</td>
<td>9.13</td>
<td>475</td>
<td>0.159</td>
</tr>
<tr>
<td>252</td>
<td>1.48</td>
<td>308</td>
<td>3.15</td>
<td>364</td>
<td>0.680</td>
<td>420</td>
<td>5.60</td>
<td>476</td>
<td>0.155</td>
</tr>
<tr>
<td>253</td>
<td>1.55</td>
<td>309</td>
<td>3.12</td>
<td>365</td>
<td>0.665</td>
<td>421</td>
<td>7.19</td>
<td>477</td>
<td>0.181</td>
</tr>
<tr>
<td>254</td>
<td>1.60</td>
<td>310</td>
<td>3.10</td>
<td>366</td>
<td>0.743</td>
<td>422</td>
<td>6.99</td>
<td>478</td>
<td>0.255</td>
</tr>
<tr>
<td>255</td>
<td>1.67</td>
<td>311</td>
<td>3.22</td>
<td>367</td>
<td>0.860</td>
<td>423</td>
<td>13.0</td>
<td>479</td>
<td>0.142</td>
</tr>
<tr>
<td>256</td>
<td>1.62</td>
<td>312</td>
<td>3.34</td>
<td>368</td>
<td>1.01</td>
<td>424</td>
<td>8.24</td>
<td>480</td>
<td>0.074</td>
</tr>
<tr>
<td>257</td>
<td>1.81</td>
<td>313</td>
<td>3.39</td>
<td>369</td>
<td>1.06</td>
<td>425</td>
<td>10.4</td>
<td>481</td>
<td>0.070</td>
</tr>
<tr>
<td>258</td>
<td>1.82</td>
<td>314</td>
<td>3.23</td>
<td>370</td>
<td>1.14</td>
<td>426</td>
<td>16.4</td>
<td>482</td>
<td>0.065</td>
</tr>
<tr>
<td>259</td>
<td>1.85</td>
<td>315</td>
<td>2.80</td>
<td>371</td>
<td>1.18</td>
<td>427</td>
<td>16.1</td>
<td>483</td>
<td>0.053</td>
</tr>
<tr>
<td>260</td>
<td>1.83</td>
<td>316</td>
<td>2.65</td>
<td>372</td>
<td>1.14</td>
<td>428</td>
<td>21.4</td>
<td>484</td>
<td>0.071</td>
</tr>
<tr>
<td>261</td>
<td>1.96</td>
<td>317</td>
<td>2.46</td>
<td>373</td>
<td>1.21</td>
<td>429</td>
<td>6.50</td>
<td>485</td>
<td>0.050</td>
</tr>
<tr>
<td>262</td>
<td>2.03</td>
<td>318</td>
<td>2.21</td>
<td>374</td>
<td>1.35</td>
<td>430</td>
<td>7.03</td>
<td>486</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>263</td>
<td>2.14</td>
<td>319</td>
<td>1.93</td>
<td>375</td>
<td>1.33</td>
<td>431</td>
<td>6.52</td>
<td>487</td>
<td>0.056</td>
</tr>
<tr>
<td>264</td>
<td>2.18</td>
<td>320</td>
<td>1.85</td>
<td>376</td>
<td>1.38</td>
<td>432</td>
<td>6.08</td>
<td>488</td>
<td>0.070</td>
</tr>
<tr>
<td>265</td>
<td>2.26</td>
<td>321</td>
<td>1.89</td>
<td>377</td>
<td>1.47</td>
<td>433</td>
<td>5.66</td>
<td>489</td>
<td>0.042</td>
</tr>
<tr>
<td>266</td>
<td>2.33</td>
<td>322</td>
<td>1.77</td>
<td>378</td>
<td>1.61</td>
<td>434</td>
<td>6.81</td>
<td>490</td>
<td>0.045</td>
</tr>
<tr>
<td>267</td>
<td>2.37</td>
<td>323</td>
<td>1.72</td>
<td>379</td>
<td>1.53</td>
<td>435</td>
<td>7.66</td>
<td>491</td>
<td>0.041</td>
</tr>
<tr>
<td>268</td>
<td>2.36</td>
<td>324</td>
<td>1.68</td>
<td>380</td>
<td>1.93</td>
<td>436</td>
<td>13.2</td>
<td>492</td>
<td>0.039</td>
</tr>
<tr>
<td>269</td>
<td>2.48</td>
<td>325</td>
<td>1.60</td>
<td>381</td>
<td>2.46</td>
<td>437</td>
<td>9.19</td>
<td>493</td>
<td>0.040</td>
</tr>
<tr>
<td>270</td>
<td>2.51</td>
<td>326</td>
<td>1.61</td>
<td>382</td>
<td>2.02</td>
<td>438</td>
<td>13.8</td>
<td>494</td>
<td>0.041</td>
</tr>
<tr>
<td>271</td>
<td>2.61</td>
<td>327</td>
<td>1.70</td>
<td>383</td>
<td>2.07</td>
<td>439</td>
<td>12.1</td>
<td>495</td>
<td>0.042</td>
</tr>
<tr>
<td>272</td>
<td>2.72</td>
<td>328</td>
<td>1.94</td>
<td>384</td>
<td>1.94</td>
<td>440</td>
<td>25.9</td>
<td>496</td>
<td>0.045</td>
</tr>
<tr>
<td>273</td>
<td>2.81</td>
<td>329</td>
<td>1.86</td>
<td>385</td>
<td>1.89</td>
<td>441</td>
<td>13.1</td>
<td>497</td>
<td>0.033</td>
</tr>
<tr>
<td>274</td>
<td>2.92</td>
<td>330</td>
<td>1.69</td>
<td>386</td>
<td>1.83</td>
<td>442</td>
<td>9.01</td>
<td>498</td>
<td>0.035</td>
</tr>
<tr>
<td>275</td>
<td>3.00</td>
<td>331</td>
<td>1.13</td>
<td>387</td>
<td>2.29</td>
<td>443</td>
<td>11.1</td>
<td>499</td>
<td>0.032</td>
</tr>
<tr>
<td>276</td>
<td>3.06</td>
<td>332</td>
<td>1.05</td>
<td>388</td>
<td>3.00</td>
<td>444</td>
<td>13.5</td>
<td>500</td>
<td>0.033</td>
</tr>
<tr>
<td>277</td>
<td>3.09</td>
<td>333</td>
<td>0.966</td>
<td>389</td>
<td>3.21</td>
<td>445</td>
<td>15.1</td>
<td>501</td>
<td>0.038</td>
</tr>
<tr>
<td>278</td>
<td>3.08</td>
<td>334</td>
<td>0.919</td>
<td>390</td>
<td>3.48</td>
<td>446</td>
<td>7.82</td>
<td>502</td>
<td>0.031</td>
</tr>
<tr>
<td>279</td>
<td>3.09</td>
<td>335</td>
<td>0.737</td>
<td>391</td>
<td>3.92</td>
<td>447</td>
<td>3.73</td>
<td>503</td>
<td>0.042</td>
</tr>
<tr>
<td>280</td>
<td>3.13</td>
<td>336</td>
<td>0.630</td>
<td>392</td>
<td>3.80</td>
<td>448</td>
<td>4.14</td>
<td>504</td>
<td>0.034</td>
</tr>
<tr>
<td>281</td>
<td>3.22</td>
<td>337</td>
<td>0.589</td>
<td>393</td>
<td>2.85</td>
<td>449</td>
<td>5.53</td>
<td>505</td>
<td>0.035</td>
</tr>
<tr>
<td>282</td>
<td>3.32</td>
<td>338</td>
<td>0.647</td>
<td>394</td>
<td>3.15</td>
<td>450</td>
<td>8.68</td>
<td>506</td>
<td>0.046</td>
</tr>
<tr>
<td>283</td>
<td>3.45</td>
<td>339</td>
<td>0.585</td>
<td>395</td>
<td>3.86</td>
<td>451</td>
<td>13.8</td>
<td>507</td>
<td>0.042</td>
</tr>
<tr>
<td>284</td>
<td>3.57</td>
<td>340</td>
<td>0.553</td>
<td>396</td>
<td>3.68</td>
<td>452</td>
<td>15.9</td>
<td>508</td>
<td>0.037</td>
</tr>
<tr>
<td>285</td>
<td>3.67</td>
<td>341</td>
<td>0.563</td>
<td>397</td>
<td>3.36</td>
<td>453</td>
<td>30.4</td>
<td>509</td>
<td>0.030</td>
</tr>
<tr>
<td>286</td>
<td>3.80</td>
<td>342</td>
<td>0.510</td>
<td>398</td>
<td>4.32</td>
<td>454</td>
<td>26.9</td>
<td>510</td>
<td>0.023</td>
</tr>
<tr>
<td>287</td>
<td>3.79</td>
<td>343</td>
<td>0.499</td>
<td>399</td>
<td>4.35</td>
<td>455</td>
<td>52.0</td>
<td>511</td>
<td>0.023</td>
</tr>
<tr>
<td>288</td>
<td>3.81</td>
<td>344</td>
<td>0.649</td>
<td>400</td>
<td>3.87</td>
<td>456</td>
<td>15.7</td>
<td>512</td>
<td>0.030</td>
</tr>
<tr>
<td>289</td>
<td>3.80</td>
<td>345</td>
<td>0.624</td>
<td>401</td>
<td>4.46</td>
<td>457</td>
<td>2.66</td>
<td>513</td>
<td>0.023</td>
</tr>
<tr>
<td>290</td>
<td>3.73</td>
<td>346</td>
<td>0.733</td>
<td>402</td>
<td>5.84</td>
<td>458</td>
<td>2.20</td>
<td>514</td>
<td>0.030</td>
</tr>
<tr>
<td>291</td>
<td>3.64</td>
<td>347</td>
<td>0.631</td>
<td>403</td>
<td>7.16</td>
<td>459</td>
<td>0.902</td>
<td>515</td>
<td>0.053</td>
</tr>
<tr>
<td>292</td>
<td>3.65</td>
<td>348</td>
<td>0.604</td>
<td>404</td>
<td>6.24</td>
<td>460</td>
<td>1.20</td>
<td>516</td>
<td>0.035</td>
</tr>
<tr>
<td>293</td>
<td>3.68</td>
<td>349</td>
<td>0.415</td>
<td>405</td>
<td>4.49</td>
<td>461</td>
<td>0.883</td>
<td>517</td>
<td>0.051</td>
</tr>
<tr>
<td>294</td>
<td>3.73</td>
<td>350</td>
<td>0.391</td>
<td>406</td>
<td>4.48</td>
<td>462</td>
<td>0.588</td>
<td>518</td>
<td>0.102</td>
</tr>
<tr>
<td>295</td>
<td>3.81</td>
<td>351</td>
<td>0.395</td>
<td>407</td>
<td>4.07</td>
<td>463</td>
<td>0.322</td>
<td>519</td>
<td>0.065</td>
</tr>
<tr>
<td>296</td>
<td>3.82</td>
<td>352</td>
<td>0.423</td>
<td>408</td>
<td>3.44</td>
<td>464</td>
<td>0.339</td>
<td>520</td>
<td>0.100</td>
</tr>
<tr>
<td>297</td>
<td>3.92</td>
<td>353</td>
<td>0.415</td>
<td>409</td>
<td>4.01</td>
<td>465</td>
<td>0.330</td>
<td>521</td>
<td>0.169</td>
</tr>
<tr>
<td>298</td>
<td>4.07</td>
<td>354</td>
<td>0.403</td>
<td>410</td>
<td>5.66</td>
<td>466</td>
<td>0.416</td>
<td>522</td>
<td>0.037</td>
</tr>
<tr>
<td>299</td>
<td>4.12</td>
<td>355</td>
<td>0.422</td>
<td>411</td>
<td>7.22</td>
<td>467</td>
<td>0.522</td>
<td>523</td>
<td>0.011</td>
</tr>
<tr>
<td>300</td>
<td>4.04</td>
<td>356</td>
<td>0.443</td>
<td>412</td>
<td>7.41</td>
<td>468</td>
<td>0.149</td>
<td>524</td>
<td>0.007</td>
</tr>
<tr>
<td>301</td>
<td>3.91</td>
<td>357</td>
<td>0.431</td>
<td>413</td>
<td>10.8</td>
<td>469</td>
<td>0.091</td>
<td>525</td>
<td>0.004</td>
</tr>
<tr>
<td>302</td>
<td>3.78</td>
<td>358</td>
<td>0.471</td>
<td>414</td>
<td>10.1</td>
<td>470</td>
<td>0.076</td>
<td>526</td>
<td>0.000</td>
</tr>
<tr>
<td>303</td>
<td>3.57</td>
<td>359</td>
<td>0.503</td>
<td>415</td>
<td>10.2</td>
<td>471</td>
<td>0.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>3.35</td>
<td>360</td>
<td>0.546</td>
<td>416</td>
<td>6.07</td>
<td>472</td>
<td>0.092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>3.24</td>
<td>361</td>
<td>0.627</td>
<td>417</td>
<td>6.83</td>
<td>473</td>
<td>0.110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Volkamer et al.\(^{15}\) rounded to three significant figures
Table 4D-27. Recommended CHOCHO Photolysis Quantum Yields at 1 Atm and 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(\Phi) Total</th>
<th>(\Phi_1) (HCO + HCO)</th>
<th>(\Phi_2) (H2 + 2CO)</th>
<th>(\Phi_3) (H2CO + CO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>1</td>
<td>0.156</td>
<td>0.645</td>
<td>0.199</td>
</tr>
<tr>
<td>230</td>
<td>1</td>
<td>0.156</td>
<td>0.625</td>
<td>0.219</td>
</tr>
<tr>
<td>235</td>
<td>1</td>
<td>0.156</td>
<td>0.599</td>
<td>0.245</td>
</tr>
<tr>
<td>240</td>
<td>1</td>
<td>0.156</td>
<td>0.575</td>
<td>0.269</td>
</tr>
<tr>
<td>245</td>
<td>1</td>
<td>0.156</td>
<td>0.553</td>
<td>0.291</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
<td>0.156</td>
<td>0.530</td>
<td>0.314</td>
</tr>
<tr>
<td>255</td>
<td>1</td>
<td>0.156</td>
<td>0.510</td>
<td>0.334</td>
</tr>
<tr>
<td>260</td>
<td>1</td>
<td>0.156</td>
<td>0.492</td>
<td>0.352</td>
</tr>
<tr>
<td>265</td>
<td>1</td>
<td>0.156</td>
<td>0.475</td>
<td>0.369</td>
</tr>
<tr>
<td>270</td>
<td>1</td>
<td>0.156</td>
<td>0.457</td>
<td>0.387</td>
</tr>
<tr>
<td>275</td>
<td>1</td>
<td>0.156</td>
<td>0.440</td>
<td>0.404</td>
</tr>
<tr>
<td>280</td>
<td>1</td>
<td>0.156</td>
<td>0.424</td>
<td>0.420</td>
</tr>
<tr>
<td>285</td>
<td>1</td>
<td>0.156</td>
<td>0.414</td>
<td>0.430</td>
</tr>
<tr>
<td>290</td>
<td>1</td>
<td>0.156</td>
<td>0.404</td>
<td>0.440</td>
</tr>
<tr>
<td>295</td>
<td>1</td>
<td>0.156</td>
<td>0.382</td>
<td>0.451</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
<td>0.156</td>
<td>0.360</td>
<td>0.457</td>
</tr>
<tr>
<td>305</td>
<td>1</td>
<td>0.156</td>
<td>0.332</td>
<td>0.460</td>
</tr>
<tr>
<td>310</td>
<td>1</td>
<td>0.156</td>
<td>0.300</td>
<td>0.458</td>
</tr>
<tr>
<td>315</td>
<td>1</td>
<td>0.156</td>
<td>0.266</td>
<td>0.452</td>
</tr>
<tr>
<td>320</td>
<td>1</td>
<td>0.156</td>
<td>0.245</td>
<td>0.433</td>
</tr>
<tr>
<td>325</td>
<td>1</td>
<td>0.156</td>
<td>0.234</td>
<td>0.408</td>
</tr>
<tr>
<td>330</td>
<td>1</td>
<td>0.156</td>
<td>0.225</td>
<td>0.379</td>
</tr>
<tr>
<td>335</td>
<td>0.95</td>
<td>0.156</td>
<td>0.210</td>
<td>0.337</td>
</tr>
<tr>
<td>340</td>
<td>0.879</td>
<td>0.156</td>
<td>0.190</td>
<td>0.279</td>
</tr>
<tr>
<td>345</td>
<td>0.782</td>
<td>0.156</td>
<td>0.170</td>
<td>0.204</td>
</tr>
<tr>
<td>350</td>
<td>0.691</td>
<td>0.156</td>
<td>0.144</td>
<td>0.150</td>
</tr>
<tr>
<td>355</td>
<td>0.54</td>
<td>0.156</td>
<td>0.053</td>
<td>0.108</td>
</tr>
<tr>
<td>360</td>
<td>0.429</td>
<td>0.156</td>
<td>0.037</td>
<td>0.072</td>
</tr>
<tr>
<td>365</td>
<td>0.369</td>
<td>0.156</td>
<td>0.032</td>
<td>0.040</td>
</tr>
<tr>
<td>370</td>
<td>0.316</td>
<td>0.156</td>
<td>0.024</td>
<td>0.022</td>
</tr>
<tr>
<td>375</td>
<td>0.267</td>
<td>0.156</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>380</td>
<td>0.219</td>
<td>0.156</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>385</td>
<td>0.172</td>
<td>0.156</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>390</td>
<td>0.132</td>
<td>0.156</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>395</td>
<td>0.098</td>
<td>0.156</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>400</td>
<td>0.072</td>
<td>0.156</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>405</td>
<td>0.052</td>
<td>0.156</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>410</td>
<td>0.037</td>
<td>0.156</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>415</td>
<td>0.024</td>
<td>0.156</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>420</td>
<td>0</td>
<td>0.156</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

D24. CH₂C(O)C(O)H (methylglyoxal, MGLY)

Absorption Cross Sections: The UV/vis absorption spectrum of methylglyoxal (MGLY), CH₂C(O)C(O)H, has been measured at room temperature by Plum et al.³ (230–470 nm), Meller et al.⁴ (218–494 nm), Chen et al.⁵ (290–440 nm), and Staffelbach et al.⁷ (205–474 nm). The absorption spectrum exhibits two absorption bands, a slightly structured band between 225 and 335 nm and a stronger band between 335 and 475 nm, which is highly structured in the region above 410 nm. A steep increase of the absorption cross sections was observed at shorter wavelengths going from 225 to 200 nm by Staffelbach et al.⁷

The room temperature values of Meller et al.⁴ and Staffelbach et al.⁷ are in good agreement at wavelengths >230 nm. In the weaker absorption band the data of Meller et al.⁴ are greater by up to 10–15%. In the strong absorption band up to 400 nm, the data of Staffelbach et al.⁷ are greater by up to ~10% than the data of Meller et al.⁴ and at higher wavelengths the peak values reported by Meller et al.⁴ are higher (due to the higher resolution used in their study) than those measured by Staffelbach et al.⁷ The data points of Chen et al.¹ determined at 10 nm intervals fit well to the absorption curves of Meller et al.⁴ and Staffelbach et al.⁷ except at 380 and 400 nm were the differences are ~20%. The cross sections reported by Plum et al.⁵ are approximately only the half of the cross sections reported Meller et al.⁴ and Staffelbach et al.⁷. The recommended absorption cross sections in Table 4D-28 are from Staffelbach et al.⁷ in the region 200–218 nm, the mean of the values from Meller et al.⁴ and Staffelbach et al.⁷ in the region 219–235 nm, and averages over 1 nm intervals of the data from Meller et al.⁴ in the region 236–493 nm.

The temperature dependence of the absorption spectrum is relatively weak with differences on the order of 10% observed in the spectra measured by Staffelbach et al.⁷ at 298 and 248 K. The largest changes occur in the structured region between 410 and 450 nm where the fine structure becomes more pronounced at lower temperatures.

Photolysis Quantum Yield and Product Studies: Quantum yields have been measured in several studies. Kyle and Orchard¹ reported products formed in the photolysis of methylglyoxal at 387 K and 436 nm. Staffelbach et al.⁷ measured the products after photolysis of dilute mixtures of methylglyoxal in air using a Xe arc equipped with different band pass filters to isolate several regions of the spectrum. The observed products (CO, CO₂, HCHO, CH₃COOH, CH₂COOCH, CH₃OH and HCOOH,) led to the conclusion that only channel (1) is important in the photolysis range 240–480 nm. Quantum yields were derived by modeling the products formed using a number of secondary radical reactions. At 760 Torr, the Φ₁ yields were: 0.005 for the wavelength region 410–418 nm, 0.055 for 355–480 nm, 0.07 for 280–240 nm and 0.14 for 240–420 nm.

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

<table>
<thead>
<tr>
<th>CH₂C(O)C(O)H + hv</th>
<th>CH₃CO + HCO</th>
<th>305 kJ mol⁻¹</th>
<th>422 nm (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃ + 2CO</td>
<td>-25 kJ mol⁻¹</td>
<td>All (2)</td>
<td></td>
</tr>
<tr>
<td>CH₃CHO + CO</td>
<td>-6 kJ mol⁻¹</td>
<td>All (3)</td>
<td></td>
</tr>
</tbody>
</table>

4-137
Raber and Moortgat6 irradiated methylglyoxal in air at different total pressures using two types of broadband lamps and determined the products (CO, CO\textsubscript{2}, HCHO, CH\textsubscript{3}OOH, CH\textsubscript{3}OH, HCOOH, CH\textsubscript{3}CHO, CH\textsubscript{2}COOH, CH\textsubscript{2}COOCH and CH\textsubscript{2}COOCOCH). The quantum yield derived by modeling the products of the photolysis in the 275–380 nm region varied from 0.94 ± 0.04 at 54 Torr to 0.64 ± 0.03 at 760 Torr, and in the 390–470 nm region from 0.41 ± 0.04 to 0.23 ± 0.02.

Koch and Moortgat2 determined the quantum yields of CO, HCHO and CH\textsubscript{3}CHO formation at 298 K as a function of wavelength (260–440 nm) and pressure of synthetic air (30–900 Torr) using “broad” monochromatic light, with an optical resolution of 8.5 nm. For photolysis in the 260–320 nm band, the overall quantum yield was found to be unity, independent of wavelength and pressure. The analysis of the data gave evidence that channel (1) is the predominant photolysis path. In the 380–440 nm band the quantum yield of CO showed a Stern-Volmer pressure dependence and the quantum yield of H\textsubscript{2}CO increased with increasing methylglyoxal pressure, which was attributed to the reaction of excited methylglyoxal with ground state methylglyoxal.

The quantum yield of channel (1) over the wavelength range 250–500 nm was expressed as

\[1/\Phi_0(\lambda) = 1/\Phi_0(\lambda) + \frac{P(\text{Torr})}{k(\lambda)} \]

where

\[\Phi_0(\lambda) = 1 \text{ for } \lambda < 380 \text{ nm} \]
\[\Phi_0(\lambda) = (8.15 ± 0.7) \times 10^{-9} \left[\exp(7131 ± 267)/\lambda \right] \text{ for } \lambda > 380 \text{ nm} \]
\[k(\lambda) = (7.34 ± 0.1) \times 10^{-7} \left[\exp(8793 ± 300)/\lambda \right] \]

Chen et al.1 used a tunable dye laser to photolysed methylglyoxal at 10 nm intervals over the range 290–440 nm combined with detection of the primary HCO radical photolysis product using cavity ring-down spectroscopy. The HCO quantum yield was calibrated against HCO produced in the photolysis of HCHO or Cl\textsubscript{2}/HCHO mixtures. They report the HCO quantum yield to be unity in the wavelength range 320–360 nm, 0.82 ± 0.06 at 290 nm, and to decrease at wavelengths >370 nm to a value of 0.17 ± 0.02 at 440 nm. The HCO quantum yields were reported to be independent of pressure between 290 and 370 nm for the pressure range 10–400 Torr N\textsubscript{2} but to have a Stern-Volmer pressure dependence at wavelengths ≥380 nm given by

\[1/\Phi_0(\lambda) = 1/\Phi_0(\lambda) + k_0(\lambda) \cdot P(\text{Torr}) \]

where

\[\Phi_0(\lambda) = (3.63 ± 0.32) \times 10^{-7} \left[\exp(5693 ± 497)/\lambda \right] \]

and

\[k_0(\lambda) = (1.93 ± 0.24) \times 10^{4} \left[\exp(-5639 ± 497)/\lambda \right] \]

The zero pressure quantum yields, \(\Phi_0(\lambda) \), are in good agreement for wavelengths ≤ 420 nm. However, the quantum yields at 760 Torr from the Chen et al.1 and Koch and Moortgat2 expressions deviate by a factor 4 for wavelengths ≥420 nm. The data from the more direct study by Chen et al.1 are recommended. Additional measurements are needed to establish the quantum yields in the long wavelength tail of the spectrum at atmospherically relevant pressures.

Table 4D.28. Recommended Absorption Cross Sections of CH\textsubscript{2}C(O)C(O)H at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>33.8</td>
<td>259</td>
<td>3.25</td>
<td>318</td>
<td>1.82</td>
<td>377</td>
<td>2.10</td>
<td>436</td>
<td>11.1</td>
</tr>
<tr>
<td>201</td>
<td>30.6</td>
<td>260</td>
<td>3.29</td>
<td>319</td>
<td>1.68</td>
<td>378</td>
<td>2.18</td>
<td>437</td>
<td>10.0</td>
</tr>
<tr>
<td>202</td>
<td>27.0</td>
<td>261</td>
<td>3.33</td>
<td>320</td>
<td>1.50</td>
<td>379</td>
<td>2.30</td>
<td>438</td>
<td>10.6</td>
</tr>
<tr>
<td>203</td>
<td>23.0</td>
<td>262</td>
<td>3.36</td>
<td>321</td>
<td>1.34</td>
<td>380</td>
<td>2.42</td>
<td>439</td>
<td>11.0</td>
</tr>
<tr>
<td>204</td>
<td>18.6</td>
<td>263</td>
<td>3.42</td>
<td>322</td>
<td>1.22</td>
<td>381</td>
<td>2.54</td>
<td>440</td>
<td>9.94</td>
</tr>
<tr>
<td>205</td>
<td>15.3</td>
<td>264</td>
<td>3.49</td>
<td>323</td>
<td>1.14</td>
<td>382</td>
<td>2.70</td>
<td>441</td>
<td>10.4</td>
</tr>
<tr>
<td>206</td>
<td>12.1</td>
<td>265</td>
<td>3.59</td>
<td>324</td>
<td>1.01</td>
<td>383</td>
<td>2.88</td>
<td>442</td>
<td>10.2</td>
</tr>
<tr>
<td>207</td>
<td>10.0</td>
<td>266</td>
<td>3.73</td>
<td>325</td>
<td>0.924</td>
<td>384</td>
<td>3.03</td>
<td>443</td>
<td>10.2</td>
</tr>
<tr>
<td>208</td>
<td>8.52</td>
<td>267</td>
<td>3.87</td>
<td>326</td>
<td>0.848</td>
<td>385</td>
<td>3.20</td>
<td>444</td>
<td>11.2</td>
</tr>
<tr>
<td>209</td>
<td>7.43</td>
<td>268</td>
<td>4.02</td>
<td>327</td>
<td>0.774</td>
<td>386</td>
<td>3.39</td>
<td>445</td>
<td>9.62</td>
</tr>
<tr>
<td>210</td>
<td>6.34</td>
<td>269</td>
<td>4.13</td>
<td>328</td>
<td>0.716</td>
<td>387</td>
<td>3.61</td>
<td>446</td>
<td>8.91</td>
</tr>
<tr>
<td>211</td>
<td>5.58</td>
<td>270</td>
<td>4.20</td>
<td>329</td>
<td>0.672</td>
<td>388</td>
<td>3.71</td>
<td>447</td>
<td>9.84</td>
</tr>
<tr>
<td>212</td>
<td>4.73</td>
<td>271</td>
<td>4.22</td>
<td>330</td>
<td>0.647</td>
<td>389</td>
<td>3.88</td>
<td>448</td>
<td>9.19</td>
</tr>
<tr>
<td>213</td>
<td>4.16</td>
<td>272</td>
<td>4.23</td>
<td>331</td>
<td>0.620</td>
<td>390</td>
<td>4.03</td>
<td>449</td>
<td>10.1</td>
</tr>
</tbody>
</table>
1998, 102, 9142-9153.

Note:
200–218 nm: Staffelbach et al.7
219–235 nm: mean of data from Meller et al.4 and Staffelbach et al.7
219–493 nm: Meller et al.4

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Staffelbach et al. (Abs)</th>
<th>Mean of data from Meller et al. (Abs)</th>
<th>Meller et al. (Abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>3.57</td>
<td>4.27</td>
<td>332</td>
</tr>
<tr>
<td>215</td>
<td>3.08</td>
<td>4.31</td>
<td>333</td>
</tr>
<tr>
<td>216</td>
<td>2.65</td>
<td>4.37</td>
<td>334</td>
</tr>
<tr>
<td>217</td>
<td>2.33</td>
<td>4.49</td>
<td>335</td>
</tr>
<tr>
<td>218</td>
<td>2.10</td>
<td>4.64</td>
<td>336</td>
</tr>
<tr>
<td>219</td>
<td>1.46</td>
<td>4.77</td>
<td>337</td>
</tr>
<tr>
<td>220</td>
<td>1.45</td>
<td>4.87</td>
<td>338</td>
</tr>
<tr>
<td>221</td>
<td>1.44</td>
<td>4.92</td>
<td>339</td>
</tr>
<tr>
<td>222</td>
<td>1.43</td>
<td>4.93</td>
<td>340</td>
</tr>
<tr>
<td>223</td>
<td>1.44</td>
<td>4.90</td>
<td>341</td>
</tr>
<tr>
<td>224</td>
<td>1.43</td>
<td>4.83</td>
<td>342</td>
</tr>
<tr>
<td>225</td>
<td>1.44</td>
<td>4.76</td>
<td>343</td>
</tr>
<tr>
<td>226</td>
<td>1.46</td>
<td>4.70</td>
<td>344</td>
</tr>
<tr>
<td>227</td>
<td>1.48</td>
<td>4.66</td>
<td>345</td>
</tr>
<tr>
<td>228</td>
<td>1.51</td>
<td>4.65</td>
<td>346</td>
</tr>
<tr>
<td>229</td>
<td>1.53</td>
<td>4.73</td>
<td>347</td>
</tr>
<tr>
<td>230</td>
<td>1.60</td>
<td>4.84</td>
<td>348</td>
</tr>
<tr>
<td>231</td>
<td>1.61</td>
<td>4.92</td>
<td>349</td>
</tr>
<tr>
<td>232</td>
<td>1.65</td>
<td>4.90</td>
<td>350</td>
</tr>
<tr>
<td>233</td>
<td>1.67</td>
<td>4.81</td>
<td>351</td>
</tr>
<tr>
<td>234</td>
<td>1.75</td>
<td>4.70</td>
<td>352</td>
</tr>
<tr>
<td>235</td>
<td>1.83</td>
<td>4.57</td>
<td>353</td>
</tr>
<tr>
<td>236</td>
<td>1.86</td>
<td>4.37</td>
<td>354</td>
</tr>
<tr>
<td>237</td>
<td>1.93</td>
<td>4.17</td>
<td>355</td>
</tr>
<tr>
<td>238</td>
<td>1.96</td>
<td>4.00</td>
<td>356</td>
</tr>
<tr>
<td>239</td>
<td>2.00</td>
<td>3.88</td>
<td>357</td>
</tr>
<tr>
<td>240</td>
<td>2.07</td>
<td>3.76</td>
<td>358</td>
</tr>
<tr>
<td>241</td>
<td>2.14</td>
<td>3.69</td>
<td>359</td>
</tr>
<tr>
<td>242</td>
<td>2.19</td>
<td>3.70</td>
<td>360</td>
</tr>
<tr>
<td>243</td>
<td>2.23</td>
<td>3.74</td>
<td>361</td>
</tr>
<tr>
<td>244</td>
<td>2.27</td>
<td>3.74</td>
<td>362</td>
</tr>
<tr>
<td>245</td>
<td>2.30</td>
<td>3.62</td>
<td>363</td>
</tr>
<tr>
<td>246</td>
<td>2.33</td>
<td>3.38</td>
<td>364</td>
</tr>
<tr>
<td>247</td>
<td>2.38</td>
<td>3.15</td>
<td>365</td>
</tr>
<tr>
<td>248</td>
<td>2.46</td>
<td>2.92</td>
<td>366</td>
</tr>
<tr>
<td>249</td>
<td>2.57</td>
<td>2.71</td>
<td>367</td>
</tr>
<tr>
<td>250</td>
<td>2.64</td>
<td>2.52</td>
<td>368</td>
</tr>
<tr>
<td>251</td>
<td>2.68</td>
<td>2.34</td>
<td>369</td>
</tr>
<tr>
<td>252</td>
<td>2.71</td>
<td>2.18</td>
<td>370</td>
</tr>
<tr>
<td>253</td>
<td>2.73</td>
<td>2.06</td>
<td>371</td>
</tr>
<tr>
<td>254</td>
<td>2.76</td>
<td>1.97</td>
<td>372</td>
</tr>
<tr>
<td>255</td>
<td>2.82</td>
<td>1.90</td>
<td>373</td>
</tr>
<tr>
<td>256</td>
<td>2.93</td>
<td>1.86</td>
<td>374</td>
</tr>
<tr>
<td>257</td>
<td>3.06</td>
<td>1.86</td>
<td>375</td>
</tr>
<tr>
<td>258</td>
<td>3.17</td>
<td>1.87</td>
<td>376</td>
</tr>
</tbody>
</table>

D25. HC(O)OH (formic acid)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
<th>Energy (kJ mol⁻¹)</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(HC(O)OH) + hv</td>
<td>HCO + OH</td>
<td>422</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>H + COOH</td>
<td>408</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>HCOO + H</td>
<td>470</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>H₂ + CO₂</td>
<td>-15</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>H₂O + CO</td>
<td>264</td>
<td>454</td>
</tr>
</tbody>
</table>

(HC(O)OH)₂ (formic acid dimer)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
<th>Energy (kJ mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(HC(O)OH)₂ + hv</td>
<td>HCO + OH + HCOOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO + H₂O + HCOOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂ + CO₂ + HCOOH</td>
<td></td>
</tr>
</tbody>
</table>

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of formic acid, HC(O)OH, and formic acid dimer, (HC(O)OH)₂, have been measured near 300 K for a range of sample pressures by McMillan¹ (200–249 nm; 35.2, 16.4, and 2.45 Torr), Singleton et al.⁵ (195–250 nm; 29 pressures between 0.5 and 22 Torr), Singleton et al.,² and Nagakura et al.⁴ (154–191 nm). Jolly et al.³ reported cross sections at 222 nm in connection with their quantum yield measurements. Singleton et al.² also measured spectra at 356.2 K. The absorption spectrum of the dimer has a broad maximum near 205 nm and a monotonic decrease in intensity with increasing wavelength. The absorption maximum of the monomer is shifted to longer wavelengths, with a peak cross section near 215 nm, about one third the magnitude of the peak cross section for the dimer. The decrease in cross sections with increasing wavelength is more rapid for the dimer than for the monomer, resulting in monomer cross sections being greater at 250 nm by approximately a factor 10. The absorption spectra reported by McMillan¹ were derived assuming monomers only in spite of undefined amounts of monomer and dimer contributions, resulting in a reported spectra that lies between those reported by Singleton et al.⁵ for the monomer and the dimer. The recommended absorption cross sections in Table 4D-29 are taken from Singleton et al.⁵ measured with a resolution of 1 nm.

Photolysis Quantum Yield and Product Studies: In the pre-1966 studies considered in Calvert and Pitts¹ yields of final products CO, CO₂, H₂, H₂O (suggested as due to the molecular elimination channels 4 and 5) were determined. However, in the experiments considered it would be difficult to distinguish between primary photolytic products and products formed by subsequent secondary free-radical reactions. Jolly et al.³ determined the quantum yield of OH formation at 222 nm for the monomer to be 1.05 ± 0.14 and essentially zero for the dimer. In a follow-up study, Singleton et al.⁷ re-determined the OH quantum yields at 222 nm to be 0.704 ± 0.048 at 298 K and 0.771 ± 0.030 at 356.2 K for the monomer, and 0.153 ± 0.028 at 298 K for the dimer (the OH yield for the dimer at elevated temperatures was assumed to be zero). Photodissociation into the other radical channels, 2 and 3, is minor and has been discussed by He and Fang.² Photodissociation quantum yields for the dimer were determined at 222 nm by Singleton et al.⁸ to be Φ₆,D = 0.15, Φ₇,D = 0.81 an Φ₈,D = 0.04.
Table 4D-29. Recommended Absorption Cross Sections of HC(O)OH and (HC(O)OH)$_2$ at 302 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>monomer dimer</td>
<td></td>
<td>monomer dimer</td>
</tr>
<tr>
<td>195</td>
<td>9.18 27.4</td>
<td>195</td>
<td>11.9 17.0</td>
</tr>
<tr>
<td>196</td>
<td>9.96 29.1</td>
<td>196</td>
<td>11.3 15.5</td>
</tr>
<tr>
<td>197</td>
<td>9.57 30.8</td>
<td>197</td>
<td>10.9 14.1</td>
</tr>
<tr>
<td>198</td>
<td>10.0 32.2</td>
<td>198</td>
<td>9.87 12.7</td>
</tr>
<tr>
<td>199</td>
<td>10.7 33.3</td>
<td>199</td>
<td>10.4 11.3</td>
</tr>
<tr>
<td>200</td>
<td>10.7 34.6</td>
<td>200</td>
<td>9.24 10.1</td>
</tr>
<tr>
<td>201</td>
<td>11.5 35.4</td>
<td>201</td>
<td>9.15 8.87</td>
</tr>
<tr>
<td>202</td>
<td>11.9 36.2</td>
<td>202</td>
<td>8.12 7.78</td>
</tr>
<tr>
<td>203</td>
<td>12.5 36.7</td>
<td>203</td>
<td>7.18 6.77</td>
</tr>
<tr>
<td>204</td>
<td>12.5 37.3</td>
<td>204</td>
<td>7.07 5.87</td>
</tr>
<tr>
<td>205</td>
<td>13.8 37.4</td>
<td>205</td>
<td>6.44 5.01</td>
</tr>
<tr>
<td>206</td>
<td>13.6 37.2</td>
<td>206</td>
<td>6.68 4.26</td>
</tr>
<tr>
<td>207</td>
<td>13.7 37.2</td>
<td>207</td>
<td>5.24 3.58</td>
</tr>
<tr>
<td>208</td>
<td>13.6 36.9</td>
<td>208</td>
<td>5.40 2.95</td>
</tr>
<tr>
<td>209</td>
<td>14.1 36.2</td>
<td>209</td>
<td>4.10 2.46</td>
</tr>
<tr>
<td>210</td>
<td>14.4 35.5</td>
<td>210</td>
<td>4.32 2.03</td>
</tr>
<tr>
<td>211</td>
<td>14.2 34.6</td>
<td>211</td>
<td>3.58 1.63</td>
</tr>
<tr>
<td>212</td>
<td>13.6 33.6</td>
<td>212</td>
<td>3.79 1.31</td>
</tr>
<tr>
<td>213</td>
<td>14.3 32.4</td>
<td>213</td>
<td>2.79 1.02</td>
</tr>
<tr>
<td>214</td>
<td>14.9 31.0</td>
<td>214</td>
<td>2.83 0.795</td>
</tr>
<tr>
<td>215</td>
<td>15.0 29.4</td>
<td>215</td>
<td>1.98 0.659</td>
</tr>
<tr>
<td>216</td>
<td>13.7 28.1</td>
<td>216</td>
<td>2.10 0.490</td>
</tr>
<tr>
<td>217</td>
<td>13.6 26.7</td>
<td>217</td>
<td>1.73 0.337</td>
</tr>
<tr>
<td>218</td>
<td>13.4 25.1</td>
<td>218</td>
<td>1.79 0.267</td>
</tr>
<tr>
<td>219</td>
<td>13.5 23.4</td>
<td>219</td>
<td>1.18 0.190</td>
</tr>
<tr>
<td>220</td>
<td>12.9 21.8</td>
<td>220</td>
<td>1.23 0.134</td>
</tr>
<tr>
<td>221</td>
<td>11.6 20.2</td>
<td>221</td>
<td>0.855 0.093</td>
</tr>
<tr>
<td>222</td>
<td>12.4 18.6</td>
<td>222</td>
<td>0.861 0.072</td>
</tr>
</tbody>
</table>

Note: Singleton et al.5

D26. \(\text{CH}_3\text{C(O)OH (acetic acid)} \)

\[
\begin{align*}
\text{CH}_3\text{C(O)OH} + \text{hv} & \to \text{CH}_4 + \text{CO}_2 & -35 \text{ kJ mol}^{-1} & \text{All} & (1) \\
& \to \text{CH}_3 + \text{COOH} & 391 \text{ kJ mol}^{-1} & 306 \text{ nm} & (2) \\
& \to \text{CH}_2\text{CO} + \text{OH} & 459 \text{ kJ mol}^{-1} & 260 \text{ nm} & (3) \\
& \to \text{CH}_3\text{COO} + \text{H} & 462 \text{ kJ mol}^{-1} & 259 \text{ nm} & (4)
\end{align*}
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of acetic acid, \(\text{CH}_3\text{C(O)OH} \), and the acetic acid dimer, \(\text{(CH}_3\text{C(O)OH)}_2 \), have been measured for a range of sample pressures at 300 K by McMillan\(^1\) (200–241 nm; 12.9, 11.0, 8.3, and 3.6 Torr), at 283, 303 and 338 K by Hintze et al.\(^2\) (195–220 nm), and at 270, 298, 325, and 345 K by Orlando and Tyndall\(^4\) (210–245 nm; 0.12–3.6 Torr). Singleton et al.\(^5\) reported cross sections at 222 nm in connection with quantum yield measurements at 298 and 356.2 K. The monomer spectrum reported by Orlando and Tyndall\(^4\) and Hintze et al.\(^2\) has a broad maximum near 207 nm and a monotonic decrease in intensity with increasing wavelength. The absorption maximum for the dimer appears at shorter wavelength, below 205 nm, and is twice as intense as that of the monomer. The decrease in cross sections with increasing wavelength is more rapid for the dimer than for the monomer resulting in the monomer cross section being greater at 240 nm by a factor 6. Hintze et al.\(^2\) determined the absorption cross section at the maximum for the monomer at 206.1 nm and 297 K to be \((1.27 \pm 0.10) \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1} \) and for the dimer and at 208.1 nm to be \((2.44 \pm 0.08) \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1} \). The absorption spectra reported by Calvert and Pitts\(^1\) were derived assuming monomers only in spite of undefined amounts of monomer and dimer. The absorption spectrum for the greatest pressure is close to the dimer spectrum reported by Orlando and Tyndall\(^4\), suggesting that the sample was primarily dimer at the higher pressures. The recommended absorption cross sections in Table 4D-30 are taken from Orlando and Tyndall\(^4\) (measured at 0.6 nm resolution).

Photolysis Quantum Yield and Product Studies: Early photolysis studies reported yields of the end products \(\text{CO}, \text{CO}_2, \text{CH}_4, \text{ and C}_2\text{H}_6 \) (Calvert and Pitts\(^1\)) and proposed molecular elimination (channel 1) and radical formation (channels 2–4) originating from the monomer. Hunicutt et al.\(^3\) photolysed acetic acid at 218 nm and used photofragment laser fluorescence to determine channel (2) to be the dominant photochemical path. Singleton et al.\(^5\) determined the \(\text{OH} \) quantum yield at 222 nm to be \(0.546 \pm 0.097 \) at 298 K and \(0.692 \pm 0.024 \) at 356.2 K for the monomer and \(0.038 \pm 0.026 \) at 298 K for the dimer (a dimer quantum yield of zero was assumed at elevated temperatures).

Table 4D-30. Recommended Absorption Cross Sections of \(\text{CH}_3\text{C(O)OH} \) and \(\text{(CH}_3\text{C(O)OH)}_2 \) at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (\text{(nm)})</th>
<th>(10^{20} \sigma) (\text{(cm}^2 \text{ molecule}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{monomer}</td>
<td>\text{dimer}</td>
</tr>
<tr>
<td>210</td>
<td>15.1</td>
</tr>
<tr>
<td>212</td>
<td>14.7</td>
</tr>
<tr>
<td>214</td>
<td>13.5</td>
</tr>
<tr>
<td>216</td>
<td>12.5</td>
</tr>
<tr>
<td>218</td>
<td>11.7</td>
</tr>
<tr>
<td>220</td>
<td>10.5</td>
</tr>
<tr>
<td>222</td>
<td>9.33</td>
</tr>
<tr>
<td>224</td>
<td>8.19</td>
</tr>
<tr>
<td>226</td>
<td>7.17</td>
</tr>
<tr>
<td>228</td>
<td>6.00</td>
</tr>
<tr>
<td>230</td>
<td>5.09</td>
</tr>
<tr>
<td>232</td>
<td>4.20</td>
</tr>
<tr>
<td>234</td>
<td>3.44</td>
</tr>
<tr>
<td>236</td>
<td>2.71</td>
</tr>
<tr>
<td>238</td>
<td>2.11</td>
</tr>
<tr>
<td>240</td>
<td>1.64</td>
</tr>
<tr>
<td>242</td>
<td>1.19</td>
</tr>
<tr>
<td>244</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Note: Orlando and Tyndall\(^4\)
D27. CH$_3$C(O)OOH (peracetic acid)

CH$_3$C(O)OOH + hv \rightarrow Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of peracetic acid, CH$_3$C(O)OOH, was measured at 248 and 298 K by Orlando and Tyndall1 (205–340 nm). The absorption cross sections decrease in a monotonic near-exponential fashion with increasing wavelength. The spectrum recorded at 248 K shows a faster fall-off with increasing wavelength than that recorded at room temperature. The recommended absorption cross sections in Table 4D-31 are taken from Orlando and Tyndall (the only study available) (measured at 0.6 nm resolution).

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4D-31. Recommended Absorption Cross Sections CH$_3$C(O)OOH at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>38.1</td>
<td>244</td>
<td>4.31</td>
<td>278</td>
<td>0.574</td>
<td>312</td>
<td>0.045</td>
</tr>
<tr>
<td>212</td>
<td>33.1</td>
<td>246</td>
<td>3.82</td>
<td>280</td>
<td>0.506</td>
<td>314</td>
<td>0.044</td>
</tr>
<tr>
<td>214</td>
<td>29.5</td>
<td>248</td>
<td>3.41</td>
<td>282</td>
<td>0.444</td>
<td>316</td>
<td>0.040</td>
</tr>
<tr>
<td>216</td>
<td>25.4</td>
<td>250</td>
<td>3.05</td>
<td>284</td>
<td>0.386</td>
<td>318</td>
<td>0.035</td>
</tr>
<tr>
<td>218</td>
<td>21.7</td>
<td>252</td>
<td>2.71</td>
<td>286</td>
<td>0.334</td>
<td>320</td>
<td>0.025</td>
</tr>
<tr>
<td>220</td>
<td>18.9</td>
<td>254</td>
<td>2.42</td>
<td>288</td>
<td>0.297</td>
<td>322</td>
<td>0.020</td>
</tr>
<tr>
<td>222</td>
<td>16.0</td>
<td>256</td>
<td>2.16</td>
<td>290</td>
<td>0.256</td>
<td>324</td>
<td>0.020</td>
</tr>
<tr>
<td>224</td>
<td>13.9</td>
<td>258</td>
<td>1.93</td>
<td>292</td>
<td>0.226</td>
<td>326</td>
<td>0.017</td>
</tr>
<tr>
<td>226</td>
<td>12.0</td>
<td>260</td>
<td>1.71</td>
<td>294</td>
<td>0.193</td>
<td>328</td>
<td>0.014</td>
</tr>
<tr>
<td>228</td>
<td>10.5</td>
<td>262</td>
<td>1.53</td>
<td>296</td>
<td>0.170</td>
<td>330</td>
<td>0.009</td>
</tr>
<tr>
<td>230</td>
<td>9.10</td>
<td>264</td>
<td>1.35</td>
<td>298</td>
<td>0.141</td>
<td>332</td>
<td>0.011</td>
</tr>
<tr>
<td>232</td>
<td>8.01</td>
<td>266</td>
<td>1.21</td>
<td>300</td>
<td>0.123</td>
<td>334</td>
<td>0.011</td>
</tr>
<tr>
<td>234</td>
<td>7.03</td>
<td>268</td>
<td>1.06</td>
<td>302</td>
<td>0.107</td>
<td>336</td>
<td>0.009</td>
</tr>
<tr>
<td>236</td>
<td>6.31</td>
<td>270</td>
<td>0.945</td>
<td>304</td>
<td>0.094</td>
<td>338</td>
<td>0.009</td>
</tr>
<tr>
<td>238</td>
<td>5.61</td>
<td>272</td>
<td>0.835</td>
<td>306</td>
<td>0.078</td>
<td>340</td>
<td>0.006</td>
</tr>
<tr>
<td>240</td>
<td>5.03</td>
<td>274</td>
<td>0.742</td>
<td>308</td>
<td>0.069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>4.83</td>
<td>276</td>
<td>0.651</td>
<td>310</td>
<td>0.062</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Orlando and Tyndall,1 310–340 nm region obtained from a linear interpolation of ln(σ)

D28. C₂H₃C(O)OH (propionic acid)

C₂H₃C(O)OH + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of propionic acid, C₂H₃C(O)OH, and the propionic acid dimer, (C₂H₃C(O)OH)₂, have been measured by Hinze et al.¹ (195–220 nm) at 283, 303 and 338 K and Vicente et al.³ (115–257 nm) at 313 K. The spectrum has a strong absorption band in the region 115–192 nm and a weaker band in the region 192–248 nm with a broad maximum near 207 nm. Hinze et al.¹ determined the absorption cross section for the monomer at 206.1 nm and 297 K to be (1.52 ± 0.16) × 10⁻¹⁹ cm² molecule⁻¹. The dimer cross section at 208.1 nm was determined to be (3.24 ± 0.22) × 10⁻¹⁹ cm² molecule⁻¹. Absorption cross sections have also been measured at 298 and 356.2 K and 222 nm by Singleton et al.² These investigators obtained absorption cross sections of 12.2 × 10⁻²⁰ cm² molecule⁻¹ at 298 K and 10.6 × 10⁻²⁰ cm² molecule⁻¹ at 356.2 K for the monomer and derived absorption cross sections of 10.6 × 10⁻²⁰ cm² molecule⁻¹ at 298 K and 25.6 × 10⁻²⁰ cm² molecule⁻¹ at 356.2 K for the dimer by an extrapolation procedure.

Photolysis Quantum Yield and Product Studies: Quantum yields for the formation of OH radicals at 222 nm have been measured by Singleton et al.² to be 0.148 ± 0.90 and 0.341 ± 0.014 for the monomer at 297.6 and 375.0 K, respectively, and 0.018 ± 0.06 at 297.6 K for the dimer (an OH quantum yield of zero for the dimer was assumed at elevated temperatures).

D29. CH₃C(O)C(O)OH (pyruvic acid)

CH₃C(O)C(O)OH + hv → CH₃CHO + CO₂

→ CH₃CO + COOH

→ CH₃COOH + CO

→ CH₃CO + CO + OH

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of pyruvic acid, CH₃C(O)C(O)OH, has been measured at room temperature by Horowitz et al.² (250–410 nm, 0.25 nm resolution) and Mellouki and Mu³ (290–380 nm). An absorption spectrum of pyruvic acid has also been reported by Yamamoto and Back⁷ (250–400 nm) at 358 K. The continuous absorption band between 275–400 nm peaks near 350 nm and contains significant diffuse vibrational band structure. Absolute cross sections for the relative spectrum reported by Yamamoto and Back⁷ were given in Horowitz et al.² following normalization of the spectrum at 350 nm to 3.82 × 10⁻²⁰ cm² molecule⁻¹. The general shapes of the reported spectra are qualitatively similar although the spectrum reported by Yamamoto and Back⁷ is red shifted and the cross sections at wavelengths <300 nm are considerably greater. This difference in cross section may in part be ascribed to the effect of temperature on the spectrum. The cross sections measured by Mellouki and Mu³ are systematically greater than those obtained by Horowitz et al.² The difference reaches a factor of two for wavelengths <295 nm and is ~20–30% between 305 and 370 nm. These differences are most likely due to the difficulties in handling the pyruvic acid sample and determining its concentration. The recommended absorption cross sections in Table 4D-32 are 1 nm averages from Horowitz et al.² in the range 252–285 nm, the mean of the data from Horowitz et al.² and Mellouki and Mu³ (both 1 nm averages) in the range 290–380 nm, and the data from Horowitz et al.² in the range 385–399 nm.

Photolysis Quantum Yield and Product Studies: Moortgat⁴ reported an effective quantum yield for pyruvic acid photodissociation under atmospheric conditions from a study in an outdoor photoreactor to be 0.43 ± 0.07. Vesley and Leermakers⁵ reported quantum yields of CO₂ of 1.02 ± 0.06 and of CH₃CHO of 0.6 for photolysis at 366 nm. Yamamoto and Back⁷ measured quantum yields of CO₂ of 0.9 ± 0.1 and CH₃CHO of 0.45 at 366 nm and 340 K. The CH₃CHO yields obtained for 320 and 345 nm photolysis were more variable.

4-144
Berges and Warneck\(^1\) measured the quantum yields of CH\(_3\)CHO, CO\(_2\) and CH\(_3\)COOH at 350 nm to be 0.48 ± 0.01, 1.27 ± 0.18 and 0.14, respectively. In the presence of NO\(_2\), the quantum yield of CH\(_3\)CHO was reduced to 0.30 ± 0.04 and PAN was formed with a quantum yield of 0.15 ± 0.02. Berges and Warneck\(^1\) established \(\Phi_1 = 0.48 ± 0.01\) and \(\Phi_2 = 0.39 ± 0.10\). Mellouki and Mu\(^3\) used a laser flash photolysis system at 355 nm and observed the formation of OH originating via channel (4) with a quantum yield of \(\Phi_1 = 0.05 ± 0.03\). The analysis of the products CH\(_3\)CHO, CO, CH\(_3\)COOH by Winterhalter et al.\(^4\) is consistent with the data of Berges and Warneck\(^1\) and lead to a quantum yield of channel (3) \(\Phi_3 = 0.08 ± 0.03\). For the photolysis of pyruvic acid at 366 nm the following quantum yields are recommended \(\Phi_1 = 0.48 ± 0.01\), \(\Phi_2 = 0.39 ± 0.10\), \(\Phi_3 = 0.08 ± 0.03\) and \(\Phi_4 = 0.05 ± 0.03\).

Table 4D-32. Recommended Absorption Cross Sections of CH\(_3\)C(O)C(O)OH at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>252</td>
<td>1.54</td>
<td>280</td>
<td>0.118</td>
<td>312</td>
<td>1.34</td>
<td>340</td>
<td>3.93</td>
</tr>
<tr>
<td>253</td>
<td>1.55</td>
<td>281</td>
<td>0.101</td>
<td>313</td>
<td>1.42</td>
<td>341</td>
<td>3.94</td>
</tr>
<tr>
<td>254</td>
<td>1.61</td>
<td>282</td>
<td>0.093</td>
<td>314</td>
<td>1.49</td>
<td>342</td>
<td>4.19</td>
</tr>
<tr>
<td>255</td>
<td>1.56</td>
<td>283</td>
<td>0.098</td>
<td>315</td>
<td>1.57</td>
<td>343</td>
<td>4.24</td>
</tr>
<tr>
<td>256</td>
<td>1.52</td>
<td>284</td>
<td>0.104</td>
<td>316</td>
<td>1.69</td>
<td>344</td>
<td>4.17</td>
</tr>
<tr>
<td>257</td>
<td>1.41</td>
<td>285</td>
<td>0.113</td>
<td>317</td>
<td>1.83</td>
<td>345</td>
<td>4.26</td>
</tr>
<tr>
<td>258</td>
<td>1.25</td>
<td>290</td>
<td>0.302</td>
<td>318</td>
<td>1.94</td>
<td>346</td>
<td>4.46</td>
</tr>
<tr>
<td>259</td>
<td>1.07</td>
<td>291</td>
<td>0.323</td>
<td>319</td>
<td>2.05</td>
<td>347</td>
<td>4.58</td>
</tr>
<tr>
<td>260</td>
<td>0.908</td>
<td>292</td>
<td>0.370</td>
<td>320</td>
<td>2.17</td>
<td>348</td>
<td>4.73</td>
</tr>
<tr>
<td>261</td>
<td>0.801</td>
<td>293</td>
<td>0.409</td>
<td>321</td>
<td>2.31</td>
<td>349</td>
<td>4.92</td>
</tr>
<tr>
<td>262</td>
<td>0.737</td>
<td>294</td>
<td>0.439</td>
<td>322</td>
<td>2.41</td>
<td>350</td>
<td>4.98</td>
</tr>
<tr>
<td>263</td>
<td>0.718</td>
<td>295</td>
<td>0.470</td>
<td>323</td>
<td>2.50</td>
<td>351</td>
<td>4.79</td>
</tr>
<tr>
<td>264</td>
<td>0.718</td>
<td>296</td>
<td>0.491</td>
<td>324</td>
<td>2.54</td>
<td>352</td>
<td>4.63</td>
</tr>
<tr>
<td>265</td>
<td>0.700</td>
<td>297</td>
<td>0.519</td>
<td>325</td>
<td>2.60</td>
<td>353</td>
<td>4.54</td>
</tr>
<tr>
<td>266</td>
<td>0.651</td>
<td>298</td>
<td>0.548</td>
<td>326</td>
<td>2.72</td>
<td>354</td>
<td>4.47</td>
</tr>
<tr>
<td>267</td>
<td>0.566</td>
<td>299</td>
<td>0.594</td>
<td>327</td>
<td>2.78</td>
<td>355</td>
<td>4.13</td>
</tr>
<tr>
<td>268</td>
<td>0.470</td>
<td>300</td>
<td>0.639</td>
<td>328</td>
<td>2.84</td>
<td>356</td>
<td>3.89</td>
</tr>
<tr>
<td>269</td>
<td>0.367</td>
<td>301</td>
<td>0.678</td>
<td>329</td>
<td>2.98</td>
<td>357</td>
<td>3.66</td>
</tr>
<tr>
<td>270</td>
<td>0.278</td>
<td>302</td>
<td>0.724</td>
<td>330</td>
<td>3.15</td>
<td>358</td>
<td>3.41</td>
</tr>
<tr>
<td>271</td>
<td>0.224</td>
<td>303</td>
<td>0.775</td>
<td>331</td>
<td>3.35</td>
<td>359</td>
<td>3.22</td>
</tr>
<tr>
<td>272</td>
<td>0.195</td>
<td>304</td>
<td>0.822</td>
<td>332</td>
<td>3.66</td>
<td>360</td>
<td>3.44</td>
</tr>
<tr>
<td>273</td>
<td>0.185</td>
<td>305</td>
<td>0.898</td>
<td>333</td>
<td>3.87</td>
<td>361</td>
<td>3.59</td>
</tr>
<tr>
<td>274</td>
<td>0.182</td>
<td>306</td>
<td>0.977</td>
<td>334</td>
<td>3.91</td>
<td>362</td>
<td>3.37</td>
</tr>
<tr>
<td>275</td>
<td>0.188</td>
<td>307</td>
<td>1.04</td>
<td>335</td>
<td>3.96</td>
<td>363</td>
<td>3.01</td>
</tr>
<tr>
<td>276</td>
<td>0.189</td>
<td>308</td>
<td>1.13</td>
<td>336</td>
<td>4.02</td>
<td>364</td>
<td>2.85</td>
</tr>
<tr>
<td>277</td>
<td>0.180</td>
<td>309</td>
<td>1.21</td>
<td>337</td>
<td>4.02</td>
<td>365</td>
<td>2.86</td>
</tr>
<tr>
<td>278</td>
<td>0.164</td>
<td>310</td>
<td>1.22</td>
<td>338</td>
<td>3.99</td>
<td>366</td>
<td>2.80</td>
</tr>
<tr>
<td>279</td>
<td>0.139</td>
<td>311</td>
<td>1.27</td>
<td>339</td>
<td>3.96</td>
<td>367</td>
<td>2.88</td>
</tr>
</tbody>
</table>

Note:
- 252–285 nm: Horowitz et al.\(^2\)
- 290–380 nm: mean of the data from Horowitz et al.\(^2\) and Mellouki and Mu\(^3\)
- 385–399 nm: Horowitz et al.\(^2\)

D30. HC(O)OCH₃ (methyl formate) Back to Index

HC(O)OCH₃ + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of methyl formate, HC(O)OCH₃, has been measured at room temperature by McMillan¹ (201–260 nm) and Vésine and Mellouki² (211–260 nm). The spectrum consists of a continuous absorption band with a maximum near 215 nm and weak diffuse structure. There is good agreement, better than 10%, among the results from these studies. The recommended cross sections in Table 4D-33 are taken from McMillan¹ for the region 202–210 nm (read from a figure) and Vésine and Mellouki² for the region 211–260 nm. The Vésine and Mellouki² data given here are averages of their high resolution (0.04 nm) spectrum over 1 and 2 nm intervals in the ranges 211–230 and 230–260 nm, respectively.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4D-33. Recommended Absorption Cross Sections of HC(O)OCH₃ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>16.2</td>
<td>213</td>
<td>20.3</td>
<td>224</td>
<td>16.8</td>
<td>240</td>
<td>3.56</td>
</tr>
<tr>
<td>203</td>
<td>17.0</td>
<td>214</td>
<td>21.2</td>
<td>225</td>
<td>15.7</td>
<td>242</td>
<td>2.65</td>
</tr>
<tr>
<td>204</td>
<td>17.9</td>
<td>215</td>
<td>21.1</td>
<td>226</td>
<td>14.0</td>
<td>244</td>
<td>1.65</td>
</tr>
<tr>
<td>205</td>
<td>18.2</td>
<td>216</td>
<td>20.3</td>
<td>227</td>
<td>12.5</td>
<td>246</td>
<td>1.24</td>
</tr>
<tr>
<td>206</td>
<td>18.7</td>
<td>217</td>
<td>19.3</td>
<td>228</td>
<td>12.4</td>
<td>248</td>
<td>0.770</td>
</tr>
<tr>
<td>207</td>
<td>18.9</td>
<td>218</td>
<td>19.7</td>
<td>229</td>
<td>12.3</td>
<td>250</td>
<td>0.480</td>
</tr>
<tr>
<td>208</td>
<td>19.1</td>
<td>219</td>
<td>20.0</td>
<td>230</td>
<td>11.3</td>
<td>252</td>
<td>0.301</td>
</tr>
<tr>
<td>209</td>
<td>19.5</td>
<td>220</td>
<td>19.2</td>
<td>232</td>
<td>8.36</td>
<td>254</td>
<td>0.162</td>
</tr>
<tr>
<td>210</td>
<td>20.4</td>
<td>221</td>
<td>17.9</td>
<td>234</td>
<td>7.48</td>
<td>256</td>
<td>0.0717</td>
</tr>
<tr>
<td>211</td>
<td>20.4</td>
<td>222</td>
<td>16.7</td>
<td>236</td>
<td>6.11</td>
<td>258</td>
<td>0.0455</td>
</tr>
<tr>
<td>212</td>
<td>20.1</td>
<td>223</td>
<td>16.6</td>
<td>238</td>
<td>4.15</td>
<td>260</td>
<td>0.0281</td>
</tr>
</tbody>
</table>

Note:
202–210 nm: McMillan (personal communication to Calvert¹)
211–260 nm: Vésine and Mellouki² (averages over 1 and 2 nm intervals)

D31. HC(O)OC₂H₅ (ethyl formate) Back to Index

HC(O)OC₂H₅ + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of ethyl formate, HC(O)OC₂H₅, has been measured at room temperature by McMillan¹ (201–260 nm) and Vésine and Mellouki² (211–260 nm). The spectrum exhibits a structured absorption band with the maximum near 215 nm. The two data sets agree within ~15% with the data of Vésine and Mellouki² being systematically smaller. An explanation for the discrepancy could not be found by Vésine and Mellouki.² The recommended absorption cross sections in Table 4D-34 are the high resolution (0.04 nm) data of Vésine and Mellouki² averaged over 1 and 2 nm intervals in the ranges 211–230 and 230–260 nm, respectively.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4D-34. Recommended Absorption Cross Sections of HC(O)OC₂H₅ at 297 K

<table>
<thead>
<tr>
<th>λ</th>
<th>10²⁰ σ (cm²)</th>
<th>λ</th>
<th>10²⁰ σ (cm²)</th>
<th>λ</th>
<th>10²⁰ σ (cm²)</th>
<th>λ</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>18.6</td>
<td>213</td>
<td>18.3</td>
<td>215</td>
<td>19.0</td>
<td>217</td>
<td>18.1</td>
</tr>
<tr>
<td>212</td>
<td>18.6</td>
<td>214</td>
<td>18.5</td>
<td>216</td>
<td>18.9</td>
<td>218</td>
<td>17.5</td>
</tr>
<tr>
<td>219</td>
<td>17.6</td>
<td>220</td>
<td>17.8</td>
<td>222</td>
<td>15.9</td>
<td>224</td>
<td>14.0</td>
</tr>
<tr>
<td>221</td>
<td>17.1</td>
<td>223</td>
<td>15.1</td>
<td>225</td>
<td>14.9</td>
<td>227</td>
<td>12.6</td>
</tr>
<tr>
<td>228</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Vésine and Mellouki,² averaged over 1 and 2 nm intervals

D32. HCN (hydrogen cyanide)

HCN + hv → H + CN 526 kJ mol⁻¹ 228 nm (1)

(Recommendation: 82-57, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Herzberg and Innes¹ have studied the spectroscopy of hydrogen cyanide, HCN, that starts absorbing weakly at λ <190 nm.

Photolysis Quantum Yield and Product Studies: The solar photodissociation rate for HCN is small, even in the upper stratosphere. Estimates of the HCN atmospheric photolysis rate require additional studies of the absorption cross sections and quantum yields in the 200 nm region.

No recommendations for either the absorption cross sections or quantum yields are provided.

D33. CH₃CN (methyl cyanide)

CH₃CN + hv → H + CH₂CN 397 kJ mol⁻¹ 302 nm (1) → CH₃ + CN 512 kJ mol⁻¹ 234 nm (2)

(Recommendation: 82-57, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Acetonitrile (CH₃CN, methyl cyanide) absorbs weakly at wavelengths >180 nm with absorption cross sections <10⁻²⁰ cm² molecule⁻¹. Suto and Lee¹ (114–178 nm), Zetzsch² (155–185 nm), and Eden et al.¹ (113–320 nm) have reported cross section data. The agreement among the cross section data sets is, however, poor and no cross section recommendation is given.

Photolysis Quantum Yield and Product Studies: McElcheran et al.² studied the photodissociation of CH₃CN at 184.9 nm. On the basis of end-product analysis, channel (1) was identified as the major photolysis pathway.

4.7 Bibliography – Organic Photochemistry

4-152

SECTION 4E. FO\textsubscript{x} PHOTOCHEMISTRY

E1. HF (hydrogen fluoride)

$$\text{HF} + h\nu \rightarrow \text{H} + \text{F}$$

571 kJ mol-1

210 nm \hspace{1cm} (1)

(Recommendation: 06-2, Note: 15-10 Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of hydrogen fluoride, HF, has been measured at 289.5, 326, 373, and 438 K by Safary et al.3 and Safary4 (153–182 nm) and at room temperature by Nee et al.3 (107–145 nm), Carnovale et al.1 (8–155 nm), and Hitchcock et al.2 (30–200 nm). HF does not absorb significantly at wavelengths >180 nm. On the basis of the Nee et al. VUV spectrum, a Lyman-\(\alpha\) (121.567 nm) cross section of 3.1 \times 10-18 cm2 molecule-1 is recommended.

Photolysis Quantum Yield and Product Studies: Photodissociation should be an unimportant loss process in the stratosphere.

E2. FO\textsubscript{2} (fluoroperoxy radical)

$$\text{FO}_2 + h\nu \rightarrow \text{F} + \text{O}_2$$

54 kJ mol-1

2233 nm \hspace{1cm} (1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The gas-phase UV absorption spectrum of the fluoroperoxy radical, FO\textsubscript{2}, has been measured at room temperature by Pagsberg et al.6 (206–250 nm; reported in Wayne et al.7), Maricq and Szente4 (186–276 nm), Ellermann et al.2 (215–254 nm), and at 215 nm by Lyman and Holland.3 In earlier studies, Chegodaev and Tupikov1 and Matchuk et al.5 reported spectra of FO\textsubscript{2} in liquid argon at 87 K. The results from Maricq and Szente,4 Ellermann et al.2 and Lyman and Holland3 are in excellent agreement. The cross sections measured by Pagsberg et al.6 are larger by factors of 1.4 to 1.8 between 206 and 245 nm and a factor of 3 at 250 nm. The recommended absorption cross sections in Table 4E-1 are taken from Maricq and Szente.4

Photolysis Quantum Yield and Product Studies: No recommendation.

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>1020 (\sigma) (cm2)</th>
<th>(\lambda) (nm)</th>
<th>1020 (\sigma) (cm2)</th>
<th>(\lambda) (nm)</th>
<th>1020 (\sigma) (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>185.9</td>
<td>950</td>
<td>214.2</td>
<td>1150</td>
<td>242.5</td>
<td>139</td>
</tr>
<tr>
<td>188.5</td>
<td>1050</td>
<td>216.8</td>
<td>1050</td>
<td>245.1</td>
<td>112</td>
</tr>
<tr>
<td>191.1</td>
<td>1130</td>
<td>219.4</td>
<td>933</td>
<td>247.6</td>
<td>82</td>
</tr>
<tr>
<td>193.6</td>
<td>1180</td>
<td>221.9</td>
<td>796</td>
<td>250.2</td>
<td>60</td>
</tr>
<tr>
<td>196.2</td>
<td>1200</td>
<td>224.5</td>
<td>677</td>
<td>252.8</td>
<td>51</td>
</tr>
<tr>
<td>198.8</td>
<td>1260</td>
<td>227.1</td>
<td>558</td>
<td>255.3</td>
<td>43</td>
</tr>
<tr>
<td>201.4</td>
<td>1310</td>
<td>229.6</td>
<td>451</td>
<td>257.9</td>
<td>36</td>
</tr>
<tr>
<td>203.9</td>
<td>1330</td>
<td>232.2</td>
<td>368</td>
<td>260.5</td>
<td>32</td>
</tr>
<tr>
<td>206.5</td>
<td>1350</td>
<td>234.8</td>
<td>289</td>
<td>263.1</td>
<td>26</td>
</tr>
<tr>
<td>209.1</td>
<td>1300</td>
<td>237.4</td>
<td>233</td>
<td>265.6</td>
<td>20</td>
</tr>
<tr>
<td>211.6</td>
<td>1240</td>
<td>239.9</td>
<td>173</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Maricq and Szente4
The absorption spectrum shows decreases in absorption at 273 K over the wavelength range 210–546 nm by Glissmann and Schuhmacher, the only study available. Their absorption cross section data are recommended and are listed in Table 4E-2.

Absorption Cross Sections: The UV absorption spectrum of difluorine monoxide, F₂O, has been measured at 273 K over the wavelength range 210–546 nm by Glissmann and Schuhmacher, the only study available. Their absorption cross section data are recommended and are listed in Table 4E-2.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4E-2. Recommended Absorption Cross Sections of F₂O at 273 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210.2</td>
<td>4.88</td>
<td>239.9</td>
<td>0.65</td>
<td>296.7</td>
<td>0.12</td>
<td>404.0</td>
<td>0.020</td>
</tr>
<tr>
<td>211.4</td>
<td>3.39</td>
<td>244.7</td>
<td>0.50</td>
<td>302.7</td>
<td>0.12</td>
<td>421.0</td>
<td>0.023</td>
</tr>
<tr>
<td>213.7</td>
<td>3.06</td>
<td>248.2</td>
<td>0.37</td>
<td>313.1</td>
<td>0.11</td>
<td>428.0</td>
<td>0.021</td>
</tr>
<tr>
<td>216.5</td>
<td>2.73</td>
<td>253.7</td>
<td>0.27</td>
<td>334.0</td>
<td>0.087</td>
<td>435.8</td>
<td>0.018</td>
</tr>
<tr>
<td>218.1</td>
<td>2.60</td>
<td>257.6</td>
<td>0.21</td>
<td>350.0</td>
<td>0.072</td>
<td>445.0</td>
<td>0.017</td>
</tr>
<tr>
<td>221.0</td>
<td>2.21</td>
<td>265.5</td>
<td>0.15</td>
<td>365.0</td>
<td>0.064</td>
<td>458.0</td>
<td>0.015</td>
</tr>
<tr>
<td>223.6</td>
<td>1.95</td>
<td>270.0</td>
<td>0.13</td>
<td>378.0</td>
<td>0.055</td>
<td>471.5</td>
<td>0.012</td>
</tr>
<tr>
<td>225.3</td>
<td>1.76</td>
<td>275.9</td>
<td>0.12</td>
<td>380.0</td>
<td>0.044</td>
<td>491.6</td>
<td>0.0091</td>
</tr>
<tr>
<td>229.5</td>
<td>1.30</td>
<td>280.6</td>
<td>0.12</td>
<td>387.0</td>
<td>0.033</td>
<td>513.5</td>
<td>0.0052</td>
</tr>
<tr>
<td>234.5</td>
<td>1.14</td>
<td>289.3</td>
<td>0.12</td>
<td>395.0</td>
<td>0.023</td>
<td>546.0</td>
<td>0.0052</td>
</tr>
<tr>
<td>237.8</td>
<td>0.78</td>
<td>292.5</td>
<td>0.12</td>
<td>399.0</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Glissmann and Schuhmacher

E4. F₂O₂ (dioxygen difluoride)

Absorption Cross Sections: The gas-phase UV/vis absorption spectrum of dioxygen difluoride, F₂O₂, has been measured at 193 K by Chegodaev and Tupikov (197–260 nm), at 195 K by Matchuk et al. (350–600 nm), at 273 K by Brodersen et al. (220–522.5 nm), and at 298 K by Lyman and Holland (215 nm). A measurement of F₂O₂ in liquid freon at 77 K has been reported by Kirshenbaum and Streng (200–480 nm). The absorption spectrum shows decreasing absorption cross sections with increasing wavelength and evidence for several transitions that appear as shoulders in the spectrum. An absorption feature near 405 nm
reported by Brodersen et al.1 does not appear in the spectra reported by Matchuk et al.5 and Kirshenbaum and Streng.3 Although measured at significantly different temperatures, the data from Brodersen et al.1 and Chegodaev and Tupikov2 in the wavelength range 220–250 nm agree to within 10-15%, with the Chegodaev and Tupikov data being systematically lower. The recommended absorption cross sections in Table 4E-3 are from Chegodaev and Tupikov2 in the region 200–210 nm, Brodersen et al.1 in the region 220–360 nm, and Matchuk et al.5 for the 370–600 nm region.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4E-3. Recommended Absorption Cross Sections of F$_2$O$_2$ at 193–273 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>700</td>
<td>340</td>
<td>10.9</td>
<td>480</td>
<td>0.34</td>
</tr>
<tr>
<td>210</td>
<td>325</td>
<td>350</td>
<td>7.54</td>
<td>490</td>
<td>0.27</td>
</tr>
<tr>
<td>220</td>
<td>231</td>
<td>360</td>
<td>5.90</td>
<td>500</td>
<td>0.24</td>
</tr>
<tr>
<td>230</td>
<td>163</td>
<td>370</td>
<td>5.15</td>
<td>510</td>
<td>0.22</td>
</tr>
<tr>
<td>240</td>
<td>120</td>
<td>380</td>
<td>4.50</td>
<td>520</td>
<td>0.20</td>
</tr>
<tr>
<td>250</td>
<td>99.1</td>
<td>390</td>
<td>3.77</td>
<td>530</td>
<td>0.19</td>
</tr>
<tr>
<td>260</td>
<td>98.2</td>
<td>400</td>
<td>3.06</td>
<td>540</td>
<td>0.17</td>
</tr>
<tr>
<td>270</td>
<td>86.7</td>
<td>410</td>
<td>2.46</td>
<td>550</td>
<td>0.15</td>
</tr>
<tr>
<td>280</td>
<td>72.5</td>
<td>420</td>
<td>1.97</td>
<td>560</td>
<td>0.13</td>
</tr>
<tr>
<td>290</td>
<td>60.6</td>
<td>430</td>
<td>1.57</td>
<td>570</td>
<td>0.11</td>
</tr>
<tr>
<td>300</td>
<td>44.7</td>
<td>440</td>
<td>1.25</td>
<td>580</td>
<td>0.09</td>
</tr>
<tr>
<td>310</td>
<td>32.4</td>
<td>450</td>
<td>0.96</td>
<td>590</td>
<td>0.07</td>
</tr>
<tr>
<td>320</td>
<td>22.3</td>
<td>460</td>
<td>0.69</td>
<td>600</td>
<td>0.04</td>
</tr>
<tr>
<td>330</td>
<td>15.4</td>
<td>470</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
200–210 nm: Chegodaev and Tupikov2 (193 K)
220–360 nm: Brodersen et al.1 (273 K)
370–600 nm: Matchuk et al.5 (195 K)

E5. FNO (nitrosyl fluoride)

FNO + hv \rightarrow F + NO

54 kJ mol$^{-1}$ 2235 nm (1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of nitrosyl fluoride, FNO, has been measured at room temperature by Burley et al.1 (180–350 nm) and Pagsberg et al.3 (310.5 nm). Johnston and Bertin2 report a cross section at 195 K and 310.5 nm. The FNO spectrum has two similar strong bands centered at 180 nm and 310 nm. The 310 nm band has significant vibronic structure at wavelengths >250 nm. The agreement between the single wavelength measurement of Pagsberg et al.3 and the Burley et al.1 spectrum is good. The recommended absorption cross sections in Table 4E-4 are at 2 nm intervals for the continuous region of the spectrum (\(\lambda < 260 \text{ nm}\)) and at 1 nm intervals in the structured region (\(\lambda > 260 \text{ nm}\)).

Photolysis Quantum Yield and Product Studies: The quantum yield for decomposition is expected to be unity.
Table 4E-4. Recommended Absorption Cross Sections of FNO at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>52.4</td>
<td>246</td>
<td>1.65</td>
<td>286</td>
<td>5.17</td>
<td>319</td>
<td>21.4</td>
</tr>
<tr>
<td>182</td>
<td>51.7</td>
<td>248</td>
<td>1.41</td>
<td>287</td>
<td>5.78</td>
<td>320</td>
<td>15.2</td>
</tr>
<tr>
<td>184</td>
<td>50.7</td>
<td>250</td>
<td>1.54</td>
<td>288</td>
<td>10.4</td>
<td>321</td>
<td>35.6</td>
</tr>
<tr>
<td>186</td>
<td>49.4</td>
<td>252</td>
<td>1.25</td>
<td>289</td>
<td>16.6</td>
<td>322</td>
<td>40.2</td>
</tr>
<tr>
<td>188</td>
<td>47.5</td>
<td>254</td>
<td>1.23</td>
<td>290</td>
<td>17.0</td>
<td>323</td>
<td>25.5</td>
</tr>
<tr>
<td>190</td>
<td>45.1</td>
<td>256</td>
<td>1.36</td>
<td>291</td>
<td>11.3</td>
<td>324</td>
<td>17.8</td>
</tr>
<tr>
<td>192</td>
<td>42.7</td>
<td>258</td>
<td>1.58</td>
<td>292</td>
<td>11.9</td>
<td>325</td>
<td>14.3</td>
</tr>
<tr>
<td>194</td>
<td>40.0</td>
<td>260</td>
<td>1.30</td>
<td>293</td>
<td>18.1</td>
<td>326</td>
<td>12.1</td>
</tr>
<tr>
<td>196</td>
<td>37.3</td>
<td>261</td>
<td>1.45</td>
<td>294</td>
<td>7.11</td>
<td>327</td>
<td>9.40</td>
</tr>
<tr>
<td>198</td>
<td>33.8</td>
<td>262</td>
<td>1.64</td>
<td>295</td>
<td>6.75</td>
<td>328</td>
<td>9.39</td>
</tr>
<tr>
<td>200</td>
<td>30.5</td>
<td>263</td>
<td>1.85</td>
<td>296</td>
<td>9.15</td>
<td>329</td>
<td>12.4</td>
</tr>
<tr>
<td>202</td>
<td>27.7</td>
<td>264</td>
<td>2.03</td>
<td>297</td>
<td>14.1</td>
<td>330</td>
<td>12.9</td>
</tr>
<tr>
<td>204</td>
<td>24.8</td>
<td>265</td>
<td>2.67</td>
<td>298</td>
<td>22.0</td>
<td>331</td>
<td>11.3</td>
</tr>
<tr>
<td>206</td>
<td>22.2</td>
<td>266</td>
<td>1.96</td>
<td>299</td>
<td>23.1</td>
<td>332</td>
<td>13.0</td>
</tr>
<tr>
<td>208</td>
<td>19.9</td>
<td>267</td>
<td>1.99</td>
<td>300</td>
<td>15.6</td>
<td>333</td>
<td>18.9</td>
</tr>
<tr>
<td>210</td>
<td>17.6</td>
<td>268</td>
<td>2.10</td>
<td>301</td>
<td>23.1</td>
<td>334</td>
<td>19.3</td>
</tr>
<tr>
<td>212</td>
<td>15.8</td>
<td>269</td>
<td>2.66</td>
<td>302</td>
<td>25.4</td>
<td>335</td>
<td>16.1</td>
</tr>
<tr>
<td>214</td>
<td>13.9</td>
<td>270</td>
<td>2.81</td>
<td>303</td>
<td>10.4</td>
<td>336</td>
<td>13.1</td>
</tr>
<tr>
<td>216</td>
<td>12.3</td>
<td>271</td>
<td>3.06</td>
<td>304</td>
<td>8.85</td>
<td>337</td>
<td>10.8</td>
</tr>
<tr>
<td>218</td>
<td>10.7</td>
<td>272</td>
<td>4.47</td>
<td>305</td>
<td>10.4</td>
<td>338</td>
<td>8.96</td>
</tr>
<tr>
<td>220</td>
<td>9.35</td>
<td>273</td>
<td>4.30</td>
<td>306</td>
<td>11.8</td>
<td>339</td>
<td>7.13</td>
</tr>
<tr>
<td>222</td>
<td>8.32</td>
<td>274</td>
<td>3.97</td>
<td>307</td>
<td>15.6</td>
<td>340</td>
<td>5.65</td>
</tr>
<tr>
<td>224</td>
<td>7.22</td>
<td>275</td>
<td>3.77</td>
<td>308</td>
<td>32.2</td>
<td>341</td>
<td>4.61</td>
</tr>
<tr>
<td>226</td>
<td>6.30</td>
<td>276</td>
<td>4.24</td>
<td>309</td>
<td>21.8</td>
<td>342</td>
<td>3.81</td>
</tr>
<tr>
<td>228</td>
<td>5.44</td>
<td>277</td>
<td>4.44</td>
<td>310</td>
<td>15.5</td>
<td>343</td>
<td>3.17</td>
</tr>
<tr>
<td>230</td>
<td>4.68</td>
<td>278</td>
<td>3.41</td>
<td>311</td>
<td>54.2</td>
<td>344</td>
<td>2.68</td>
</tr>
<tr>
<td>232</td>
<td>4.10</td>
<td>279</td>
<td>5.03</td>
<td>312</td>
<td>31.6</td>
<td>345</td>
<td>2.30</td>
</tr>
<tr>
<td>234</td>
<td>3.52</td>
<td>280</td>
<td>8.26</td>
<td>313</td>
<td>16.0</td>
<td>346</td>
<td>1.96</td>
</tr>
<tr>
<td>236</td>
<td>3.09</td>
<td>281</td>
<td>10.1</td>
<td>314</td>
<td>12.3</td>
<td>347</td>
<td>1.72</td>
</tr>
<tr>
<td>238</td>
<td>2.76</td>
<td>282</td>
<td>7.58</td>
<td>315</td>
<td>11.7</td>
<td>348</td>
<td>1.48</td>
</tr>
<tr>
<td>240</td>
<td>2.25</td>
<td>283</td>
<td>6.59</td>
<td>316</td>
<td>11.0</td>
<td>349</td>
<td>1.30</td>
</tr>
<tr>
<td>242</td>
<td>2.08</td>
<td>284</td>
<td>7.26</td>
<td>317</td>
<td>13.0</td>
<td>350</td>
<td>1.18</td>
</tr>
<tr>
<td>244</td>
<td>1.74</td>
<td>285</td>
<td>7.45</td>
<td>318</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Burley et al.¹

E6. CHF₃ (trifluoromethane, HFC-23)

CHF₃ + hv → Products

(1)

(New Entry)

Absorption Cross Sections: Trifluoromethane, CHF₃ (HFC-23), has negligible absorption at wavelengths >190 nm. The VUV absorption spectrum of HFC-23 was measured at 298 K by Sauvageau et al.¹ (62–122 nm) and Suto and Lee² (106–124 nm). The two studies differ by ~50% at Lyman-α (121.567 nm). The recommended Lyman-α cross section is an average of the results from these two studies, 3.5 × 10⁻¹⁹ cm² molecule⁻¹, where the Sauvageau et al. data were linearly interpolated to 121.567 nm. An uncertainty factor of 2 (2σ) is assigned, which encompasses the results from both studies.

Back to Index

4-160
Photolysis Quantum Yield and Product Studies: No recommendation.

E7. CH2F2 (difluoromethane, HFC-32) Back to Index

CH2F2 + hv → Products

(New Entry)

Absorption Cross Sections: Difluoromethane, CH2F2 (HFC-32), has negligible absorption at wavelengths >190 nm. The VUV absorption spectrum of HFC-32 at 298 K was measured by Sauvageau et al.1 (60–142 nm; reported in 0.1 to 0.5 nm intervals) and Seccombe et al.2 (60–152 nm; reported in ~0.015 nm intervals). The cross sections reported in these studies agree at Lyman-α (121.567 nm) to within ~30%. An average Lyman-α cross section from these studies, 5.5 × 10^-18 cm² molecule⁻¹, is recommended. An uncertainty factor of 1.4 (2σ) is recommended, which covers the range of experimental data.

Photolysis Quantum Yield and Product Studies: No recommendation.

E8. CHF2CF3 (pentafluoroethane, HFC-125) Back to Index

CHF2CF3 + hv → Products

(New Entry)

Absorption Cross Sections: Pentafluoroethane, CHF2CF3 (HFC-125), has negligible absorption at wavelengths >190 nm. The VUV absorption spectrum of HFC-125 has not been reported to date. The recommended Lyman-α cross section of HFC-125 is assumed to be similar to that of CHF3 (HFC-23) with an estimated value of 3.5 × 10^-19 cm² molecule⁻¹. An uncertainty factor of 3.0 (2σ) is assigned due to the lack of experimental data.

Photolysis Quantum Yield and Product Studies: No recommendation.

E9. CH2FCF3 (1,1,1,2-tetrafluoroethane, HFC-134a) Back to Index

CH2FCF3 + hv → Products

(New Entry)

Absorption Cross Sections: 1,1,1,2-tetrafluoroethane, CH2FCF3 (HFC-134a), has negligible absorption at wavelengths >190 nm. The VUV absorption spectrum of HFC-134a has not been reported to date. The Lyman-α cross section of HFC-134a is expected to be less than that of CH2F3 (HFC-32) and comparable to that of CH2F2 (HFC-32). An estimated value of 5 × 10^-18 cm² molecule⁻¹ is recommended. An uncertainty factor of 2.0 (2σ) is assigned based on the lack of experimental data.

Photolysis Quantum Yield and Product Studies: No recommendation.

E10. CH3CF3 (1,1,1-trifluoroethane, HFC-143a) Back to Index

CH3CF3 + hv → Products

(New Entry)

Absorption Cross Sections: 1,1,1-trifluoroethane, CH3CF3 (HFC-143a), has negligible absorption at wavelengths >190 nm. The VUV absorption spectrum of HFC-143a was measured by Sauvageau et al.¹ between 61 and 132 nm at 298 K with a Lyman-α cross section of 1.75 × 10^-17 cm² molecule⁻¹, which is

E11. CH₃CHF₂ (1,1-difluoroethane, HFC-152a)

CH₃CHF₂ + hv \rightarrow Products

Absorption Cross Sections: 1,1-difluoroethane, CH₃CHF₂ (HFC-152a), has negligible absorption at wavelengths >190 nm. The VUV absorption spectrum of HFC-152a was measured by Sauvageau et al.¹ between 60 and 134 nm at 298 K with a Lyman-α cross section of 3.2 \times 10⁻¹⁷ cm² molecule⁻¹, which is recommended. The uncertainty factor for the Lyman-α cross section is assigned a value of 2.0 (2σ) based primarily on the limited available data.

Photolysis Quantum Yield and Product Studies: No recommendation.

E12. CF₄ (carbon tetrafluoride)

CF₄ + hv \rightarrow CF₃ + F

507 kJ mol⁻¹ 236.1 nm

CF₂ + 2F

1030 kJ mol⁻¹ 116.1 nm

Absorption Cross Sections: The VUV spectrum of carbon tetrafluoride, CF₄, consists of a strong absorption band between 6 and 120 nm with several broad features assigned to a Rydberg series with maxima near 54, 68, 78, 90 and 99 nm. The spectrum also has discrete vibrational structure in the region 56 to 63 nm. The absolute absorption cross sections have been studied extensively in the VUV by a number of groups as summarized in Table 4E-5. General agreement (to within a factor of 2) exists in the wavelength range 6–100 nm among the data of Rebbert and Ausloos,¹⁰ Sauvageau et al.,¹¹ Lee et al.,⁷ Cole and Dexter,³ Lee et al.,⁸ Au et al.,¹ Cook and Ching,⁴ Hatherly and Flaxman,⁵ and Chim et al.²

The absorption cross section at Lyman-α (121.567 nm) was reported to be (5.73 ± 0.97) \times 10⁻²¹ cm² molecule⁻¹ by Inn,⁵ <1 \times 10⁻²⁰ cm² molecule⁻¹ by Lee et al.,⁸ and <8 \times 10⁻²² cm² molecule⁻¹ by Ravishankara et al.⁷ A value of 5.5 \times 10⁻²¹ cm² molecule⁻¹ with an uncertainty factor of 2 (2σ) is recommended for the cross section at Lyman-α.

Photolysis Quantum Yield and Product Studies: No recommendation. CF₄ does not absorb strongly at wavelengths >120 nm and therefore it is not expected to photodissociate until it reaches the mesosphere.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Wavelength Range (nm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebbert and Ausloos¹⁰</td>
<td>1971</td>
<td>73.6–74.4</td>
<td>298</td>
</tr>
<tr>
<td>Sauvageau et al.¹¹</td>
<td>1973</td>
<td>60–120</td>
<td>298</td>
</tr>
<tr>
<td>Lee et al.⁷</td>
<td>1977</td>
<td>17.5–77.0</td>
<td>295</td>
</tr>
<tr>
<td>Cole and Dexter³</td>
<td>1978</td>
<td>4.6, 10.0</td>
<td>298</td>
</tr>
<tr>
<td>Inn⁵</td>
<td>1980</td>
<td>121.567 (Lyman-α)</td>
<td>297</td>
</tr>
<tr>
<td>Lee et al.⁸</td>
<td>1986</td>
<td>50–130</td>
<td>298</td>
</tr>
<tr>
<td>Zhang et al.¹²</td>
<td>1989</td>
<td>6.2–103.2</td>
<td>298</td>
</tr>
<tr>
<td>Ravishankara et al.⁹</td>
<td>1993</td>
<td>121.567 (Lyman-α)</td>
<td>298</td>
</tr>
<tr>
<td>Au et al.¹</td>
<td>1997</td>
<td>6.2–124</td>
<td>298</td>
</tr>
<tr>
<td>Cook and Ching⁴</td>
<td>2003</td>
<td>61–100</td>
<td>295</td>
</tr>
<tr>
<td>Hatherly and Flaxman⁵</td>
<td>2003</td>
<td>58.4 and 73.6–74.6</td>
<td>298</td>
</tr>
<tr>
<td>Chim et al.²</td>
<td>2003</td>
<td>30.7–129.5</td>
<td>298</td>
</tr>
</tbody>
</table>
Absorption Cross Sections: The VUV absorption spectrum of hexafluoroethane, C$_2$F$_6$, consists of a strong absorption band between 6 and 120 nm with several broad features and maxima near 58, 68, 79, 87 and 93 nm. Absolute absorption cross sections have been reported by Sauvageau et al.4 (60–117 nm), Lee et al.2 (18–74 nm), and Cole and Dexter1 (6.5–10.0 nm). The cross section data from Sauvageau et al. over the range 60 to 75 nm are much smaller than those of Lee et al.

The absorption cross section at Lyman-α (121.567 nm) was determined by Ravishankara et al.3 to be $(9.87 ± 0.35) \times 10^{-21}$ cm2 molecule$^{-1}$, which is recommended.

Photolysis Quantum Yield and Product Studies: No recommendation. C$_2$F$_6$ does not absorb significantly at wavelengths > 120 nm and therefore it is not expected to photodissociate until it reaches the mesosphere.

E14. c-CF$_8$ (perfluorocyclobutane)
Back to Index

c-CF$_8$ + hν → Products
(1)

Absorption Cross Sections: The spectrum of perfluorocyclobutane, c-CF$_8$, consists of a strong absorption band in the VUV with a maximum at 117 nm and shows further weak absorption bands at 137 and 174 nm up to about 200 nm. The absolute photoabsorption cross sections have been measured at high resolution in the VUV by Limão-Vieira et al.1 in the range 115–204 nm, although the data in the wavelength range >190 nm is
scattered. They estimated a stratospheric photolysis lifetime of ~400 years at 20 km decreasing to a few days at 40–50 km.

The absorption cross section at Lyman-α (121.567 nm) was determined by Limão-Vieira et al.\(^1\) to be \(7.98 \times 10^{-18}\) cm\(^2\) molecule\(^{-1}\) and Ravishankara et al.\(^2\) reported a value of \((8.76 \pm 0.49) \times 10^{-18}\) cm\(^2\) molecule\(^{-1}\). An average of the Lyman-α cross sections from these studies is recommended, \(8.37 \times 10^{-18}\) cm\(^2\) molecule\(^{-1}\) with a 1.05 uncertainty factor (2σ), which encompasses the results from both studies.

Photolysis Quantum Yield and Product Studies: No recommendation.

E15. CsF\(_2\) (perfluoropentane)

\[
\text{C}_5\text{F}_{12} + \text{hv} \rightarrow \text{Products}
\]

(1)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: No absorption spectrum of perfluoropentane, CsF\(_2\), is known. An absorption cross section at Lyman-α (121.567 nm) was determined by Ravishankara et al.\(^1\) to be \((5.32 \pm 0.30) \times 10^{-18}\) cm\(^2\) molecule\(^{-1}\), which is recommended.

Photolysis Quantum Yield and Product Studies: No recommendation.

E16. C\(_6\)F\(_{14}\) (perfluorohexane)

\[
\text{C}_6\text{F}_{14} + \text{hv} \rightarrow \text{Products}
\]

(1)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: No absorption spectrum of C\(_6\)F\(_{14}\), perfluorohexane, is known. An absorption cross section at Lyman-α (121.567 nm) was determined by Ravishankara et al.\(^1\) to be \((9.82 \pm 0.53) \times 10^{-18}\) cm\(^2\) molecule\(^{-1}\), which is recommended.

Photolysis Quantum Yield and Product Studies: No recommendation.

E17. (CF\(_3\))\(_2\)-C\(_4\)F\(_6\) (perfluoro-1,2-dimethylcyclobutane)

\[(\text{CF}_3)_2\text{C}_4\text{F}_6 + \text{hv} \rightarrow \text{Products}
\]

(1)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: No absorption spectrum of perfluoro-1,2-dimethylcyclobutane, (CF\(_3\))\(_2\)-C\(_4\)F\(_6\), is known. An absorption cross section at Lyman-α (121.567 nm) was determined by Ravishankara et al.\(^1\) to be \((1.22 \pm 0.07) \times 10^{-17}\) cm\(^2\) molecule\(^{-1}\), which is recommended. The large cross section implies a local lifetime of only a few days in the mesosphere.

Photolysis Quantum Yield and Product Studies: No recommendation.

E18. COF$_2$ (carbonyl difluoride)

\[\text{COF}_2 + \text{hv} \rightarrow \text{CO} + \text{F}_2 \]
\[\text{COF} + \text{F} \rightarrow \text{CO} + \text{F}_2 \]

(Recommendation: 06-2, Note: 15-10, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of carbonyl difluoride (difluorophosgene), COF$_2$, has been measured at room temperature by Chou et al.\(^1\) (185–226 nm), Molina and Molina\(^2\) (186–224 nm), and Nölle et al.\(^3\) (199–232 nm). The high resolution spectrum reported by Nölle et al.\(^3\) is highly structured. The cross section data from Nölle et al.\(^3\) are somewhat larger than those from Molina and Molina\(^2\) with differences in the averaged values over 500 cm\(^{-1}\) intervals ranging between 1.5 and 22%. The cross section data of Chou et al.\(^1\) are in good agreement with the data from Molina and Molina\(^2\) in the region 186–197 nm. At longer wavelengths the cross sections from these studies diverge with the Chou et al. results being larger, ~200% near 225 nm. The recommended absorption cross sections in Table 4E-6 are the 500 cm\(^{-1}\) averages of the data from Molina and Molina\(^2\) in the range 186–199 nm and the data from Nölle et al.\(^3\) at longer wavelengths. The recommended uncertainty factor in the room temperature spectrum is 1.30 (2\(\sigma\)) for all wavelengths included in Table 4E-6.

Photolysis Quantum Yield and Product Studies: The photodissociation of COF$_2$ has been studied by Nölle et al.\(^3\) at 193, 210, and 220 nm and Molina and Molina\(^2\) at 206 nm. Nölle et al.\(^4\) determined the COF + F quantum yields by combining FTIR detection of products with excimer laser photolysis at 193 nm and Hg lamp photolysis at 210 and 220 nm. The “apparent” quantum yields for COF$_2$ were 0.47 ± 0.03, 0.57 ± 0.05, and 0.11 ± 0.02 at 193, 210 and 220 nm, respectively. In the case of the laser photolysis at 193 nm, where high concentrations of COF are formed, the self-reaction of the COF photodissociation product regenerates COF$_2$ via COF + COF → COF$_2$ + CO. Assuming that all COF radicals react quantitatively in this way, the actual quantum yield at 193 nm is 0.94 ± 0.06. The quantum yields at 210 and 220 nm obtained using the Hg lamp photolysis generated much lower COF radical concentrations and are reported as the actual quantum yields. Molina and Molina\(^2\) report a quantum yield of 0.26 at 206 nm that is considerably lower than reported by Nölle et al.\(^4\) On the basis of the Nölle et al. study a COF$_2$ photolysis quantum yield of unity is recommended for wavelengths less than 210 nm.

| Table 4E-6. Recommended Absorption Cross Sections of COF$_2$ at 298 K |
| --- | --- | --- | --- | --- |
| \(\lambda\) (nm) | \(10^{20}\) \(\sigma\) (cm\(^{-1}\)) | \(\lambda\) (nm) | \(10^{20}\) \(\sigma\) (cm\(^{-1}\)) | \(\lambda\) (nm) | \(10^{20}\) \(\sigma\) (cm\(^{-1}\)) |
| 186.0 | 5.5 | 199.0 | 1.6 | 213.9 | 0.188 |
| 187.8 | 4.8 | 201.0 | 1.32 | 216.2 | 0.120 |
| 189.6 | 4.2 | 203.1 | 0.987 | 218.6 | 0.077 |
| 191.4 | 3.7 | 205.1 | 0.754 | 221.0 | 0.046 |
| 193.2 | 3.1 | 207.3 | 0.508 | 223.5 | 0.032 |
| 195.1 | 2.6 | 209.4 | 0.392 | 226.0 | 0.021 |
| 197.0 | 2.1 | 211.6 | 0.272 | 228.6 | 0.015 |

Note:

186–199 nm: Molina and Molina\(^2\)
201–229 nm: Nölle et al.\(^3\)

E19. COHF (formyl fluoride)

Back to Index

COHF + hν → HF + CO
→ H + FCO
→ F + HCO

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of formyl fluoride, COHF, has been measured at room temperature by Giddings and Innes\(^1\) (195–255 nm), Meller (194–267 nm) (see Röth et al.\(^3\)), and Rattigan et al.\(^2\) (220–267 nm). The high-resolution measurements show the long-wavelength wing of a highly structured absorption band. The absorption cross sections reported by Giddings and Innes\(^1\) are larger by nearly a factor of two than the high resolution (0.016 nm) data reported by Meller using diode array spectrometry. The cross sections measured by Rattigan et al.\(^2\) at a resolution of 1.2 nm lie between the Giddings and Innes\(^1\) and Meller data sets in the range 220–230 nm and are closer to the data of Giddings and Innes\(^1\) in the region 230–245 nm. Rattigan et al.\(^2\) found the absorption cross sections to be independent of temperature over the range 233–318 K. The recommended absorption cross sections in Table 4E-7 are averages over 1 nm intervals of the high-resolution data from Meller.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4E-7. Recommended Absorption Cross Sections of COHF at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10(^{20}) σ (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>8.28</td>
<td>217</td>
<td>7.38</td>
<td>234</td>
<td>2.98</td>
<td>251</td>
<td>0.151</td>
</tr>
<tr>
<td>201</td>
<td>9.75</td>
<td>218</td>
<td>7.97</td>
<td>235</td>
<td>2.04</td>
<td>252</td>
<td>0.241</td>
</tr>
<tr>
<td>202</td>
<td>8.30</td>
<td>219</td>
<td>6.28</td>
<td>236</td>
<td>2.28</td>
<td>253</td>
<td>0.213</td>
</tr>
<tr>
<td>203</td>
<td>7.55</td>
<td>220</td>
<td>6.85</td>
<td>237</td>
<td>1.24</td>
<td>254</td>
<td>0.071</td>
</tr>
<tr>
<td>204</td>
<td>8.52</td>
<td>221</td>
<td>5.70</td>
<td>238</td>
<td>1.71</td>
<td>255</td>
<td>0.123</td>
</tr>
<tr>
<td>205</td>
<td>10.15</td>
<td>222</td>
<td>6.07</td>
<td>239</td>
<td>1.75</td>
<td>256</td>
<td>0.0674</td>
</tr>
<tr>
<td>206</td>
<td>8.28</td>
<td>223</td>
<td>6.58</td>
<td>240</td>
<td>1.55</td>
<td>257</td>
<td>0.0520</td>
</tr>
<tr>
<td>207</td>
<td>7.41</td>
<td>224</td>
<td>4.94</td>
<td>241</td>
<td>0.967</td>
<td>258</td>
<td>0.0382</td>
</tr>
<tr>
<td>208</td>
<td>8.44</td>
<td>225</td>
<td>5.33</td>
<td>242</td>
<td>1.19</td>
<td>259</td>
<td>0.0446</td>
</tr>
<tr>
<td>209</td>
<td>9.55</td>
<td>226</td>
<td>4.00</td>
<td>243</td>
<td>0.575</td>
<td>260</td>
<td>0.0427</td>
</tr>
<tr>
<td>210</td>
<td>7.76</td>
<td>227</td>
<td>4.65</td>
<td>244</td>
<td>0.765</td>
<td>261</td>
<td>0.0232</td>
</tr>
<tr>
<td>211</td>
<td>7.36</td>
<td>228</td>
<td>4.43</td>
<td>245</td>
<td>0.675</td>
<td>262</td>
<td>0.0153</td>
</tr>
<tr>
<td>212</td>
<td>7.92</td>
<td>229</td>
<td>4.61</td>
<td>246</td>
<td>0.719</td>
<td>263</td>
<td>0.0156</td>
</tr>
<tr>
<td>213</td>
<td>8.56</td>
<td>230</td>
<td>3.57</td>
<td>247</td>
<td>0.412</td>
<td>264</td>
<td>0.0170</td>
</tr>
<tr>
<td>214</td>
<td>9.22</td>
<td>231</td>
<td>2.55</td>
<td>248</td>
<td>0.484</td>
<td>265</td>
<td>0.0126</td>
</tr>
<tr>
<td>215</td>
<td>7.67</td>
<td>232</td>
<td>3.16</td>
<td>249</td>
<td>0.279</td>
<td>266</td>
<td>0.0118</td>
</tr>
<tr>
<td>216</td>
<td>6.51</td>
<td>233</td>
<td>3.09</td>
<td>250</td>
<td>0.210</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Meller (see Röth et al.\(^3\))

(1) Giddings, L. E., Jr.; Innes, K. K. The near ultraviolet spectra of HCOF and DCOF. J. Mol. Spectrosc. 1961, 6, 528-549.
E20. **CF$_3$O$_2$** (trifluoromethylperoxy radical)

CF$_3$O$_2$ + hv \rightarrow Products

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption cross sections of the trifluoromethylperoxy radical, CF$_3$O$_2$, have been measured at room temperature by Maricq and Szente1 (186–276 nm) and Nielsen et al.2 (215–270 nm). The absorption spectrum displays a broad absorption band with a maximum at 210 nm. The cross sections reported by Nielsen et al.2 are in good agreement with those measured by Maricq and Szente1 in the range 240–270 nm, but are consistently smaller at shorter wavelengths (by 20% at 215 nm). The recommended absorption cross sections listed in Table 4E-8 are taken from Maricq and Szente.1

Photolysis Quantum Yield and Product Studies: No recommendation.

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2 molecule$^{-1}$)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>191.1</td>
<td>293</td>
<td>221.9</td>
<td>354</td>
<td>252.8</td>
<td>46</td>
</tr>
<tr>
<td>193.6</td>
<td>305</td>
<td>224.5</td>
<td>324</td>
<td>255.3</td>
<td>37*</td>
</tr>
<tr>
<td>196.2</td>
<td>334</td>
<td>227.1</td>
<td>292</td>
<td>257.9</td>
<td>31</td>
</tr>
<tr>
<td>198.8</td>
<td>363</td>
<td>229.6</td>
<td>257</td>
<td>260.5</td>
<td>25*</td>
</tr>
<tr>
<td>201.4</td>
<td>388</td>
<td>232.2</td>
<td>222</td>
<td>263.1</td>
<td>21</td>
</tr>
<tr>
<td>203.9</td>
<td>407</td>
<td>234.8</td>
<td>192</td>
<td>265.6</td>
<td>17</td>
</tr>
<tr>
<td>206.5</td>
<td>426</td>
<td>237.4</td>
<td>156</td>
<td>268.2</td>
<td>15</td>
</tr>
<tr>
<td>209.1</td>
<td>429</td>
<td>239.9</td>
<td>131</td>
<td>270.8</td>
<td>13</td>
</tr>
<tr>
<td>211.6</td>
<td>430</td>
<td>242.5</td>
<td>107</td>
<td>273.3</td>
<td>10</td>
</tr>
<tr>
<td>214.2</td>
<td>419</td>
<td>245.1</td>
<td>89</td>
<td>275.9</td>
<td>8</td>
</tr>
<tr>
<td>216.8</td>
<td>404</td>
<td>247.6</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219.4</td>
<td>383</td>
<td>250.2</td>
<td>54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Maricq and Szente1
- *smoothed value

E21. **CF$_3$OH** (trifluoromethanol)

CF$_3$OH + hv \rightarrow CF$_3$ + OH

\rightarrow CF$_3$O + H

480 kJ mol$^{-1}$ 249 nm (1)

492 kJ mol$^{-1}$ 243.5 nm (2)

(Recommendation: 97-4, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: An upper limit of 10$^{-21}$ cm2 molecule$^{-1}$ has been determined experimentally by Molina and Molina1 for the absorption cross sections of trifluoromethanol, CF$_3$OH, over the wavelength range 185–300 nm. This upper limit is consistent with estimates based on similarities between CF$_3$OH and CH$_3$OH, as well as with quantum chemistry calculations reported by Schneider et al.2

Photolysis Quantum Yield and Product Studies: No recommendation.

E22. **CF₃OOCF₃ (hexafluorodimethyl peroxide)**

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of hexafluorodimethyl peroxide, CF₃OOCF₃, has been measured at room temperature over the wavelength range 200–263 nm by Meller and Moortgat.\(^1\) The continuous spectrum shows part of a broad absorption band with monotonically increasing cross sections with decreasing wavelength. The recommended absorption cross sections in Table 4E-9 are values averaged over 1 nm intervals of the 0.2 nm resolution spectrum from Meller and Moortgat.\(^1\)

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4E-9. Recommended Absorption Cross Sections of CF₃OOCF₃ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>3.61</td>
<td>216</td>
<td>1.25</td>
<td>232</td>
<td>0.501</td>
<td>248</td>
<td>0.204</td>
</tr>
<tr>
<td>201</td>
<td>3.37</td>
<td>217</td>
<td>1.18</td>
<td>233</td>
<td>0.462</td>
<td>249</td>
<td>0.195</td>
</tr>
<tr>
<td>202</td>
<td>3.13</td>
<td>218</td>
<td>1.10</td>
<td>234</td>
<td>0.433</td>
<td>250</td>
<td>0.183</td>
</tr>
<tr>
<td>203</td>
<td>2.92</td>
<td>219</td>
<td>1.04</td>
<td>235</td>
<td>0.408</td>
<td>251</td>
<td>0.174</td>
</tr>
<tr>
<td>204</td>
<td>2.73</td>
<td>220</td>
<td>0.983</td>
<td>236</td>
<td>0.380</td>
<td>252</td>
<td>0.166</td>
</tr>
<tr>
<td>205</td>
<td>2.53</td>
<td>221</td>
<td>0.926</td>
<td>237</td>
<td>0.361</td>
<td>253</td>
<td>0.157</td>
</tr>
<tr>
<td>206</td>
<td>2.35</td>
<td>222</td>
<td>0.869</td>
<td>238</td>
<td>0.339</td>
<td>254</td>
<td>0.147</td>
</tr>
<tr>
<td>207</td>
<td>2.20</td>
<td>223</td>
<td>0.822</td>
<td>239</td>
<td>0.323</td>
<td>255</td>
<td>0.138</td>
</tr>
<tr>
<td>208</td>
<td>2.06</td>
<td>224</td>
<td>0.778</td>
<td>240</td>
<td>0.303</td>
<td>256</td>
<td>0.132</td>
</tr>
<tr>
<td>209</td>
<td>1.94</td>
<td>225</td>
<td>0.737</td>
<td>241</td>
<td>0.288</td>
<td>257</td>
<td>0.125</td>
</tr>
<tr>
<td>210</td>
<td>1.80</td>
<td>226</td>
<td>0.693</td>
<td>242</td>
<td>0.274</td>
<td>258</td>
<td>0.119</td>
</tr>
<tr>
<td>211</td>
<td>1.69</td>
<td>227</td>
<td>0.654</td>
<td>243</td>
<td>0.263</td>
<td>259</td>
<td>0.112</td>
</tr>
<tr>
<td>212</td>
<td>1.61</td>
<td>228</td>
<td>0.614</td>
<td>244</td>
<td>0.246</td>
<td>260</td>
<td>0.107</td>
</tr>
<tr>
<td>213</td>
<td>1.51</td>
<td>229</td>
<td>0.584</td>
<td>245</td>
<td>0.240</td>
<td>261</td>
<td>0.101</td>
</tr>
<tr>
<td>214</td>
<td>1.42</td>
<td>230</td>
<td>0.555</td>
<td>246</td>
<td>0.227</td>
<td>262</td>
<td>0.096</td>
</tr>
<tr>
<td>215</td>
<td>1.33</td>
<td>231</td>
<td>0.525</td>
<td>247</td>
<td>0.214</td>
<td>263</td>
<td>0.091</td>
</tr>
</tbody>
</table>

Note:
Meller and Moortgat\(^1\)

E23. **CF₃O₃CF₃ (hexafluorodimethyl trioxide)**

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of hexafluorodimethyl trioxide, CF₃O₃CF₃, has been measured at room temperature over the wavelength range 200–312 nm by Meller and Moortgat.\(^1\) The spectrum shows part of a broad absorption band with monotonically decreasing cross sections with increasing wavelength. The recommended absorption cross sections in Table 4E-10 are from the Meller and Moortgat\(^1\) 0.2 nm resolution data set averaged over 1 nm intervals.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4E-10. Recommended Absorption Cross Sections of CF$_3$O$_2$CF$_3$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>46.9</td>
<td>201</td>
<td>45.5</td>
<td>202</td>
<td>44.2</td>
<td>203</td>
<td>42.8</td>
</tr>
<tr>
<td>204</td>
<td>41.4</td>
<td>205</td>
<td>40.2</td>
<td>206</td>
<td>39.0</td>
<td>207</td>
<td>37.9</td>
</tr>
<tr>
<td>208</td>
<td>37.0</td>
<td>209</td>
<td>36.1</td>
<td>210</td>
<td>35.2</td>
<td>211</td>
<td>34.4</td>
</tr>
<tr>
<td>212</td>
<td>33.6</td>
<td>213</td>
<td>32.8</td>
<td>214</td>
<td>32.1</td>
<td>215</td>
<td>31.3</td>
</tr>
<tr>
<td>216</td>
<td>30.5</td>
<td>217</td>
<td>29.8</td>
<td>218</td>
<td>29.0</td>
<td>219</td>
<td>28.2</td>
</tr>
<tr>
<td>220</td>
<td>27.4</td>
<td>221</td>
<td>26.7</td>
<td>222</td>
<td>25.9</td>
<td>223</td>
<td>25.1</td>
</tr>
<tr>
<td>224</td>
<td>24.3</td>
<td>225</td>
<td>23.5</td>
<td>226</td>
<td>22.7</td>
<td>227</td>
<td>21.9</td>
</tr>
<tr>
<td>228</td>
<td>21.1</td>
<td>229</td>
<td>20.3</td>
<td>230</td>
<td>19.5</td>
<td>231</td>
<td>18.8</td>
</tr>
<tr>
<td>232</td>
<td>18.0</td>
<td>233</td>
<td>17.2</td>
<td>234</td>
<td>16.5</td>
<td>235</td>
<td>15.7</td>
</tr>
<tr>
<td>236</td>
<td>15.0</td>
<td>237</td>
<td>14.3</td>
<td>238</td>
<td>13.7</td>
<td>239</td>
<td>13.0</td>
</tr>
<tr>
<td>240</td>
<td>12.3</td>
<td>240</td>
<td>9.46</td>
<td>242</td>
<td>11.1</td>
<td>243</td>
<td>10.5</td>
</tr>
<tr>
<td>244</td>
<td>10.0</td>
<td>245</td>
<td>9.46</td>
<td>246</td>
<td>8.95</td>
<td>247</td>
<td>8.45</td>
</tr>
<tr>
<td>249</td>
<td>7.95</td>
<td>250</td>
<td>7.48</td>
<td>250</td>
<td>7.04</td>
<td>251</td>
<td>6.64</td>
</tr>
<tr>
<td>252</td>
<td>6.25</td>
<td>253</td>
<td>5.87</td>
<td>254</td>
<td>5.52</td>
<td>255</td>
<td>5.18</td>
</tr>
<tr>
<td>256</td>
<td>4.86</td>
<td>257</td>
<td>4.56</td>
<td>258</td>
<td>4.26</td>
<td>259</td>
<td>3.99</td>
</tr>
<tr>
<td>260</td>
<td>3.73</td>
<td>261</td>
<td>3.51</td>
<td>262</td>
<td>3.28</td>
<td>263</td>
<td>3.07</td>
</tr>
<tr>
<td>264</td>
<td>2.86</td>
<td>265</td>
<td>2.67</td>
<td>266</td>
<td>2.50</td>
<td>267</td>
<td>2.33</td>
</tr>
<tr>
<td>268</td>
<td>2.17</td>
<td>269</td>
<td>2.03</td>
<td>270</td>
<td>1.89</td>
<td>271</td>
<td>1.76</td>
</tr>
<tr>
<td>272</td>
<td>1.64</td>
<td>273</td>
<td>1.53</td>
<td>274</td>
<td>1.43</td>
<td>275</td>
<td>1.33</td>
</tr>
<tr>
<td>276</td>
<td>1.24</td>
<td>277</td>
<td>1.15</td>
<td>278</td>
<td>1.07</td>
<td>279</td>
<td>0.999</td>
</tr>
<tr>
<td>280</td>
<td>0.929</td>
<td>281</td>
<td>0.860</td>
<td>282</td>
<td>0.800</td>
<td>283</td>
<td>0.748</td>
</tr>
<tr>
<td>284</td>
<td>0.699</td>
<td>285</td>
<td>0.653</td>
<td>286</td>
<td>0.608</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Meller and Moortgat1

E24. CF$_3$CHO (trifluoroacetaldehyde)

Back to Index

CF$_3$CHO + hv \rightarrow CF$_3$ + HCO \quad 389 kJ mol$^{-1}$ \quad 308 nm (1)

\rightarrow CHF$_2$ + CO \quad 7 kJ mol$^{-1}$ \quad 1700 nm (2)

\rightarrow CF$_3$CO + H \quad 423 kJ mol$^{-1}$ \quad 283 nm (3)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of trifluoroacetaldehyde, CF$_3$CHO, has been measured at room temperature by Lucazeau and Sandorfy6 (118–182 and 250–357 nm), Meller et al.7 (229–364 nm), Francisco and Williams4 (230–400 nm), Sellevåg et al.10 (200–400 nm), Hashikawa et al.5 (200–500 nm), and Chiappero et al.2 (230–360 nm). The UV absorption spectrum has an absorption band between 227 and 360 nm with a maximum at 301 nm and weak diffuse structure at wavelengths >250 nm. The absorption cross sections reported by Francisco and Williams,4 Meller et al.7, Sellevåg et al.10 Hashikawa et al.5, and Chiappero et al.2 are in reasonable agreement, generally to within 10% or better, in the wavelength region 245–354 nm. There are larger discrepancies in the long and short wavelength wings of the absorption band. In these regions, the cross sections from Sellevåg et al.10 are smaller than those from Francisco and Williams4 and larger than those from Meller et al.7. The data of Lucazeau and Sandorfy,6 which are reported in graphical form, are appreciably smaller than those reported in the other studies. The recommended absorption cross sections in Table 4E-11 are taken from Sellevåg et al.10
The temperature dependence of the absorption spectrum was examined by Chiappero et al.2 (230–360 nm) between 249 and 297 K. No discernible variation of the absorption spectrum with temperature was observed. Borkowski and Ausloos3 (313 and 334 nm) reported absorption cross sections at 329 K that are in agreement with the 298 K recommendation.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for CF\textsubscript{3}CHO and the product branching ratios are wavelength dependent. Sellevåg et al.10 determined the effective atmospheric photolysis quantum yield for CF\textsubscript{3}CHO using an outdoor photoreactor to be \(<0.02\). Dodd and Watson-Smith1 determined the products following photolysis at 313 nm to be \(\Phi_1 = 0.12\) and \(\Phi_2 = 0.201\). Pearce and Whytock5 reported \(\Phi_2 = 0\) for 313 nm photolysis. Richer et al.9 studied the products formed following 254 nm photolysis and reported product yields of CHF\textsubscript{3} (14%), CF\textsubscript{3}O (80%), CO (65%), CO\textsubscript{2} (45%) and \(\Phi_2 = 0.14\). At 366 nm, Richer et al.9 observed only a small degree of dissociation after \(>6\) hours of photolysis. Chiappero et al.2 reported photolysis quantum yields of \(\Phi_1 = 0.41 \pm 0.07\) and \(\Phi_2 = 0.38 \pm 0.07\) at 254 nm and \(\Phi_1 = 0.17 \pm 0.03\) and \(\Phi_2 \sim 0\) at 308 nm. Quantum yields of \(\Phi_1 = 0.15 \pm 0.03\) and \(\Phi_2 < 0.02\) are recommended at 313 nm.

Table 4E-11. Recommended Absorption Cross Sections of CF\textsubscript{3}CHO at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>0.197</td>
<td>248</td>
<td>0.311</td>
<td>286</td>
<td>2.63</td>
<td>324</td>
<td>2.06</td>
</tr>
<tr>
<td>211</td>
<td>0.192</td>
<td>249</td>
<td>0.339</td>
<td>287</td>
<td>2.67</td>
<td>325</td>
<td>1.90</td>
</tr>
<tr>
<td>212</td>
<td>0.179</td>
<td>250</td>
<td>0.369</td>
<td>288</td>
<td>2.73</td>
<td>326</td>
<td>1.72</td>
</tr>
<tr>
<td>213</td>
<td>0.172</td>
<td>251</td>
<td>0.400</td>
<td>289</td>
<td>2.79</td>
<td>327</td>
<td>1.64</td>
</tr>
<tr>
<td>214</td>
<td>0.159</td>
<td>252</td>
<td>0.433</td>
<td>290</td>
<td>2.86</td>
<td>328</td>
<td>1.62</td>
</tr>
<tr>
<td>215</td>
<td>0.152</td>
<td>253</td>
<td>0.472</td>
<td>291</td>
<td>2.92</td>
<td>329</td>
<td>1.55</td>
</tr>
<tr>
<td>216</td>
<td>0.140</td>
<td>254</td>
<td>0.511</td>
<td>292</td>
<td>2.94</td>
<td>330</td>
<td>1.44</td>
</tr>
<tr>
<td>217</td>
<td>0.132</td>
<td>255</td>
<td>0.548</td>
<td>294</td>
<td>3.00</td>
<td>331</td>
<td>1.35</td>
</tr>
<tr>
<td>218</td>
<td>0.121</td>
<td>256</td>
<td>0.591</td>
<td>296</td>
<td>3.05</td>
<td>332</td>
<td>1.26</td>
</tr>
<tr>
<td>219</td>
<td>0.113</td>
<td>257</td>
<td>0.638</td>
<td>295</td>
<td>3.06</td>
<td>333</td>
<td>1.18</td>
</tr>
<tr>
<td>220</td>
<td>0.105</td>
<td>258</td>
<td>0.686</td>
<td>293</td>
<td>3.08</td>
<td>334</td>
<td>1.13</td>
</tr>
<tr>
<td>221</td>
<td>0.098</td>
<td>259</td>
<td>0.737</td>
<td>291</td>
<td>3.08</td>
<td>335</td>
<td>1.06</td>
</tr>
<tr>
<td>222</td>
<td>0.090</td>
<td>260</td>
<td>0.789</td>
<td>292</td>
<td>3.10</td>
<td>336</td>
<td>1.01</td>
</tr>
<tr>
<td>223</td>
<td>0.084</td>
<td>261</td>
<td>0.840</td>
<td>297</td>
<td>3.14</td>
<td>337</td>
<td>0.993</td>
</tr>
<tr>
<td>224</td>
<td>0.080</td>
<td>262</td>
<td>0.896</td>
<td>301</td>
<td>3.17</td>
<td>338</td>
<td>0.891</td>
</tr>
<tr>
<td>225</td>
<td>0.076</td>
<td>263</td>
<td>0.954</td>
<td>302</td>
<td>3.20</td>
<td>339</td>
<td>0.730</td>
</tr>
<tr>
<td>226</td>
<td>0.074</td>
<td>264</td>
<td>1.02</td>
<td>303</td>
<td>3.15</td>
<td>340</td>
<td>0.622</td>
</tr>
<tr>
<td>227</td>
<td>0.073</td>
<td>265</td>
<td>1.09</td>
<td>302</td>
<td>3.15</td>
<td>341</td>
<td>0.585</td>
</tr>
<tr>
<td>228</td>
<td>0.075</td>
<td>266</td>
<td>1.15</td>
<td>303</td>
<td>3.15</td>
<td>342</td>
<td>0.569</td>
</tr>
<tr>
<td>229</td>
<td>0.075</td>
<td>267</td>
<td>1.22</td>
<td>304</td>
<td>3.13</td>
<td>343</td>
<td>0.531</td>
</tr>
<tr>
<td>230</td>
<td>0.078</td>
<td>268</td>
<td>1.29</td>
<td>305</td>
<td>3.07</td>
<td>344</td>
<td>0.471</td>
</tr>
<tr>
<td>231</td>
<td>0.081</td>
<td>269</td>
<td>1.35</td>
<td>306</td>
<td>3.03</td>
<td>345</td>
<td>0.425</td>
</tr>
<tr>
<td>232</td>
<td>0.086</td>
<td>270</td>
<td>1.42</td>
<td>307</td>
<td>2.97</td>
<td>346</td>
<td>0.385</td>
</tr>
<tr>
<td>233</td>
<td>0.091</td>
<td>271</td>
<td>1.50</td>
<td>308</td>
<td>2.95</td>
<td>347</td>
<td>0.337</td>
</tr>
<tr>
<td>234</td>
<td>0.097</td>
<td>272</td>
<td>1.58</td>
<td>309</td>
<td>2.92</td>
<td>348</td>
<td>0.310</td>
</tr>
<tr>
<td>235</td>
<td>0.104</td>
<td>273</td>
<td>1.66</td>
<td>310</td>
<td>2.92</td>
<td>349</td>
<td>0.286</td>
</tr>
<tr>
<td>236</td>
<td>0.112</td>
<td>274</td>
<td>1.74</td>
<td>311</td>
<td>2.92</td>
<td>350</td>
<td>0.246</td>
</tr>
<tr>
<td>237</td>
<td>0.121</td>
<td>275</td>
<td>1.82</td>
<td>312</td>
<td>2.91</td>
<td>351</td>
<td>0.235</td>
</tr>
<tr>
<td>238</td>
<td>0.131</td>
<td>276</td>
<td>1.89</td>
<td>313</td>
<td>2.87</td>
<td>352</td>
<td>0.232</td>
</tr>
<tr>
<td>239</td>
<td>0.142</td>
<td>277</td>
<td>1.96</td>
<td>314</td>
<td>2.85</td>
<td>353</td>
<td>0.162</td>
</tr>
<tr>
<td>240</td>
<td>0.155</td>
<td>278</td>
<td>2.03</td>
<td>315</td>
<td>2.82</td>
<td>354</td>
<td>0.096</td>
</tr>
<tr>
<td>241</td>
<td>0.169</td>
<td>279</td>
<td>2.11</td>
<td>316</td>
<td>2.82</td>
<td>355</td>
<td>0.071</td>
</tr>
<tr>
<td>242</td>
<td>0.184</td>
<td>280</td>
<td>2.19</td>
<td>317</td>
<td>2.82</td>
<td>356</td>
<td>0.058</td>
</tr>
<tr>
<td>243</td>
<td>0.201</td>
<td>281</td>
<td>2.28</td>
<td>318</td>
<td>2.82</td>
<td>357</td>
<td>0.050</td>
</tr>
<tr>
<td>244</td>
<td>0.220</td>
<td>282</td>
<td>2.35</td>
<td>319</td>
<td>2.83</td>
<td>358</td>
<td>0.044</td>
</tr>
<tr>
<td>245</td>
<td>0.240</td>
<td>283</td>
<td>2.42</td>
<td>320</td>
<td>2.83</td>
<td>359</td>
<td>0.042</td>
</tr>
<tr>
<td>246</td>
<td>0.262</td>
<td>284</td>
<td>2.50</td>
<td>321</td>
<td>2.83</td>
<td>360</td>
<td>0.038</td>
</tr>
<tr>
<td>247</td>
<td>0.285</td>
<td>285</td>
<td>2.57</td>
<td>323</td>
<td>2.83</td>
<td>362</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Note:
Sellevåg et al.10

4-170
E25. **CF$_3$(O)F (trifluoroacetyl fluoride)**

\[
\begin{align*}
\text{CF}_3\text{C(O)F} + \text{hv} & \rightarrow \text{CF}_3 + \text{FCO} \\
& \rightarrow \text{CF}_3\text{CO} + \text{F}
\end{align*}
\]

Absorption Cross Sections: The UV absorption spectrum of trifluoroacetyl fluoride, CF$_3$(O)F, has been measured at room temperature by Meller et al.\(^3\) (200–281 nm), Rattigan et al.\(^4\) (200–295 nm), and Malanca et al.\(^2\) (200–340 nm). The cross sections from Meller et al.\(^3\) and Malanca et al.\(^2\) are in good agreement in the spectral region 200–260 nm. The position of the absorption maximum near 213 nm reported by Rattigan et al.\(^4\) is shifted by ~3 nm to longer wavelengths as compared to that reported by Meller et al.\(^3\) and Malanca et al.\(^2\). The cross sections from these studies differ by 20 to 30% at wavelengths >260 nm.

The temperature dependence of the absorption spectrum has been reported by Rattigan et al.\(^4\) (233–293 K) and Malanca et al.\(^2\) (238–300 K). For wavelengths >210 nm, the absorption cross section decreases with decreasing temperature. The recommended absorption cross sections in Table 4E-12 are taken from Malanca et al.\(^2\) in the region 200–260 nm at 300 and 238 K. In the region 265–280 nm, the data of Meller\(^1\) are recommended at 297 K and those of Rattigan et al.\(^4\) at 238 K. An uncertainty factor of 1.2 (2σ) is recommended for the 297 and 300 K cross section data given in Table 4E-12.

Photolysis Quantum Yield and Product Studies: Bierbrauer et al.\(^1\) measured the quantum yield of disappearance of CF$_3$(O)F at 240 and 254 nm to be Φ$_1$ + Φ$_2$ = 1.02 ± 0.05. It is assumed that this applies over the wavelength region 200–300 nm.
Table 4E-12. Recommended Absorption Cross Sections of CF$_3$C(O)F at 297/300 K and 238 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>297 and 300 K</td>
<td>238 K</td>
</tr>
<tr>
<td>200</td>
<td>10.90</td>
<td>10.93</td>
</tr>
<tr>
<td>205</td>
<td>12.89</td>
<td>12.89</td>
</tr>
<tr>
<td>210</td>
<td>13.94</td>
<td>13.90</td>
</tr>
<tr>
<td>215</td>
<td>13.83</td>
<td>13.74</td>
</tr>
<tr>
<td>220</td>
<td>12.60</td>
<td>12.48</td>
</tr>
<tr>
<td>225</td>
<td>10.57</td>
<td>10.42</td>
</tr>
<tr>
<td>230</td>
<td>8.15</td>
<td>7.99</td>
</tr>
<tr>
<td>235</td>
<td>5.75</td>
<td>5.61</td>
</tr>
<tr>
<td>240</td>
<td>3.69</td>
<td>3.57</td>
</tr>
<tr>
<td>245</td>
<td>2.13</td>
<td>2.04</td>
</tr>
<tr>
<td>250</td>
<td>1.09</td>
<td>1.03</td>
</tr>
<tr>
<td>255</td>
<td>0.47</td>
<td>0.43</td>
</tr>
<tr>
<td>260</td>
<td>0.167</td>
<td>0.156</td>
</tr>
<tr>
<td>265</td>
<td>0.055</td>
<td>0.047</td>
</tr>
<tr>
<td>270</td>
<td>0.013</td>
<td>0.010</td>
</tr>
<tr>
<td>275</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>280</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note: 200–260 nm, 300 and 238 K: Malanca et al.1 265–280 nm, 297 K: Meller et al.3 238 K: Rattigan et al.4

(3) Meller, R., personal communication to NASA Data Panel.

E26. CF$_3$C(O)Cl (trifluoroacetyl chloride)

Back to Index

CF$_3$C(O)Cl + hv

\rightarrow CF$_3$ + CICO

\rightarrow CF$_3$ + CO + Cl

\rightarrow CF$_3$CO + Cl

\rightarrow CF$_3$Cl + CO

(Recommendation: 06-2, Note: 15-10, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of trifluoroacetyl chloride, CF$_3$C(O)Cl, has been measured at room temperature by Marić and Szente2 (190–342 nm), Rattigan et al.4 (220–330 nm), Meller and Moortgat3 (200–329 nm), and Malanca et al.1 (200–325 nm). The UV absorption spectrum has a band between 215 and 330 nm with a maximum around 255 nm and the shoulder of a stronger band apparent between 200 and 215 nm. The cross section data from the Rattigan et al.,4 Meller and Moortgat,3 and Malanca et al.1 studies are in agreement for wavelengths >240 nm, with the agreement better than 5% between 240 and 315 nm. The Meller and Moortgat3 cross sections are greater than those of Rattigan et al.4 and Malanca et al.1 by ~65% near the absorption minimum at 215 nm. Marić and Szente2 report a very noisy spectrum with an absorption maximum of (4.6 ± 0.7) × 10$^{-20}$ cm2 molecule$^{-1}$ at ~255 nm compared to 6.8 × 10$^{-20}$ cm2 molecule$^{-1}$ by Rattigan et al.4 and Malanca et al.1 and 6.7 × 10$^{-20}$ cm2 molecule$^{-1}$ by Meller and Moortgat.3

The temperature dependence of the absorption spectrum has been measured by Rattigan et al.4 (233, 253 and 296 K), Meller and Moortgat3 (223, 248, 273 and 298 K), and Malanca et al.1 (253 and 300 K). These studies
show a decrease of the absorption cross sections with decreasing temperature in the wavelength regions below ~215 nm and above 255 nm. For the region between 215 and 255 nm, a very slight decrease in absorption cross section with decreasing temperature was observed in these studies. The recommended absorption cross sections in Table 4E-13 are taken from Malanca et al.\(^1\)

Photolysis Quantum Yield and Product Studies: Maricq and Szente\(^2\) photolysed CF\(_3\)C(O)Cl at 193 and 248 nm in O\(_2\)/N\(_2\)/C\(_2\)H\(_6\) mixtures and measured the formation of the products CF\(_3\)O, HCl, and CO. They report $\Phi_2 + \Phi_3 = 1.01 \pm 0.11$ at 193 nm and $\Phi_2 + \Phi_3 = 0.92 \pm 0.08$ at 248 nm where channel 2 was determined to be the major dissociation pathway at both wavelengths. Meller and Moortgat\(^3\) photolysed CF\(_3\)C(O)Cl at 254 nm in N\(_2\) and air/C\(_2\)H\(_6\) mixtures over the pressure range 100–760 Torr and measured the formation of the stable end-products CF\(_3\)Cl, C\(_2\)F\(_6\), Cl\(_2\), and CO. They report the quantum yield for the disappearance of CF\(_3\)C(O)Cl to be $\Phi_1 + \Phi_2 = 0.95 \pm 0.05$. Weibel et al.\(^5\) photolysed CF\(_3\)C(O)Cl at 254 and 280 nm in N\(_2\) and air/C\(_2\)H\(_6\) mixtures in the pressure range 100–600 Torr and measured the formation of the products CF\(_3\)Cl, C\(_2\)F\(_6\), and CO. A quantum yield for the decomposition of CF\(_3\)C(O)Cl = $\Phi[\text{CF}_3\text{Cl} + 2\text{C}_2\text{F}_6]$ = 0.98 ± 0.13, $\Phi_1 + \Phi_2 = 0.95 \pm 0.05$ was obtained. The quantum yields measured by Meller and Moortgat\(^3\) and Weibel et al.\(^5\) were independent of total pressure. There are no quantum yield data in the atmospherically important wavelength range >290 nm.

Table 4E-13. Recommended Absorption Cross Sections of CF\(_3\)C(O)Cl at 300 and 253 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm(^2)) 300 K</th>
<th>$10^{20} \sigma$ (cm(^2)) 253 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>36.8</td>
<td>34.0</td>
</tr>
<tr>
<td>205</td>
<td>13.3</td>
<td>11.4</td>
</tr>
<tr>
<td>210</td>
<td>3.46</td>
<td>2.55</td>
</tr>
<tr>
<td>215</td>
<td>1.07</td>
<td>0.83</td>
</tr>
<tr>
<td>220</td>
<td>1.17</td>
<td>1.08</td>
</tr>
<tr>
<td>225</td>
<td>1.96</td>
<td>1.88</td>
</tr>
<tr>
<td>230</td>
<td>2.93</td>
<td>2.76</td>
</tr>
<tr>
<td>235</td>
<td>4.02</td>
<td>3.96</td>
</tr>
<tr>
<td>240</td>
<td>5.09</td>
<td>4.94</td>
</tr>
<tr>
<td>245</td>
<td>5.99</td>
<td>5.91</td>
</tr>
<tr>
<td>250</td>
<td>6.57</td>
<td>6.42</td>
</tr>
<tr>
<td>255</td>
<td>6.79</td>
<td>6.57</td>
</tr>
<tr>
<td>260</td>
<td>6.53</td>
<td>6.31</td>
</tr>
<tr>
<td>265</td>
<td>5.90</td>
<td>5.69</td>
</tr>
<tr>
<td>270</td>
<td>5.10</td>
<td>4.80</td>
</tr>
<tr>
<td>275</td>
<td>4.00</td>
<td>3.79</td>
</tr>
<tr>
<td>280</td>
<td>3.12</td>
<td>2.80</td>
</tr>
<tr>
<td>285</td>
<td>2.16</td>
<td>2.00</td>
</tr>
<tr>
<td>290</td>
<td>1.38</td>
<td>1.21</td>
</tr>
<tr>
<td>295</td>
<td>0.80</td>
<td>0.72</td>
</tr>
<tr>
<td>300</td>
<td>0.42</td>
<td>0.36</td>
</tr>
<tr>
<td>305</td>
<td>0.197</td>
<td>0.164</td>
</tr>
<tr>
<td>310</td>
<td>0.079</td>
<td>0.066</td>
</tr>
<tr>
<td>315</td>
<td>0.027</td>
<td>0.016</td>
</tr>
<tr>
<td>320</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td>325</td>
<td>0.002</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note:
Malanca et al.\(^1\)

E27. CF₃OONO₂ (trifluoromethyl peroxynitrate)

Back to Index

\[
\text{CF}_3\text{OONO}_2 + \text{hv} \rightarrow \text{CF}_3\text{O}_2 + \text{NO}_2 \\
\rightarrow \text{CF}_3\text{O} + \text{NO}_3
\]

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The UV absorption cross sections of trifluoromethyl peroxynitrate, CF₃OONO₂, have been measured at room temperature by Kopitzky et al.¹ (185–340 nm) and over the temperature range 233–300 K by Malanca et al.² (200–340 nm). The UV absorption spectrum over this wavelength range consists of at least two overlapping continuous absorption bands with maxima below 185 nm and near 260 nm. The spectrum exhibits continuously decreasing absorption cross sections over the 185–340 nm wavelength range. The absorption spectra measured at room temperature in these studies are in agreement for wavelengths ≤290 nm, to within 10% or better. At longer wavelengths, significant discrepancies in the reported spectra are evident, which is most likely due to differences in measurement precision and the accuracy of corrections applied to account for the NO₂ impurity absorption. The recommended room temperature cross sections given in Table 4E-14 are taken from Kopitzky et al.

Table 4E-14. Recommended Absorption Cross Sections of CF₃OONO₂ at 301 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10⁻²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁻²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>430</td>
<td>265</td>
<td>8.2</td>
</tr>
<tr>
<td>190</td>
<td>370</td>
<td>270</td>
<td>5.8</td>
</tr>
<tr>
<td>195</td>
<td>290</td>
<td>275</td>
<td>4.0</td>
</tr>
<tr>
<td>200</td>
<td>220</td>
<td>280</td>
<td>2.6</td>
</tr>
<tr>
<td>205</td>
<td>150</td>
<td>285</td>
<td>1.7</td>
</tr>
<tr>
<td>210</td>
<td>96</td>
<td>290</td>
<td>1.0</td>
</tr>
<tr>
<td>215</td>
<td>74</td>
<td>295</td>
<td>0.69</td>
</tr>
<tr>
<td>220</td>
<td>54</td>
<td>300</td>
<td>0.45</td>
</tr>
<tr>
<td>225</td>
<td>46</td>
<td>305</td>
<td>0.28</td>
</tr>
<tr>
<td>230</td>
<td>38</td>
<td>310</td>
<td>0.20</td>
</tr>
<tr>
<td>235</td>
<td>32</td>
<td>315</td>
<td>0.13</td>
</tr>
<tr>
<td>240</td>
<td>27</td>
<td>320</td>
<td>0.08</td>
</tr>
<tr>
<td>245</td>
<td>22</td>
<td>325</td>
<td>0.050</td>
</tr>
<tr>
<td>250</td>
<td>18</td>
<td>330</td>
<td>0.037</td>
</tr>
<tr>
<td>255</td>
<td>14.3</td>
<td>335</td>
<td>0.024</td>
</tr>
<tr>
<td>260</td>
<td>11.1</td>
<td>340</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Note:
Kopitzky et al.¹
Malanca et al.² reported absorption spectra at 300, 294, 273, 253, and 233 K. The measured spectra were corrected for an unspecified contribution from NO₂ and N₂O₄ impurity absorption, which is particularly important at wavelengths >~260 nm. A decrease in absorption cross section over the wavelength range 260 to 340 nm with decreasing temperature was reported. The temperature dependence was parameterized using the empirical expression

\[
\log_{10}(\sigma) = B \times T + \log_{10} \sigma_0
\]

where \(\sigma\) and \(\sigma_0\) are the cross sections in cm² molecule⁻¹ at temperatures \(T\) and 0 K, respectively. Malanca et al. reported \(\sigma(0 \text{ K})\) and \(B\) parameters at selected wavelengths as given in Table 4E-15.
Table 4E-15. Recommended CF$_3$ONO$_2$ Absorption Spectrum Temperature Dependence

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^3 B (K$^{-1}$)</th>
<th>$10^{20} \sigma_0(0 \text{ K})$ (cm2 molecule$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>6.8</td>
<td>1.2×10^{-2}</td>
</tr>
<tr>
<td>295</td>
<td>8.3</td>
<td>2.9×10^{-3}</td>
</tr>
<tr>
<td>300</td>
<td>10.5</td>
<td>4.4×10^{-4}</td>
</tr>
<tr>
<td>305</td>
<td>12</td>
<td>8.4×10^{-5}</td>
</tr>
<tr>
<td>310</td>
<td>14</td>
<td>1.9×10^{-5}</td>
</tr>
<tr>
<td>315</td>
<td>16.4</td>
<td>2.9×10^{-6}</td>
</tr>
<tr>
<td>320</td>
<td>18</td>
<td>6.0×10^{-7}</td>
</tr>
<tr>
<td>325</td>
<td>22</td>
<td>3.7×10^{-8}</td>
</tr>
<tr>
<td>330</td>
<td>26</td>
<td>1.3×10^{-9}</td>
</tr>
</tbody>
</table>

Note:
Malanca et al.3

Photolysis Quantum Yield and Product Studies: No recommendation.

E28. CF$_3$C(O)O$_2$NO$_2$ (trifluoroperoxyacetyl nitrate) Back to Index

\[
\begin{align*}
\text{CF}_3\text{C(O)O}_2\text{NO}_2 + \text{hv} & \rightarrow \text{CF}_3\text{C(O)O}_2 + \text{NO}_2 & \text{(1)} \\
& \rightarrow \text{CF}_3\text{C(O)O} + \text{NO}_3 & \text{(2)}
\end{align*}
\]

(Recommendation: 06-2, Note: 15-10, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of trifluoroperoxyacetyl nitrate (FPAN), CF$_3$C(O)O$_2$NO$_2$, has been measured at room temperature by Libuda and Zabel2 (227–305 nm) and Kopitzky et al.1 (190–295 nm). These studies are in agreement for wavelengths >260 nm, but have systematic differences at shorter wavelengths with the Kopitzky et al. cross sections being lower. Over this wavelength range, the CF$_3$C(O)O$_2$NO$_2$ spectrum is red shifted by ~5 nm from the CH$_3$C(O)O$_2$NO$_2$ spectrum. The recommended absorption cross sections in Table 4E-16 are averages over 5 nm intervals of the 0.6 nm resolution spectrum reported by Libuda and Zabel.2 As reported by Libuda and Zabel,2 the estimated cross section uncertainties are ~10% for wavelengths <290 nm and 15 to 45% in the region 295–305 nm.

Photolysis Quantum Yield and Product Studies: No recommendation, although excitation in the UV is expected to break the weak O-ONO$_2$ bond.
Table 4E-16. Recommended Absorption Cross Sections of CF$_3$(O)O$_2$NO$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>70.0</td>
</tr>
<tr>
<td>240</td>
<td>44.9</td>
</tr>
<tr>
<td>245</td>
<td>32.5</td>
</tr>
<tr>
<td>250</td>
<td>23.9</td>
</tr>
<tr>
<td>255</td>
<td>17.0</td>
</tr>
<tr>
<td>260</td>
<td>11.8</td>
</tr>
<tr>
<td>270</td>
<td>5.46</td>
</tr>
<tr>
<td>275</td>
<td>3.56</td>
</tr>
<tr>
<td>280</td>
<td>2.21</td>
</tr>
<tr>
<td>285</td>
<td>1.40</td>
</tr>
<tr>
<td>290</td>
<td>0.87</td>
</tr>
<tr>
<td>300</td>
<td>0.33</td>
</tr>
<tr>
<td>305</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Note:
Libuda and Zabel1

E29. CF$_3$CH$_2$CHO (3,3,3-trifluoropropanaldehyde)

CF$_3$CH$_2$CHO + hν → CF$_3$CH$_2$ + HCO
→ CF$_3$CH$_3$ + CO (1)
→ CF$_3$ + CO (2)

(Recommendation: 06-2, Note: 15-10, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of 3,3,3-trifluoropropanaldehyde, CF$_3$CH$_2$CHO, has been measured at room temperature by Sellevåg et al.3 (200–400 nm), Chiappero et al.2 (230–355 nm), and Antiñolo et al. (230–350 nm).1 The continuous absorption spectrum has weak diffuse band structure between 270 and 343 nm. The reported spectra are in reasonable agreement, with the cross sections from Sellevåg et al. ~6% greater than the values reported by Chiappero et al. and Antiñolo et al. near the peak of the spectrum. The spectrum reported by Antiñolo et al. is blue shifted by ~1 nm relative to the other two studies. The data reported for the wavelength region above 340 nm are in poor agreement. The recommended 298 K absorption cross sections given in Table 4E-17 were taken from Sellevåg et al.3

Chiappero et al.2 measured the temperature dependence of the absorption spectrum over the range 249–297 K and reported no discernible variation of cross section with temperature. Antiñolo et al. measured the spectrum over the temperature range 269–323 K and reported a decrease in absorption cross sections with decreasing temperature between 260 and 330 nm. No recommendation is given for the spectrum temperature dependence.

Photolysis Quantum Yield and Product Studies: Sellevåg et al.3 reported the effective atmospheric photolysis quantum yield for CF$_3$CH$_2$CHO using an outdoor photoreactor to be <0.02. The quantum yields for channels 1 and 2 were determined by Chiappero et al.2 to be $\Phi_1 = 0.38 \pm 0.09$ and $\Phi_2 = 0.36 \pm 0.07$ for 254 nm photolysis and $\Phi_1 = 0.04 \pm 0.01$ and $\Phi_2 \sim 0$ at 308 nm in 700 Torr of N$_2$ bath gas.
Table 4E-17. Recommended Absorption Cross Sections of CF₃CH₂CHO at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} \sigma (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.939</td>
<td>236</td>
<td>0.309</td>
<td>272</td>
<td>2.43</td>
<td>308</td>
<td>3.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>0.825</td>
<td>237</td>
<td>0.324</td>
<td>273</td>
<td>2.58</td>
<td>309</td>
<td>3.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>0.732</td>
<td>238</td>
<td>0.344</td>
<td>274</td>
<td>2.72</td>
<td>310</td>
<td>3.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>0.668</td>
<td>239</td>
<td>0.362</td>
<td>275</td>
<td>2.83</td>
<td>311</td>
<td>3.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>0.611</td>
<td>240</td>
<td>0.377</td>
<td>276</td>
<td>2.89</td>
<td>312</td>
<td>3.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>0.542</td>
<td>241</td>
<td>0.395</td>
<td>277</td>
<td>2.92</td>
<td>313</td>
<td>2.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>0.483</td>
<td>242</td>
<td>0.422</td>
<td>278</td>
<td>2.94</td>
<td>314</td>
<td>2.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>0.432</td>
<td>243</td>
<td>0.443</td>
<td>279</td>
<td>2.98</td>
<td>315</td>
<td>2.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>0.397</td>
<td>244</td>
<td>0.474</td>
<td>280</td>
<td>3.07</td>
<td>316</td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>0.367</td>
<td>245</td>
<td>0.513</td>
<td>281</td>
<td>3.22</td>
<td>317</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>0.334</td>
<td>246</td>
<td>0.552</td>
<td>282</td>
<td>3.37</td>
<td>318</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>0.311</td>
<td>247</td>
<td>0.593</td>
<td>283</td>
<td>3.49</td>
<td>319</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>0.309</td>
<td>248</td>
<td>0.629</td>
<td>284</td>
<td>3.55</td>
<td>320</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>0.298</td>
<td>249</td>
<td>0.671</td>
<td>285</td>
<td>3.54</td>
<td>321</td>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>0.285</td>
<td>250</td>
<td>0.728</td>
<td>286</td>
<td>3.53</td>
<td>322</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>0.273</td>
<td>251</td>
<td>0.788</td>
<td>287</td>
<td>3.51</td>
<td>323</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>0.267</td>
<td>252</td>
<td>0.842</td>
<td>288</td>
<td>3.51</td>
<td>324</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>0.266</td>
<td>253</td>
<td>0.904</td>
<td>289</td>
<td>3.59</td>
<td>325</td>
<td>1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>0.263</td>
<td>254</td>
<td>0.963</td>
<td>290</td>
<td>3.69</td>
<td>326</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>0.263</td>
<td>255</td>
<td>1.01</td>
<td>291</td>
<td>3.80</td>
<td>327</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>0.270</td>
<td>256</td>
<td>1.08</td>
<td>292</td>
<td>3.85</td>
<td>328</td>
<td>0.938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>0.266</td>
<td>257</td>
<td>1.15</td>
<td>293</td>
<td>3.81</td>
<td>329</td>
<td>0.818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>0.265</td>
<td>258</td>
<td>1.25</td>
<td>294</td>
<td>3.76</td>
<td>330</td>
<td>0.757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>0.266</td>
<td>259</td>
<td>1.34</td>
<td>295</td>
<td>3.72</td>
<td>331</td>
<td>0.740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>0.256</td>
<td>260</td>
<td>1.40</td>
<td>296</td>
<td>3.65</td>
<td>332</td>
<td>0.742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>0.270</td>
<td>261</td>
<td>1.48</td>
<td>297</td>
<td>3.62</td>
<td>333</td>
<td>0.718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>0.268</td>
<td>262</td>
<td>1.53</td>
<td>298</td>
<td>3.61</td>
<td>334</td>
<td>0.717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>0.270</td>
<td>263</td>
<td>1.61</td>
<td>299</td>
<td>3.67</td>
<td>335</td>
<td>0.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>0.269</td>
<td>264</td>
<td>1.71</td>
<td>300</td>
<td>3.75</td>
<td>336</td>
<td>0.673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>0.273</td>
<td>265</td>
<td>1.84</td>
<td>301</td>
<td>3.76</td>
<td>337</td>
<td>0.607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>0.272</td>
<td>266</td>
<td>1.96</td>
<td>302</td>
<td>3.67</td>
<td>338</td>
<td>0.506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>0.281</td>
<td>267</td>
<td>2.06</td>
<td>303</td>
<td>3.53</td>
<td>339</td>
<td>0.390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>0.288</td>
<td>268</td>
<td>2.13</td>
<td>304</td>
<td>3.37</td>
<td>340</td>
<td>0.277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>0.298</td>
<td>269</td>
<td>2.17</td>
<td>305</td>
<td>3.21</td>
<td>341</td>
<td>0.206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>0.300</td>
<td>270</td>
<td>2.22</td>
<td>306</td>
<td>3.11</td>
<td>342</td>
<td>0.138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>0.307</td>
<td>271</td>
<td>2.30</td>
<td>307</td>
<td>3.06</td>
<td>343</td>
<td>0.103</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Sellevåg et al.³

E30. \textbf{CF}_3\text{C(O)OH (trifluoroacetic acid)}

\begin{align*}
\text{CF}_3\text{C(O)OH} + \text{hv} & \rightarrow \text{CF}_3\text{CO} + \text{OH} \\
& 463 \text{ kJ mol}^{-1} \quad 258 \text{ nm} \quad (1)
\end{align*}

(Recommendation: 06-2, Note: 15-10, Evaluated: 10-6)

\textit{Absorption Cross Sections:} The UV absorption spectrum of trifluoroacetic acid, \text{CF}_3\text{C(O)OH}, was measured at room temperature over the wavelength range 200–280 nm by Rattigan et al.,1 the only study available, using diode array spectroscopy. The spectrum exhibits an absorption band with a broad maximum near 220 nm. The absorption spectrum of \text{CF}_3\text{C(O)OH} is red shifted from the \text{CH}_3\text{C(O)OH} spectrum and has lower absorption cross sections. The recommended absorption cross sections in Table 4E-18 are from Rattigan et al.1

\textit{Photolysis Quantum Yield and Product Studies:} No recommendation.

\textbf{Table 4E-18. Recommended Absorption Cross Sections of CF}_3\text{C(O)OH at 296 K}

\begin{table}[h]
\begin{center}
\begin{tabular}{|c|c|}
\hline
\(\lambda\) (nm) & \(10^{20} \sigma\) (cm\(^2\)) \\
\hline
200 & 5.20 \\
205 & 6.48 \\
210 & 7.23 \\
215 & 7.59 \\
220 & 7.76 \\
225 & 7.21 \\
230 & 6.03 \\
235 & 4.46 \\
240 & 2.89 \\
245 & 1.69 \\
250 & 0.870 \\
255 & 0.390 \\
260 & 0.155 \\
265 & 0.050 \\
270 & 0.013 \\
275 & 0.006 \\
\hline
\end{tabular}
\end{center}
\end{table}

Note: Rattigan et al.1

E31. \textbf{CH}_3\text{C(O)F (acetyl fluoride)}

\begin{align*}
\text{CH}_3\text{C(O)F} + \text{hv} & \rightarrow \text{CH}_3 + \text{FCO} \\
& 415 \text{ kJ mol}^{-1} \quad 288 \text{ nm} \quad (1)
\end{align*}

(Recommendation: 06-2, Note: 15-10, Evaluated: 10-6)

\textit{Absorption Cross Sections:} The UV absorption spectrum of acetyl fluoride, \text{CH}_3\text{C(O)F}, has been measured at room temperature over the wavelength range 200–310 nm by Rattigan et al.,1 the only study available, using diode array spectroscopy. The spectrum shows two absorption bands with a maximum cross section near 206 nm and a shoulder near 260 nm. The recommended absorption cross sections in Table 4E-19 are from Rattigan et al.1

\textit{Photolysis Quantum Yield and Product Studies:} No recommendation.
Table 4E-19. Recommended Absorption Cross Sections of CH₃C(O)F at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>11.3</td>
</tr>
<tr>
<td>205</td>
<td>12.2</td>
</tr>
<tr>
<td>210</td>
<td>12.0</td>
</tr>
<tr>
<td>215</td>
<td>10.5</td>
</tr>
<tr>
<td>220</td>
<td>8.35</td>
</tr>
<tr>
<td>225</td>
<td>5.97</td>
</tr>
<tr>
<td>230</td>
<td>3.83</td>
</tr>
<tr>
<td>235</td>
<td>2.19</td>
</tr>
<tr>
<td>240</td>
<td>1.14</td>
</tr>
<tr>
<td>245</td>
<td>0.566</td>
</tr>
<tr>
<td>250</td>
<td>0.311</td>
</tr>
<tr>
<td>255</td>
<td>0.206</td>
</tr>
<tr>
<td>260</td>
<td>0.158</td>
</tr>
<tr>
<td>265</td>
<td>0.120</td>
</tr>
<tr>
<td>270</td>
<td>0.090</td>
</tr>
<tr>
<td>275</td>
<td>0.056</td>
</tr>
<tr>
<td>280</td>
<td>0.029</td>
</tr>
<tr>
<td>285</td>
<td>0.016</td>
</tr>
<tr>
<td>290</td>
<td>0.008</td>
</tr>
<tr>
<td>295</td>
<td>0.004</td>
</tr>
<tr>
<td>300</td>
<td>0.002</td>
</tr>
<tr>
<td>305</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note:
Rattigan et al.¹

E32. \(\text{CH}_2=\text{CHCF}_3\) (3,3,3-trifluoro-1-propene)

\[
\text{CH}_2=\text{CHCF}_3 + \text{hv} \rightarrow \text{Products}
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of 3,3,3-trifluoro-1-propene, \(\text{CH}_2=\text{CHCF}_3\), has been measured at room temperature over the wavelength range 164–205 nm by Orkin et al.,\(^1\) the only study available. The recommended absorption cross sections in Table 4E-20 are from Orkin et al.\(^1\)

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4E-20. Recommended Absorption Cross Sections of \(\text{CH}_2=\text{CHCF}_3\) at 295 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>3569</td>
<td>178</td>
<td>168</td>
<td>192</td>
<td>0.681</td>
</tr>
<tr>
<td>165</td>
<td>3377</td>
<td>179</td>
<td>114</td>
<td>193</td>
<td>0.453</td>
</tr>
<tr>
<td>166</td>
<td>3146</td>
<td>180</td>
<td>77.7</td>
<td>194</td>
<td>0.298</td>
</tr>
<tr>
<td>167</td>
<td>2874</td>
<td>181</td>
<td>53.9</td>
<td>195</td>
<td>0.204</td>
</tr>
<tr>
<td>168</td>
<td>2538</td>
<td>182</td>
<td>36.5</td>
<td>196</td>
<td>0.131</td>
</tr>
<tr>
<td>169</td>
<td>2184</td>
<td>183</td>
<td>25.0</td>
<td>197</td>
<td>0.0872</td>
</tr>
<tr>
<td>170</td>
<td>1814</td>
<td>184</td>
<td>16.8</td>
<td>198</td>
<td>0.0581</td>
</tr>
<tr>
<td>171</td>
<td>1481</td>
<td>185</td>
<td>11.3</td>
<td>199</td>
<td>0.0404</td>
</tr>
<tr>
<td>172</td>
<td>1165</td>
<td>186</td>
<td>7.74</td>
<td>200</td>
<td>0.0278</td>
</tr>
<tr>
<td>173</td>
<td>899</td>
<td>187</td>
<td>5.22</td>
<td>201</td>
<td>0.0185</td>
</tr>
<tr>
<td>174</td>
<td>660</td>
<td>188</td>
<td>3.49</td>
<td>202</td>
<td>0.0129</td>
</tr>
<tr>
<td>175</td>
<td>475</td>
<td>189</td>
<td>2.32</td>
<td>203</td>
<td>0.00945</td>
</tr>
<tr>
<td>176</td>
<td>340</td>
<td>190</td>
<td>1.52</td>
<td>204</td>
<td>0.00669</td>
</tr>
<tr>
<td>177</td>
<td>240</td>
<td>191</td>
<td>1.02</td>
<td>205</td>
<td>0.00456</td>
</tr>
</tbody>
</table>

Note: Orkin et al.\(^1\)

(1) Orkin, V. L.; Huie, R. E.; Kurylo, M. J. Rate constants for the reactions of OH with HFC-245cb (\(\text{CH}_3\text{CF}_2\text{CF}_3\)) and some fluoroalkenes (\(\text{CH}_2\text{CHCF}_3\), \(\text{CH}_2\text{CFCF}_3\), \(\text{CF}_2\text{CFCF}_3\), and \(\text{CF}_2\text{CF}_2\)). *J. Phys. Chem.* A 1997, 101, 9118-9124.

E33. \(\text{CH}_2=C\text{FCF}_3\) (2,3,3,3-tetrafluoropropene)

\[
\text{CH}_2=C\text{FCF}_3 + \text{hv} \rightarrow \text{Products}
\]

(Recommendation: 06-2, Note: 15-10, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of 2,3,3,3-tetrafluoropropene, \(\text{CH}_2=C\text{FCF}_3\), has been measured at room temperature over the wavelength range 164–186 nm by Orkin et al.\(^1\) and at 184.95 nm by Papadimitriou et al.,\(^2\) \((3.25 \pm 0.10) \times 10^{-19} \text{cm}^2 \text{molecule}^{-1}\). The recommended absorption cross sections in Table 4E-21 are taken from Orkin et al.\(^1\)

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4E-21. Recommended Absorption Cross Sections of CH$_2$=CFCF$_3$ at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>3773</td>
</tr>
<tr>
<td>165</td>
<td>3732</td>
</tr>
<tr>
<td>166</td>
<td>3730</td>
</tr>
<tr>
<td>167</td>
<td>3695</td>
</tr>
<tr>
<td>168</td>
<td>3594</td>
</tr>
<tr>
<td>169</td>
<td>3418</td>
</tr>
<tr>
<td>170</td>
<td>3176</td>
</tr>
<tr>
<td>171</td>
<td>2877</td>
</tr>
<tr>
<td>172</td>
<td>2535</td>
</tr>
<tr>
<td>173</td>
<td>2178</td>
</tr>
<tr>
<td>174</td>
<td>1802</td>
</tr>
<tr>
<td>175</td>
<td>1445</td>
</tr>
<tr>
<td>176</td>
<td>1130</td>
</tr>
<tr>
<td>177</td>
<td>840</td>
</tr>
<tr>
<td>178</td>
<td>600</td>
</tr>
<tr>
<td>179</td>
<td>408</td>
</tr>
<tr>
<td>180</td>
<td>273</td>
</tr>
<tr>
<td>181</td>
<td>185</td>
</tr>
<tr>
<td>182</td>
<td>124</td>
</tr>
<tr>
<td>183</td>
<td>82.4</td>
</tr>
<tr>
<td>184</td>
<td>55.5</td>
</tr>
<tr>
<td>185</td>
<td>38.1</td>
</tr>
<tr>
<td>186</td>
<td>26.2</td>
</tr>
</tbody>
</table>

Note:
Orkin et al.1

E34. CF$_2$=CF$_2$ (tetrafluoroethylene)

CF$_2$=CF$_2$ + hv \rightarrow Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of tetrafluoroethylene, CF$_2$=CF$_2$, has been measured at room temperature by Sharpe et al.3 (185–209 nm), Orkin et al.2 (164–220 nm), and Eden et al.1 (113–330 nm). The spectrum shows a structured absorption band with five maxima between 170 and 200 nm (maximum near 188 nm). The spectra from Orkin et al.2 and Eden et al.1 agree to within 10% in the range 164–182 nm, 20% in the range 182–200 nm, and 10% in the range 203–205 nm. Above 195 nm, the absorption cross sections decrease monotonically toward longer wavelengths. The spectrum reported by Eden et al.1 deviates from that of Orkin et al.2 at wavelengths >200 nm, but the Eden et al. spectrum is very noisy in this region. The absorption spectrum reported by Sharpe et al.3 is systematically shifted by 1 to 2 nm to shorter wavelengths relative to the Orkin et al.2 spectrum. The recommended absorption cross sections given in Table 4E-22 are the mean of the data from Orkin et al.2 and Eden et al.1 for the region 164–205 nm and the data from Orkin et al.2 in the region 206–220 nm.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4E-22. Recommended Absorption Cross Sections of CF₂=CF₂ at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>335</td>
<td>165</td>
<td>324</td>
<td>166</td>
<td>300</td>
<td>167</td>
<td>272</td>
</tr>
<tr>
<td>184</td>
<td>190</td>
<td>194</td>
<td>196</td>
<td>198</td>
<td>201</td>
<td>199</td>
<td>203</td>
</tr>
<tr>
<td>227</td>
<td>238</td>
<td>268</td>
<td>286</td>
<td>327</td>
<td>380</td>
<td>329</td>
<td>400</td>
</tr>
<tr>
<td>262</td>
<td>324</td>
<td>238</td>
<td>300</td>
<td>272</td>
<td>286</td>
<td>299</td>
<td>310</td>
</tr>
<tr>
<td>317</td>
<td>317</td>
<td>327</td>
<td>337</td>
<td>350</td>
<td>370</td>
<td>350</td>
<td>370</td>
</tr>
</tbody>
</table>

Note:
164–205 nm: mean of the data from Orkin et al.² and Eden et al.¹ (Note: the structure in the spectrum in this wavelength region is not accurately reproduced with the 1 nm resolution given in the table, see the original references.)
206–220 nm: data from Orkin et al.²

E35. CF₂=CFCF₃ (hexafluoropropene)

CF₂=CFCF₃ + hν → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of hexafluoropropene, CF₂=CFCF₃, was measured at room temperature by Sharpe et al.³ (185–209 nm), Orkin et al.² (164–222 nm), and Eden et al.¹ (115–330 nm). The spectrum has overlapping absorption bands between 140 and 220 nm with maxima at 155 and 158.5 nm (σ ~3 × 10⁻¹⁷ cm² molecule⁻¹), 166, and 180 nm. In the wavelength region 164–200 nm, the cross sections from Orkin et al.² and Eden et al.¹ agree to within 15%. In the region 185–200 nm, the cross sections from Orkin et al.² Eden et al.¹ and Sharpe et al.³ agree to within 25%. Above 195 nm, the absorption cross sections decrease toward longer wavelengths. The spectrum reported by Eden et al.¹ deviates from that of Orkin et al.² at wavelengths >200 nm, but the Eden et al. spectrum is very noisy in this region. The recommended absorption cross sections given in Table 4E-23 are the mean of the data from Orkin et al.² and Eden et al.¹ for the region 164–199 nm and the data from Orkin et al.² in the region 200–222 nm.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4E-23. Recommended Absorption Cross Sections of CF₂=CFCF₃ at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²₀ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>2290</td>
<td>179</td>
<td>929</td>
<td>194</td>
<td>97.8</td>
<td>209</td>
<td>0.585</td>
</tr>
<tr>
<td>165</td>
<td>2210</td>
<td>180</td>
<td>912</td>
<td>195</td>
<td>73.3</td>
<td>210</td>
<td>0.396</td>
</tr>
<tr>
<td>166</td>
<td>2130</td>
<td>181</td>
<td>880</td>
<td>196</td>
<td>54.7</td>
<td>211</td>
<td>0.269</td>
</tr>
<tr>
<td>167</td>
<td>2040</td>
<td>182</td>
<td>835</td>
<td>197</td>
<td>40.4</td>
<td>212</td>
<td>0.184</td>
</tr>
<tr>
<td>168</td>
<td>1920</td>
<td>183</td>
<td>779</td>
<td>198</td>
<td>29.7</td>
<td>213</td>
<td>0.125</td>
</tr>
<tr>
<td>169</td>
<td>1760</td>
<td>184</td>
<td>708</td>
<td>199</td>
<td>22.3</td>
<td>214</td>
<td>0.0838</td>
</tr>
<tr>
<td>170</td>
<td>1570</td>
<td>185</td>
<td>629</td>
<td>200</td>
<td>16.2</td>
<td>215</td>
<td>0.0564</td>
</tr>
<tr>
<td>171</td>
<td>1380</td>
<td>186</td>
<td>550</td>
<td>201</td>
<td>11.6</td>
<td>216</td>
<td>0.0381</td>
</tr>
<tr>
<td>172</td>
<td>1210</td>
<td>187</td>
<td>472</td>
<td>202</td>
<td>8.17</td>
<td>217</td>
<td>0.0261</td>
</tr>
<tr>
<td>173</td>
<td>1080</td>
<td>188</td>
<td>391</td>
<td>203</td>
<td>5.70</td>
<td>218</td>
<td>0.0177</td>
</tr>
<tr>
<td>174</td>
<td>995</td>
<td>189</td>
<td>321</td>
<td>204</td>
<td>3.95</td>
<td>219</td>
<td>0.0119</td>
</tr>
<tr>
<td>175</td>
<td>946</td>
<td>190</td>
<td>259</td>
<td>205</td>
<td>2.70</td>
<td>220</td>
<td>0.00795</td>
</tr>
<tr>
<td>176</td>
<td>930</td>
<td>191</td>
<td>207</td>
<td>206</td>
<td>1.85</td>
<td>221</td>
<td>0.00533</td>
</tr>
<tr>
<td>177</td>
<td>928</td>
<td>192</td>
<td>163</td>
<td>207</td>
<td>1.28</td>
<td>222</td>
<td>0.00354</td>
</tr>
<tr>
<td>178</td>
<td>931</td>
<td>193</td>
<td>127</td>
<td>208</td>
<td>0.866</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
164–199 nm: mean of the data of Orkin et al.² and Eden et al.¹
200–222 nm: data of Orkin et al.²

3 Sharpe, S.; Hartnett, B.; Sethi, H. S.; Sethi, D. S. Absorption cross-sections of CF₂ in the A^1B₁—X^1A₁ transition at 0.5 nm intervals and absolute rate constant for 2CF₂ → C₂F₄ at 298 ± 3 K. *J. Photochem.* 1987, 38, 1-13.

E36. **NF₃ (nitrogen trifluoride)**

NF₃ + hν → Products

(New Entry)

Absorption Cross Sections: The UV absorption spectrum of nitrogen trifluoride, NF₃, has been measured at room temperature by Makeev et al.³ (210–240 nm), Molina et al.⁴ (180–250 nm), and Dillon et al.¹ (184–226 nm), and as a function of temperature by Papadimitriou et al.⁶ (184.95–250 nm, 212–296 K). The room temperature spectra reported by Molina et al., Dillon et al., and Papadimitriou et al. are in good agreement over the common wavelength regions. The data from Makeev et al. are significantly greater than the other studies and are not considered in the recommendation. The room temperature spectrum from the Papadimitriou et al. study is given in Table 4E-24.
Table 4E-24. Recommended Absorption Cross Sections of NF$_3$ at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>184.95</td>
<td>3.44</td>
</tr>
<tr>
<td>190</td>
<td>1.16</td>
</tr>
<tr>
<td>195</td>
<td>0.393</td>
</tr>
<tr>
<td>200</td>
<td>0.132</td>
</tr>
<tr>
<td>205</td>
<td>0.0454</td>
</tr>
<tr>
<td>210</td>
<td>0.0168</td>
</tr>
<tr>
<td>215</td>
<td>0.00698</td>
</tr>
<tr>
<td>220</td>
<td>0.00335</td>
</tr>
<tr>
<td>225</td>
<td>0.00154</td>
</tr>
<tr>
<td>230</td>
<td>0.000801</td>
</tr>
<tr>
<td>235</td>
<td>0.000485</td>
</tr>
<tr>
<td>240</td>
<td>0.000287</td>
</tr>
<tr>
<td>250</td>
<td>0.000111</td>
</tr>
</tbody>
</table>

Note: 184.95–250 nm: Papadimitriou et al.6

Papadimitriou et al. measured the spectrum temperature dependence over the range 212–296 K. They observed a systematic decrease in absorption cross section with decreasing temperature at all wavelengths included in their study. The absorption spectrum was parameterized using the empirical formula

$$\log_{10} (\sigma(\lambda, T)) = \sum_i A_i \lambda^i + (296 - T) \sum_i B_i \lambda^i$$

and the parameters are given in Table 4E-25. The parameterization is recommended here. The parameterization reproduces the Molina et al. and Dillon et al. datasets to better than ~10% at all wavelengths. An uncertainty factor of 1.1 (2σ) for the room temperature absorption spectrum is assigned, which encompasses the range of the available experimental data.

Table 4E-25. Recommended NF$_3$ UV Absorption Spectrum, $\sigma(\lambda, T)$, Parameterization

<table>
<thead>
<tr>
<th>I</th>
<th>A_i</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-218.67</td>
<td>0.9261</td>
</tr>
<tr>
<td>1</td>
<td>4.03743</td>
<td>-0.0130187</td>
</tr>
<tr>
<td>2</td>
<td>-0.0295605</td>
<td>6.096 x 10^{-5}</td>
</tr>
<tr>
<td>3</td>
<td>9.596 x 10^{-5}</td>
<td>-9.75 x 10^{-8}</td>
</tr>
<tr>
<td>4</td>
<td>-1.3171 x 10^{-7}</td>
<td>9.76 x 10^{-12}</td>
</tr>
<tr>
<td>5</td>
<td>4.929 x 10^{-11}</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Papadimitriou et al.6

NF$_3$ VUV absorption cross sections have been measured in the 126.6–178.6 nm wavelength region by La Paglia and Duncan3 and at 147 nm by Inel.2 The absorption cross section value reported by Inel is approximately a factor of 2 greater than that reported by La Paglia and Duncan. A recommended Lyman-α cross section of 4.8×10^{-18} cm2 molecule$^{-1}$ was obtained from an extrapolation of the La Paglia and Duncan data. An uncertainty factor of 1.5 (2σ) is recommended, based primarily on the fact that there are no direct measurements at Lyman-α.

Photolysis Quantum Yield and Product Studies: Dillon et al.1 measured the F atom quantum yield in the 193 nm photolysis of NF$_3$ to be 1.03 ± 0.05. A unit photolysis quantum yield for the loss of NF$_3$ is recommended over the wavelength range most critical for its atmospheric photolysis, i.e., 190–230 nm.

4.8 Bibliography – FO\textsubscript{x} Photochemistry

Au, J. W.; Burton, G. R.; Brion, C. E. Quantitative spectroscopic studies of the valence-shell electronic excitations of Freons (CFCl\textsubscript{3}, CF\textsubscript{2}Cl\textsubscript{2}, CF\textsubscript{3}Cl, and CF\textsubscript{4}) in the VUV and soft X-ray regions. *Chem. Phys.* **1997**, *221*, 151-168.

Nölle, A.; Krums.

Meller, R., personal communication to NASA Data Panel.

Sharpe, S.; Hartnett, B.; Sethi, H. S.; Sethi, D. S. Absorption cross-sections of CF₂ in the A'1B₁→X'1A₁ transition at 0.5 nm intervals and absolute rate constant for 2CF₂ → C₂F₄ at 298 ± 3 K. J. Photochem. 1987, 38, 1-13.

4-188
SECTION 4F. CLO\(_x\) PHOTOCHEMISTRY

F1. \(\text{Cl}_2\) (molecular chlorine)

Back to Index

\[
\begin{align*}
\text{Cl}_2 + \text{hv} & \rightarrow \text{Cl}(^2\text{P}_{3/2}) + \text{Cl}(^2\text{P}_{3/2}) & 243 \text{ kJ mol}^{-1} & 493 \text{ nm} & (1) \\
& \rightarrow \text{Cl}(^2\text{P}_{3/2}) + \text{Cl}(^2\text{P}_{1/2}) & 253 \text{ kJ mol}^{-1} & 473 \text{ nm} & (2)
\end{align*}
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The recommended absorption cross sections of \(\text{Cl}_2\), molecular chlorine, are taken from the work of Maric et al.,\(^{11}\) who studied the absorption spectrum in the range 200–550 nm using a spectral resolution of 0.2 nm at 298 K. These authors also measured banded features in the range 476–496 nm at 0.04 nm resolution. The absorption cross sections can be calculated in the range 250–550 nm at various temperatures with the expression derived from their study and previous investigations:

\[
\sigma = 10^{-20} \alpha^{4/3} \left[27.3 \exp \left(\frac{99.0 \alpha}{\lambda} \left(\ln \left(\frac{329.5}{\lambda} \right) \right)^2 \right) + 0.932 \exp \left(-91.5 \alpha \left(\ln \left(\frac{406.5}{\lambda} \right) \right)^2 \right) \right]
\]

where \(\alpha = \tanh \left(\frac{402.7}{T} \right)\); \(\lambda\) in nm, 250 < \(\lambda\) < 550 nm, and \(T\) in K; 300 K > \(T\) > 195 K. Cross sections calculated for 298 K are given in Table 4F-1. For convenience, some room temperature values are listed in the table. Ganske et al.\(^{8}\) have also measured the cross sections at room temperature and the agreement with the recommended values is excellent. These two sets of data also agree well with earlier recommendations, which were based on the work of Seery and Britton,\(^{14}\) which is in turn in good agreement with the results reported by Gibson and Bayliss,\(^{9}\) Fergusson et al.,\(^{7}\) and Burkholder and Bair.\(^{1}\) At wavelengths >250 nm, the absorption cross sections measured at room temperature by Hubinger and Nee\(^{10}\) are in excellent agreement with the values of Maric et al.\(^{11}\) However, in the range 200–250 nm the cross sections deviate considerably between these groups. Room temperature cross sections have also been obtained by Roxlo and Mandl\(^{13}\) for the range 170–214 nm. The low resolution absorption cross sections reported by Chen and Zhu\(^{3,4}\) and Chen et al.\(^{5}\) for the 300–420 nm region at 5 and 10 nm intervals and measured for the calibration of quantum yield measurements of some carbonyl compounds deviate by up to ~30% from those reported by Maric et al.\(^{11}\)

Photolysis Quantum Yield and Product Studies: The estimated atmospheric photodissociation rate is only weakly affected by the temperature dependence of the spectrum. Chininin\(^{6}\) measured an upper limit of 5% for the branching ratio for excited atomic Cl*\(^{2}\text{P}_{1/2}\) at 351 nm in agreement with earlier studies by Busch et al.\(^{2}\) at 347.1 nm and Park et al.\(^{12}\) at 308 and 340–355 nm, who determined an upper limit for Cl* formation of 0.01.
Table 4F-1. Recommended Absorption Cross Sections of Cl$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{-20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>0.198</td>
</tr>
<tr>
<td>270</td>
<td>0.824</td>
</tr>
<tr>
<td>280</td>
<td>2.58</td>
</tr>
<tr>
<td>290</td>
<td>6.22</td>
</tr>
<tr>
<td>300</td>
<td>11.92</td>
</tr>
<tr>
<td>310</td>
<td>18.50</td>
</tr>
<tr>
<td>320</td>
<td>23.71</td>
</tr>
<tr>
<td>330</td>
<td>25.55</td>
</tr>
<tr>
<td>340</td>
<td>23.51</td>
</tr>
<tr>
<td>350</td>
<td>18.77</td>
</tr>
<tr>
<td>360</td>
<td>13.22</td>
</tr>
<tr>
<td>370</td>
<td>8.41</td>
</tr>
<tr>
<td>380</td>
<td>5.00</td>
</tr>
<tr>
<td>390</td>
<td>2.94</td>
</tr>
<tr>
<td>400</td>
<td>1.84</td>
</tr>
<tr>
<td>410</td>
<td>1.28</td>
</tr>
<tr>
<td>420</td>
<td>0.956</td>
</tr>
<tr>
<td>430</td>
<td>0.732</td>
</tr>
<tr>
<td>440</td>
<td>0.546</td>
</tr>
<tr>
<td>450</td>
<td>0.387</td>
</tr>
<tr>
<td>460</td>
<td>0.258</td>
</tr>
<tr>
<td>470</td>
<td>0.162</td>
</tr>
<tr>
<td>480</td>
<td>0.0957</td>
</tr>
<tr>
<td>490</td>
<td>0.0534</td>
</tr>
<tr>
<td>500</td>
<td>0.0283</td>
</tr>
<tr>
<td>510</td>
<td>0.0142</td>
</tr>
<tr>
<td>520</td>
<td>0.00681</td>
</tr>
<tr>
<td>530</td>
<td>0.00313</td>
</tr>
<tr>
<td>540</td>
<td>0.00137</td>
</tr>
<tr>
<td>550</td>
<td>0.00058</td>
</tr>
</tbody>
</table>

Note:
Maric et al.11

F2. CIO (chlorine monoxide)

Absorption Cross Sections: The UV absorption spectrum of chlorine monoxide, CIO, shown in Figure 4-1, is partly composed of a continuum absorption band from 210 nm to the maximum near 265 nm, and a characterized banded structure of a strong A $^2\Pi_{3/2} \leftrightarrow X^2\Pi_{3/2}$ transition, superposing a weak A $^2\Pi_{1/2} \leftrightarrow X^2\Pi_{1/2}$ system between 265 nm and 315 nm. Watson has reviewed the cross section measurements prior to 1977. The more recent measurements yield results in reasonable agreement with the earlier studies by Mandelman and Nicholls (250–310 nm), Wine et al. (near 283 nm), Rigaud et al. (272–324 nm), Jourdain et al. (272–320 nm), Barton et al. (274–306 nm) at 315 K, Lang et al. (253.7 and 257.7 nm), Sander and Friedl (244–317 nm, 275.2 nm) at 220, 298, and 400 K, Trolier et al. (220–350 nm, 282.65 nm) over the temperature range 200–263 K, and Simon et al. (240–310 nm). The peak cross section at the maximum of the continuum (near 265 nm) is 5.2×10^{-18} cm2 molecule$^{-1}$, based on the average of the results from Jourdain et al., Sander and Friedl, Trolier et al., Simon et al., and Johnston et al.1. At 257.7 nm an average value of $(4.86 \pm 0.04) \times 10^{-18}$ cm2 molecule$^{-1}$ was calculated from the data of the Mandelman and Nicholls, Lang et al., Sander and Friedl, Trolier et al., and Simon et al. studies. It should be noted that the cross sections in the structured region of the spectrum are extremely dependent on instrument resolution. Figure 4F-1 shows a spectrum of CIO based on the data of Sander and Friedl. The recommended absorption cross sections listed in Table 4F-2 are averages over 1 nm intervals of the continuous and banded regions of the spectrum measured at a resolution of 0.3 nm by Sander and Friedl. In Table 4F-3 the absorption cross sections for the band heads of the $v',v'' = 1,0$ to 21,0 transitions measured at various spectral resolutions are compared.

The cross sections of the continuum are independent of temperature (Trolier et al.1), while the structured part of the spectrum is extremely temperature dependent, the bands sharpen and increase in intensity with decreasing temperature. Sander and Friedl1 measured the temperature dependence at the peak of the 12.0 band (275.2 nm) over the range 220–400 K and Trolier et al.1 measured the temperature dependence at the peak of the 9.0 band (282.65 nm) over the range 200–298 K. Clyne and Coxon9 determined the following relationship for the 11,0 sub-band relative to the 294 K value for the temperature range 294–240 K:

$$\frac{\sigma_{294}}{\sigma_T} = 1 + 0.0036 (T - 294)$$

Maric and Burrows9 performed an analysis of the CIO spectrum and developed an analytical approach that allows the calculation of the UV absorption spectrum as a function of temperature and spectral resolution.

Photolysis Quantum Yield and Product Studies: The calculations of Coxon et al.3 and Langhoff et al.7 indicate that photodecomposition of CIO accounts for at most 2 to 3% of the total destruction rate of CIO in the stratosphere, which occurs predominantly by reaction with oxygen atoms and nitric oxide. The photodissociation of thermal CIO radicals in the wavelength range 237 < λ < 270 nm was studied by Schmidt et al.12 using REMPI. Cl$(P_{3/2,1/2})$ and O(^3D) were formed with unity quantum yield. The threshold wavelength for O(^3D) production was determined to be 263.4 nm. In the structured region of the spectrum oxygen atoms are formed in the triplet ground state.

Back to Index
Figure 4F-1. Absorption Spectrum of ClO

Table 4F-2. Recommended Absorption Cross Sections of ClO at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td>260</td>
<td>263</td>
<td>536</td>
<td>281</td>
<td>329</td>
<td>299</td>
<td>74.8</td>
</tr>
<tr>
<td>246</td>
<td>279</td>
<td>264</td>
<td>540</td>
<td>282</td>
<td>311</td>
<td>300</td>
<td>133</td>
</tr>
<tr>
<td>247</td>
<td>297</td>
<td>265</td>
<td>541</td>
<td>283</td>
<td>445</td>
<td>301</td>
<td>56.6</td>
</tr>
<tr>
<td>248</td>
<td>315</td>
<td>266</td>
<td>549</td>
<td>284</td>
<td>245</td>
<td>302</td>
<td>45.2</td>
</tr>
<tr>
<td>249</td>
<td>333</td>
<td>267</td>
<td>546</td>
<td>285</td>
<td>292</td>
<td>303</td>
<td>44.9</td>
</tr>
<tr>
<td>250</td>
<td>352</td>
<td>268</td>
<td>529</td>
<td>286</td>
<td>362</td>
<td>304</td>
<td>87.8</td>
</tr>
<tr>
<td>251</td>
<td>371</td>
<td>269</td>
<td>529</td>
<td>287</td>
<td>200</td>
<td>305</td>
<td>45.5</td>
</tr>
<tr>
<td>252</td>
<td>388</td>
<td>270</td>
<td>575</td>
<td>288</td>
<td>197</td>
<td>306</td>
<td>33.2</td>
</tr>
<tr>
<td>253</td>
<td>407</td>
<td>271</td>
<td>489</td>
<td>289</td>
<td>337</td>
<td>307</td>
<td>33.1</td>
</tr>
<tr>
<td>254</td>
<td>425</td>
<td>272</td>
<td>532</td>
<td>290</td>
<td>165</td>
<td>308</td>
<td>47.7</td>
</tr>
<tr>
<td>255</td>
<td>442</td>
<td>273</td>
<td>515</td>
<td>291</td>
<td>111</td>
<td>309</td>
<td>41.9</td>
</tr>
<tr>
<td>256</td>
<td>457</td>
<td>274</td>
<td>470</td>
<td>292</td>
<td>270</td>
<td>310</td>
<td>28.7</td>
</tr>
<tr>
<td>257</td>
<td>473</td>
<td>275</td>
<td>507</td>
<td>293</td>
<td>161</td>
<td>311</td>
<td>27.3</td>
</tr>
<tr>
<td>258</td>
<td>486</td>
<td>276</td>
<td>456</td>
<td>294</td>
<td>102</td>
<td>312</td>
<td>33.1</td>
</tr>
<tr>
<td>259</td>
<td>500</td>
<td>277</td>
<td>418</td>
<td>295</td>
<td>94.5</td>
<td>313</td>
<td>32.5</td>
</tr>
<tr>
<td>260</td>
<td>511</td>
<td>278</td>
<td>501</td>
<td>296</td>
<td>206</td>
<td>314</td>
<td>28.9</td>
</tr>
<tr>
<td>261</td>
<td>520</td>
<td>279</td>
<td>283</td>
<td>297</td>
<td>83.1</td>
<td>315</td>
<td>27.8</td>
</tr>
<tr>
<td>262</td>
<td>529</td>
<td>280</td>
<td>538</td>
<td>298</td>
<td>65.1</td>
<td>316</td>
<td>26.8</td>
</tr>
</tbody>
</table>

Note:
Sander and Friedl,11 averages over 1 nm intervals of the continuous and banded spectrum measured at 0.3 nm resolution.

Table 4F-3. Summary of Absorption Cross Section Studies of ClO at the band heads of the $v',v'' = 1,0$ to 21,0 bands

<table>
<thead>
<tr>
<th>Band</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2 s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>312.1</td>
<td>35</td>
<td></td>
<td></td>
<td>312.5</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>307.7</td>
<td>22</td>
<td>308.3</td>
<td>58</td>
<td>307.9</td>
<td>39</td>
<td>307.8</td>
<td>47</td>
<td>307.9</td>
<td>67</td>
</tr>
<tr>
<td>3,0</td>
<td>303.4</td>
<td>64</td>
<td>303.9</td>
<td>103</td>
<td>303.5</td>
<td>86</td>
<td>303.4</td>
<td>104</td>
<td>303.5</td>
<td>133</td>
</tr>
<tr>
<td>4,0</td>
<td>299.4</td>
<td>128</td>
<td>299.6</td>
<td>171</td>
<td>299.0</td>
<td>163</td>
<td>299.3</td>
<td>207</td>
<td>299.3</td>
<td>236</td>
</tr>
<tr>
<td>5,0</td>
<td>295.4</td>
<td>202</td>
<td>295.7</td>
<td>253</td>
<td>295.4</td>
<td>255</td>
<td>295.4</td>
<td>315</td>
<td>295.4</td>
<td>326</td>
</tr>
<tr>
<td>6,0</td>
<td>292.1</td>
<td>286</td>
<td>292.1</td>
<td>330</td>
<td>292.0</td>
<td>338</td>
<td>292.0</td>
<td>382</td>
<td>291.8</td>
<td>395</td>
</tr>
<tr>
<td>7,0</td>
<td>288.7</td>
<td>365</td>
<td>288.6</td>
<td>438</td>
<td>288.4</td>
<td>448</td>
<td>288.4</td>
<td>516</td>
<td>288.4</td>
<td>504</td>
</tr>
<tr>
<td>8,0</td>
<td>286.0</td>
<td>455</td>
<td>285.5</td>
<td>530</td>
<td>285.2</td>
<td>542</td>
<td>285.2</td>
<td>627</td>
<td>285.2</td>
<td>594</td>
</tr>
<tr>
<td>9,0</td>
<td>282.6</td>
<td>508</td>
<td>282.6</td>
<td>598</td>
<td>282.3</td>
<td>608</td>
<td>282.2</td>
<td>667</td>
<td>282.2</td>
<td>641</td>
</tr>
<tr>
<td>10,0</td>
<td>280.1</td>
<td>555</td>
<td>279.9</td>
<td>645</td>
<td>279.8</td>
<td>655</td>
<td>279.6</td>
<td>688</td>
<td>279.6</td>
<td>686</td>
</tr>
<tr>
<td>11,0</td>
<td>277.7</td>
<td>571</td>
<td>277.4</td>
<td>668</td>
<td>277.2</td>
<td>679</td>
<td>277.2</td>
<td>680</td>
<td>277.2</td>
<td>727</td>
</tr>
<tr>
<td>12,0</td>
<td>275.5</td>
<td>587</td>
<td>275.3</td>
<td>671</td>
<td>275.1</td>
<td>681</td>
<td>275.0</td>
<td>634</td>
<td>275.1</td>
<td>733</td>
</tr>
<tr>
<td>13,0</td>
<td>273.6</td>
<td>576</td>
<td>273.3</td>
<td>668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>272.9</td>
<td>711</td>
</tr>
<tr>
<td>14,0</td>
<td>271.8</td>
<td>571</td>
<td>271.5</td>
<td>656</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>267.4</td>
<td>603</td>
</tr>
<tr>
<td>15,0</td>
<td>269.9</td>
<td>556</td>
<td>270.0</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>266.5</td>
<td>579</td>
</tr>
<tr>
<td>16,0</td>
<td>268.7</td>
<td>545</td>
<td>268.6</td>
<td>615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>265.6</td>
<td>562</td>
</tr>
<tr>
<td>17,0</td>
<td></td>
<td></td>
<td>267.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>264.9</td>
<td>549</td>
</tr>
<tr>
<td>18,0</td>
<td></td>
<td></td>
<td>266.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>264.2</td>
<td>543</td>
</tr>
</tbody>
</table>

(8) Mandelman, M.; Nicholls, R. W. The absorption cross sections and f-values for the $v'' = 0$ progression of bands and associated continuum for the ClO(A$^2\Pi$, \leftrightarrow X$^2\Pi$) system. *J. Quant. Spectrosc. Radiat. Transfer* 1977, 17, 483-491.

F3. ClOO (chlorine superoxide)

ClOO + hν → Cl + O₂

20 kJ mol⁻¹ 6100 nm (1)

(Recommendation: 92-20, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Johnston et al.² measured the absorption spectrum of the ClOO radical, chlorine superoxide, using a molecular modulation technique and determined absorption cross sections using a complex kinetic scheme interpretation. More recently, Mauldin et al.³ (220–280 nm, 191 K) and Baer et al.¹ (240–300 nm, 300 K) have reported cross section measurements. These two studies are in reasonable agreement with cross section values that are more than twice the earlier Johnston et al.² values. The recommended cross sections in Table 4F-4 are taken from Mauldin et al.³

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield is assumed to be unity over the entire UV absorption band.

Table 4F-4. Absorption Cross Sections of ClOO at 191 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>611</td>
<td>252</td>
<td>2630</td>
</tr>
<tr>
<td>222</td>
<td>670</td>
<td>254</td>
<td>2370</td>
</tr>
<tr>
<td>224</td>
<td>747</td>
<td>256</td>
<td>2120</td>
</tr>
<tr>
<td>226</td>
<td>951</td>
<td>258</td>
<td>1890</td>
</tr>
<tr>
<td>228</td>
<td>1100</td>
<td>260</td>
<td>1610</td>
</tr>
<tr>
<td>230</td>
<td>1400</td>
<td>262</td>
<td>1370</td>
</tr>
<tr>
<td>232</td>
<td>1650</td>
<td>264</td>
<td>1120</td>
</tr>
<tr>
<td>234</td>
<td>1960</td>
<td>266</td>
<td>905</td>
</tr>
<tr>
<td>236</td>
<td>2240</td>
<td>268</td>
<td>725</td>
</tr>
<tr>
<td>238</td>
<td>2520</td>
<td>270</td>
<td>596</td>
</tr>
<tr>
<td>240</td>
<td>2730</td>
<td>272</td>
<td>435</td>
</tr>
<tr>
<td>242</td>
<td>2910</td>
<td>274</td>
<td>344</td>
</tr>
<tr>
<td>244</td>
<td>2960</td>
<td>276</td>
<td>282</td>
</tr>
<tr>
<td>246</td>
<td>2980</td>
<td>278</td>
<td>210</td>
</tr>
<tr>
<td>248</td>
<td>2950</td>
<td>280</td>
<td>200</td>
</tr>
<tr>
<td>250</td>
<td>2800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Mauldin et al.³

F4. OCIO (chlorine dioxide)

Absorption Cross Sections: The UV/vis absorption spectrum of chlorine dioxide, OCIO, is characterized by a series of well developed progressions of bands extending from ~280 to 480 nm corresponding to the $A(^2\bar{A}) (i,j,k) \leftrightarrow X(^2B_1)(0,0,0)$ vibronic transitions. The spectroscopy of this molecule has been studied extensively and the quantum yield for photodissociation appears to be unity throughout the above wavelength range. See for example, the review by Watson. Birks et al. have estimated an atmospheric photodissociation half-life of OCIO of a few seconds. The measurement of absorption spectra at temperatures between 200 and 378 K has been the subject of many studies as summarized in Table 4F-5.

Table 4F-5. Summary OCIO Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Type</th>
<th>Temperature (K)</th>
<th>Wavelength Range (nm)</th>
<th>Resolution (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin and Gareis</td>
<td>1956</td>
<td></td>
<td>298</td>
<td>263–414</td>
<td>Not given</td>
</tr>
<tr>
<td>Knauth et al.</td>
<td>1979</td>
<td>A</td>
<td>333</td>
<td>270–440</td>
<td>0.3–1</td>
</tr>
<tr>
<td>Wahner et al.</td>
<td>1987</td>
<td>A</td>
<td>204, 296, 378</td>
<td>242–477</td>
<td>0.25</td>
</tr>
<tr>
<td>Hubinger and Nee</td>
<td>1994</td>
<td>R</td>
<td>298</td>
<td>240–477</td>
<td>Not given</td>
</tr>
<tr>
<td>Frost et al.</td>
<td>1996</td>
<td>R</td>
<td>200</td>
<td>390–454</td>
<td>0.0015–0.0021</td>
</tr>
<tr>
<td>Marston et al.</td>
<td>1998</td>
<td>R</td>
<td>298</td>
<td>275–400</td>
<td>0.05</td>
</tr>
<tr>
<td>Kromminga et al.</td>
<td>2003</td>
<td>A</td>
<td>213, 233, 253</td>
<td>312.5–440.5</td>
<td>0.01–0.02</td>
</tr>
<tr>
<td>Bogumil et al.</td>
<td>2003</td>
<td>R</td>
<td>293</td>
<td>290–460</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Type:
A: Absolute cross section determination
R: Relative cross section determination

Absorption cross sections at 10 nm intervals for the region 270–440 nm and at 333 K have been reported by Knauth et al., and for the 351.5 nm maximum at room temperature by Clyne and Coxon and Basco and Dogra. The absorption cross sections of Wahner et al. obtained at a resolution of 0.25 nm, and at 204, 296, and 378 K have been used by Hubinger and Nee, Frost et al., and Marston et al. for the calibration of their relative spectra. The values at the peaks of the main vibrational bands $a(0)$ to $a(26)$ (i.e., $A(^2\bar{A})(1,0,0) \leftrightarrow X(^2B_1)(0,0,0)$, $i = 0$ to 26) reported by Wahner et al. have been selected as recommended absorption cross sections of OCIO in earlier JPL evaluations. More recently, Kromminga et al. reported high and medium resolution absorption spectra at five temperatures between 213 and 293 K obtained using Fourier transform spectroscopy, which has the advantage of accurate wavelength calibration. There is a clear wavelength shift (~0.2–0.5 nm) between the spectra of Kromminga et al. and Wahner et al. that can’t be explained by the shift between measurements in air and in vacuum. The absorption cross sections for the band peaks $a(3)$ to $a(26)$ reported by Kromminga et al. are smaller by 5–10% than those reported by Wahner et al. A decrease of the temperature causes a sharpening of the vibrational bands and an increase of the peak cross sections as observed between 293 and 213 K by Kromminga et al. and between 378 and 200 K by Wahner et al.

The recommended absorption cross sections of OCIO in Table 4F-6 are averages over 1 nm intervals of the spectrum measured by Wahner et al. (0.25 nm resolution). In Table 4F-7 are listed the band peaks at 213, 233, 253, 273, and 293 K recorded in the medium resolution (0.2–0.4 nm) spectra by Kromminga et al. The values for the $a(21)$ to $a(16)$ bands at 293 K are the results of Bogumil et al., which were measured at medium resolution (0.24–0.44 nm) with the SCIAMACHY pre-flight satellite instrument and scaled to the

4-195
absorption cross sections measured by Kromminga et al.16 In addition, the peak cross sections determined by Wahner et al.23 are listed in Table 4F-8. Figure 4F-2 shows the spectrum of OCIO at 204 K based on the data of Wahner et al.22

VUV absorption cross sections have been measured by Basco and Morse,2 (148–183 nm), Flesch et al.12 (50–207 nm), Hubinger and Nee14 (127–183 nm), and Marston et al.18 (115–191 nm).

Photolysis Quantum Yield and Product Studies: The photochemistry of OCIO is extremely complex, with several electronic excited states involved in the photodissociation dynamics. Several channels have been observed at wavelengths important in the stratosphere, including O + ClO, Cl + O\textsubscript{3}, and isomerization to ClOO. Colussi20 measured \(\Phi(Cl) \) to be <0.01, and \(\Phi(O)=1 \) (within experimental error) for photolysis at 308 nm. Vaida et al.21 and Rühl et al.20 reported Cl atom production at 362 nm and Bishenden et al.43 measured \(\Phi(Cl) \) to be 0.15 ± 0.10 around the same wavelength. In contrast, Lawrence et al.17 report \(\Phi(Cl) <0.2% \) in the wavelength range 350–368 nm region to be \(<5 \times 10^{-4} \). This conclusion is supported by photofragment studies of Davis and Lee21 between 350 and 475 nm, who report \(\Phi(Cl) <0.2% \) in the wavelength range 350–370 nm, rising to a maximum of 3.9 ± 0.8% near 404 nm. In a later study, Davis and Lee9 report a substantial yield of O\textsubscript{3}(\(^1\Delta_g \)) and show that the branching ratio between O + ClO and Cl + O\textsubscript{3} depends on the OCIO(A2\(^1\Delta_g \)) excited state vibrational mode. Delmdahl et al.11 measured the yield of nascent Cl atoms to be below 3.6% for photolysis in the 365–450 nm range. At \(\lambda <365 \text{ nm} \), there was a sharp increase of the Cl yield, which was attributed to the photolysis of vibrationally excited ClO (v ≥4).

The recommendation is to use a quantum yield value of unity for the production of O(3P) atoms in the range 270–480 nm. An upper limit for the Cl yield can be set at 0.04 for the wavelength range 365–450 nm. While accurate absorption cross section values are valuable for atmospheric measurements of OCIO abundance, the identity of the photodissociation products is only of minor importance in the context of atmospheric processes.

Table 4F-6. Recommended Absorption Cross Sections of OCIO at 204 K (averages over 1 nm intervals)

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(\times 10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(\times 10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(\times 10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(\times 10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td>35.6</td>
<td>248</td>
<td>34.4</td>
<td>249</td>
<td>33.7</td>
<td>250</td>
<td>34.6</td>
</tr>
<tr>
<td>251</td>
<td>34.3</td>
<td>252</td>
<td>34.6</td>
<td>253</td>
<td>34.1</td>
<td>254</td>
<td>34.9</td>
</tr>
<tr>
<td>255</td>
<td>34.3</td>
<td>256</td>
<td>34.8</td>
<td>257</td>
<td>34.8</td>
<td>258</td>
<td>35.1</td>
</tr>
<tr>
<td>259</td>
<td>35.0</td>
<td>260</td>
<td>35.8</td>
<td>261</td>
<td>36.5</td>
<td>262</td>
<td>37.5</td>
</tr>
<tr>
<td>263</td>
<td>38.2</td>
<td>264</td>
<td>38.0</td>
<td>265</td>
<td>38.8</td>
<td>266</td>
<td>39.9</td>
</tr>
<tr>
<td>267</td>
<td>40.4</td>
<td>268</td>
<td>42.3</td>
<td>269</td>
<td>44.6</td>
<td>270</td>
<td>44.3</td>
</tr>
<tr>
<td>271</td>
<td>45.7</td>
<td>272</td>
<td>49.9</td>
<td>273</td>
<td>49.1</td>
<td>274</td>
<td>48.1</td>
</tr>
</tbody>
</table>

4-196
<table>
<thead>
<tr>
<th>Band peak</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(1)</td>
<td>275</td>
<td>54.8</td>
<td>332</td>
<td>155</td>
<td>389</td>
<td>173</td>
<td>446</td>
<td>46.8</td>
</tr>
<tr>
<td>a(2)</td>
<td>276</td>
<td>58.3</td>
<td>333</td>
<td>147</td>
<td>390</td>
<td>71.4</td>
<td>447</td>
<td>55.2</td>
</tr>
<tr>
<td>a(3)</td>
<td>277</td>
<td>52.5</td>
<td>334</td>
<td>208</td>
<td>391</td>
<td>123</td>
<td>448</td>
<td>18.4</td>
</tr>
<tr>
<td>a(4)</td>
<td>278</td>
<td>54.3</td>
<td>335</td>
<td>355</td>
<td>392</td>
<td>109</td>
<td>449</td>
<td>7.17</td>
</tr>
<tr>
<td>a(5)</td>
<td>279</td>
<td>67.4</td>
<td>336</td>
<td>1090</td>
<td>393</td>
<td>203</td>
<td>450</td>
<td>6.96</td>
</tr>
<tr>
<td>a(6)</td>
<td>280</td>
<td>67.2</td>
<td>337</td>
<td>782</td>
<td>394</td>
<td>270</td>
<td>451</td>
<td>4.50</td>
</tr>
<tr>
<td>a(7)</td>
<td>281</td>
<td>58.3</td>
<td>338</td>
<td>266</td>
<td>395</td>
<td>285</td>
<td>452</td>
<td>1.66</td>
</tr>
<tr>
<td>a(8)</td>
<td>282</td>
<td>65.4</td>
<td>339</td>
<td>155</td>
<td>396</td>
<td>275</td>
<td>453</td>
<td>3.57</td>
</tr>
<tr>
<td>a(9)</td>
<td>283</td>
<td>82.4</td>
<td>340</td>
<td>167</td>
<td>397</td>
<td>370</td>
<td>454</td>
<td>0.907</td>
</tr>
<tr>
<td>a(10)</td>
<td>284</td>
<td>77.6</td>
<td>341</td>
<td>250</td>
<td>398</td>
<td>653</td>
<td>455</td>
<td>13.3</td>
</tr>
<tr>
<td>a(11)</td>
<td>285</td>
<td>67.2</td>
<td>342</td>
<td>414</td>
<td>399</td>
<td>225</td>
<td>456</td>
<td>9.70</td>
</tr>
<tr>
<td>a(12)</td>
<td>286</td>
<td>77.7</td>
<td>343</td>
<td>925</td>
<td>400</td>
<td>70.1</td>
<td>457</td>
<td>4.76</td>
</tr>
<tr>
<td>a(13)</td>
<td>287</td>
<td>100</td>
<td>344</td>
<td>1090</td>
<td>401</td>
<td>45.6</td>
<td>458</td>
<td>4.25</td>
</tr>
<tr>
<td>a(14)</td>
<td>288</td>
<td>93.7</td>
<td>345</td>
<td>388</td>
<td>402</td>
<td>96.9</td>
<td>459</td>
<td>3.98</td>
</tr>
<tr>
<td>a(15)</td>
<td>289</td>
<td>79.4</td>
<td>346</td>
<td>176</td>
<td>403</td>
<td>56.3</td>
<td>460</td>
<td>1.84</td>
</tr>
<tr>
<td>a(16)</td>
<td>290</td>
<td>90.5</td>
<td>347</td>
<td>161</td>
<td>404</td>
<td>196</td>
<td>461</td>
<td>17.1</td>
</tr>
<tr>
<td>a(17)</td>
<td>291</td>
<td>127</td>
<td>348</td>
<td>258</td>
<td>405</td>
<td>194</td>
<td>462</td>
<td>17.9</td>
</tr>
<tr>
<td>a(18)</td>
<td>292</td>
<td>116</td>
<td>349</td>
<td>320</td>
<td>406</td>
<td>185</td>
<td>463</td>
<td>11.8</td>
</tr>
<tr>
<td>a(19)</td>
<td>293</td>
<td>90.9</td>
<td>350</td>
<td>581</td>
<td>407</td>
<td>160</td>
<td>464</td>
<td>10.0</td>
</tr>
<tr>
<td>a(20)</td>
<td>294</td>
<td>94.1</td>
<td>351</td>
<td>1100</td>
<td>408</td>
<td>158</td>
<td>465</td>
<td>4.01</td>
</tr>
<tr>
<td>a(21)</td>
<td>295</td>
<td>147</td>
<td>352</td>
<td>993</td>
<td>409</td>
<td>493</td>
<td>466</td>
<td>1.40</td>
</tr>
<tr>
<td>a(22)</td>
<td>296</td>
<td>172</td>
<td>353</td>
<td>330</td>
<td>410</td>
<td>210</td>
<td>467</td>
<td>2.53</td>
</tr>
<tr>
<td>a(23)</td>
<td>297</td>
<td>122</td>
<td>354</td>
<td>164</td>
<td>411</td>
<td>71.6</td>
<td>468</td>
<td>10.1</td>
</tr>
<tr>
<td>a(24)</td>
<td>298</td>
<td>92.0</td>
<td>355</td>
<td>190</td>
<td>412</td>
<td>34.0</td>
<td>469</td>
<td>15.0</td>
</tr>
<tr>
<td>a(25)</td>
<td>299</td>
<td>106</td>
<td>356</td>
<td>276</td>
<td>413</td>
<td>46.8</td>
<td>470</td>
<td>7.69</td>
</tr>
<tr>
<td>a(26)</td>
<td>300</td>
<td>226</td>
<td>357</td>
<td>343</td>
<td>414</td>
<td>44.6</td>
<td>471</td>
<td>6.14</td>
</tr>
<tr>
<td>a(27)</td>
<td>301</td>
<td>222</td>
<td>358</td>
<td>597</td>
<td>415</td>
<td>30.0</td>
<td>472</td>
<td>3.18</td>
</tr>
<tr>
<td>a(28)</td>
<td>302</td>
<td>143</td>
<td>359</td>
<td>830</td>
<td>416</td>
<td>164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a(29)</td>
<td>303</td>
<td>94.3</td>
<td>360</td>
<td>1210</td>
<td>417</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Wahner et al. 22

Table 4F-7. Absorption Cross Sections of OCIO at the a(21) to a(3) Band Peaks at Temperatures in the Range 213–293 K

<table>
<thead>
<tr>
<th>Band peak</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(21)</td>
<td>292.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a(20)</td>
<td>295.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a(19)</td>
<td>300.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a(18)</td>
<td>306.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a(17)</td>
<td>311.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a(16)</td>
<td>316.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a(15)</td>
<td>322.96</td>
<td>846.62</td>
<td>322.96</td>
<td>812.45</td>
<td>323.02</td>
<td>786.75</td>
<td>323.02</td>
<td>756.88</td>
</tr>
<tr>
<td>a(14)</td>
<td>329.49</td>
<td>1054.25</td>
<td>329.49</td>
<td>1011.91</td>
<td>329.55</td>
<td>984.42</td>
<td>329.55</td>
<td>945.36</td>
</tr>
<tr>
<td>a(13)</td>
<td>336.41</td>
<td>1224.61</td>
<td>336.41</td>
<td>1181.30</td>
<td>336.41</td>
<td>1148.79</td>
<td>336.48</td>
<td>1098.73</td>
</tr>
<tr>
<td>a(12)</td>
<td>343.77</td>
<td>1313.77</td>
<td>343.77</td>
<td>1269.99</td>
<td>343.77</td>
<td>1243.47</td>
<td>343.77</td>
<td>1189.35</td>
</tr>
<tr>
<td>a(11)</td>
<td>351.53</td>
<td>1328.23</td>
<td>351.53</td>
<td>1289.25</td>
<td>351.53</td>
<td>1265.01</td>
<td>351.53</td>
<td>1212.13</td>
</tr>
<tr>
<td>a(10)</td>
<td>359.73</td>
<td>1280.34</td>
<td>359.73</td>
<td>1243.39</td>
<td>359.73</td>
<td>1220.29</td>
<td>359.73</td>
<td>1171.14</td>
</tr>
<tr>
<td>a(9)</td>
<td>368.39</td>
<td>1187.04</td>
<td>368.39</td>
<td>1153.33</td>
<td>368.39</td>
<td>1128.23</td>
<td>368.39</td>
<td>1083.63</td>
</tr>
<tr>
<td>a(8)</td>
<td>377.56</td>
<td>1048.31</td>
<td>377.56</td>
<td>1019.56</td>
<td>377.56</td>
<td>992.21</td>
<td>377.56</td>
<td>951.69</td>
</tr>
<tr>
<td>a(7)</td>
<td>387.29</td>
<td>869.95</td>
<td>387.29</td>
<td>849.00</td>
<td>387.29</td>
<td>818.37</td>
<td>387.29</td>
<td>783.53</td>
</tr>
</tbody>
</table>

4-197
<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>204 K</th>
<th>296 K</th>
<th>378 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>475.53</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>461.15</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>446.41</td>
<td>94</td>
<td>69</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>432.81</td>
<td>220</td>
<td>166</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>420.58</td>
<td>393</td>
<td>304</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>408.83</td>
<td>578</td>
<td>479</td>
<td>378</td>
<td></td>
</tr>
<tr>
<td>397.76</td>
<td>821</td>
<td>670</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>387.37</td>
<td>1046</td>
<td>844</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td>377.44</td>
<td>1212</td>
<td>992</td>
<td>808</td>
<td></td>
</tr>
<tr>
<td>368.30</td>
<td>1365</td>
<td>1136</td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>359.73</td>
<td>1454</td>
<td>1219</td>
<td>984</td>
<td></td>
</tr>
<tr>
<td>351.30</td>
<td>1531</td>
<td>1275</td>
<td>989</td>
<td></td>
</tr>
<tr>
<td>343.44</td>
<td>1507</td>
<td>1230</td>
<td>938</td>
<td></td>
</tr>
<tr>
<td>336.08</td>
<td>1441</td>
<td>1139</td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>329.22</td>
<td>1243</td>
<td>974</td>
<td>746</td>
<td></td>
</tr>
<tr>
<td>322.78</td>
<td>1009</td>
<td>791</td>
<td>628</td>
<td></td>
</tr>
<tr>
<td>317.21</td>
<td>771</td>
<td>618</td>
<td>516</td>
<td></td>
</tr>
<tr>
<td>311.53</td>
<td>542</td>
<td>435</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>305.99</td>
<td>393</td>
<td>312</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>300.87</td>
<td>256</td>
<td>219</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>296.42</td>
<td>190</td>
<td>160</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>291.77</td>
<td>138</td>
<td>114</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>287.80</td>
<td>105</td>
<td>86</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>283.51</td>
<td>089</td>
<td>72</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>279.64</td>
<td>073</td>
<td>60</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>275.74</td>
<td>059</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>272.93</td>
<td>053</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 292–317 nm: Bogumil et al.\(^6\)
323–433 nm: Kromminga et al.\(^16\)

Table 4F-8. Absorption Cross Sections of OCIO at the Band Peaks

Note: Wahner et al.\(^22\)
Figure 4F-2. Absorption Spectrum of OCIO at 204 K

F5. ClO\(_3\) (chlorine trioxide)

ClO\(_3\) + hv → Products \(\text{(1)}\)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The JPL-83 to JPL-90 recommendations for the absorption cross sections of the ClO\(_3\) radical, chlorine trioxide, were based on the work of Goodeve and Richardson.\(^2\) Lopez and Sicre\(^5\) have, however, shown that the spectrum reported by Goodeve and Richardson is most likely that of Cl\(_2\)O\(_6\). Thermochemical estimates by Colussi et al.\(^1\) further corroborate this assignment.

Grothe and Willner\(^3,4\) have reported the UV and IR spectra of ClO\(_3\) trapped in a neon matrix following thermal decomposition of Cl\(_2\)O\(_6\) or FOCIO\(_3\). By monitoring the amount of ClO formed as a photolysis product of ClO\(_3\), they determined the absorption cross sections in the range 250–500 nm. The spectrum has a highly structured absorption band around 320 nm (6 × 10\(^{-18}\) cm\(^2\) molecule\(^{-1}\)) and a second band around 425 nm (6 × 10\(^{-18}\) cm\(^2\) molecule\(^{-1}\)) as depicted in the review article of Wayne et al.\(^6\) A broad absorption spectrum between 280 and 450 nm peaking at ~300 nm (6 × 10\(^{-17}\) cm\(^2\) molecule\(^{-1}\)) was recorded for ClO\(_3\) formed by radiolysis of aqueous solutions of chlorate ions. No recommendation is given for the absorption cross sections of ClO\(_3\) in the gas phase.

Photolysis Quantum Yield and Product Studies: No recommendation.

F6. **Cl₂O (dichlorine monoxide)**

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy (kJ mol⁻¹)</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl₂O + hv → Cl + ClO</td>
<td>142</td>
<td>844</td>
</tr>
<tr>
<td>→ Cl₂ + O(3P)</td>
<td>168</td>
<td>712</td>
</tr>
<tr>
<td>→ Cl₂ + O(3D)</td>
<td>356</td>
<td>335</td>
</tr>
<tr>
<td>→ O + 2Cl</td>
<td>411</td>
<td>291</td>
</tr>
</tbody>
</table>

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The UV/vis absorption spectrum of dichlorine monoxide, Cl₂O, has been measured at room temperature by Goode and Wallace⁴ (230–620 nm), Finkelnburg et al.³ (220–650 nm), Martin and Gareis⁸ (234–331 nm), Lin⁷ (180–640 nm), Molina and Molina⁹ (200–450 nm), Simon et al.¹⁷ (236–320 nm), Smith et al.¹⁸ (190–399 nm), and Papanastasiou et al.¹⁵ (200–500 nm). The earlier data reported by Goode and Wallace,⁴ Finkelnburg et al.³ and Martin and Gareis⁸ deviate substantially from the more recent results and are not considered further in this evaluation. The spectrum measured by Simon et al.¹⁷ was normalized to the data of Lin.⁷ The spectrum measured by Papanastasiou et al. was scaled to a cross section value of 1.96×10^{-18} cm² molecule⁻¹ at 255 nm. The spectrum exhibits three absorption bands in the UV/vis region. An asymmetrical band between ~220–380 nm with the maximum near 255 nm and a shoulder near 290 nm, and two weak bands at ~380–500 nm and ~500–650 nm with maxima near 420 nm and 550 nm, respectively. The absorption cross sections measured by Lin et al.⁷ Molina and Molina,⁹ Knauth et al.⁶ Smith et al.,¹⁸ and Papanastasiou et al. are in very good agreement, i.e., to within 10%, for the UV absorption band between 200 and ~350 nm. The values reported by Molina and Molina⁹ and Knauth et al.⁶ are somewhat larger than those reported by Lin,⁷ which are larger than those reported by Smith et al.¹⁸ The discrepancies between the various data sets are larger in the region of the absorption minimum.

The recommended absorption cross sections listed in Table 4F-9 are from Papanastasiou et al. in the region 200–500 nm, which are in good agreement with the Lin cross section data, and the data from Lin⁷ in the region 510–640 nm. An uncertainty factor of 1.1 (2σ) is estimated for the 200–500 nm wavelength range. The estimated uncertainty encompasses the majority of the available experimental data.

Measurements at 298 and 333 K have been carried out by Knauth et al.⁶ (200–500 nm). Johansson et al.⁵ (210–350 nm) measured the absorption spectrum in Ar matrices and reported a gas-phase absorption cross section at 260 nm. Papanastasiou et al.¹⁵ reported spectra over the temperature range 201–296 K. They parameterized the Cl₂O spectrum temperature dependence as the sum of six Gaussian functions (polynomial fits were also provided). Their parameterization is recommended and the fit expressions and coefficients can be obtained from their paper.

VUV absorption cross sections have been measured by Nee¹² (150–200 nm) and Motte-Tollet et al.¹¹ (128–190 nm).

Photolysis Quantum Yield and Product Studies: Sander and Friedl¹⁶ have measured the quantum yield for production of O atoms to be 0.25 ± 0.05, using a broadband photolysis source extending from 180 nm to beyond 400 nm. The main photolysis products are Cl and ClO. Using a molecular beam technique, Nelson et al.¹³ found Cl + ClO to be the only primary photodissociation channel at 308 nm, a major channel at 248 nm, and a minor channel at 193 nm. At 248 nm a fraction of the photoproduct ClO underwent spontaneous photodissociation. These authors found evidence that the dissociation to three atoms 2 Cl + O takes place at 193 nm and that some O(3D) atoms are generated as well. Papanastasiou et al.¹⁵ measured a O(3P) + O(3D) quantum yield of 0.85 ± 0.15 following 193 nm photolysis of Cl₂O and a O(3P) quantum yield of 0.20 ± 0.03 for 248 nm photolysis. An analysis presented in Papanastasiou et al. of the Feierabend et al.² measured ClO radical yield and its temporal profile following the 248 nm photolysis of Cl₂O yielded a ClO yield of 0.8, a Cl atom yield of 1.2 ± 0.1, a O + 2Cl channel yield of 0.2, and a O + Cl₂ channel yield of <0.05. Zou et al.²⁰ studied the 193 and 248 nm photolysis of Cl₂O using photofragment translational spectroscopy. They report a O(3P) quantum yield of 0.15 for 248 nm photolysis and that the O + 2Cl channel is a major product at 193 nm.

Nickolaisen et al.¹⁴ reported that broadband photolysis at wavelengths >300 nm results in pressure-dependent ClO quantum yields, which was explained by the rapid intersystem crossing between two metastable states. These states undergo competitive dissociation to ClO + Cl and collisional relaxation to the ground state. Furthermore, these authors detected a transient absorption spectrum, which was assigned to a long-lived metastable triplet state of Cl₂O. However, Moore et al.¹⁰ estimated the lifetime of the metastable excited state to be much shorter. Chichinin¹ and Tanaka et al.¹⁹ found evidence of ground state (2P₃/2) and spin-orbit excited (2P₁/2) atomic chlorine photoproducts. The implication is that the photodecomposition quantum yield
is less than unity at atmospherically relevant wavelengths in spite of the continuous nature of the absorption spectrum.

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>69.4</td>
<td>350</td>
<td>1.71</td>
<td>500</td>
<td>0.238</td>
</tr>
<tr>
<td>210</td>
<td>24.4</td>
<td>360</td>
<td>0.871</td>
<td>510</td>
<td>0.210</td>
</tr>
<tr>
<td>220</td>
<td>9.66</td>
<td>370</td>
<td>0.543</td>
<td>520</td>
<td>0.214</td>
</tr>
<tr>
<td>230</td>
<td>28.5</td>
<td>380</td>
<td>0.472</td>
<td>530</td>
<td>0.237</td>
</tr>
<tr>
<td>240</td>
<td>100</td>
<td>390</td>
<td>0.597</td>
<td>540</td>
<td>0.256</td>
</tr>
<tr>
<td>250</td>
<td>183</td>
<td>400</td>
<td>0.853</td>
<td>550</td>
<td>0.256</td>
</tr>
<tr>
<td>260</td>
<td>186</td>
<td>410</td>
<td>1.14</td>
<td>560</td>
<td>0.222</td>
</tr>
<tr>
<td>270</td>
<td>145</td>
<td>420</td>
<td>1.31</td>
<td>570</td>
<td>0.203</td>
</tr>
<tr>
<td>280</td>
<td>121</td>
<td>430</td>
<td>1.30</td>
<td>580</td>
<td>0.176</td>
</tr>
<tr>
<td>290</td>
<td>99.9</td>
<td>440</td>
<td>1.14</td>
<td>590</td>
<td>0.149</td>
</tr>
<tr>
<td>300</td>
<td>69.3</td>
<td>450</td>
<td>0.891</td>
<td>600</td>
<td>0.122</td>
</tr>
<tr>
<td>310</td>
<td>39.4</td>
<td>460</td>
<td>0.642</td>
<td>610</td>
<td>0.0956</td>
</tr>
<tr>
<td>320</td>
<td>19.2</td>
<td>470</td>
<td>0.452</td>
<td>620</td>
<td>0.0688</td>
</tr>
<tr>
<td>330</td>
<td>8.52</td>
<td>480</td>
<td>0.329</td>
<td>630</td>
<td>0.0344</td>
</tr>
<tr>
<td>340</td>
<td>3.73</td>
<td>490</td>
<td>0.262</td>
<td>640</td>
<td>0.0153</td>
</tr>
</tbody>
</table>

Note:
200–500 nm: Papanastasiou et al.\(^{15}\), higher resolution data are available from this reference.
510–640 nm: Lin\(^{7}\)

F7. ClOOCI (chlorine peroxide, dichlorine dioxide)

ClOOCI + hv → ClO + ClO

16.5 kcal mol⁻¹ 1735 nm (1)

→ Cl + ClOO

20.2 kcal mol⁻¹ 1323 nm (2)

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The gas-phase UV absorption spectrum of ClOOCI is continuous with a maximum near 245 nm, a minimum near 218 nm, and a weak diffuse shoulder in the wavelength region 280–300 nm. There are a number of studies that have reported UV absorption data for ClOOCI over a range of wavelengths or at specific wavelengths. Table 4F-10 summarizes the currently available studies. The ClOOCI UV absorption spectra reported by Basco and Hunt¹ and Molina and Molina¹⁸ have been shown to contain systematic errors and are not considered further in this evaluation. In laboratory studies, ClOOCI has been produced in the gas-phase at low temperature as a product of the termolecular ClO radical self-reaction, ClO + ClO + M. Studies, to date, indicate that only one stable isomer of Cl₂O₂ is produced in the ClO self-reaction and that this species is chlorine peroxide, ClOOCI, rather than ClOClO or ClClO. Using submillimeter wave spectroscopy, Birk et al.² have further established the structure of the reaction product to be ClOOCI. This is in general agreement with the quantum mechanical calculations of McGrath et al.,¹⁵,¹⁶ Jensen and Odershede,¹⁰ and Stanton et al.,³⁷ although the theoretical study by Matus et al.¹⁴ found the Cl₂O₂ isomer to be more stable than ClOOCI by 3.1 kcal mol⁻¹ at 298 K.

Table 4F-10. Summary of ClOOCI UV Absorption Spectrum Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>λ<sub>max</sub> (nm)</th>
<th>10<sup>20</sup> σ(λ<sub>max</sub>) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox and Hayman</td>
<td>1988</td>
<td>200–300</td>
<td>220–360</td>
<td>640 ± 60*</td>
</tr>
<tr>
<td>Permien et al.</td>
<td>1988</td>
<td>235</td>
<td>211–290</td>
<td>.5</td>
</tr>
<tr>
<td>Burkholder et al.</td>
<td>1990</td>
<td>205–250</td>
<td>212–410</td>
<td>650 +80/-50*</td>
</tr>
<tr>
<td>DeMore and Tschuikow-Roux</td>
<td>1990</td>
<td>206</td>
<td>190–400</td>
<td>680 ± 80*</td>
</tr>
<tr>
<td>Vogt and Schindler</td>
<td>1990</td>
<td>230</td>
<td>204–350</td>
<td>.5</td>
</tr>
<tr>
<td>Huder and DeMore</td>
<td>1995</td>
<td>195</td>
<td>200–310</td>
<td>.5, 5, 5</td>
</tr>
<tr>
<td>Bloss et al.</td>
<td>2001</td>
<td>183–245</td>
<td>210</td>
<td>294 ± 86</td>
</tr>
<tr>
<td>McKeachie et al.</td>
<td>2004</td>
<td>223</td>
<td>235–400</td>
<td>.5</td>
</tr>
<tr>
<td>Pope et al.</td>
<td>2008</td>
<td>193</td>
<td>226–355</td>
<td>.5</td>
</tr>
<tr>
<td>von Hobe et al.</td>
<td>2009</td>
<td>10</td>
<td>220–400</td>
<td>.5, 5, 5</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2009</td>
<td>200</td>
<td>308</td>
<td>49.0 ± 2.3*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>308</td>
<td>50.9 ± 2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>351</td>
<td>11.2 ± 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>351</td>
<td>12.6 ± 0.6</td>
</tr>
<tr>
<td>Lien et al.</td>
<td>2009</td>
<td>160</td>
<td>248.4</td>
<td>890 ± 43*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>248.4</td>
<td>885 ± 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260</td>
<td>248.4</td>
<td>873 ± 39</td>
</tr>
<tr>
<td>Wilmouth et al.</td>
<td>2009</td>
<td>240 ± 10</td>
<td>248</td>
<td>660 ± 100/4/5*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>308</td>
<td>308</td>
<td>39.3 ± 4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>352</td>
<td>352</td>
<td>8.6 ± 1.2</td>
</tr>
<tr>
<td>Papanastasiou et al.</td>
<td>2009</td>
<td>200 - 228</td>
<td>200–420</td>
<td>760 +80/-50*</td>
</tr>
</tbody>
</table>
Lower limits to the absolute cross sections have been measured recently at specific wavelengths by a new experimental method involving pulsed laser photolysis of CIOOCI in a molecular beam combined with mass spectrometric detection to determine $\sigma(\lambda)\Phi(\lambda)$, where $\Phi(\lambda)$ is the CIOOCI photolysis quantum yield (see Chen et al.7). This new method is not sensitive to spectral interference from Cl\textsubscript{2}. It yields the lower-limit for the CIOOCI cross sections, assuming $\Phi(\lambda) = 1$, which is thought be a good assumption. Measurements by Chen et al.3, Lien et al.13 and Jin et al.11 are slightly higher than, but in good agreement with, the data of
Wilmouth et al. used flow-tube and atomic resonance fluorescence techniques to measure Cl-atom production when ClOOCl is photolyzed at 248, 308, and 352 nm. By scaling their signals to the known Cl-atom yield in the photolysis of Cl₂ or the literature cross section at the peak of the ClOOCl absorption spectrum, they obtained the product of the ClOOCl absorption cross section and the quantum yield for the Cl-atom production channel, \(\sigma(\lambda)\phi_{Cl}(\lambda) \), at the three wavelengths. It is noteworthy that the Cl₂ concentration was monitored in situ using fluorescence excited by the resonance lamp, and appropriate corrections to the Cl-atom yields were made. By assuming \(\phi_{Cl}(\lambda) = 1 \), they obtain the lower limit to the absorption cross section. Analyzed in this way, their lower limit cross sections at the three wavelengths are a little lower than the cross sections reported by Papanastasiou et al., although the agreement is better when quantum yields (see below) are considered.

The recommended ClOOCl absorption cross sections are based on the measurements of Papanastasiou et al. (which were corrected on the basis of the isosbestic analysis), Wilmouth et al. (which were corrected on the basis of in situ monitoring of Cl₂), and Chen et al. (which are not susceptible to interfering species), and Young et al. (which were normalized to the 245 nm value of Papanastasiou et al.). The data of Papanastasiou et al. and Wilmouth et al. tend to be a little higher than the previous measurements, but somewhat lower than the measurements of Chen et al. and Jin et al. Blass et al. measured a value for \(\sigma(210 \text{ nm}) \) in a pulsed photolysis ClO + ClO + M kinetics study over the temperature range 183–245 K that is similar to the current recommendation. The recommended values (taken from Papanastasiou et al. for 200–310 nm and Young et al. for 510–535 nm) for the temperature range 190–250 K are listed in Table 4F. Near 310 nm, the measurements of Papanastasiou et al. (including an isosbestic point), Wilmouth et al., Chen et al., and Young et al. are in very good agreement; for \(\lambda > 310 \text{ nm} \), the data of Young et al. begins to diverge from the others and the relative errors grow larger. A log-linear interpolation from 310 to 510 nm gives a good representation of all of the data, including the isosbestic point at 408.5 nm. Data at \(310 < \lambda < 510 \text{ nm} \) can be estimated from the formula \(\sigma(\lambda) = 4.05 \times 10^{-19} \times \exp[-0.0357(\lambda - 310)] \), where \(\lambda \) is in nm and \(\sigma \) is in units of \(\text{cm}^2 \text{molecule}^{-1} \).

Cross Section Uncertainties: The estimated uncertainty factor is 1.35 over the entire wavelength range from 200 to 535 nm.

Photolysis Quantum Yields and Product Studies: Molina et al. reported a quantum yield, \(\Phi \), of approximately unity (1.03 ± 0.12) for the Cl + ClOO pathway from a flash photolysis study at 308 nm, in which the yield of Cl atoms was measured using time-resolved atomic resonance fluorescence. These results are in agreement with the steady-state photolysis study of Cox and Hayman. Plenge et al. measured the primary products from ClOOCl photolysis at 250 and 308 nm using photoionization mass spectrometry. At both wavelengths 2Cl + O₂ was observed as the exclusive product channel corresponding to a primary Cl quantum yield near unity at 250 nm (\(\Phi_{Cl} \geq 0.98 \)) and at 308 nm (\(\Phi_{Cl} \geq 0.90 \)). At both photolysis wavelengths the pathway leading to ClO was not observed corresponding to \(\Phi_{ClO} \leq 0.02 \) at 250 nm and \(\Phi_{ClO} \leq 0.10 \) at 308 nm.

In a molecular beam/flash-photolysis study Moore et al. used photofragment translational spectroscopy to measure the relative Cl:ClO product yields from which they derived branching ratios for both photolysis channels ClOO + Cl and ClO + ClO. At 248 nm, they obtained 0.88 ± 0.07 and 0.12 ± 0.07 respectively, and at 308 nm, 0.90 ± 0.1 and 0.10 ± 0.01. Huang et al. also used photofragment translational spectroscopy to re-measure the branching ratios reported by Moore et al. The new results confirm and extend those of Moore et al. Huang et al. identified three product channels: (a) 2 Cl + O₂, (b) 2 ClO, and (c) ClO + Cl + O. The branching ratios among these product channels are 0.82, 0.08, and 0.10 at 248.4 nm, and 0.81, 0.19, and 0.00 at 308.4 nm. These results suggest that the branching ratio of channel-a is only weakly dependent on \(\lambda \) and that of channel-c arises from fragmentation of highly excited ClO radicals; at longer wavelengths, there is not enough available energy to break the bond.

Recommendations: Quantum yield of channel-a \(\Phi_a = 0.8 (± 0.1) \) at all \(\lambda \); \(\Phi_b + \Phi_c = 0.2 (± 0.1) \) at all \(\lambda \); \(\Phi_c = 0.0 (±0.1) \) at \(\lambda > 300 \text{ nm} \). Additional determinations of photolysis quantum yields and product branching ratios at wavelengths longer than 300 nm would be desirable.

Theoretical Studies: Toniolo et al., Peterson and Francisco, and Matus et al. report theoretical calculations for the electronic transitions of the ClOOCl UV absorption spectrum that include transitions to excited singlet and triplet states. Peterson and Francisco report that the strongest triplet transition is dissociative to Cl + ClOO, centered near 385 nm, and is three orders of magnitude weaker than the strongest...
singlet transition at shorter wavelengths. Kaledin and Morokuma\(^1\)\(^2\) studied the ClOOCl photodissociation dynamics and predict the synchronous and sequential formation of \(2 \text{Cl} + \text{O}_2\) at 308 nm, and three possible fragmentation routes at 248 nm: \(2\text{Cl} + \text{O}_2, \text{Cl} + \text{O}(^3\text{P}) + \text{ClO}\), and \(2\text{Cl} + 2\text{O}(^3\text{P})\). Similar theoretical calculations performed by Toniolo et al.\(^2\)\(^8\) for excitation at 264, 325, and 406 nm found that \(2\text{Cl} + \text{O}_2\) was produced at all wavelengths with only a small yield of \(2\text{ClO}\) at the shortest wavelength.

Table 4F-11. Recommended Absorption Cross Sections of ClOOCl

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>423</td>
<td>202</td>
<td>256</td>
<td>549</td>
<td>510</td>
</tr>
<tr>
<td>204</td>
<td>395</td>
<td>206</td>
<td>258</td>
<td>495</td>
<td>515</td>
</tr>
<tr>
<td>208</td>
<td>362</td>
<td>208</td>
<td>260</td>
<td>445</td>
<td>520</td>
</tr>
<tr>
<td>210</td>
<td>331</td>
<td>210</td>
<td>262</td>
<td>400</td>
<td>525</td>
</tr>
<tr>
<td>212</td>
<td>303</td>
<td>212</td>
<td>264</td>
<td>360</td>
<td>530</td>
</tr>
<tr>
<td>214</td>
<td>277</td>
<td>214</td>
<td>266</td>
<td>325</td>
<td>535</td>
</tr>
<tr>
<td>216</td>
<td>255</td>
<td>216</td>
<td>268</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>238</td>
<td>218</td>
<td>270</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>222</td>
<td>220</td>
<td>272</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>207</td>
<td>222</td>
<td>274</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>189</td>
<td>224</td>
<td>276</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>165</td>
<td>226</td>
<td>278</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>144</td>
<td>228</td>
<td>280</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>125</td>
<td>230</td>
<td>282</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>108</td>
<td>232</td>
<td>284</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>87</td>
<td>234</td>
<td>286</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>68</td>
<td>236</td>
<td>288</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>52</td>
<td>238</td>
<td>290</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>46</td>
<td>240</td>
<td>292</td>
<td>98.2</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>40</td>
<td>242</td>
<td>294</td>
<td>88.9</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>35</td>
<td>244</td>
<td>296</td>
<td>80.5</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>30</td>
<td>246</td>
<td>298</td>
<td>72.9</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>26</td>
<td>248</td>
<td>300</td>
<td>66.1</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>23</td>
<td>250</td>
<td>302</td>
<td>59.9</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>20</td>
<td>252</td>
<td>304</td>
<td>54.4</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>18</td>
<td>254</td>
<td>306</td>
<td>49.7</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- 200–310 nm: Papanastasiou et al.\(^{21}\)
- Region between 310 and 510 nm: \(4.05 \times 10^{-19} \times \exp[-0.0357/\lambda - 310]\), where \(\lambda\) is in nm
- 510–535 nm: Young et al.\(^{34}\)

F8. ClClO2 (chloryl chloride)

\[
\text{ClClO}_2 + \text{hv} \rightarrow \text{Products}
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of chloryl chloride, ClClO2, has been measured in the gas-phase at room temperature and in a noble gas matrix at low temperature by Müller and Willner\(^2\) (220–390 nm). In another study from the same group, Jacobs et al.\(^1\) (180–390 nm) re-investigated the spectrum. The spectrum has two overlapping absorption bands with maxima at 226 nm (\(\sigma = 1.38 \times 10^{-17} \text{cm}^2 \text{molecule}^{-1}\)) and 296 nm (\(\sigma = 1.51 \times 10^{-17} \text{cm}^2 \text{molecule}^{-1}\)). The recommended absorption cross sections in Table 4F-12 are taken from Müller and Willner.\(^2\)

Photolysis Quantum Yield and Product Studies: Photolysis of matrix isolated ClClO2 suggests that it absorbs in the visible between 500 and 800 nm with cross sections estimated to be <10\(^{-20} \text{cm}^2 \text{molecule}^{-1}\).

Table 4F-12. Recommended Absorption Cross Sections of ClClO2 at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>10(^{-20}) (\sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>920</td>
<td>265</td>
<td>550</td>
<td>310</td>
<td>1120</td>
<td>355</td>
<td>50</td>
</tr>
<tr>
<td>225</td>
<td>1160</td>
<td>270</td>
<td>660</td>
<td>315</td>
<td>870</td>
<td>360</td>
<td>40</td>
</tr>
<tr>
<td>230</td>
<td>1270</td>
<td>275</td>
<td>830</td>
<td>320</td>
<td>630</td>
<td>365</td>
<td>40</td>
</tr>
<tr>
<td>235</td>
<td>1210</td>
<td>280</td>
<td>1050</td>
<td>325</td>
<td>430</td>
<td>370</td>
<td>30</td>
</tr>
<tr>
<td>240</td>
<td>1060</td>
<td>285</td>
<td>1260</td>
<td>330</td>
<td>280</td>
<td>375</td>
<td>30</td>
</tr>
<tr>
<td>245</td>
<td>880</td>
<td>290</td>
<td>1430</td>
<td>335</td>
<td>190</td>
<td>380</td>
<td>20</td>
</tr>
<tr>
<td>250</td>
<td>720</td>
<td>295</td>
<td>1500</td>
<td>340</td>
<td>120</td>
<td>385</td>
<td>20</td>
</tr>
<tr>
<td>255</td>
<td>590</td>
<td>300</td>
<td>1470</td>
<td>345</td>
<td>80</td>
<td>390</td>
<td>20</td>
</tr>
<tr>
<td>260</td>
<td>530</td>
<td>305</td>
<td>1330</td>
<td>350</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Müller and Willner\(^2\)

F9. Cl\(_2\)O (dichlorine trioxide, chlorine chlorate)

\[
\text{Cl}_2\text{O} + \text{hv} \rightarrow \text{Products}
\]

(Recommendation: 06-2, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The UV absorption spectrum of Cl\(_2\)O (dichlorine trioxide, chlorine sesquioxide, chlorine chlorate) has been measured by Lipscomb et al.\(^3\) (257.7 nm) at 293 K, Hayman and Cox\(^4\) (220–335 nm) at 233 K, Burkholder et al.\(^1\) (220–320 nm) in the range 200–260 K, Harwood et al.\(^3\) (220–330 nm) at 223 K, and Green et al.\(^2\) (201–320 nm) at 243 K. The spectrum has a strong band centered near 265 nm and evidence for another band at shorter wavelengths. Overall, the agreement among the various studies in terms of the absolute absorption cross sections and the wavelength dependence of the spectrum is poor. Hayman and Cox\(^3\) report the largest peak absorption cross section and Green et al.\(^2\) report the lowest, ~30% lower.
The spectra from Green et al.2 and Burkholder et al.1 are in reasonable agreement and have significantly lower cross sections in the long wavelength region than reported by Harwood et al.3 and Hayman and Cox.4 The recommended absorption cross sections in Table 4F13 were obtained by averaging the cross section data from Hayman and Cox,4 Burkholder et al.,1 Harwood et al.,3 and Green et al.2 Uncertainty factors of 1.5 (2\(\sigma\)) for \(\lambda <300\) nm and 2 (2\(\sigma\)) for \(\lambda >300\) nm are estimated due primarily to the large spread in the available cross section studies.

Photolysis Quantum Yield and Product Studies: Absorption in the UV is expected to lead to unit photodissociation.

Table 4F13. Recommended Absorption Cross Sections of Cl\(_2\)O\(_3\) at 220–260 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>1145</td>
<td>255</td>
<td>1443</td>
<td>290</td>
<td>763</td>
</tr>
<tr>
<td>225</td>
<td>1113</td>
<td>260</td>
<td>1596</td>
<td>295</td>
<td>566</td>
</tr>
<tr>
<td>230</td>
<td>1060</td>
<td>265</td>
<td>1661</td>
<td>300</td>
<td>417</td>
</tr>
<tr>
<td>235</td>
<td>1028</td>
<td>270</td>
<td>1614</td>
<td>305</td>
<td>294</td>
</tr>
<tr>
<td>240</td>
<td>1044</td>
<td>275</td>
<td>1464</td>
<td>310</td>
<td>212</td>
</tr>
<tr>
<td>245</td>
<td>1127</td>
<td>280</td>
<td>1239</td>
<td>315</td>
<td>159</td>
</tr>
<tr>
<td>250</td>
<td>1271</td>
<td>285</td>
<td>995</td>
<td>320</td>
<td>132</td>
</tr>
</tbody>
</table>

Note:
220–320 nm: mean of the data from Hayman and Cox,4 Burkholder et al.,1 Harwood et al.,3 and Green et al.2

F10. Cl\(_2\)O\(_4\) (dichlorine tetraoxide, chlorine perchlorate)

Cl\(_2\)O\(_4\) + hv \(\rightarrow\) Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of Cl\(_2\)O\(_4\) (dichlorine tetraoxide, chlorine perchlorate) has been measured at room temperature by Lopez and Sicre2 (200–310 nm) and Green et al.1 (200–350 nm). The absorption spectrum has a weak band between 303 and 350 nm with a maximum at 327 nm, a stronger band between 212 and 303 nm with a maximum at 233 nm, and a further increase in cross section below 212 nm. The absorption cross sections reported by Lopez and Sicre2 and Green et al.,1 who applied similar methods of preparing Cl\(_2\)O\(_4\), are in good agreement in the region ~215–250 nm. Discrepancies in the cross section data are apparent below 215 nm, where the values of Lopez and Sicre2 are larger by as much as a factor ~1.7 at 200 nm and at wavelengths >260 nm. The recommended absorption cross sections in Table 4F14 are from Green et al.,1 which is thought to be the more accurate measurement.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-14. Recommended Absorption Cross Sections of Cl₂O₄ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>96.81</td>
<td>238</td>
<td>84.94</td>
<td>276</td>
<td>9.95</td>
<td>314</td>
<td>1.35</td>
</tr>
<tr>
<td>202</td>
<td>87.88</td>
<td>240</td>
<td>80.97</td>
<td>278</td>
<td>8.38</td>
<td>316</td>
<td>1.49</td>
</tr>
<tr>
<td>204</td>
<td>77.84</td>
<td>242</td>
<td>76.05</td>
<td>280</td>
<td>6.98</td>
<td>318</td>
<td>1.62</td>
</tr>
<tr>
<td>206</td>
<td>73.24</td>
<td>244</td>
<td>70.95</td>
<td>282</td>
<td>5.76</td>
<td>320</td>
<td>1.74</td>
</tr>
<tr>
<td>208</td>
<td>67.51</td>
<td>246</td>
<td>65.17</td>
<td>284</td>
<td>4.70</td>
<td>322</td>
<td>1.83</td>
</tr>
<tr>
<td>210</td>
<td>64.62</td>
<td>248</td>
<td>59.53</td>
<td>286</td>
<td>3.79</td>
<td>324</td>
<td>1.91</td>
</tr>
<tr>
<td>212</td>
<td>61.79</td>
<td>250</td>
<td>53.84</td>
<td>288</td>
<td>3.03</td>
<td>326</td>
<td>1.96</td>
</tr>
<tr>
<td>214</td>
<td>61.74</td>
<td>252</td>
<td>48.55</td>
<td>290</td>
<td>2.40</td>
<td>328</td>
<td>1.98</td>
</tr>
<tr>
<td>216</td>
<td>63.46</td>
<td>254</td>
<td>43.30</td>
<td>292</td>
<td>1.89</td>
<td>330</td>
<td>1.96</td>
</tr>
<tr>
<td>218</td>
<td>66.58</td>
<td>256</td>
<td>38.52</td>
<td>294</td>
<td>1.50</td>
<td>332</td>
<td>1.92</td>
</tr>
<tr>
<td>220</td>
<td>70.82</td>
<td>258</td>
<td>34.33</td>
<td>296</td>
<td>1.21</td>
<td>334</td>
<td>1.85</td>
</tr>
<tr>
<td>222</td>
<td>74.95</td>
<td>260</td>
<td>30.28</td>
<td>298</td>
<td>1.01</td>
<td>336</td>
<td>1.75</td>
</tr>
<tr>
<td>224</td>
<td>79.70</td>
<td>262</td>
<td>26.63</td>
<td>300</td>
<td>0.88</td>
<td>338</td>
<td>1.63</td>
</tr>
<tr>
<td>226</td>
<td>83.84</td>
<td>264</td>
<td>23.55</td>
<td>302</td>
<td>0.83</td>
<td>340</td>
<td>1.50</td>
</tr>
<tr>
<td>228</td>
<td>87.21</td>
<td>266</td>
<td>20.58</td>
<td>304</td>
<td>0.83</td>
<td>342</td>
<td>1.36</td>
</tr>
<tr>
<td>230</td>
<td>89.19</td>
<td>268</td>
<td>17.97</td>
<td>306</td>
<td>0.88</td>
<td>344</td>
<td>1.23</td>
</tr>
<tr>
<td>232</td>
<td>90.06</td>
<td>270</td>
<td>15.81</td>
<td>308</td>
<td>0.97</td>
<td>346</td>
<td>1.11</td>
</tr>
<tr>
<td>234</td>
<td>89.67</td>
<td>272</td>
<td>13.62</td>
<td>310</td>
<td>1.08</td>
<td>348</td>
<td>1.02</td>
</tr>
<tr>
<td>236</td>
<td>87.86</td>
<td>274</td>
<td>11.77</td>
<td>312</td>
<td>1.21</td>
<td>350</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Note:
Green et al.¹

F11. Cl₂O₆ (dichlorine hexoxide)

Cl₂O₆ + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV/vis absorption spectrum of dichlorine hexoxide, Cl₂O₆, has been measured at room temperature by Lopez and Sicre⁴ (200–386 nm), Jansen et al.³ (268 nm), and Green et al.² (200–450 nm). The spectrum reported by Goodeve and Richardson⁷ and attributed to ClO₃ was shown by Lopez and Sicre⁴ to most likely be that of Cl₂O₆. The cross sections measured by Lopez and Sicre⁴ are several times larger than those reported by Goodeve and Richardson¹ but the shape of the spectrum is similar. There is excellent agreement between the data of Lopez and Sicre⁴ and Green et al.² at wavelengths between 210 and 310 nm. At 200 nm the data from Green et al.² are smaller by ~10% than those of Lopez and Sicre.⁴ At longer wavelengths the Green et al.² cross section data are larger with the difference increasing with increasing wavelength up to a factor ~3 at 380 nm. The recommended absorption cross sections in Table 4F-15 are taken from Green et al.²

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-15. Recommended Absorption Cross Sections of Cl$_2$O$_6$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1104</td>
<td>200</td>
<td>1104</td>
<td>200</td>
<td>1104</td>
<td>200</td>
<td>1104</td>
</tr>
<tr>
<td>202</td>
<td>1135</td>
<td>202</td>
<td>1135</td>
<td>202</td>
<td>1135</td>
<td>202</td>
<td>1135</td>
</tr>
<tr>
<td>204</td>
<td>1161</td>
<td>204</td>
<td>1161</td>
<td>204</td>
<td>1161</td>
<td>204</td>
<td>1161</td>
</tr>
<tr>
<td>206</td>
<td>1208</td>
<td>206</td>
<td>1208</td>
<td>206</td>
<td>1208</td>
<td>206</td>
<td>1208</td>
</tr>
<tr>
<td>208</td>
<td>1233</td>
<td>208</td>
<td>1233</td>
<td>208</td>
<td>1233</td>
<td>208</td>
<td>1233</td>
</tr>
<tr>
<td>210</td>
<td>1254</td>
<td>210</td>
<td>1254</td>
<td>210</td>
<td>1254</td>
<td>210</td>
<td>1254</td>
</tr>
<tr>
<td>212</td>
<td>1261</td>
<td>212</td>
<td>1261</td>
<td>212</td>
<td>1261</td>
<td>212</td>
<td>1261</td>
</tr>
<tr>
<td>214</td>
<td>1266</td>
<td>214</td>
<td>1266</td>
<td>214</td>
<td>1266</td>
<td>214</td>
<td>1266</td>
</tr>
<tr>
<td>216</td>
<td>1260</td>
<td>216</td>
<td>1260</td>
<td>216</td>
<td>1260</td>
<td>216</td>
<td>1260</td>
</tr>
<tr>
<td>218</td>
<td>1245</td>
<td>218</td>
<td>1245</td>
<td>218</td>
<td>1245</td>
<td>218</td>
<td>1245</td>
</tr>
<tr>
<td>220</td>
<td>1230</td>
<td>220</td>
<td>1230</td>
<td>220</td>
<td>1230</td>
<td>220</td>
<td>1230</td>
</tr>
<tr>
<td>222</td>
<td>1207</td>
<td>222</td>
<td>1207</td>
<td>222</td>
<td>1207</td>
<td>222</td>
<td>1207</td>
</tr>
<tr>
<td>224</td>
<td>1182</td>
<td>224</td>
<td>1182</td>
<td>224</td>
<td>1182</td>
<td>224</td>
<td>1182</td>
</tr>
<tr>
<td>226</td>
<td>1156</td>
<td>226</td>
<td>1156</td>
<td>226</td>
<td>1156</td>
<td>226</td>
<td>1156</td>
</tr>
<tr>
<td>228</td>
<td>1132</td>
<td>228</td>
<td>1132</td>
<td>228</td>
<td>1132</td>
<td>228</td>
<td>1132</td>
</tr>
<tr>
<td>230</td>
<td>1108</td>
<td>230</td>
<td>1108</td>
<td>230</td>
<td>1108</td>
<td>230</td>
<td>1108</td>
</tr>
<tr>
<td>232</td>
<td>1086</td>
<td>232</td>
<td>1086</td>
<td>232</td>
<td>1086</td>
<td>232</td>
<td>1086</td>
</tr>
<tr>
<td>234</td>
<td>1066</td>
<td>234</td>
<td>1066</td>
<td>234</td>
<td>1066</td>
<td>234</td>
<td>1066</td>
</tr>
<tr>
<td>236</td>
<td>1052</td>
<td>236</td>
<td>1052</td>
<td>236</td>
<td>1052</td>
<td>236</td>
<td>1052</td>
</tr>
<tr>
<td>238</td>
<td>1042</td>
<td>238</td>
<td>1042</td>
<td>238</td>
<td>1042</td>
<td>238</td>
<td>1042</td>
</tr>
<tr>
<td>240</td>
<td>1039</td>
<td>240</td>
<td>1039</td>
<td>240</td>
<td>1039</td>
<td>240</td>
<td>1039</td>
</tr>
<tr>
<td>242</td>
<td>1041</td>
<td>242</td>
<td>1041</td>
<td>242</td>
<td>1041</td>
<td>242</td>
<td>1041</td>
</tr>
<tr>
<td>244</td>
<td>1049</td>
<td>244</td>
<td>1049</td>
<td>244</td>
<td>1049</td>
<td>244</td>
<td>1049</td>
</tr>
<tr>
<td>246</td>
<td>1065</td>
<td>246</td>
<td>1065</td>
<td>246</td>
<td>1065</td>
<td>246</td>
<td>1065</td>
</tr>
</tbody>
</table>

Note:
Green et al.2

F12. Cl$_2$O$_7$ (dichlorine heptoxide)

$\text{Cl}_2\text{O}_7 + \text{hv} \rightarrow \text{Products}$

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of dichlorine heptoxide, Cl$_2$O$_7$, has been measured at room temperature by Goodeve and Windsor1 (222–302 nm) and Lin2 (180–310 nm). Although both studies report a spectrum with monotonically decreasing absorption cross sections with increasing wavelength, there is poor agreement between the two data sets. The cross sections reported by Goodeve and Windsor1 are larger at wavelengths <290 nm than those reported by Lin2 with a difference of a factor of 4 at 225 nm. At wavelengths >290 nm, the cross sections reported by Goodeve and Windsor1 are smaller than those of Lin.2

The recommended absorption cross sections in Table 4F-16 are taken from Lin.2

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-16. Recommended Absorption Cross Sections of Cl₂O₇ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>1188</td>
<td>270</td>
<td>3.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>908.5</td>
<td>275</td>
<td>2.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>674.7</td>
<td>280</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>475.3</td>
<td>285</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>322</td>
<td>290</td>
<td>0.705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>231</td>
<td>295</td>
<td>0.521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>169</td>
<td>300</td>
<td>0.368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>132</td>
<td>305</td>
<td>0.203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>102</td>
<td>310</td>
<td>0.104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Lin²

F13. HCl (hydrogen chloride)

| HCl + hv → H + Cl (²P₃/₂) | 432 kJ mol⁻¹ | 277 nm | (1) |
| HCl + Cl (²P₅/₂) | 442 kJ mol⁻¹ | 271 nm | (2) |

(Recommendation: 06-2, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The VUV/UV absorption spectrum of hydrogen chloride, HCl, has been measured at room temperature by Romand and Vodar¹⁸ (139–207 nm), Romand¹⁷ (139–207 nm), Myer and Samson¹³ (140–200 nm), Imn⁶ (140–220 nm), Roxlo and Mandl¹⁹ (170–215 nm), Nee et al.¹⁴ (132–185 nm), Bahou et al.² (120–230 nm), Cheng et al.³ (120–230 nm), Vatsa and Volpp²¹ (121.6 nm), Mo et al.¹² (193 nm), and Hanf et al.⁵ (135 nm). Bahou et al.² (120–230 nm) and Cheng et al.³ (120–230 nm) have also measured the absorption spectrum of DCI. VUV absorption cross sections have been obtained by dipole (ē,ē) spectroscopy in the region 8-40 eV (155–31 nm) by Daviel et al.⁴ The absorption spectrum has a broad absorption band between 135 and 230 nm, corresponding to the A ¹Π ← X ¹Σ⁺ transition, with the maximum at ~154 nm for HCl and ~156 nm for DCI. There is good agreement among the data of Bahou et al.² Cheng et al.³ with the data from Nee et al.¹⁴ and Imn.⁶ The cross sections of Bahou et al.² and Cheng et al.³ are in general larger than those of Nee et al.¹⁴ by <10% in the region 132–170 nm and by <25% at wavelengths >170 nm. In addition, the cross sections of Bahou et al.² and Cheng et al.³ are slightly smaller, by <10%, than those of Imn⁶ except for the region >210 nm. The absorption spectrum of Imn⁶ has shoulders near 147.5 nm and 160 nm around the maximum at ~155 nm. This is in contrast to the results of Bahou et al.² and Cheng et al.³ (0.1 nm resolution) and those of Nee et al.¹⁴ (0.05 nm resolution). The recommended absorption cross sections for HCl and DCI in Table 4F-17 are averages over 2.5 nm and 5 nm intervals of the data from Bahou et al.² An uncertainty factor of 1.1 (2σ) is estimated for 180«λ«230 nm.

Photolysis Quantum Yield and Product Studies: Photodissociation of HCl was studied by Matsumi et al.⁹-¹¹ and Tonokura et al.,²⁰ and the branching fraction Cl (²P₃/₂) / (Cl (²P₅/₂) + Cl (²P₅/₂)) was determined to be 0.33 ± 0.05 at 193 nm and 0.45-0.47 (± 0.04) at 157 nm. Lambert et al.⁷ measured branching fractions between 0.47 and 0.33 for eight wavelengths between 193 and 235 nm for HCl. Zhang et al.²² obtained 0.41 ± 0.01 at 193.5 nm. Regan et al.¹⁶ obtained values between 0.42 and 0.48 for 5 wavelengths in the range 201–210 nm, and Regan et al.¹⁵ report values between 0.41 to 0.53 for selected ro-vibrational states at 235 nm. The results from Lambert et al.⁷ Zhang et al.²² Regan et al.,¹⁵,¹⁶ and Liyanage et al.⁸ are in good agreement with the calculations of Alexander et al.¹.
Table 4F-17. Recommended Absorption Cross Sections of HCl and DCl at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>HCl 10^20 σ (cm^2)</th>
<th>λ (nm)</th>
<th>DCl 10^20 σ (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCl</td>
<td></td>
<td>DCl</td>
</tr>
<tr>
<td>135.0</td>
<td>123</td>
<td>175.0</td>
<td>106</td>
</tr>
<tr>
<td>137.5</td>
<td>152</td>
<td>177.5</td>
<td>79.6</td>
</tr>
<tr>
<td>140.0</td>
<td>205</td>
<td>180.0</td>
<td>58.9</td>
</tr>
<tr>
<td>142.5</td>
<td>238</td>
<td>182.5</td>
<td>42.3</td>
</tr>
<tr>
<td>145.0</td>
<td>279</td>
<td>185.0</td>
<td>29.4</td>
</tr>
<tr>
<td>147.5</td>
<td>311</td>
<td>187.5</td>
<td>20.3</td>
</tr>
<tr>
<td>150.0</td>
<td>334</td>
<td>190.0</td>
<td>13.8</td>
</tr>
<tr>
<td>152.5</td>
<td>342</td>
<td>195.0</td>
<td>5.96</td>
</tr>
<tr>
<td>155.0</td>
<td>343</td>
<td>200.0</td>
<td>2.39</td>
</tr>
<tr>
<td>157.5</td>
<td>327</td>
<td>205.0</td>
<td>0.903</td>
</tr>
<tr>
<td>160.0</td>
<td>306</td>
<td>210.0</td>
<td>0.310</td>
</tr>
<tr>
<td>162.5</td>
<td>273</td>
<td>215.0</td>
<td>0.101</td>
</tr>
<tr>
<td>165.0</td>
<td>240</td>
<td>220.0</td>
<td>0.030</td>
</tr>
<tr>
<td>167.5</td>
<td>199</td>
<td>225.0</td>
<td>0.010</td>
</tr>
<tr>
<td>170.0</td>
<td>163</td>
<td>230.0</td>
<td>0.0034</td>
</tr>
<tr>
<td>172.5</td>
<td>136</td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>

Note:
Bahou et al.²

4-213

F14. HClO (hypochlorous acid)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Expression</th>
<th>Energy</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>HClO + hv</td>
<td>→ OH + Cl</td>
<td>234 kJ mol⁻¹</td>
<td>513 nm</td>
</tr>
<tr>
<td></td>
<td>→ HCl + O(^3P)</td>
<td>211 kJ mol⁻¹</td>
<td>568 nm</td>
</tr>
</tbody>
</table>

(Recommendation: 06-2, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The UV/vis absorption spectrum of hypochlorous acid, HClO, has an intensive singlet-singlet absorption in the near-UV with a maximum near 240 nm due mostly to the 2P → 1S transition and a weaker band arising from the 1D → 1S transition that appears as a shoulder near 300 nm. The absorption cross sections of HClO vapor have been reported by several groups. Molina and Molina\(^6\) and Knauth et al.\(^3\) produced HClO using equilibrium mixtures with Cl\(_2\)O and H\(_2\)O. Mishalanie et al.\(^9\) and Permien et al.\(^12\) used a dynamic source to generate the HClO vapor. The cross section values reported by Molina and Molina\(^6\) Mishalanie et al.\(^9\), and Permien et al.\(^12\) are in reasonable agreement between 250 and 330 nm. In this wavelength range, the cross section values reported by Knauth et al.\(^3\) are significantly smaller, e.g. a factor of 4 at 280 nm. At wavelengths >340 nm, the cross sections from Mishalanie et al. are significantly smaller than those obtained by the other three groups with a difference of an order of magnitude at 365 nm.

Burkholder\(^4\) (200–380 nm) measured the HClO absorption spectrum following photolysis of equilibrium mixtures of Cl\(_2\)O–H\(_2\)O–HClO. The HClO spectrum obtained has two absorption maxima with peaks at 242 and 304 nm in excellent agreement with the work of Knauth et al.\(^3\). The agreement with the spectra reported by Molina and Molina\(^6\) Mishalanie et al.\(^9\), and Permien et al.\(^12\) is poor. The discrepancies can most likely be attributed to the methods and uncertainties associated with correcting measured absorption spectra for the presence of Cl\(_2\) and Cl\(_2\)O. In the study by Burkholder,\(^4\) several control experiments were carried out in order to check the internal consistency of the data. Barnes et al.\(^1\) examined the near UV HClO spectrum by monitoring the OH fragments resulting from photodissociation and observed a weak band centered at 387 nm that extends to 480 nm. This transition arises from a weak singlet-triplet transition (Minaev\(^6\)). The recommended cross sections in Table 4F–18 are calculated from an analytical expression provided by Barnes et al.\(^1\) that was based on the cross section values from Burkholder\(^4\) and Barnes et al.\(^1\). The HClO spectrum reported by Jungkamp et al.\(^6\) is in excellent agreement with this recommendation for wavelengths <350 nm but deviates significantly at longer wavelengths. Uncertainty factors of 1.1 (2σ) and 1.2 (2σ) are estimated for the wavelength regions λ ≤350 nm and λ >350 nm, respectively.

Photolysis Quantum Yield and Product Studies: Molina et al.\(^11\) observed production of OH radicals in the laser photolysis of HOCI around 310 nm. Butler and Phillips\(^4\) found no evidence for O atom production following HOCI photolysis at 308 nm and reported an upper limit for the primary quantum yield for the HCl + O channel of ~0.02. Vogt and Schindler\(^16\) used broadband photolysis in the 290–390 nm wavelength range and report Φ(OH) to be >0.95. Schindler et al.\(^13\) measured Φ(Cl) to be 1.00 ± 0.05 at 308 nm. These authors also determined the probability, P, for production of Cl(^1P\(_{1/2}\)) relative to Cl(^2P\(_{3/2}\)) to be 0.035 ± 0.02 at 308 nm, and 0.35 ± 0.02 at 235 nm. These values are in agreement with the value of 0.30 ± 0.07 at 236 nm.
reported by Bell et al.2 Fujiwara and Ishiwata5 determined the relative yield of OH(\(3\Pi_{1/2}\)) / OH(\(3\Pi_{3/2}\)) to be 2.0 at 266 nm and 1.5 at 355 nm. A unit quantum yield for the OH + Cl channel is recommended.

Table 4F-18. Recommended Absorption Cross Sections of HOCl at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>7.18</td>
<td>274</td>
<td>5.26</td>
<td>348</td>
<td>1.55</td>
</tr>
<tr>
<td>202</td>
<td>6.39</td>
<td>276</td>
<td>4.94</td>
<td>350</td>
<td>1.43</td>
</tr>
<tr>
<td>204</td>
<td>5.81</td>
<td>278</td>
<td>4.74</td>
<td>352</td>
<td>1.33</td>
</tr>
<tr>
<td>206</td>
<td>5.46</td>
<td>280</td>
<td>4.64</td>
<td>354</td>
<td>1.24</td>
</tr>
<tr>
<td>208</td>
<td>5.37</td>
<td>282</td>
<td>4.62</td>
<td>356</td>
<td>1.17</td>
</tr>
<tr>
<td>210</td>
<td>5.54</td>
<td>284</td>
<td>4.68</td>
<td>358</td>
<td>1.11</td>
</tr>
<tr>
<td>212</td>
<td>5.98</td>
<td>286</td>
<td>4.79</td>
<td>360</td>
<td>1.06</td>
</tr>
<tr>
<td>214</td>
<td>6.68</td>
<td>288</td>
<td>4.95</td>
<td>362</td>
<td>1.02</td>
</tr>
<tr>
<td>216</td>
<td>7.63</td>
<td>290</td>
<td>5.13</td>
<td>364</td>
<td>0.985</td>
</tr>
<tr>
<td>218</td>
<td>8.81</td>
<td>292</td>
<td>5.33</td>
<td>366</td>
<td>0.951</td>
</tr>
<tr>
<td>220</td>
<td>10.2</td>
<td>294</td>
<td>5.52</td>
<td>368</td>
<td>0.919</td>
</tr>
<tr>
<td>222</td>
<td>11.6</td>
<td>296</td>
<td>5.71</td>
<td>370</td>
<td>0.888</td>
</tr>
<tr>
<td>224</td>
<td>13.2</td>
<td>298</td>
<td>5.86</td>
<td>372</td>
<td>0.855</td>
</tr>
<tr>
<td>226</td>
<td>14.7</td>
<td>300</td>
<td>5.99</td>
<td>374</td>
<td>0.822</td>
</tr>
<tr>
<td>228</td>
<td>16.2</td>
<td>302</td>
<td>6.08</td>
<td>376</td>
<td>0.786</td>
</tr>
<tr>
<td>230</td>
<td>17.5</td>
<td>304</td>
<td>6.12</td>
<td>378</td>
<td>0.748</td>
</tr>
<tr>
<td>232</td>
<td>18.7</td>
<td>306</td>
<td>6.12</td>
<td>380</td>
<td>0.708</td>
</tr>
<tr>
<td>234</td>
<td>19.6</td>
<td>308</td>
<td>6.07</td>
<td>382</td>
<td>0.667</td>
</tr>
<tr>
<td>236</td>
<td>20.2</td>
<td>310</td>
<td>5.97</td>
<td>384</td>
<td>0.624</td>
</tr>
<tr>
<td>238</td>
<td>20.5</td>
<td>312</td>
<td>5.84</td>
<td>386</td>
<td>0.580</td>
</tr>
<tr>
<td>240</td>
<td>20.6</td>
<td>314</td>
<td>5.66</td>
<td>388</td>
<td>0.535</td>
</tr>
<tr>
<td>242</td>
<td>20.3</td>
<td>316</td>
<td>5.45</td>
<td>390</td>
<td>0.491</td>
</tr>
<tr>
<td>244</td>
<td>19.8</td>
<td>318</td>
<td>5.21</td>
<td>392</td>
<td>0.447</td>
</tr>
<tr>
<td>246</td>
<td>19.0</td>
<td>320</td>
<td>4.95</td>
<td>394</td>
<td>0.405</td>
</tr>
<tr>
<td>248</td>
<td>18.1</td>
<td>322</td>
<td>4.67</td>
<td>396</td>
<td>0.364</td>
</tr>
<tr>
<td>250</td>
<td>17.0</td>
<td>324</td>
<td>4.38</td>
<td>398</td>
<td>0.325</td>
</tr>
<tr>
<td>252</td>
<td>15.8</td>
<td>326</td>
<td>4.09</td>
<td>400</td>
<td>0.288</td>
</tr>
<tr>
<td>254</td>
<td>14.6</td>
<td>328</td>
<td>3.79</td>
<td>402</td>
<td>0.254</td>
</tr>
<tr>
<td>256</td>
<td>13.3</td>
<td>330</td>
<td>3.50</td>
<td>404</td>
<td>0.222</td>
</tr>
<tr>
<td>258</td>
<td>12.1</td>
<td>332</td>
<td>3.21</td>
<td>406</td>
<td>0.194</td>
</tr>
<tr>
<td>260</td>
<td>10.9</td>
<td>334</td>
<td>2.94</td>
<td>406</td>
<td>0.168</td>
</tr>
<tr>
<td>262</td>
<td>9.73</td>
<td>336</td>
<td>2.68</td>
<td>410</td>
<td>0.144</td>
</tr>
<tr>
<td>264</td>
<td>8.68</td>
<td>338</td>
<td>2.44</td>
<td>412</td>
<td>0.124</td>
</tr>
<tr>
<td>266</td>
<td>7.75</td>
<td>340</td>
<td>2.22</td>
<td>414</td>
<td>0.105</td>
</tr>
<tr>
<td>268</td>
<td>6.94</td>
<td>342</td>
<td>2.02</td>
<td>416</td>
<td>0.089</td>
</tr>
<tr>
<td>270</td>
<td>6.25</td>
<td>344</td>
<td>1.84</td>
<td>418</td>
<td>0.075</td>
</tr>
<tr>
<td>272</td>
<td>5.69</td>
<td>346</td>
<td>1.69</td>
<td>420</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Note:
Barnes et al.1 (calculated using analytical expression)

F15. ClNO (nitrosyl chloride) Back to Index

CINO + hv → Cl + NO
160 kJ mol$^{-1}$ 749 nm (1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Nitrosyl chloride, ClNO, has a continuous UV/vis absorption spectrum extending beyond 650 nm. There is good agreement between the work of Martin and Gareis (235–400 nm), Ballash and Armstrong (185–540 nm), Illies and Takacs (190–400 nm), and Tyndall et al. (350–650 nm) measured ClNO absorption cross sections at several temperatures between 223 and 343 K. Their room temperature results agree to within 15% with those of Martin and Gareis, Ballash and Armstrong, and Tyndall et al. The recommended absorption cross sections in Table 4F-19 are taken from the work of Tyndall et al. between 190 and 350 nm and from Roehl et al. beyond 350 nm.

Photolysis Quantum Yield and Product Studies: The quantum yield for the primary photolytic process has been reviewed by Calvert and Pitts. The quantum yield is unity over the entire visible and near-ultraviolet bands. Chichinin found evidence of ground state ($^2P_{3/2}$) and excited ($^2P_{1/2}$) atomic chlorine products and measured a relative quantum yield Cl($^2P_{1/2}$)/ (Cl($^2P_{1/2}$) + Cl($^2P_{3/2}$)) to be 0.88 ± 0.12 at 248 nm and 0.90 ± 0.10 at 351 nm. Felder and Morley obtained 0.80 at 248 nm and Skorokhodov et al. obtained 0.48 ± 0.03 at 212 nm, 0.30 at 235 nm, and 0.52 ± 0.03 at 248 nm.
Table 4F-19. Recommended Absorption Cross Sections of CINO at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>4320</td>
<td>246</td>
<td>45.2</td>
<td>302</td>
<td>10.3</td>
<td>370</td>
<td>11.0</td>
</tr>
<tr>
<td>192</td>
<td>5340</td>
<td>248</td>
<td>37.7</td>
<td>304</td>
<td>10.5</td>
<td>375</td>
<td>9.95</td>
</tr>
<tr>
<td>194</td>
<td>6150</td>
<td>250</td>
<td>31.7</td>
<td>306</td>
<td>10.8</td>
<td>380</td>
<td>8.86</td>
</tr>
<tr>
<td>196</td>
<td>6480</td>
<td>252</td>
<td>27.4</td>
<td>308</td>
<td>11.1</td>
<td>385</td>
<td>7.82</td>
</tr>
<tr>
<td>198</td>
<td>6310</td>
<td>254</td>
<td>23.7</td>
<td>310</td>
<td>11.5</td>
<td>390</td>
<td>6.86</td>
</tr>
<tr>
<td>200</td>
<td>5860</td>
<td>256</td>
<td>21.3</td>
<td>312</td>
<td>11.9</td>
<td>395</td>
<td>5.97</td>
</tr>
<tr>
<td>202</td>
<td>5250</td>
<td>258</td>
<td>19.0</td>
<td>314</td>
<td>12.2</td>
<td>400</td>
<td>5.13</td>
</tr>
<tr>
<td>204</td>
<td>4540</td>
<td>260</td>
<td>17.5</td>
<td>316</td>
<td>12.5</td>
<td>405</td>
<td>4.40</td>
</tr>
<tr>
<td>206</td>
<td>3840</td>
<td>262</td>
<td>16.5</td>
<td>318</td>
<td>13.0</td>
<td>410</td>
<td>3.83</td>
</tr>
<tr>
<td>208</td>
<td>3210</td>
<td>264</td>
<td>15.3</td>
<td>320</td>
<td>13.4</td>
<td>415</td>
<td>3.38</td>
</tr>
<tr>
<td>210</td>
<td>2630</td>
<td>266</td>
<td>14.4</td>
<td>322</td>
<td>13.6</td>
<td>420</td>
<td>2.89</td>
</tr>
<tr>
<td>212</td>
<td>2180</td>
<td>268</td>
<td>13.6</td>
<td>324</td>
<td>14.0</td>
<td>425</td>
<td>2.45</td>
</tr>
<tr>
<td>214</td>
<td>1760</td>
<td>270</td>
<td>12.9</td>
<td>326</td>
<td>14.3</td>
<td>430</td>
<td>2.21</td>
</tr>
<tr>
<td>216</td>
<td>1400</td>
<td>272</td>
<td>12.3</td>
<td>328</td>
<td>14.6</td>
<td>435</td>
<td>2.20</td>
</tr>
<tr>
<td>218</td>
<td>1110</td>
<td>274</td>
<td>11.8</td>
<td>330</td>
<td>14.7</td>
<td>440</td>
<td>2.20</td>
</tr>
<tr>
<td>220</td>
<td>896</td>
<td>276</td>
<td>11.3</td>
<td>332</td>
<td>14.9</td>
<td>445</td>
<td>2.07</td>
</tr>
<tr>
<td>222</td>
<td>707</td>
<td>278</td>
<td>10.7</td>
<td>334</td>
<td>15.1</td>
<td>450</td>
<td>1.87</td>
</tr>
<tr>
<td>224</td>
<td>552</td>
<td>280</td>
<td>10.6</td>
<td>336</td>
<td>15.3</td>
<td>455</td>
<td>1.79</td>
</tr>
<tr>
<td>226</td>
<td>436</td>
<td>282</td>
<td>10.2</td>
<td>338</td>
<td>15.3</td>
<td>460</td>
<td>1.95</td>
</tr>
<tr>
<td>228</td>
<td>339</td>
<td>284</td>
<td>9.99</td>
<td>340</td>
<td>15.2</td>
<td>465</td>
<td>2.25</td>
</tr>
<tr>
<td>230</td>
<td>266</td>
<td>286</td>
<td>9.84</td>
<td>342</td>
<td>15.3</td>
<td>470</td>
<td>2.50</td>
</tr>
<tr>
<td>232</td>
<td>212</td>
<td>288</td>
<td>9.71</td>
<td>344</td>
<td>15.1</td>
<td>475</td>
<td>2.61</td>
</tr>
<tr>
<td>234</td>
<td>164</td>
<td>290</td>
<td>9.64</td>
<td>346</td>
<td>15.1</td>
<td>480</td>
<td>2.53</td>
</tr>
<tr>
<td>236</td>
<td>120</td>
<td>292</td>
<td>9.63</td>
<td>348</td>
<td>14.9</td>
<td>485</td>
<td>2.33</td>
</tr>
<tr>
<td>238</td>
<td>101</td>
<td>294</td>
<td>9.69</td>
<td>350</td>
<td>14.2</td>
<td>490</td>
<td>2.07</td>
</tr>
<tr>
<td>240</td>
<td>82.5</td>
<td>296</td>
<td>9.71</td>
<td>355</td>
<td>13.6</td>
<td>495</td>
<td>1.78</td>
</tr>
<tr>
<td>242</td>
<td>67.2</td>
<td>298</td>
<td>9.89</td>
<td>360</td>
<td>12.9</td>
<td>500</td>
<td>1.50</td>
</tr>
<tr>
<td>244</td>
<td>55.2</td>
<td>300</td>
<td>10.0</td>
<td>365</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
190–350 nm: Tyndall et al.9
355–500 nm: Roehl et al.7

(3) Chichinin, A. I. Measurement of Cl(3P\textsubscript{2}) quantum yield for the photodissociation of NOCl, ICI, PCI\textsubscript{3}, Cl\textsubscript{2}O and COCl\textsubscript{2}. *Chem. Phys. Lett.* 1993, 209, 459-463.
Absorption Cross Sections: The UV absorption spectrum of nitryl chloride, ClNO₂, has been measured at room temperature by Martin and Gareis (230–330 nm), Illies and Takacs (185–400 nm), Nelson and Johnston (270–370 nm), Ganske et al. (200–370 nm), Furlan et al. (190–450 nm), and Ghosh et al. (200–475 nm). The absorption spectrum has three broad overlapping bands, a weak band at ~300 nm and two stronger bands at ~215 nm and below 185 nm. In the range 220–280 nm, weak but distinct vibrational structure was observed by Furlan et al. A major source of discrepancies in the data results from the presence of impurities. The recommended absorption cross sections in Table 4F are taken from Ghosh et al. (rounded to 3 significant figures).

Ghosh et al. measured the ClNO₂ UV/vis spectrum temperature dependence over the range 210–296 K (the only temperature dependent study available). They parameterized the spectrum temperature dependence using the empirical formula:

$$\sigma(\lambda, T) = \sigma(\lambda, 296 \text{ K}) \times (1 + A(\lambda) \times (T - 296) + B(\lambda) \times (T - 296)^2)$$

The recommended fit parameters are included in Table 4F-20.

Photolysis Quantum Yield and Product Studies: Nelson and Johnston report a value of 0.93 ± 0.15 for \(\Phi(\text{Cl})\) and \(\Phi(\text{O}) < 0.02\) for photolysis at 350 nm. Carter et al. reported the formation of NO₂ in the electronic ground state (yield 0.15 ± 0.05) and in the excited state (yield 0.85 ± 0.05) for 235 nm photolysis. Ghosh et al. report \(\Phi(\text{O})\) values of 0.67 ± 0.12 and 0.15 ± 0.03 (2σ) for photolysis at 193 and 248 nm, respectively.
F17. CIONO (chlorine nitrite)

Absorption Cross Sections: The UV absorption spectrum of chlorine nitrite, CIONO, was measured by Molina and Molina.\(^1\) The absorption cross sections were determined by mass balance during the Cl\(_2\)O + CINO → Cl\(_2\) + CIONO reaction and isomerization of CIONO to ClONO\(_2\). The recommended absorption cross sections in Table 4F-21 are taken from this study.

Photolysis Quantum Yield and Product Studies: It is assumed that the quantum yield for CIONO UV photolysis is unity. The Cl–O bond strength is only ~20 kcal mole\(^{-1}\), so that chlorine atoms are likely photolysis products.

Table 4F-21. Recommended Absorption Cross Sections of CIONO at 231 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>215.0</td>
<td>320</td>
<td>80.3</td>
</tr>
<tr>
<td>240</td>
<td>176.0</td>
<td>325</td>
<td>75.4</td>
</tr>
<tr>
<td>245</td>
<td>137.0</td>
<td>330</td>
<td>58.7</td>
</tr>
<tr>
<td>250</td>
<td>106.0</td>
<td>335</td>
<td>57.7</td>
</tr>
<tr>
<td>255</td>
<td>65.0</td>
<td>340</td>
<td>43.7</td>
</tr>
<tr>
<td>260</td>
<td>64.6</td>
<td>345</td>
<td>35.7</td>
</tr>
<tr>
<td>265</td>
<td>69.3</td>
<td>350</td>
<td>26.9</td>
</tr>
<tr>
<td>270</td>
<td>90.3</td>
<td>355</td>
<td>22.9</td>
</tr>
<tr>
<td>275</td>
<td>110.0</td>
<td>360</td>
<td>16.1</td>
</tr>
<tr>
<td>280</td>
<td>132.0</td>
<td>365</td>
<td>11.3</td>
</tr>
<tr>
<td>285</td>
<td>144.0</td>
<td>370</td>
<td>9.0</td>
</tr>
<tr>
<td>290</td>
<td>144.0</td>
<td>375</td>
<td>6.9</td>
</tr>
<tr>
<td>295</td>
<td>142.0</td>
<td>380</td>
<td>4.1</td>
</tr>
<tr>
<td>300</td>
<td>129.0</td>
<td>385</td>
<td>3.3</td>
</tr>
<tr>
<td>305</td>
<td>114.0</td>
<td>390</td>
<td>2.2</td>
</tr>
<tr>
<td>310</td>
<td>105.0</td>
<td>395</td>
<td>1.5</td>
</tr>
<tr>
<td>315</td>
<td>98.1</td>
<td>400</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Note: Molina and Molina\(^1\)
Absorption Cross Sections: The recommended cross sections of chlorine nitrate, ClONO₂, are taken from the work of Burkholder et al. (196–432 nm, 220–296 K). The cross section values are listed in Table 4F-22 together with the parameters needed to compute their temperature dependence. These values are in good agreement with those reported by Molina and Molina, which provided the basis for earlier recommendations and which supersedes the work of Rowland et al. An uncertainty factor in the room temperature cross sections of 1.1 (2σ) is estimated for the wavelength region 196<λ<432 nm.

Photolysis Quantum Yield and Product Studies: Several groups have investigated the identity of the primary photolytic fragments. Smith et al. report O + ClONO as the most likely products, using end-product analysis and steady-state photolysis. The results of Chang et al., which were obtained using the very low-pressure photolysis (VLPPH) technique, indicate that the products are Cl + NO₂, with a quantum yield of 1.0 ± 0.2. Adler-Golden and Wiesenfeld, using a flash photolysis atomic absorption technique, find O atoms to be the predominant photolysis product and report a quantum yield for Cl atom production of less than 4%. Marinielli and Johnston report a quantum yield for NO₃ production at 249 nm between 0.45 and 0.85, with a most likely value of 0.55; they monitored NO₃ by tunable dye laser absorption at 662 nm. Margitan used atomic resonance fluorescence detection of O and Cl atoms and found the quantum yield at 266 nm and at 355 nm to be 0.9 ± 0.1 for Cl atom production and ~0.1 for O atom production, with no discernible difference at the two wavelengths. These results were confirmed by Knauth and Schindler, who used end-product analysis to infer the quantum yields from photolysis studies at 265 and 313 nm. Burrows et al. report also Cl and NO₃ as the photolysis products at 254 nm, with a quantum yield of unity within experimental error, and an O atom quantum yield of 0.24. In contrast, Nikolaisen et al. observed quantum yields of 0.80 ± 0.08 and 0.28 ± 0.12 for Cl and NO₃ at 308 nm using resonance fluorescence detection methods and reported a O(4P) yield of ≤0.05. Ravishankara, Goldfarb et al., and Yokelson et al. have studied the photodissociation of ClONO₂ at 193, 222, 248 and 308 nm using atomic resonance fluorescence and time resolved absorption methods. They found that Cl and CIO are the two major dissociation products at 222, 248 and 308 nm, whereas at 193 nm, the quantum yield of O atoms was larger than the yield of ClO. At 193, 222, 248 and 308 nm, the yield of Cl was 0.53 ± 0.10, 0.46 ± 0.10, 0.41 ± 0.13 and 0.64 ± 0.20, respectively; the O atom yield 0.73 ± 0.08, 0.17 ± 0.08, ≤0.10 and ≤0.05; and the ClO yield 0.29 ± 0.20, 0.64 ± 0.20, 0.39 ± 0.19 and 0.37 ± 0.19. The NO₃ yield was determined by Yokelson et al. to be 0.93 ± 0.24 at 352.5 nm, 0.67 ± 0.09 at 308 nm, 0.60 ± 0.09 at 248 nm, and 0.18 ± 0.04 at 193 nm. In addition, Yokelson et al. measured the Cl atom yield as 0.73 ± 0.14 at 308 nm, 0.60 ± 0.12 at 248 nm and 0.45 ± 0.08 at 193 nm, and the O atom yield as <0.4 at 248 nm and <0.9 at 193 nm. Zou et al. determined absolute quantum yields for the Cl and CIO channels at 235 nm to be 0.42 ± 0.1 and 0.58 ± 0.1, respectively, using molecular beam techniques and TOFMS/REMPI.

The recommended quantum yield values for production of Cl + NO₃ (Φ₁) and CIO + NO₂ (Φ₂) are given at the bottom of Table 4F-22 and are based on the work of Nelson et al., Moore et al., Nickolaisen et al., Goldfarb et al., and Yokelson et al. For wavelengths shorter than 308 nm the value of Φ₁ is 0.6 and Φ₂ is 0.4. For longer wavelengths Φ₁ increases linearly to 0.9 at 350 nm with the corresponding decrease in Φ₂ to 0.1. There is no evidence for production of O + ClONO in the more recent work; the production of O atoms reported in some of the earlier studies may have resulted from the decomposition of excited NO₃. Zou et al. determined the quantum yield of spontaneous decomposition of NO₃ into NO₂ + O to be 0.20 and into NO + O₂ to be 0.006.
Work by Nickolaisen et al.13 indicates that the photodissociation quantum yield is less than unity at
wavelengths longer than ~330 nm because of the formation of a long-lived intermediate that may be
quenched under atmospheric conditions (a situation analogous to that of Cl 2O).

Table 4F-22. Recommended Absorption Cross Sections and Temperature Coefficients of
ClONO2
(, T) = (, 296) (1 + A1 (T–296) + A2 (T–296)2); T in K

(nm)
196
198
200
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
266
268
270
272
274
276
278
280
282
284
286
288

1020 
(cm2)
310
294
282

277
280
288
300
314
329
339
345
341
332
314
291
264
235
208
182
158
138
120
105
91.9
81.2
71.6
62.4
56.0
50.2
45.3
41.0
37.2
33.8
30.6
27.8
25.2
22.7
20.5
18.5
16.6
14.9
13.3
11.9
10.5
9.35
8.26
7.24

A1*
(K–1)
9.90 (–5)
6.72 (–5)
–5.34 (–6)
–1.19 (–4)
–2.60 (–4)
–4.12 (–4)
–5.62 (–4)
–6.96 (–4)
–8.04 (–4)
–8.74 (–4)
–9.03 (–4)
–8.86 (–4)
–8.28 (–4)
–7.31 (–4)
–6.04 (–4)
–4.53 (–4)
–2.88 (–4)
–1.13 (–4)
6.18 (–5)
2.27 (–4)
3.72 (–4)
4.91 (–4)
5.86 (–4)
6.64 (–4)
7.33 (–4)
8.03 (–4)
8.85 (–4)
9.84 (–4)
1.10 (–3)
1.22 (–3)
1.33 (–3)
1.44 (–3)
1.53 (–3)
1.62 (–3)
1.70 (–3)
1.78 (–3)
1.86 (–3)
1.94 (–3)
2.02 (–3)
2.11 (–3)
2.20 (–3)**
2.29 (–3)
2.38 (–3)
2.47 (–3)
2.56 (–3)
2.66 (–3)
2.75 (–3)

A2*
(K–2)
–8.38 (–6)
–8.03 (–6)
–7.64 (–6)
–7.45 (–6)
–7.50 (–6)
–7.73 (–6)
–8.05 (–6)
–8.41 (–6)
–8.75 (–6)
–9.04 (–6)
–9.24 (–6)
–9.35 (–6)
–9.38 (–6)
–9.34 (–6)
–9.24 (–6)
–9.06 (–6)
–8.77 (–6)
–8.33 (–6)
–7.74 (–6)
–7.10 (–6)
–6.52 (–6)
–6.14 (–6)
–5.98 (–6)
–6.04 (–6)
–6.27 (–6)
–6.51 (–6)
–6.59 (–6)
–6.40 (–6)
–5.93 (–6)
–5.33 (–6)
–4.73 (–6)
–4.22 (–6)
–3.79 (–6)
–3.37 (–6)
–2.94 (–6)
–2.48 (–6)
–2.00 (–6)
–1.50 (–6)
–1.01 (–6)
–4.84 (–7)
9.02 (–8)
6.72 (–7)
1.21 (–6)
1.72 (–6)
2.21 (–6)
2.68 (–6)
3.09 (–6)

4-221


(nm)
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
390
392
394
396
398
400
402
404
406
408

1020 
(cm2)
1.07
0.947
0.831
0.731
0.647
0.578
0.518
0.466
0.420
0.382
0.351
0.326
0.302
0.282
0.264
0.252
0.243
0.229
0.218
0.212
0.205
0.203
0.200
0.190
0.184
0.175
0.166
0.159
0.151
0.144
0.138
0.129
0.121
0.115
0.108
0.103
0.0970
0.0909
0.0849
0.0780
0.0740
0.0710
0.0638
0.0599
0.0568
0.0513
0.0481

A1*
(K–1)
5.07 (–3)
5.24 (–3)
5.40 (–3)
5.55 (–3)
5.68 (–3)
5.80 (–3)
5.88 (–3)
5.92 (–3)
5.92 (–3)
5.88 (–3)
5.80 (–3)
5.68 (–3)
5.51 (–3)
5.32 (–3)
5.07 (–3)
4.76 (–3)
4.39 (–3)
4.02 (–3)
3.68 (–3)
3.40 (–3)
3.15 (–3)
2.92 (–3)
2.70 (–3)
2.47 (–3)
2.22 (–3)
1.93 (–3)
1.62 (–3)
1.33 (–3)
1.07 (–3)
8.60 (–4)
6.73 (–4)
5.01 (–4)
3.53 (–4)
2.54 (–4)
2.25 (–4)
2.62 (–4)
3.33 (–4)
4.10 (–4)
5.04 (–4)
6.62 (–4)
8.95 (–4)
1.14 (–3)
1.38 (–3)
1.63 (–3)
1.96 (–3)
2.36 (–3)
2.84 (–3)

A2*
(K–2)
1.56 (–5)
1.69 (–5)
1.84 (–5)
2.00 (–5)
2.18 (–5)
2.36 (–5)
2.54 (–5)
2.70 (–5)
2.84 (–5)
2.96 (–5)
3.05 (–5)
3.10 (–5)
3.11 (–5)
3.08 (–5)
2.96 (–5)
2.74 (–5)
2.42 (–5)
2.07 (–5)
1.76 (–5)
1.50 (–5)
1.27 (–5)
1.06 (–5)
8.59 (–6)
6.38 (–6)
3.66 (–6)
2.42 (–7)
–3.62 (–6)
–7.40 (–6)
–1.07 (–5)
–1.33 (–5)
–1.54 (–5)
–1.74 (–5)
–1.91 (–5)
–2.05 (–5)
–2.11 (–5)
–2.11 (–5)
–2.08 (–5)
–2.05 (–5)
–2.02 (–5)
–1.94 (–5)
–1.79 (–5)
–1.61 (–5)
–1.42 (–5)
–1.20 (–5)
–8.97 (–6)
–5.15 (–6)
–6.64 (–7)


Quantum yields:

\[
\text{ClONO}_2 + \text{hv} \rightarrow \text{Cl} + \text{NO}_3
\]

\[
\Phi_1 = 0.6 \quad (\lambda < 308 \text{ nm})
\]

\[
\Phi_1 = 7.143 \times 10^{-3} \lambda \text{ (nm)}^{-1} \cdot 1.60 \quad (308 \text{ nm} < \lambda < 364 \text{ nm})
\]

\[
\Phi_1 = 1.0 \quad (\lambda > 364 \text{ nm})
\]

\[
\text{ClONO}_2 + \text{hv} \rightarrow \text{ClO} + \text{NO}_2
\]

\[
\Phi_2 = 1 - \Phi_1
\]

(7) Margitan, J. J. Chlorine nitrate photochemistry. Photolysis products and kinetics of the reaction Cl + ClONO\textsubscript{2} \rightarrow Cl\textsubscript{2} + NO\textsubscript{3}. \textit{J. Phys. Chem.} 1983, 87, 674-679, doi:10.1021/j100227a029.

Absorption Cross Sections: The VUV/UV absorption spectrum of carbon tetrachloride, CCl₄, has been measured at room temperature by Russell et al.15 (110–200 nm), Causles and Russell2 (110–200 nm), Gordus and Bernstein3 (204–250 nm), Rowland and Molina13 (186–226 nm), Roxlo and Mandl14 (170–230 nm), Hubrich and Stuhl8 (160–275 nm), Ibuki et al.9 (105–210 nm), Hanf et al.5 (135 and 193 nm), Currie et al.4 (250 nm), Vanlaethem-Meurée et al.18 (190–252 nm), Simon et al.17 (174–250 nm), Prahlad and Kumar10 (186–240 nm), and Routu Carlon et al.12 (184.95, 202.206, 206.200, 213.857, and 228.8 nm atomic lines and 200–235 nm). The room temperature data agree to within 10% between 190 and 235 nm and to within 20% and 40% at 240 and 250 nm, respectively (except the value at 250 nm reported by Currie et al.4 that is significantly lower). The absorption spectrum of Prahlad and Kumar10 has irregular structure over the entire wavelength range presumably due to the experimental precision of the measurements. In the range 180–186 nm, the cross section values reported by Hubrich and Stuhl8 are higher by up to 25% than those reported by Simon et al.12 and the value at 186 nm reported by Prahlad and Kumar10 is lower by 18% than the value of Simon et al. The value at 184.95 nm reported by Routu Carlon et al. is in good agreement, to within 1.5%, with the JPL10-6 recommendation. At the maximum near 176 nm Hubrich and Stuhl8 and Simon et al.12 report an absorption cross section of 1.01 × 10⁻¹⁷ cm². The peak cross section reported by Roxlo and Mandl14 is lower, ~7 × 10⁻¹⁸ cm². Rebbert and Ausloos11 derived a cross section at 313 nm of ≤3.7 × 10⁻²⁶ cm² from the C₂H₆Cl yield in the photolysis of CCl₄/C₂H₆ mixtures.

The recommended room temperature absorption cross sections in Table 4F-23 are the mean of the values reported by Hubrich and Stuhl8 and Simon et al.12 in the region 174–192 nm, from Simon et al.12 in the region 194–198 nm, and from the revised cross section parameterization reported by Routu Carlon et al. (see below) for the 200 ≤ λ ≤ 235 nm region. Cross sections have been reported at longer wavelengths by Hubrich and Stuhl,8 although no recommendation is given for this region. For the wavelength region 174–190 nm the estimated uncertainty factor is 1.2 (2σ) and for the region 190 ≤ λ ≤ 235 nm the estimated uncertainty factor is 1.06 (2σ).

The temperature dependence of the absorption spectrum has been measured by Currie et al.4 (250 nm) over the range 297–477 K, Vanlaethem-Meurée et al.18 (190–252 nm) at 279 and 296 K, Simon et al.17 (174–250 nm) over the range 225–295 K, Prahlad and Kumar10 (186–240 nm) over the range 220–300 K, and Routu Carlon et al. (200–235 nm) over the range 210–350 K. The spectrum has a significant temperature dependence at wavelengths >205 nm where the cross sections decrease with decreasing temperature. Simon et al.17 parameterized the cross section temperature dependence using an empirical polynomial expansion

\[
\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n
\]

and reported calculated cross section values for T = 210, 230, 250, 270, and 295 K. The parameters Aₙ and Bₙ are valid for the temperature range 210–300 K and wavelength range 194–250 nm.
On the basis of their results, Rontu Carlon et al. used the same empirical formula and reported a revised spectrum parameterization with the coefficients given below. The parameterization is valid for the wavelength range 200–235 nm and temperature range 210–350 K and reproduces their experimental data to within 3%. For the wavelength region 174–200 nm, Simon et al. report a temperature independent spectrum, which is inconsistent with the Rontu Carlon et al. results obtained at 185 and 200 nm. The Rontu Carlon et al. parameterization is recommended.

The VUV absorption spectrum of CCl₄ has been measured by Russell et al.¹⁵ (112–175 nm), Causley and Russell² (111–195 nm), Ibuki et al.⁹ (105–210 nm), Ho⁷ (4.9–200 nm), and Seccombe et al.¹⁰ (50–200 nm). Burton et al.¹ measured cross sections for the region 6.4–225 nm using dipole (e,e) spectroscopy. The agreement in the \(\sigma \) (Lyman-\(\alpha \), 298 K) values is to within ~15%. The recommended \(\sigma \) (Lyman-\(\alpha \), 298 K) is the average of the interpolated results from Causley and Russell, Ibuki et al., and Ho, \(3.7 \times 10^{-17} \) cm² molecule⁻¹, with an uncertainty factor of 1.2 (2\(\sigma \)).

Photolysis Quantum Yield and Product Studies: Quantum yields ≥0.9 and ~0.75 for the photodissociative processes CCl₄ + hv \(\rightarrow \) CCl₃ + Cl at 213.9 nm and CCl₄ + hv \(\rightarrow \) CCl₂ + 2Cl at 163.3 nm, respectively, were derived from the gas-phase photolysis of CCl₄ in the presence of HCl, HBr, and C₂H₆ by Rebbert and Ausloos.¹¹ Clark and Husain³ report a quantum yield for Cl*\((2P_{1/2})\) atom formation in the broadband photolysis of CCl₄ to be 0.78 ± 0.27. Hanf et al.⁶ reported Cl atom quantum yields in the photolysis of CCl₄ to be \(\Phi(\text{Cl}) = 1.1 \pm 0.05 \) and \(\Phi(\text{Cl}^*) = 0.4 \pm 0.02 \) (thus \(\Phi(\text{Cl} + \text{Cl}^*) = 1.5 \pm 0.1 \)) at 193 nm and \(\Phi(\text{Cl}) = 1.5 \pm 0.07 \) and \(\Phi(\text{Cl}^*) = 0.4 \pm 0.02 \) (thus \(\Phi(\text{Cl} + \text{Cl}^*) = 1.9 \pm 0.1 \)) at 135 nm. A quantum yield of unity with \(\Phi(\text{Cl}) = 1 \) is recommended.

Table 4F-23. Recommended Absorption Cross Sections of CCl₄ at 295 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>10²⁰ (\sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>10²⁰ (\sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>956</td>
<td>206</td>
<td>57.9</td>
</tr>
<tr>
<td>176</td>
<td>1010</td>
<td>208</td>
<td>53.0</td>
</tr>
<tr>
<td>178</td>
<td>982.5</td>
<td>210</td>
<td>47.4</td>
</tr>
<tr>
<td>180</td>
<td>806</td>
<td>212</td>
<td>41.3</td>
</tr>
<tr>
<td>182</td>
<td>647</td>
<td>214</td>
<td>35.2</td>
</tr>
<tr>
<td>184</td>
<td>478.5</td>
<td>216</td>
<td>29.3</td>
</tr>
<tr>
<td>186</td>
<td>338.5</td>
<td>218</td>
<td>23.8</td>
</tr>
<tr>
<td>188</td>
<td>227</td>
<td>220</td>
<td>18.9</td>
</tr>
<tr>
<td>190</td>
<td>145.5</td>
<td>222</td>
<td>14.7</td>
</tr>
<tr>
<td>192</td>
<td>99.6</td>
<td>224</td>
<td>11.3</td>
</tr>
<tr>
<td>194</td>
<td>76.7</td>
<td>226</td>
<td>8.53</td>
</tr>
<tr>
<td>196</td>
<td>69.5</td>
<td>228</td>
<td>6.63</td>
</tr>
<tr>
<td>198</td>
<td>68.0</td>
<td>230</td>
<td>4.71</td>
</tr>
<tr>
<td>200</td>
<td>67.8</td>
<td>232</td>
<td>3.48</td>
</tr>
<tr>
<td>202</td>
<td>64.8</td>
<td>234</td>
<td>2.57</td>
</tr>
<tr>
<td>204</td>
<td>61.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
174–192 nm: mean of data from Hubrich and Stuhl⁸ and Simon et al.¹⁷
194–198 nm: Simon et al.¹⁷
200–234 nm: Rontu Carlon et al.¹²
(1) Burton, G. R.; Chan, W. F.; Cooper, G.; Brion, C. E. Valence- and inner-shell (Cl 2p, 2s; C 1s) photoabsorption and photoionization of carbon tetrachloride. Absolute oscillator strengths (5-400 eV) and dipole-induced breakdown pathways. *Chem. Phys.* 1994, 181, 147-172.

(3) Clark, R. H.; Husain, D. Quantum yield measurements of Cl(3P_{1/2}) and Cl(3P_{3/2}) in the photolysis of C\textsubscript{3} chlorofluorocarbons determined by atomic resonance absorption spectroscopy in the vacuum UV. *J. Photochem.* 1984, 24, 103-115.

(7) Ho, G. H. Absolute photabsorption cross section of CCl\textsubscript{4} in the energy range 6-250 eV. *Chem. Phys. 1998*, 226, 101-111.

(16) Seccombe, D. P.; Tuckett, R. P.; Baumgärtel, H.; Jochims, H. W. Vacuum-UV fluorescence spectroscopy of CCl\textsubscript{3}F, CCl\textsubscript{3}H and CCl\textsubscript{3}Br in the range 8-30 eV. *Phys. Chem. Chem. Phys.* 1999, 1, 773-782.

F20. **CH\textsubscript{3}OCl (methyl hypochlorite)**

| CH\textsubscript{3}OCl + hv | → CH\textsubscript{2}O + Cl | 207 kJ mol-1 | 579 nm | (1) |
| CH\textsubscript{2}O + HCl | → | 265 kJ mol-1 | 451 nm | (2) |

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV/vis absorption spectrum of methyl hypochlorite, CH\textsubscript{3}OCl, has been measured by Crowley et al.1 (200–460 nm) and Jungkamp et al.2 (230–400 nm). The spectrum has overlapping absorption bands with maxima at 230 and 310 nm. The agreement between the two data sets is good at wavelengths longer than 250 nm. At the maximum near 230 nm the absorption cross sections from Jungkamp et al.2 are about 15% smaller. The recommended cross sections in Table 4F-24 are the mean of the values reported by these two groups.

Photolysis Quantum Yield and Product Studies: Schindler et al.4 measured the quantum yield for the product channel Cl + CH\textsubscript{2}O to be 0.95 ± 0.05 at 308 nm. They also determined an upper limit of <0.01 for HCl formation at 248 nm and the ratio Cl*(2P\textsubscript{3/2})/Cl*(2P\textsubscript{3/2}) following photolysis at 235 and 238 nm to be 1.45 ±
0.05. Krisch et al.3 used photofragment translational spectroscopy to confirm that photodissociation of CH\textsubscript{3}OCl at 248 nm resulted in only the cleavage of the O-Cl bond and the formation of Cl and CH\textsubscript{3}O.

Table 4F-24. Recommended Absorption Cross Sections of CH\textsubscript{3}OCl at 295 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm2)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm2)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>14.9</td>
<td>290</td>
<td>1.32</td>
<td>350</td>
<td>0.662</td>
</tr>
<tr>
<td>232</td>
<td>15.4</td>
<td>292</td>
<td>1.34</td>
<td>352</td>
<td>0.611</td>
</tr>
<tr>
<td>234</td>
<td>15.7</td>
<td>294</td>
<td>1.35</td>
<td>354</td>
<td>0.574</td>
</tr>
<tr>
<td>236</td>
<td>15.9</td>
<td>296</td>
<td>1.37</td>
<td>356</td>
<td>0.529</td>
</tr>
<tr>
<td>238</td>
<td>15.8</td>
<td>298</td>
<td>1.40</td>
<td>358</td>
<td>0.482</td>
</tr>
<tr>
<td>240</td>
<td>15.5</td>
<td>300</td>
<td>1.43</td>
<td>360</td>
<td>0.445</td>
</tr>
<tr>
<td>242</td>
<td>14.9</td>
<td>302</td>
<td>1.45</td>
<td>362</td>
<td>0.411</td>
</tr>
<tr>
<td>244</td>
<td>14.2</td>
<td>304</td>
<td>1.47</td>
<td>364</td>
<td>0.389</td>
</tr>
<tr>
<td>246</td>
<td>13.2</td>
<td>306</td>
<td>1.48</td>
<td>366</td>
<td>0.356</td>
</tr>
<tr>
<td>248</td>
<td>12.2</td>
<td>308</td>
<td>1.49</td>
<td>368</td>
<td>0.331</td>
</tr>
<tr>
<td>250</td>
<td>11.1</td>
<td>310</td>
<td>1.49</td>
<td>370</td>
<td>0.298</td>
</tr>
<tr>
<td>252</td>
<td>9.96</td>
<td>312</td>
<td>1.48</td>
<td>372</td>
<td>0.273</td>
</tr>
<tr>
<td>254</td>
<td>8.86</td>
<td>314</td>
<td>1.47</td>
<td>374</td>
<td>0.246</td>
</tr>
<tr>
<td>256</td>
<td>7.77</td>
<td>316</td>
<td>1.46</td>
<td>376</td>
<td>0.225</td>
</tr>
<tr>
<td>258</td>
<td>6.80</td>
<td>318</td>
<td>1.43</td>
<td>378</td>
<td>0.209</td>
</tr>
<tr>
<td>260</td>
<td>5.87</td>
<td>320</td>
<td>1.41</td>
<td>380</td>
<td>0.202</td>
</tr>
<tr>
<td>262</td>
<td>5.05</td>
<td>322</td>
<td>1.37</td>
<td>382</td>
<td>0.186</td>
</tr>
<tr>
<td>264</td>
<td>4.31</td>
<td>324</td>
<td>1.33</td>
<td>384</td>
<td>0.17</td>
</tr>
<tr>
<td>266</td>
<td>3.69</td>
<td>326</td>
<td>1.30</td>
<td>386</td>
<td>0.16</td>
</tr>
<tr>
<td>268</td>
<td>3.16</td>
<td>328</td>
<td>1.24</td>
<td>388</td>
<td>0.15</td>
</tr>
<tr>
<td>270</td>
<td>2.71</td>
<td>330</td>
<td>1.20</td>
<td>390</td>
<td>0.13</td>
</tr>
<tr>
<td>272</td>
<td>2.35</td>
<td>332</td>
<td>1.14</td>
<td>392</td>
<td>0.14</td>
</tr>
<tr>
<td>274</td>
<td>2.06</td>
<td>334</td>
<td>1.09</td>
<td>394</td>
<td>0.13</td>
</tr>
<tr>
<td>276</td>
<td>1.83</td>
<td>336</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>1.64</td>
<td>338</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>1.53</td>
<td>340</td>
<td>0.918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>1.42</td>
<td>342</td>
<td>0.875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>1.37</td>
<td>344</td>
<td>0.822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>1.33</td>
<td>346</td>
<td>0.760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>1.32</td>
<td>348</td>
<td>0.709</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 230–394 nm: Mean of the data from Crowley et al.1 and Jungkamp et al.2

(2) Jungkamp, T. P. W.; Kirchner, U.; Schmidt, M.; Schindler, R. N. UV absorption cross-section data for the hypochlorites ROCl (R = H, CH\textsubscript{3}, C\textsubscript{2}H\textsubscript{5}, i-C\textsubscript{3}H\textsubscript{7}, tert-C\textsubscript{4}H\textsubscript{9}). \textit{J. Photochem. Photobiol. A: Chem.} \textbf{1995}, \textit{99}, 1-6.

F21. CHCl₃ (trichloromethane, chloroform)

CHCl₃ + hv → CHCl₂ + Cl
\[\text{313 kJ mol}^{-1} \]

CHCl₃ + H → CCl₃ + H
\[\text{392 kJ mol}^{-1} \]

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of CHCl₃ (trichloromethane, chloroform) has been measured at room temperature by Lucazeau and Sandorfy (113–182 nm), Brownsword et al.² (Lyman-α, 121.6 nm), Russell et al.⁶ (110–200 nm), Gordus and Bernstein (222.7 nm), Hubrich and Stuhl (160–255 nm), Vanlaethem-Meurée et al.⁸ (190–230 nm), and Simon et al.⁷ (174–240 nm). The room temperature absorption cross sections from Vanlaethem-Meurée et al.⁸ and Simon et al.⁷ are nearly identical in the wavelength region 190–210 nm. Differences of ~15% exist at longer wavelengths. The data of Hubrich and Stuhl⁴ and Simon et al.⁷ agree to within 10% between 180 and 234 nm. Differences of ~25% exist in the long wavelength tail with the values of Hubrich and Stuhl⁴ being larger. In the region of the absorption maximum at ~176 nm, the spread in the reported cross section values is the largest. Simon et al.⁷ report \(\sigma(176 \text{ nm}) = -5 \times 10^{-18} \text{ cm}² \) compared to \(3.7 \times 10^{-18} \text{ cm}² \) reported by Hubrich and Stuhl⁴ and \(<2 \times 10^{-18} \text{ cm}² \) by Lucazeau and Sandorfy.⁵ The recommended absorption cross sections in Table 4F-25 are only for wavelengths > 180 nm and are the mean of the values reported by Hubrich and Stuhl⁴ and Simon et al.⁷ for the wavelength range 180–240 nm. For the wavelength range 242–256 nm the recommended cross sections are obtained by extrapolation, \(\log \sigma(\lambda) = -1.2277 - 0.0844 \lambda \).

The temperature dependence of the absorption spectrum has been measured by Vanlaethem-Meurée et al.⁸ (190–230 nm) at 279 and 296 K and Simon et al.⁷ (174–240 nm) over the range 225–295 K. The temperature dependence is significant for wavelengths > 194 nm where the cross sections decrease with decreasing temperature. Simon et al.⁷ parameterized the cross section temperature dependence using an empirical polynomial expansion

\[
\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n
\]

and reported calculated cross sections for \(T = 210, 230, 250, 270, \) and 295 K. The parameters \(A_n \) and \(B_n \), valid for the temperature range 210–300 K and wavelength range 190–240 nm, given below are recommended:

\[
\begin{align*}
A_0 &= 269.80 & B_0 &= 3,7973 \\
A_1 &= -6.0908 & B_1 &= -7.0913 \times 10^{-2} \\
A_2 &= 4.7830 \times 10^{-2} & B_2 &= 4.9397 \times 10^{-4} \\
A_3 &= -1.6427 \times 10^{-4} & B_3 &= -1.5226 \times 10^{-6} \\
A_4 &= 2.0682 \times 10^{-7} & B_4 &= 1.7555 \times 10^{-9}
\end{align*}
\]

Photolysis Quantum Yield and Product Studies: Quantum yields for H atom formation have been measured by Brownsword et al.¹,² to be 0.23 ± 0.03 and 0.13 at 121.6 and 157.6 nm, respectively. H atom formation was not detected in the photolysis at 193.3 nm.

Table 4F-25. Recommended Absorption Cross Sections of CHCl₃ at 296 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>372</td>
<td>206</td>
<td>20.7</td>
<td>232</td>
<td>0.158</td>
</tr>
<tr>
<td>182</td>
<td>317</td>
<td>208</td>
<td>15.1</td>
<td>234</td>
<td>0.107</td>
</tr>
<tr>
<td>184</td>
<td>248</td>
<td>210</td>
<td>10.7</td>
<td>236</td>
<td>0.0730</td>
</tr>
<tr>
<td>186</td>
<td>186</td>
<td>212</td>
<td>7.48</td>
<td>238</td>
<td>0.0503</td>
</tr>
<tr>
<td>188</td>
<td>144</td>
<td>214</td>
<td>5.24</td>
<td>240</td>
<td>0.0347</td>
</tr>
<tr>
<td>190</td>
<td>113</td>
<td>216</td>
<td>3.60</td>
<td>242</td>
<td>0.0223</td>
</tr>
<tr>
<td>192</td>
<td>89.9</td>
<td>218</td>
<td>2.48</td>
<td>244</td>
<td>0.0151</td>
</tr>
<tr>
<td>194</td>
<td>76.1</td>
<td>220</td>
<td>1.69</td>
<td>246</td>
<td>0.01023</td>
</tr>
<tr>
<td>196</td>
<td>64.2</td>
<td>222</td>
<td>1.13</td>
<td>248</td>
<td>0.00694</td>
</tr>
<tr>
<td>198</td>
<td>53.0</td>
<td>224</td>
<td>0.750</td>
<td>250</td>
<td>0.00470</td>
</tr>
<tr>
<td>200</td>
<td>42.6</td>
<td>226</td>
<td>0.503</td>
<td>252</td>
<td>0.00319</td>
</tr>
<tr>
<td>202</td>
<td>34.4</td>
<td>228</td>
<td>0.342</td>
<td>254</td>
<td>0.00216</td>
</tr>
<tr>
<td>204</td>
<td>27.2</td>
<td>230</td>
<td>0.234</td>
<td>256</td>
<td>0.00147</td>
</tr>
</tbody>
</table>

Note:
180–240 nm: mean of data from Hubrich and Stuhl\(^4\) and Simon et al.\(^{2}\)
242–256 nm: extrapolation, \(\log \sigma(\lambda) = -1.2277 - 0.0844 \lambda\).

F22. CH\(_2\)Cl\(_2\) (dichloromethane)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(\lambda) (nm)</th>
<th>Energy (\Delta H) (kJ mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_2\text{Cl}_2 + \text{hv} \rightarrow \text{CH}_2\text{Cl} + \text{Cl})</td>
<td>334</td>
<td>358</td>
</tr>
<tr>
<td>(\text{CH}_2\text{Cl}2 + \text{h}\text{v} \rightarrow \text{CHCl}_3 + \text{H})</td>
<td>402</td>
<td>297</td>
</tr>
</tbody>
</table>

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of dichloromethane, CH\(_2\)Cl\(_2\), has been measured at room temperature by Russell et al.\(^5\) (110–200 nm), Brownsword et al.\(^2\) (Lyman-\(\alpha\), 121.6 nm), Gordus and Bernstein\(^3\) (213 nm), Hubrich and Stuhl\(^4\) (160–255 nm), Vanlaethem-Meurée et al.\(^7\) (176–216 nm), and Simon et al.\(^6\) (176–220 nm). The room temperature data of Vanlaethem-Meurée et al.\(^7\) and Simon et al.\(^6\) are nearly identical. The cross sections of Hubrich and Stuhl\(^4\) are as much as 12% greater than those of Simon et al.\(^6\) in the 176–206 nm wavelength range. Differences of ~50% exist in the 185–220 nm range. The recommended absorption cross sections in Table 4F-26 are the mean of the values reported by Hubrich and Stuhl\(^4\) and Simon et al.\(^6\) for the wavelength range 176–220 nm. For wavelengths >220 nm the recommended cross sections are obtained by extrapolation, \(\log \sigma(\lambda) = -2.1337 - 0.08439 \lambda\). The measured cross section values in this wavelength range from Hubrich and Stuhl\(^4\) are smaller by ~7% for wavelengths <230 nm and larger ~50% between 235 and 255 nm than the extrapolated values.

The temperature dependence of the absorption spectrum has been measured by Vanlaethem-Meurée et al.\(^7\) (176–216 nm) at 279 and 296 K and Simon et al.\(^6\) (176–220 nm) over the range 225–295 K. The temperature dependence is significant for wavelengths >190 nm where the cross sections decrease with decreasing temperature. Simon et al.\(^6\) parameterized the cross section temperature dependence using an empirical polynomial expansion

\[
\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n
\]

and reported calculated cross sections for \(T = 210, 230, 250, 270, \text{and} 295\,\text{K}\). The parameters \(A_n\) and \(B_n\), valid for the temperature range 210–300 K and wavelength range 176–220 nm, given below are recommended.

\[
\begin{align*}
A_0 &= -1431.8 & B_0 &= -3.1171 \\
A_1 &= 27.395 & B_1 &= 6.7874 \times 10^{-2} \\
A_2 &= -1.9807 \times 10^{-1} & B_2 &= -5.5000 \times 10^{-4} \\
A_3 &= 6.3468 \times 10^{-4} & B_3 &= 1.9649 \times 10^{-6} \\
A_4 &= -7.6298 \times 10^{-7} & B_4 &= -2.6101 \times 10^{-9}
\end{align*}
\]

Photolysis Quantum Yield and Product Studies: Quantum yields for H atom formation have been measured by Brownsword et al.\(^1,2\) to be 0.28 \pm 0.03, 0.23, and 0.002 \pm 0.001 at 121.6, 157.6, and 193.3 nm, respectively.
Table 4F-26. Recommended Absorption Cross Sections of CH$_2$Cl$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10$^{30} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td>186</td>
<td>204</td>
<td>4.41</td>
<td>232</td>
<td>0.0194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>182</td>
<td>206</td>
<td>3.07</td>
<td>234</td>
<td>0.0132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>173</td>
<td>208</td>
<td>2.13</td>
<td>236</td>
<td>0.00892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>156</td>
<td>210</td>
<td>1.45</td>
<td>238</td>
<td>0.00605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>135</td>
<td>212</td>
<td>0.978</td>
<td>240</td>
<td>0.00410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>110</td>
<td>214</td>
<td>0.651</td>
<td>242</td>
<td>0.00278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>84.2</td>
<td>216</td>
<td>0.435</td>
<td>244</td>
<td>0.00188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>61.0</td>
<td>218</td>
<td>0.291</td>
<td>246</td>
<td>0.00128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>43.9</td>
<td>220</td>
<td>0.190</td>
<td>248</td>
<td>0.000866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>30.5</td>
<td>222</td>
<td>0.135</td>
<td>250</td>
<td>0.000587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>20.6</td>
<td>224</td>
<td>0.0918</td>
<td>252</td>
<td>0.000398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>14.1</td>
<td>226</td>
<td>0.0623</td>
<td>254</td>
<td>0.000270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>9.48</td>
<td>228</td>
<td>0.0422</td>
<td>256</td>
<td>0.000183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>6.40</td>
<td>230</td>
<td>0.0286</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
176–220 nm: mean of values from Hubrich and Stuhl4 and Simon et al.6
222–256 nm: extrapolation, log $\sigma(\lambda) = -2.1337 - 0.08439 \lambda$

F23. CH$_3$Cl (chloromethane, methyl chloride)

CH$_3$Cl \rightarrow CH$_3$ + Cl \rightarrow 350 kJ mol$^{-1}$ 342 nm (1)

CH$_3$Cl + H \rightarrow CH$_3$Cl + H \rightarrow 417 kJ mol$^{-1}$ 287 nm (2)

(Recommendation: 06-2, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The VUV/UV absorption spectrum of CH$_3$Cl (chloromethane, methyl chloride) has been measured at room temperature by Russell et al.5 (110–200 nm), Brownsword et al.5 (Lyman-α, 121.6 nm), Felps et al.3 (171.2 nm), Robbins4 (174–220 nm), Hubrich et al.4 (158–235 nm), Vanlaethem-Meurée et al.8 (186–216 nm), and Simon et al.7 (174–216 nm). The room temperature data generally agree within 10% over the wavelength range 174–216 nm and the data of Vanlaethem-Meurée et al.8 and Simon et al.7 are nearly identical. The cross section at 171 nm from Felps et al. is ~15% less than that of Hubrich et al.4. The recommended absorption cross sections in Table 4F-27 are the mean of the values reported by Robbins,3 Hubrich et al.4, and Simon et al.7 in the range 174–184 nm, the mean of the values reported by Robbins,3 Hubrich et al.4, Vanlaethem-Meurée et al.8, and Simon et al.7 in the range 186–216 nm, and the mean of the values reported by Robbins3 and Hubrich et al.4 in the range 218–220 nm. For the wavelength range 222–236 nm the recommended values were obtained from a log-linear fit to the Hubrich et al.4 data in the range 200–235 nm, log $\sigma(\lambda) = -0.24164 - 0.09743 \lambda$. The cross section uncertainty in the 190–230 nm region is estimated to be 1.12 (2σ), which encompasses the available data.
The VUV spectrum in the Lyman-α vicinity contains strong diffuse band structure with a maximum nearly coincident with Lyman-α. There is reasonable agreement, to within 30%, in the reported absorption cross sections. The recommended σ(Lyman-α) is 8.8×10^{-17} cm2 molecule$^{-1}$ with an uncertainty factor of 1.15 (2σ), which encompasses the available data.

The temperature dependence of the UV absorption spectrum has been measured by Hubrich et al. (158–235 nm) at 208 and 298 K, Vanlaethem-Meureé et al. (186–216 nm) at 255, 279, and 296 K, and Simon et al. (174–216 nm) over the range 225–295 K. The temperature dependence of the absorption cross sections is significant at wavelengths above 194 nm where the cross sections decrease with decreasing temperature. There is very good agreement in the values reported by Vanlaethem-Meureé et al. and Simon et al. Simon et al. parameterized the cross section temperature dependence using an empirical polynomial expansion

$$\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + \sum B_n \lambda^n$$

and reported calculated cross sections for $T = 210, 230, 250, 270, \text{ and } 295 \, \text{K}$. The parameters A_n and B_n, valid for the temperature range 210–300 K and wavelength range 174–216 nm, given below are recommended.

\[
\begin{align*}
A_0 &= -299.80 \\
A_1 &= 5.1047 \\
A_2 &= -3.3630 \times 10^{-2} \\
A_3 &= 9.5805 \times 10^{-6} \\
A_4 &= -1.0135 \times 10^{-7}
\end{align*}
\[
\begin{align*}
B_0 &= -7.1727 \\
B_1 &= 1.4837 \times 10^{-1} \\
B_2 &= -1.1463 \times 10^{-3} \\
B_3 &= 3.9188 \times 10^{-6} \\
B_4 &= -4.9994 \times 10^{-9}
\end{align*}
\]

Photolysis Quantum Yield and Product Studies: Quantum yields for H atom formation have been measured by Brownsword et al. to be 0.53 ± 0.05, 0.29, and 0.012 ± 0.006 at 121.6, 157.6, and 193.3 nm, respectively.

Table 4F-27. Recommended Absorption Cross Sections of CH$_3$Cl at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>110</td>
<td>196</td>
<td>3.96</td>
<td>218</td>
<td>0.0345</td>
</tr>
<tr>
<td>176</td>
<td>93.9</td>
<td>198</td>
<td>2.68</td>
<td>220</td>
<td>0.0220</td>
</tr>
<tr>
<td>178</td>
<td>78.2</td>
<td>200</td>
<td>1.77</td>
<td>222</td>
<td>0.0135</td>
</tr>
<tr>
<td>180</td>
<td>63.6</td>
<td>202</td>
<td>1.13</td>
<td>224</td>
<td>0.00859</td>
</tr>
<tr>
<td>182</td>
<td>46.5</td>
<td>204</td>
<td>0.731</td>
<td>226</td>
<td>0.00549</td>
</tr>
<tr>
<td>184</td>
<td>35.0</td>
<td>206</td>
<td>0.482</td>
<td>228</td>
<td>0.00350</td>
</tr>
<tr>
<td>186</td>
<td>25.8</td>
<td>208</td>
<td>0.313</td>
<td>230</td>
<td>0.00224</td>
</tr>
<tr>
<td>188</td>
<td>18.4</td>
<td>210</td>
<td>0.200</td>
<td>232</td>
<td>0.00143</td>
</tr>
<tr>
<td>190</td>
<td>12.8</td>
<td>212</td>
<td>0.127</td>
<td>234</td>
<td>0.00091</td>
</tr>
<tr>
<td>192</td>
<td>8.84</td>
<td>214</td>
<td>0.0860</td>
<td>236</td>
<td>0.00058</td>
</tr>
<tr>
<td>194</td>
<td>5.83</td>
<td>216</td>
<td>0.0534</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 174–184 nm: mean of data from Robbins, Hubrich et al., and Simon et al. 186–216 nm: mean of data from Robbins, Vanlaethem-Meureé et al., and Simon et al. 218–220 nm: mean of data from Robbins and Hubrich et al. 222–236 nm: fit to data from Hubrich et al., $\log \sigma(\lambda) = -0.24164 – 0.09743 \lambda$

Photolysis Quantum Yield and Product Studies

and reported calculated cross sections for T = 210, 230, 250, 270, and 295 K. The parameters A_n and B_n valid for the temperature range 210–300 K and wavelength range 182–240 nm, reported by Gillotay and Simon1 and given below are recommended.

$$A_0 = 341.085191 \quad B_0 = -1.660090$$
$$A_1 = -7.273362 \quad B_1 = 3.079969 \times 10^{-2}$$
$$A_2 = 5.498387 \times 10^{-2} \quad B_2 = -2.106719 \times 10^{-4}$$
$$A_3 = -1.827552 \times 10^{-4} \quad B_3 = 6.264984 \times 10^{-7}$$
$$A_4 = 2.238640 \times 10^{-7} \quad B_4 = -6.781342 \times 10^{-10}$$

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-28. Recommended Absorption Cross Sections of CH₃CCl₃ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>406</td>
</tr>
<tr>
<td>175</td>
<td>424</td>
</tr>
<tr>
<td>180</td>
<td>404</td>
</tr>
<tr>
<td>185</td>
<td>301</td>
</tr>
<tr>
<td>190</td>
<td>212</td>
</tr>
<tr>
<td>195</td>
<td>147</td>
</tr>
<tr>
<td>200</td>
<td>92.1</td>
</tr>
<tr>
<td>205</td>
<td>52.0</td>
</tr>
<tr>
<td>210</td>
<td>25.5</td>
</tr>
<tr>
<td>215</td>
<td>10.9</td>
</tr>
<tr>
<td>220</td>
<td>4.47</td>
</tr>
<tr>
<td>225</td>
<td>1.82</td>
</tr>
<tr>
<td>230</td>
<td>0.717</td>
</tr>
<tr>
<td>235</td>
<td>0.276</td>
</tr>
<tr>
<td>240</td>
<td>0.111</td>
</tr>
<tr>
<td>245</td>
<td>0.0437</td>
</tr>
<tr>
<td>250</td>
<td>0.0173</td>
</tr>
<tr>
<td>255</td>
<td>0.00682</td>
</tr>
</tbody>
</table>

Note:
170–180 nm: mean of Hubrich and Stuhl¹ and Nayak et al.³
185–205 nm: mean of Vanlaethem-Meurée et al.,⁵ Hubrich and Stuhl,² and Nayak et al.³
210–240 nm: mean of Vanlaethem-Meurée et al.⁵ and Nayak et al.³
245–255 nm: extrapolation, log σ(λ) = –1.59792 – 0.08066 λ

F25. CH₂CH₂Cl (chloroethane, ethyl chloride)

CH₂CH₂Cl + hv → Products

(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The room temperature VUV/UV absorption spectrum of CH₂CH₂Cl (chloroethane, ethyl chloride) has been measured by Ichimura et al.² (147 nm) and Hubrich and Stuhl¹ (160–240 nm). The recommended absorption cross sections in Table 4F-29 are taken from Hubrich and Stuhl.¹

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-29. Recommended Absorption Cross Sections of CH₃CH₂Cl at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10⁴σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁴σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁴σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>189.0</td>
<td>190</td>
<td>6.85</td>
<td>220</td>
<td>0.0127</td>
</tr>
<tr>
<td>165</td>
<td>110.0</td>
<td>195</td>
<td>2.56</td>
<td>225</td>
<td>0.00463</td>
</tr>
<tr>
<td>170</td>
<td>70.5</td>
<td>200</td>
<td>1.17</td>
<td>230</td>
<td>0.00117</td>
</tr>
<tr>
<td>175</td>
<td>44.4</td>
<td>205</td>
<td>0.375</td>
<td>235</td>
<td>0.000395</td>
</tr>
<tr>
<td>180</td>
<td>30.4</td>
<td>210</td>
<td>0.147</td>
<td>240</td>
<td>0.000156</td>
</tr>
<tr>
<td>185</td>
<td>13.6</td>
<td>215</td>
<td>0.0433</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 160–240 nm: Hubrich and Stuhl¹

F26. CH₃CHClCH₂Cl (2-chloropropane)

CH₃CHClCH₂Cl + hν → Products

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of 2-chloropropane, CH₃CHClCH₂Cl, has been measured by Gillotay and Simon.¹ The Gillotay and Simon¹ results are reported (erroneously) as CH₃CH₂ClCH₃, which presumably should be CH₃CHClCH₂Cl. The recommended data are listed in Table 4F-30.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-30. Recommended Absorption Cross Sections of CH₃CHClCH₂Cl at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10⁴σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁴σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁴σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>31.7</td>
<td>192</td>
<td>4.67</td>
<td>214</td>
<td>0.0965</td>
</tr>
<tr>
<td>172</td>
<td>27.0</td>
<td>194</td>
<td>3.49</td>
<td>216</td>
<td>0.0652</td>
</tr>
<tr>
<td>174</td>
<td>24.3</td>
<td>196</td>
<td>2.58</td>
<td>218</td>
<td>0.0444</td>
</tr>
<tr>
<td>176</td>
<td>22.1</td>
<td>198</td>
<td>1.88</td>
<td>220</td>
<td>0.0308</td>
</tr>
<tr>
<td>178</td>
<td>20.3</td>
<td>200</td>
<td>1.34</td>
<td>222</td>
<td>0.0212</td>
</tr>
<tr>
<td>180</td>
<td>18.0</td>
<td>202</td>
<td>0.954</td>
<td>224</td>
<td>0.0144</td>
</tr>
<tr>
<td>182</td>
<td>15.0</td>
<td>204</td>
<td>0.671</td>
<td>226</td>
<td>0.0107</td>
</tr>
<tr>
<td>184</td>
<td>12.2</td>
<td>206</td>
<td>0.463</td>
<td>228</td>
<td>0.00752</td>
</tr>
<tr>
<td>186</td>
<td>9.99</td>
<td>208</td>
<td>0.311</td>
<td>230</td>
<td>0.00580</td>
</tr>
<tr>
<td>188</td>
<td>7.93</td>
<td>210</td>
<td>0.214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>6.06</td>
<td>212</td>
<td>0.144</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 170–230 nm: Gillotay and Simon¹

F27. CH₂ClCH₂Cl (1,2-dichloroethane)

CH₂ClCH₂Cl + hν → Products

(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of 1,2-dichloroethane, CH₂ClCH₂Cl, has been measured by Russell et al.¹ (116–192 nm) and Yano and Tschuikow-Roux² (147 nm). No recommendation is given.

Photolysis Quantum Yield and Product Studies: No recommendation.
K. peak cross section increase of ~20% between 295 and 210 K. The temperature dependence of the absorption spectrum has been measured by Gillotay et al., Jäger et al., and Meller et al. within 10%. An exception is the region of the absorption minimum around 200 nm where the values of Jäger et al. are lower than those of Gillotay et al. by as much as 20%. In this region the values of Chou et al. and Meller et al. are between those of Gillotay et al. and Jäger et al.

The recommended absorption cross sections in Table 4F-31 are averages over 500 cm⁻¹ intervals of the values of Gillotay et al. in the region 168.10–173.15 nm, the mean of the values from Gillotay et al. and Jäger et al. in the region 174.65–182.65 nm, the mean of the values from Chou et al., Gillotay et al., and Jäger et al. in the region 184.35–199.00 nm, the mean of the values of Chou et al., Gillotay et al., Meller et al., and Jäger et al. in the region 201.01–218.59 nm, the mean of the values from Chou et al., Gillotay et al., and Meller et al. in the region 221.00–226.00 nm, and the mean of the values from Gillotay et al. and Meller et al. in the region 228.58–305.36 nm.

The temperature dependence of the absorption spectrum has been measured by Gillotay et al. over the range 210–295 K. The temperature dependence is significant only in the region <175 nm and >250 nm. The strong absorption band is shifted slightly to shorter wavelengths with decreasing temperature and a peak cross section increase of ~20% between 295 and 210 K. In the long wavelength region, the absorption cross sections decrease with decreasing temperature with a decrease of ~80% at 305 nm between 295 and 210 K.
Photolysis Quantum Yield and Product Studies: Phosgene is a useful actinometer in the region 200–280 nm. The photodissociation processes COCl₂ + hν → COCl + Cl with subsequent decay of the COCl radical, COCl → CO + Cl, produces CO with unity quantum yield (see Okabe, Wijnen, Heicklen, and Calvert and Pitts).

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>168.10</td>
<td>301</td>
<td>193.25</td>
<td>68.8</td>
<td>223.47</td>
<td>12.6</td>
<td>264.92</td>
<td>2.68</td>
</tr>
<tr>
<td>170.95</td>
<td>433</td>
<td>195.15</td>
<td>52.1</td>
<td>226.00</td>
<td>13.0</td>
<td>268.50</td>
<td>1.85</td>
</tr>
<tr>
<td>173.15</td>
<td>493</td>
<td>197.05</td>
<td>40.6</td>
<td>228.58</td>
<td>13.2</td>
<td>272.12</td>
<td>1.17</td>
</tr>
<tr>
<td>174.65</td>
<td>509</td>
<td>199.00</td>
<td>31.7</td>
<td>231.23</td>
<td>13.4</td>
<td>275.88</td>
<td>0.689</td>
</tr>
<tr>
<td>176.20</td>
<td>475</td>
<td>201.01</td>
<td>25.7</td>
<td>233.93</td>
<td>13.5</td>
<td>279.74</td>
<td>0.370</td>
</tr>
<tr>
<td>177.80</td>
<td>427</td>
<td>203.05</td>
<td>20.7</td>
<td>236.69</td>
<td>13.0</td>
<td>283.70</td>
<td>0.182</td>
</tr>
<tr>
<td>179.40</td>
<td>369</td>
<td>205.14</td>
<td>17.2</td>
<td>239.53</td>
<td>12.4</td>
<td>287.78</td>
<td>0.0771</td>
</tr>
<tr>
<td>181.00</td>
<td>313</td>
<td>207.26</td>
<td>14.7</td>
<td>242.43</td>
<td>11.5</td>
<td>291.99</td>
<td>0.0298</td>
</tr>
<tr>
<td>182.65</td>
<td>261</td>
<td>209.43</td>
<td>13.0</td>
<td>245.41</td>
<td>10.4</td>
<td>296.32</td>
<td>0.0104</td>
</tr>
<tr>
<td>184.35</td>
<td>210</td>
<td>211.65</td>
<td>11.9</td>
<td>248.45</td>
<td>9.07</td>
<td>300.77</td>
<td>0.00323</td>
</tr>
<tr>
<td>186.05</td>
<td>178</td>
<td>213.89</td>
<td>11.4</td>
<td>251.59</td>
<td>7.75</td>
<td>305.36</td>
<td>0.00096</td>
</tr>
<tr>
<td>187.80</td>
<td>137</td>
<td>216.20</td>
<td>11.3</td>
<td>254.79</td>
<td>6.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189.60</td>
<td>112</td>
<td>218.59</td>
<td>11.5</td>
<td>258.08</td>
<td>5.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191.40</td>
<td>88.9</td>
<td>221.00</td>
<td>12.2</td>
<td>261.45</td>
<td>3.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
168.10–173.15 nm: Gillotay et al.
174.65–182.65 nm: mean of Gillotay et al. and Jäger et al.
184.35–199.00 nm: mean of Chou et al., Gillotay et al., and Jäger et al.
201.01–218.59 nm: mean of Chou et al., Gillotay et al., Meller et al., and Jäger et al.
221.00–226.00 nm: mean of Chou et al., Gillotay et al., and Meller et al.
228.58–305.36 nm: mean of Gillotay et al. and Meller et al.

F31. COHCl (formyl chloride)

COHCl + hν → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of formyl chloride, COHCl, has been measured at room temperature by Libuda et al.\(^1\) (239–307 nm). The absorption spectrum has a highly structured absorption band with a maximum near 260 nm. The recommended cross sections in Table 4F-32 are the averages over 1 nm intervals of the data from Libuda et al.\(^1\) (0.7 nm resolution).

Photolysis Quantum Yield and Product Studies: No recommendation.

<table>
<thead>
<tr>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>2.76</td>
<td>257</td>
<td>3.92</td>
<td>274</td>
<td>3.53</td>
<td>291</td>
<td>0.624</td>
</tr>
<tr>
<td>241</td>
<td>3.36</td>
<td>258</td>
<td>5.03</td>
<td>275</td>
<td>2.30</td>
<td>292</td>
<td>0.605</td>
</tr>
<tr>
<td>242</td>
<td>3.41</td>
<td>259</td>
<td>4.45</td>
<td>276</td>
<td>3.28</td>
<td>293</td>
<td>0.342</td>
</tr>
<tr>
<td>243</td>
<td>3.32</td>
<td>260</td>
<td>5.46</td>
<td>277</td>
<td>2.38</td>
<td>294</td>
<td>0.431</td>
</tr>
<tr>
<td>244</td>
<td>3.03</td>
<td>261</td>
<td>5.09</td>
<td>278</td>
<td>2.09</td>
<td>295</td>
<td>0.303</td>
</tr>
<tr>
<td>245</td>
<td>3.53</td>
<td>262</td>
<td>4.66</td>
<td>279</td>
<td>1.89</td>
<td>296</td>
<td>0.275</td>
</tr>
<tr>
<td>246</td>
<td>4.01</td>
<td>263</td>
<td>4.54</td>
<td>280</td>
<td>2.22</td>
<td>297</td>
<td>0.184</td>
</tr>
<tr>
<td>247</td>
<td>4.64</td>
<td>264</td>
<td>4.03</td>
<td>281</td>
<td>1.06</td>
<td>298</td>
<td>0.165</td>
</tr>
<tr>
<td>248</td>
<td>4.44</td>
<td>265</td>
<td>3.83</td>
<td>282</td>
<td>1.98</td>
<td>299</td>
<td>0.178</td>
</tr>
<tr>
<td>249</td>
<td>4.27</td>
<td>266</td>
<td>4.72</td>
<td>283</td>
<td>1.36</td>
<td>300</td>
<td>0.0562</td>
</tr>
<tr>
<td>250</td>
<td>3.92</td>
<td>267</td>
<td>3.76</td>
<td>284</td>
<td>1.15</td>
<td>301</td>
<td>0.0912</td>
</tr>
<tr>
<td>251</td>
<td>4.38</td>
<td>268</td>
<td>4.83</td>
<td>285</td>
<td>1.51</td>
<td>302</td>
<td>0.0805</td>
</tr>
<tr>
<td>252</td>
<td>4.57</td>
<td>269</td>
<td>3.79</td>
<td>286</td>
<td>1.00</td>
<td>303</td>
<td>0.0319</td>
</tr>
<tr>
<td>253</td>
<td>4.98</td>
<td>270</td>
<td>3.34</td>
<td>287</td>
<td>0.784</td>
<td>304</td>
<td>0.0587</td>
</tr>
<tr>
<td>254</td>
<td>5.20</td>
<td>271</td>
<td>3.72</td>
<td>288</td>
<td>0.748</td>
<td>305</td>
<td>0.0275</td>
</tr>
<tr>
<td>255</td>
<td>4.59</td>
<td>272</td>
<td>2.68</td>
<td>289</td>
<td>0.880</td>
<td>306</td>
<td>0.0157</td>
</tr>
<tr>
<td>256</td>
<td>5.07</td>
<td>273</td>
<td>2.74</td>
<td>290</td>
<td>0.371</td>
<td>307</td>
<td>0.0131</td>
</tr>
</tbody>
</table>

Note: Libuda et al.\(^1\)

F32. COFCl (carbonyl chlorofluoride, fluorochlorophosgene)

COFCl + hν → FCO + Cl

(Recommendation: 94-26, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of COFCl (carbonyl chlorofluoride, fluorochlorophosgene) has been measured at room temperature by Chou et al.\(^1\) (186–226 nm), Hermann et al.\(^2\) (193.4 nm), and Nölle et al.\(^3,4\) (200–262 nm). The spectrum has monotonically decreasing absorption cross sections with increasing wavelength with a shoulder in the spectrum around 200 nm. The room temperature data are in good agreement in the common wavelength range with differences ≤6%. The recommended absorption cross sections in Table 4F-33 are the averages over the 500 cm\(^{-1}\) intervals used for atmospheric modeling of the data from Chou et al.\(^1\) and Hermann et al.\(^2\) in the region 186–199 nm, the mean of the data from Chou et al.\(^1\) and Nölle et al.\(^3,4\) at 201 and 203.1 nm, and the data from Nölle et al.\(^3,4\) at wavelengths >205 nm.

The temperature dependence of the absorption spectrum was measured by Nölle et al.\(^3,4\) (200–262 nm) at 223, 248, 273, and 298 K. The cross sections decrease with decreasing temperature at wavelengths >210 nm with the magnitude of the difference increasing with increasing wavelength. At wavelengths <210 nm the cross
sections increase with decreasing temperature with the difference in going from 298 to 223 K is ~18\% at 201 nm.

Photolysis Quantum Yield and Product Studies: Photolysis quantum yields of COFCl have been measured by Hermann et al.\(^2\) and Nölle et al.\(^4\) The results are summarized in Table 4F-34. The relative distribution of the CO and COF\(_2\) products was shown by Hermann et al.\(^3\) to depend on the total pressure over the range 10 to 900 mbar. The apparent quantum yields were taken as the quantum yields for the decomposition into COF + Cl and CO + F + Cl since the parent molecule cannot be reformed (as in the case of COF\(_2\)) and COCl is known to be unstable.

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>186.0</td>
<td>15.6</td>
<td>201.0</td>
<td>12.2</td>
<td>218.6</td>
<td>5.79</td>
<td>239.5</td>
<td>0.459</td>
</tr>
<tr>
<td>187.8</td>
<td>14.0</td>
<td>203.1</td>
<td>11.9</td>
<td>221.0</td>
<td>4.77</td>
<td>242.4</td>
<td>0.292</td>
</tr>
<tr>
<td>189.6</td>
<td>13.4</td>
<td>205.1</td>
<td>11.5</td>
<td>223.5</td>
<td>3.81</td>
<td>245.4</td>
<td>0.178</td>
</tr>
<tr>
<td>191.4</td>
<td>12.9</td>
<td>207.3</td>
<td>10.8</td>
<td>226.0</td>
<td>2.93</td>
<td>248.5</td>
<td>0.103</td>
</tr>
<tr>
<td>193.2</td>
<td>12.7</td>
<td>209.4</td>
<td>9.91</td>
<td>228.6</td>
<td>2.19</td>
<td>251.6</td>
<td>0.0635</td>
</tr>
<tr>
<td>195.1</td>
<td>12.5</td>
<td>211.6</td>
<td>8.96</td>
<td>231.2</td>
<td>1.57</td>
<td>254.8</td>
<td>0.0409</td>
</tr>
<tr>
<td>197.0</td>
<td>12.4</td>
<td>213.9</td>
<td>7.90</td>
<td>233.9</td>
<td>1.09</td>
<td>258.1</td>
<td>0.0279</td>
</tr>
<tr>
<td>199.0</td>
<td>12.3</td>
<td>216.2</td>
<td>6.84</td>
<td>236.7</td>
<td>0.724</td>
<td>261.4</td>
<td>0.0214</td>
</tr>
</tbody>
</table>

Note:
186.0–199.0 nm: Chou et al.\(^1\) and Hermann et al.\(^2\)
201.0 and 203.1 nm: mean of the data from Chou et al.\(^1\) and Nölle et al.\(^3,4\)
205.1–261.4 nm: Nölle et al.\(^3,4\)

Table 4F-34. Summary of COFCl Photolysis Quantum Yield Results

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Wavelength (nm)</th>
<th>(\Phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermann et al.(^2)</td>
<td>1994</td>
<td>193</td>
<td>0.98 ± 0.09</td>
</tr>
<tr>
<td>Nölle et al.(^4)</td>
<td>1991</td>
<td>210</td>
<td>0.85 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>210*</td>
<td>0.90 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>222.5</td>
<td>0.77 ± 0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230</td>
<td>0.71 ± 0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>248</td>
<td>0.52 ± 0.14</td>
</tr>
</tbody>
</table>

* Hg lamp photolysis source

F33. CFCl\(_3\) (fluorotrichloromethane, CFC-11)

CFCl\(_3\) (CFC-11) + hv → Products

(1)

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The VUV/UV absorption spectrum of fluorotrichloromethane (CFC-11), CFCl\(_3\), has been measured at room temperature by Gilbert et al.\(^4\) (60–145 nm), Doucet et al.\(^3\) (120–200 nm), Gordus and Bernstein \(^5\) (225 nm), Rowland and Molina\(^14\) (186–226 nm), Robbins and Stolarski\(^13\) (174–226 nm), Greene and Wayne\(^6\) (186–209 nm), Chou et al.\(^1\) (185–226 nm), Hubrich et al.\(^8\) (158–260 nm), Hubrich and Stuhl\(^7\) (158–260 nm), Vanlaethem-Meureé et al.\(^16\) (190–220 nm), Simon et al.\(^15\) (174–230 nm), Mérienne et al.\(^12\) (200–238 nm), and McGillen et al.\(^11\) (184.95–230 nm). Absorption cross sections in the region 148–225 nm are known to be unstable.
nm have also been derived from electron energy loss measurements by Huebner et al., which are up to 30% higher than the values obtained by optical measurements. The room temperature data for wavelengths >180 nm are in good agreement, generally within 10–15%. The recommended absorption cross sections in Table 4F-35 are the values from Simon et al. in the region 174–188 nm, the values from the McGillen et al. parameterization (see below) in the region 190–230 nm, and the data from Hubrich and Stuhl in the region 235–260 nm. An uncertainty factor of 1.04 (2σ) is recommended for the 190–230 nm wavelength region.

A recommended Lyman-α cross section of 9.8×10^{-17} cm2 molecule$^{-1}$ with an uncertainty factor of 1.20 (2σ) is taken from SPARC.

The temperature dependence of the absorption spectrum was measured by Chou et al. (185–226 nm) over the range 213–296 K, Hubrich et al. (158–260 nm) and Hubrich and Stuhl at 208 and 298 K, Vanlaethem-Meurée et al. (190–220 nm) at 255, 279, and 296 K, Simon et al. (174–230 nm) over the range 225–295 K, Mérienne et al. (200–238 nm) at 220, 240, and 296 K, and McGillen et al. (184.95–230 nm) at 5 temperatures between 216 and 296 K. The temperature dependence is significant at wavelengths above 185 nm where the cross sections decrease with decreasing temperature. Simon et al. parameterized their cross section temperature dependence using an empirical polynomial expansion

$$\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n$$

and reported calculated cross sections for $T = 210, 230, 250, 270$, and 295 K. The parameters A_n and B_n, valid for the temperature range 210–300 K and wavelength range 174–230 nm are:

- $A_0 = -84.611$
- $A_1 = 7.9551 \times 10^{-1}$
- $A_2 = -2.0550 \times 10^{-3}$
- $A_3 = -4.4812 \times 10^{-6}$
- $A_4 = 1.5838 \times 10^{-8}$
- $B_0 = -5.7912$
- $B_1 = 1.1689 \times 10^{-1}$
- $B_2 = -8.8069 \times 10^{-4}$
- $B_3 = 2.9335 \times 10^{-6}$
- $B_4 = -3.6421 \times 10^{-9}$

Mérienne et al. used a similar polynomial expansion to fit their data to

$$\ln \sigma(\lambda, T) = \sum a_n (\lambda-200)^n + (T-296) \times \sum b_n(\lambda-200)^n,$$

which is valid for the temperature range 220–296 K and wavelength range 200–238 nm. The reported a_n and b_n parameters are:

- $a_0 = -41.925548$
- $a_1 = -1.142857 \times 10^{-1}$
- $a_2 = -3.12034 \times 10^{-3}$
- $a_3 = 3.6699 \times 10^{-5}$
- $b_0 = 3.58977 \times 10^{-4}$
- $b_1 = 3.02973 \times 10^{-4}$
- $b_2 = -1.13 \times 10^{-8}$
- $b_3 = -3.6421 \times 10^{-9}$

McGillen et al. used the polynomial expansion:

$$\log_{10} \sigma(\lambda, T) = \sum A_i (\lambda-200)^i + (T-273) \times \sum B_i(\lambda-200)^i$$

to fit their data. The fit is valid for the temperature range 216–296 K and wavelength range 190–230 nm and reproduces their experimental data to within 2%. The reported A_i and B_i parameters are given below. The fit is in good agreement with the Chou et al. data set, to within 5%, in reasonable agreement with the Mérienne et al. data set, differences of 8% or less, but shows systematic differences with the Simon et al. data set, with 15% differences for the data at 230 K. The McGillen et al. parameterization is recommended.

<table>
<thead>
<tr>
<th>i</th>
<th>A_i</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-18.1863</td>
<td>0.0002656</td>
</tr>
<tr>
<td>1</td>
<td>-0.0528</td>
<td>4.228 \times 10^{-5}</td>
</tr>
<tr>
<td>2</td>
<td>-0.001126</td>
<td>1.4027 \times 10^{-6}</td>
</tr>
<tr>
<td>3</td>
<td>-3.0552 \times 10^{-5}</td>
<td>6.44645 \times 10^{-7}</td>
</tr>
<tr>
<td>4</td>
<td>2.24126 \times 10^{-6}</td>
<td>-3.8038 \times 10^{-8}</td>
</tr>
<tr>
<td>5</td>
<td>-3.2064 \times 10^{-8}</td>
<td>5.99 \times 10^{-10}</td>
</tr>
</tbody>
</table>

Photochemistry and Product Studies: Clark and Husain reported a quantum yield for Cl$^+(2P_{1/2})$ atom formation in the broadband photolysis of CFCl3 of 0.79 ± 0.27.

4-238
Table 4F-35. Recommended Absorption Cross Sections of CFC₃ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>313.0</td>
<td>198</td>
<td>83.0</td>
<td>222</td>
<td>1.62</td>
</tr>
<tr>
<td>176</td>
<td>324.0</td>
<td>200</td>
<td>66.0</td>
<td>224</td>
<td>1.09</td>
</tr>
<tr>
<td>178</td>
<td>323.5</td>
<td>202</td>
<td>51.5</td>
<td>226</td>
<td>0.730</td>
</tr>
<tr>
<td>180</td>
<td>314.0</td>
<td>204</td>
<td>39.3</td>
<td>228</td>
<td>0.491</td>
</tr>
<tr>
<td>182</td>
<td>296.0</td>
<td>206</td>
<td>29.4</td>
<td>230</td>
<td>0.330</td>
</tr>
<tr>
<td>184</td>
<td>272.0</td>
<td>208</td>
<td>21.5</td>
<td>235</td>
<td>0.132</td>
</tr>
<tr>
<td>186</td>
<td>243.0</td>
<td>210</td>
<td>15.4</td>
<td>240</td>
<td>0.0470</td>
</tr>
<tr>
<td>188</td>
<td>213.0</td>
<td>212</td>
<td>10.9</td>
<td>245</td>
<td>0.0174</td>
</tr>
<tr>
<td>190</td>
<td>181.9</td>
<td>214</td>
<td>7.57</td>
<td>250</td>
<td>0.0066</td>
</tr>
<tr>
<td>192</td>
<td>150.9</td>
<td>216</td>
<td>5.21</td>
<td>255</td>
<td>0.0029</td>
</tr>
<tr>
<td>194</td>
<td>124.9</td>
<td>218</td>
<td>3.54</td>
<td>260</td>
<td>0.0015</td>
</tr>
<tr>
<td>196</td>
<td>102.6</td>
<td>220</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- 174–188 nm: Simon et al.¹⁵
- 190–230 nm: McGillem et al.¹¹ parameterization
- 235–260 nm: Hubrich and Stuhl⁷

(2) Clark, R. H.; Husain, D. Quantum yield measurements of Cl(3P₁₂) and Cl(3P₃₂) in the photolysis of Cl₂, chlorofluorocarbons determined by atomic resonance absorption spectroscopy in the vacuum UV. *J. Photochem.* 1984, 24, 103-115.

F34. **CF₂Cl₂ (difluorodichloromethane, CFC-12)**

CF₂Cl₂ (CFC-12) + hν → Products (1)

(Recommendation: 15-10, Note: 15-10, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of difluorodichloromethane (CFC-12), CF₂Cl₂, has been measured at room temperature by Gordus and Bernstein5 (210 nm), Rowland and Molina14 (186–216 nm), Robbins and Stolarski13 (174–216 nm), Greene and Wayne6 (186–206 nm), Rebbert and Ausloos12 (213.9 nm), Chou et al.1 (184–221 nm), Hubrich et al.7 (159–240 nm), Vanlaethem-Meurée et al.17 (190–216 nm), Simon et al.16 (174–230 nm), and Mérienne et al.11 (200–231 nm). The room temperature data are in good agreement, generally within 10–15%, except for data from Green and Wayne6 at wavelengths >195 nm and the data from Rowland and Molina14 near 210 nm. Absorption cross sections have also been derived from electron energy loss measurements by Huebner et al.3 (148–218 nm), which agree to within 10% with the data obtained by optical measurements around the absorption maximum but are larger than the optical cross section data at wavelengths >196 nm by as much as 100%. The recommended absorption cross sections in Table 4F-36 are values from Hubrich et al.7 in the region 170–172 nm, the mean of the values reported by Hubrich et al.7 and Simon et al.16 in the region 174–178 nm, the values from Simon et al.16 in the region 180–198 nm, mean of the values reported by Simon et al.16 and Mérienne et al.11 in the region 200–226 nm, and the data of Mérienne et al.11 in the region 228–230 nm. For the range 232–240 nm the recommended values were obtained from a log-linear fit and extrapolation of the Mérienne et al.11 data, log σ(λ) = 2.1448–0.1061 λ. The measured cross section values from Hubrich et al.7 over this wavelength range are lower by ~40% at 240 nm than the extrapolated values. An uncertainty factor of 1.08 (2σ) is recommended for the 190–230 nm wavelength region.

High resolution absorption cross section measurements have been carried out by Seccombe et al.15 (50–150 nm) and Limao-Vieira et al.10 (113–225 nm) using a synchrotron radiation light source. The results of Limao-Vieira et al.10 for the absorption band at 170–204 nm are in very good agreement with the recommendation in Table 4F-36. These cross section measurements significantly improve upon the earlier data from Gilbert et al.4 (60–135 nm) and Doucet et al.3 (120–200 nm).

The temperature dependence of the absorption spectrum has been measured by Rebbert and Ausloos12 (213.9 nm) over the range 234–442 K, Chou et al.1 (184–221 nm) at 212, 252, and 296 K, Hubrich et al.7 (159–240 nm) at 208 and 298 K, Vanlaethem-Meurée et al.17 (190–216 nm) at 255, 279, and 296 K, Simon et al.16 (174–230 nm) at 225–295 K, and Mérienne et al.11 (200–231 nm) at 220, 240, and 296 K.

The temperature dependence is significant at wavelengths above 186 nm where the cross sections decrease with decreasing temperature. Mérienne et al.11 parameterized the cross section temperature dependence using an empirical polynomial expansion:

\[
\ln \sigma(\lambda, T) = \sum a_n (\lambda/200)^n + (T/296) \times \sum b_n (\lambda/200)^n
\]

that is valid for the temperature range 220–296 K and wavelength range 200–231 nm. The a_n and b_n parameters given below are recommended.

\[
a_0 = -43.8954569 \quad b_0 = 4.8438 \times 10^{-3}
\]
\[
a_1 = -2.403597 \times 10^{-1} \quad b_1 = 4.96145 \times 10^{-4}
\]
\[
a_2 = -4.2619 \times 10^{-4} \quad b_2 = -5.6953 \times 10^{-6}
\]
\[
a_3 = 9.8743 \times 10^{-6}
\]

Simon et al.16 also parameterized the cross section temperature dependence of their data. However, the parameters reported by Simon et al.16 contain typographical error(s) that were reproduced in JPL02-25. The correct parameters are unknown and therefore not given here.

Photolysis Quantum Yield and Product Studies: Clark and Husain2 report the quantum yield for Cl*(2P_1/2) atom formation in the broad band photolysis of CF₂Cl₂ to be 0.75 ± 0.26.

4-240
Table 4F-36. Recommended Absorption Cross Sections of CF$_2$Cl$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>124.0</td>
<td>194</td>
<td>31.5</td>
<td>218</td>
<td>0.103</td>
</tr>
<tr>
<td>162</td>
<td>151.0</td>
<td>196</td>
<td>21.1</td>
<td>220</td>
<td>0.0624</td>
</tr>
<tr>
<td>164</td>
<td>168.0</td>
<td>198</td>
<td>13.9</td>
<td>222</td>
<td>0.0381</td>
</tr>
<tr>
<td>166</td>
<td>185.5</td>
<td>200</td>
<td>8.71</td>
<td>224</td>
<td>0.0233</td>
</tr>
<tr>
<td>168</td>
<td>189.5</td>
<td>202</td>
<td>5.42</td>
<td>226</td>
<td>0.0140</td>
</tr>
<tr>
<td>170</td>
<td>179.0</td>
<td>204</td>
<td>3.37</td>
<td>228</td>
<td>0.0090</td>
</tr>
<tr>
<td>172</td>
<td>160.0</td>
<td>206</td>
<td>2.06</td>
<td>230</td>
<td>0.0057</td>
</tr>
<tr>
<td>174</td>
<td>134.0</td>
<td>208</td>
<td>1.26</td>
<td>232</td>
<td>0.0034</td>
</tr>
<tr>
<td>176</td>
<td>107.0</td>
<td>210</td>
<td>0.762</td>
<td>234</td>
<td>0.0021</td>
</tr>
<tr>
<td>178</td>
<td>82.8</td>
<td>212</td>
<td>0.458</td>
<td>236</td>
<td>0.0013</td>
</tr>
<tr>
<td>180</td>
<td>63.2</td>
<td>214</td>
<td>0.274</td>
<td>238</td>
<td>0.0008</td>
</tr>
<tr>
<td>182</td>
<td>45.50</td>
<td>216</td>
<td>0.163</td>
<td>240</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Note:
- 170–172 nm: Hubrich et al.7
- 174–178 nm: the mean of data from Hubrich et al.7 and Simon et al.16
- 180–198 nm: Simon et al.16
- 200–230 nm: mean of data from Simon et al.16 and Mériende et al.11
- 232–240 nm: extrapolation of data from Mériende et al.11 data., log $\sigma(\lambda) = 2.1448–0.1061 \lambda$

2. Clark, R. H.; Husain, D. Quantum yield measurements of Cl(3P$_1$2) and Cl(3P$_3$2) in the photolysis of C$_2$H$_2$ chlorofluorocarbons determined by atomic resonance absorption spectroscopy in the vacuum UV. J. Photochem. 1984, 24, 103-115.

F35. **CF₃Cl (trifluorochloromethane, CFC-13)**

CF₃Cl (CFC-13) + hv → Products

(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of trifluorochloromethane (CFC-13), CF₃Cl, has been measured at room temperature by Chou et al.¹ (184–203 nm), Vanlaethem-Meurée et al.⁵ (172–200 nm), Hubrich and Stuhl³ (160–220 nm), and Simon et al.⁷ (172–200 nm). The cross section values from Vanlaethem-Meurée et al.⁸ and Simon et al.⁷ are identical. The cross section data from Hubrich and Stuhl⁵ deviate from the Vanlaethem-Meurée et al.⁸ and Simon et al.⁷ values by ±25% and the data from Chou et al.¹ is systematically greater by 15–30% in the region 185–200 nm. The recommended absorption cross sections in Table 4F-37 are taken from Simon et al.⁷ for the range 172–200 nm. The recommended cross sections in the range 202–220 nm were obtained by a log-linear extrapolation of the Simon et al.⁷ data, log σ(λ) = −5.048−0.0834 λ.

The absorption spectrum has been measured in the far UV by Gilbert et al.⁴ (65–130 nm), and Doucet et al.³ (120–160 nm), and Ravishankara et al.⁶ (Lyman-α, 121.6 nm).

The temperature dependence of the absorption spectrum was measured by Vanlaethem-Meurée et al.⁵ (172–200 nm) at 255, 279, and 296 K, Hubrich and Stuhl³ (160–220 nm) at 208 and 298 K, and Simon et al.⁷ (172–200 nm) over the range 225–295 K. Vanlaethem-Meurée et al.⁵ and Simon et al.⁷ reported no measurable temperature dependence. Hubrich and Stuhl³ report a decrease of the absorption cross sections at 208 K, 4% at 160 nm increasing to 74% at 205 nm. Simon et al.⁷ parameterized the cross section wavelength dependence and the temperature dependence using an empirical polynomial expansion

\[
\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T−273) \times \sum B_n \lambda^n \quad (\text{with all } B_n = 0)
\]

and reported calculated values at 295 K. The Aₙ parameters, which are valid for the temperature range 210–300 K and wavelength range 172–200 nm, given below are recommended.

\[
\begin{align*}
A_0 &= -155.88 \\
A_1 &= 2.0993 \\
A_2 &= -1.0486 \times 10^{-2} \\
A_3 &= 1.6718 \times 10^{-5}
\end{align*}
\]

Photolysis Quantum Yield and Product Studies: Clark and Husain² report a quantum yield for Cl⁺(2P₁/₂) atom formation in the broad band photolysis of CF₃Cl to be 0.86 ± 0.29.

Table 4F-37. Recommended Absorption Cross Sections of CF₃Cl at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²₀σ (cm²)</th>
<th>λ (nm)</th>
<th>10²₀σ (cm²)</th>
<th>λ (nm)</th>
<th>10²₀σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>1.100</td>
<td>190</td>
<td>0.128</td>
<td>206</td>
<td>0.00595</td>
</tr>
<tr>
<td>174</td>
<td>0.970</td>
<td>192</td>
<td>0.0900</td>
<td>208</td>
<td>0.00406</td>
</tr>
<tr>
<td>176</td>
<td>0.825</td>
<td>194</td>
<td>0.0610</td>
<td>210</td>
<td>0.00276</td>
</tr>
<tr>
<td>178</td>
<td>0.681</td>
<td>196</td>
<td>0.0410</td>
<td>212</td>
<td>0.00188</td>
</tr>
<tr>
<td>180</td>
<td>0.542</td>
<td>198</td>
<td>0.0280</td>
<td>214</td>
<td>0.00128</td>
</tr>
<tr>
<td>182</td>
<td>0.425</td>
<td>200</td>
<td>0.0190</td>
<td>216</td>
<td>0.000872</td>
</tr>
<tr>
<td>184</td>
<td>0.326</td>
<td>200</td>
<td>0.0189</td>
<td>218</td>
<td>0.000594</td>
</tr>
<tr>
<td>186</td>
<td>0.244</td>
<td>202</td>
<td>0.0128</td>
<td>220</td>
<td>0.000405</td>
</tr>
<tr>
<td>188</td>
<td>0.175</td>
<td>204</td>
<td>0.00874</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
172–200 nm: Simon et al.⁷
202–220 nm: extrapolation of Simon et al.⁷ data

Back to Index

4-242
(2) Clark, R. H.; Husain, D. Quantum yield measurements of Cl(3P_1/2) and Cl(3P_3/2) in the photolysis of C1 chlorofluorocarbons determined by atomic resonance absorption spectroscopy in the vacuum UV. J. Photochem. 1984, 24, 103-115.

F36. CF2CICFCI2 (1,1,2-trifluoro-1,2,2-trichloroethane, CFC-113)

CF2CICFCI2 (CFC-113) + hv → Products

(1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of 1,1,2-trifluoro-1,2,2-trichloroethane (CFC-113), CF2CICFCI2, has been measured at room temperature by Chou et al.1 (184–224 nm), Hubrich and Stuhl3 (160–250 nm), and Simon et al.4 (184–230 nm). The cross section values agree to within ~10% except in the region near 190 nm where the values of Hubrich and Stuhl3 are smaller by as much as 20%. The recommended absorption cross sections in Table 4F-38 are the values from Hubrich and Stuhl3 in the region 175–180 nm, the value at 184 nm was interpolated between those of Hubrich and Stuhl3 at 180 nm and Simon et al.4 at 186 nm, and the values from Simon et al.4 in the region 186–230 nm. The recommended absorption cross sections for wavelengths >230 nm were obtained from a log-linear extrapolation of the Simon et al.4 data, log σ(λ) = −0.9860 − 0.0894 λ. The values measured by Hubrich and Stuhl3 in the region >230 nm are greater than the extrapolated values by ~20–80%.

The absorption spectrum in the far UV has been measured by Doucet et al.2 (110–200 nm). The temperature dependence of the absorption spectrum has been measured by Hubrich and Stuhl3 (160–250 nm) at 208 and 298 K and Simon et al.4 (184–230 nm) over the range 225–295 K. The temperature dependence is significant at wavelengths >194 nm and <170 nm where the cross sections decrease with decreasing temperature. Simon et al.4 parameterized the temperature dependence of the cross sections using an empirical polynomial expansion

\[
\log_{10} \sigma(λ, T) = \sum A_n λ^n + (T−273) \times \sum B_n λ^n
\]

and reported calculated values for T = 210, 230, 250, 270, and 295 K. The A_n and B_n parameters, valid over the temperature range 210–300 K and wavelength range 182–230 nm, given below are recommended.

\[
\begin{align*}
A_0 &= -1087.9 & B_0 &= 12.493 \\
A_1 &= 20.004 & B_1 &= -2.3937 \times 10^{-1} \\
A_2 &= -1.3920 \times 10^{-1} & B_2 &= 1.7142 \times 10^{-3} \\
A_3 &= 4.2828 \times 10^{-4} & B_3 &= -5.4393 \times 10^{-6} \\
A_4 &= -4.9384 \times 10^{-7} & B_4 &= 6.4548 \times 10^{-9}.
\end{align*}
\]

Photolysis Quantum Yield and Product Studies: No recommendation.

Back to Index
Table 4F-38. Recommended Absorption Cross Sections of CF₂ClCFC₁₂ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>192</td>
<td>204</td>
<td>5.80</td>
<td>228</td>
<td>0.0410</td>
</tr>
<tr>
<td>180</td>
<td>155</td>
<td>206</td>
<td>4.00</td>
<td>230</td>
<td>0.0270</td>
</tr>
<tr>
<td>184</td>
<td>123</td>
<td>208</td>
<td>2.65</td>
<td>232</td>
<td>0.0188</td>
</tr>
<tr>
<td>186</td>
<td>104</td>
<td>210</td>
<td>1.80</td>
<td>234</td>
<td>0.0124</td>
</tr>
<tr>
<td>188</td>
<td>83.5</td>
<td>212</td>
<td>1.15</td>
<td>236</td>
<td>0.00824</td>
</tr>
<tr>
<td>190</td>
<td>64.5</td>
<td>214</td>
<td>0.760</td>
<td>238</td>
<td>0.00546</td>
</tr>
<tr>
<td>192</td>
<td>48.8</td>
<td>216</td>
<td>0.505</td>
<td>240</td>
<td>0.00361</td>
</tr>
<tr>
<td>194</td>
<td>36.0</td>
<td>218</td>
<td>0.318</td>
<td>242</td>
<td>0.00239</td>
</tr>
<tr>
<td>196</td>
<td>26.0</td>
<td>220</td>
<td>0.220</td>
<td>244</td>
<td>0.00159</td>
</tr>
<tr>
<td>198</td>
<td>18.3</td>
<td>222</td>
<td>0.145</td>
<td>246</td>
<td>0.00105</td>
</tr>
<tr>
<td>200</td>
<td>12.5</td>
<td>224</td>
<td>0.0950</td>
<td>248</td>
<td>0.000969</td>
</tr>
<tr>
<td>202</td>
<td>8.60</td>
<td>226</td>
<td>0.0630</td>
<td>250</td>
<td>0.000461</td>
</tr>
</tbody>
</table>

Note:
175–180 nm: Hubrich and Stuhl³
184 nm: interpolation of Hubrich and Stuhl³ and Simon et al.⁴ data
186–230 nm: Simon et al.⁴
232–250 nm: extrapolation of Simon et al.⁴ data, log σ(λ) = −0.9860–0.0894 λ.

F37. CF₂ClCFC₁₂ (1,1,2,2-tetrafluoro-1,2-dichloroethane, CFC–114)

CF₂ClCFC₁₂ (CFC–114) + hv → Products

(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of 1,1,2,2-tetrafluoro-1,2-dichloroethane (CFC–114), CF₂ClCFC₁₂, has been measured at room temperature by Chou et al.¹ (184–219 nm), Hubrich and Stuhl³ (160–235 nm), and Simon et al.⁵ (172–220 nm). The room temperature values of Simon et al.⁵ and Chou et al.¹ agree to within 5% except at 185 and 195 nm. The cross section values from Hubrich and Stuhl³ are systematically greater than those from Simon et al.⁵ The recommended absorption cross sections in Table 4F-39 are the values from Simon et al.⁵ in the region 172–220 nm. The recommended cross sections for wavelengths >220 nm were obtained from a log-linear extrapolation of the Simon et al.⁵ data, log σ(λ) = −1.8233–0.0913 λ. The values measured by Hubrich et al.³ are greater by ~40% than the extrapolated values.

The absorption spectrum in the far UV has been measured by Ravishankara et al.⁴ (Lyman-α, 121.6 nm) and Doucet et al.² (110–190 nm).

The temperature dependence of the absorption spectrum has been measured by Hubrich and Stuhl³ (160–235 nm) at 208 and 298 K and Simon et al.⁵ (182–220 nm) in the range 225–295 K. Simon et al.⁵ report decreasing cross sections with decreasing temperature for wavelengths >190 nm. Hubrich and Stuhl³ report a small decrease of the cross sections (generally <10%) for wavelengths in the range 160–210 nm. Simon et al.⁵ parameterized the temperature dependence of the cross sections using an empirical polynomial expansion

\[
\log_{10} \sigma(λ, T) = \sum A_n λ^n + (T−273) \times \sum B_n λ^n
\]

and reported calculated values for T = 210, 230, 250, 270, and 295 K. The Aₙ and Bₙ parameters, valid for the temperature range 210–300 K and wavelength range 172–220 nm, given below are recommended.
\[A_0 = -160.50 \quad B_0 = -1.5296 \]
\[A_1 = 2.4807 \quad B_1 = 3.5248 \times 10^{-2} \]
\[A_2 = -1.5202 \times 10^{-2} \quad B_2 = -2.9951 \times 10^{-4} \]
\[A_3 = 3.8412 \times 10^{-5} \quad B_3 = 1.1129 \times 10^{-6} \]
\[A_4 = -3.4373 \times 10^{-8} \quad B_4 = -1.5259 \times 10^{-9} \]

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-39. Recommended Absorption Cross Sections of CF₂ClCF₂Cl at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>λ (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>λ (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>69.0</td>
<td>194</td>
<td>2.56</td>
<td>216</td>
<td>0.0290</td>
</tr>
<tr>
<td>174</td>
<td>55.0</td>
<td>196</td>
<td>1.75</td>
<td>218</td>
<td>0.0190</td>
</tr>
<tr>
<td>176</td>
<td>43.0</td>
<td>198</td>
<td>1.20</td>
<td>220</td>
<td>0.0122</td>
</tr>
<tr>
<td>178</td>
<td>34.0</td>
<td>200</td>
<td>0.800</td>
<td>222</td>
<td>0.00809</td>
</tr>
<tr>
<td>180</td>
<td>26.2</td>
<td>202</td>
<td>0.540</td>
<td>224</td>
<td>0.00531</td>
</tr>
<tr>
<td>182</td>
<td>19.8</td>
<td>204</td>
<td>0.370</td>
<td>226</td>
<td>0.00349</td>
</tr>
<tr>
<td>184</td>
<td>15.0</td>
<td>206</td>
<td>0.245</td>
<td>228</td>
<td>0.00229</td>
</tr>
<tr>
<td>186</td>
<td>11.0</td>
<td>208</td>
<td>0.160</td>
<td>230</td>
<td>0.00151</td>
</tr>
<tr>
<td>188</td>
<td>7.80</td>
<td>210</td>
<td>0.104</td>
<td>232</td>
<td>0.00099</td>
</tr>
<tr>
<td>190</td>
<td>5.35</td>
<td>212</td>
<td>0.0680</td>
<td>234</td>
<td>0.00065</td>
</tr>
<tr>
<td>192</td>
<td>3.70</td>
<td>214</td>
<td>0.0440</td>
<td>235</td>
<td>0.00053</td>
</tr>
</tbody>
</table>

Note:
172–220 nm: Simon et al.5
222–235 nm: extrapolation of Simon et al.5 data, log \(\sigma(\lambda) = -1.8233 - 0.0913 \lambda\)

F38. CF₃CF₂Cl (pentafluorochloroethane, CFC–115)

CF₃CF₂Cl (CFC–115) + hv → Products

(Recommandation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The VUV/UV absorption spectrum of pentafluorochloroethane (CFC–115), CF₃CF₂Cl, has been measured at room temperature by Chou et al.1 (184–207 nm), Hubrich and Stuhl3 (160–230 nm), and Simon et al.5 (172–204 nm). The room temperature cross section data of Simon et al.5 and Hubrich and Stuhl3 agree to within ~20% with the Hubrich and Stuhl3 values being systematically greater over the range 172–204 nm. The data of Chou et al.1 are greater than those of Simon et al.5 by as much as 50%. The recommended absorption cross sections in Table 4F-40 are the mean of the values reported by Hubrich and Stuhl3 and those obtained by extrapolating the Simon et al.5 data, log \(\sigma(\lambda) = -6.2191 - 0.0756 \lambda\), where the extrapolated values are greater than the values measured by Hubrich and Stuhl3.

The absorption spectrum has been measured in the far UV by Ravishankara et al.4 (Lyman-α, 121.6 nm) and Doucet et al.2 (120–175 nm).

The temperature dependence of the absorption spectrum has been measured by Hubrich and Stuhl3 (160–230 nm) at 208 and 298 K and Simon et al.5 (172–204 nm) over the range 225–295 K. No measurable temperature dependence was reported in these studies. Simon et al.5 parameterized the absorption cross sections using an empirical polynomial expansion.
and reported calculated values for T = 295 K. The Aₙ parameters, which are valid for the temperature range 210–300 K and wavelength range 172–204 nm, given below are recommended.

$$A_0 = 5.8281 \quad A_1 = -2.990 \times 10^{-4}$$

$$A_2 = 1.3525 \times 10^{-5} \quad A_3 = -2.6851 \times 10^{-6}$$

Photoysis Quantum Yield and Product Studies: No recommendation.

Table 4F-40. Recommended Absorption Cross Sections of CF₃CF₂Cl at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²₀σ (cm²)</th>
<th>λ (nm)</th>
<th>10²₀σ (cm²)</th>
<th>λ (nm)</th>
<th>10²₀σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>5.50</td>
<td>188</td>
<td>0.403</td>
<td>204</td>
<td>0.0218</td>
</tr>
<tr>
<td>174</td>
<td>4.13</td>
<td>190</td>
<td>0.287</td>
<td>205</td>
<td>0.0187</td>
</tr>
<tr>
<td>176</td>
<td>3.08</td>
<td>192</td>
<td>0.203</td>
<td>210</td>
<td>0.00700</td>
</tr>
<tr>
<td>178</td>
<td>2.25</td>
<td>194</td>
<td>0.143</td>
<td>215</td>
<td>0.00273</td>
</tr>
<tr>
<td>180</td>
<td>1.58</td>
<td>196</td>
<td>0.0985</td>
<td>220</td>
<td>0.00107</td>
</tr>
<tr>
<td>182</td>
<td>1.13</td>
<td>198</td>
<td>0.0685</td>
<td>225</td>
<td>0.00050</td>
</tr>
<tr>
<td>184</td>
<td>0.790</td>
<td>200</td>
<td>0.0474</td>
<td>230</td>
<td>0.00018</td>
</tr>
<tr>
<td>186</td>
<td>0.563</td>
<td>202</td>
<td>0.0325</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
172–204 nm: mean of Hubrich and Stuhl³ and Simon et al.⁵
205–230 nm: mean of Hubrich and Stuhl³ and extrapolated Simon et al.⁵ data, log 10σ(λ) = −6.2191 – 0.0756 λ.

F39. CHFCl₂ (fluorodichloromethane, HCFC–21)

CHFCl₂ (HCFC–21) + hv → Products

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of fluorodichloromethane (HCFC–21), CHFCl₂, has been measured at room temperature by Gordus and Bernstein³ (208 nm), Robbins and Stolarski² (174–222 nm), Green and Wayne⁴ (184–205 nm), Rebbert et al.⁶ (213.9 nm), Hubrich et al.⁵ (158–235 nm), and Simon et al.⁸ (174–222 nm). The absorption cross section data from these groups are in good agreement, generally to within 15%, except those from Green and Wayne⁴ which deviate significantly. The data from Hubrich et al.⁵ also contain irregular values around 205 and 220 nm where the agreement is only ~40%. The recommended absorption cross sections in Table 4F-41 are the values of Simon et al.⁵ in the region 174–222 nm. The recommended values for wavelengths >222 nm were obtained from a log-linear extrapolation of the Simon et al.⁸ data, log 10σ(λ) = 0.9806–0.1013 λ. The values measured by Hubrich et al.⁵ deviate from the extrapolated values significantly.

Measurements in the far UV at 60–120 nm have been reported by Gilbert et al.,² measurements at 120–200 nm by Doucet et al.,¹ and a measurement at 147 nm by Rebbert et al.⁶

The temperature dependence of the absorption spectrum has been measured by Hubrich et al.⁵ (158–235 nm) at 208 and 298 K and Simon et al.⁸ (174–222 nm) over the range 225–295 K. The temperature dependence is significant at wavelengths >190 nm where the cross sections decrease with decreasing temperature. Simon et al.⁸ parameterized the temperature dependence of the cross sections using an empirical polynomial expansion.
log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n

and reported calculated values for T = 210, 230, 250, 270, and 295 K. The A_n and B_n parameters, valid for the temperature range 210–300 K and wavelength range 174–222 nm, given below are recommended.

A_0 = -514.56 \quad B_0 = -3.0577
A_1 = 8.7940 \quad B_1 = 6.6539 \times 10^{-2}
A_2 = -5.6840 \times 10^{-2} \quad B_2 = -5.3964 \times 10^{-4}
A_3 = 1.5894 \times 10^{-4} \quad B_3 = 1.9322 \times 10^{-6}
A_4 = -1.6345 \times 10^{-7} \quad B_4 = -2.5754 \times 10^{-9}

Photolysis Quantum Yield and Product Studies: No recommendation.

<table>
<thead>
<tr>
<th>\lambda (nm)</th>
<th>\lambda (nm)</th>
<th>\lambda (nm)</th>
<th>\lambda (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^{20} \sigma (cm^2)</td>
<td>10^{20} \sigma (cm^2)</td>
<td>10^{20} \sigma (cm^2)</td>
</tr>
<tr>
<td>174</td>
<td>166.0</td>
<td>198</td>
<td>8.10</td>
</tr>
<tr>
<td>176</td>
<td>164.5</td>
<td>200</td>
<td>5.24</td>
</tr>
<tr>
<td>178</td>
<td>155.0</td>
<td>202</td>
<td>3.35</td>
</tr>
<tr>
<td>180</td>
<td>138.0</td>
<td>204</td>
<td>2.12</td>
</tr>
<tr>
<td>182</td>
<td>116.0</td>
<td>206</td>
<td>1.34</td>
</tr>
<tr>
<td>184</td>
<td>92.4</td>
<td>208</td>
<td>0.836</td>
</tr>
<tr>
<td>186</td>
<td>71.5</td>
<td>210</td>
<td>0.522</td>
</tr>
<tr>
<td>188</td>
<td>53.2</td>
<td>212</td>
<td>0.325</td>
</tr>
<tr>
<td>190</td>
<td>38.4</td>
<td>214</td>
<td>0.203</td>
</tr>
<tr>
<td>192</td>
<td>26.9</td>
<td>216</td>
<td>0.127</td>
</tr>
<tr>
<td>194</td>
<td>18.4</td>
<td>218</td>
<td>0.0797</td>
</tr>
<tr>
<td>196</td>
<td>12.3</td>
<td>220</td>
<td>0.0503</td>
</tr>
</tbody>
</table>

Note:

174–222 nm: Simon et al.\(^8\)
224–236 nm: extrapolation of Simon et al.\(^8\) data, \(\log \sigma(\lambda) = 0.9806 - 0.1013 \lambda\).

F40. CHF\(_2\)Cl (difluorochloromethane, HCFC–22)

CHF\(_2\)Cl (HCFC–22) + hv → Products

(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of difluorochloromethane (HCFC–22), CHF\(_2\)Cl, has been measured at room temperature by Robbins and Stolarski\(^5\) (174–202 nm), Green and Wayne\(^3\) (181–194 nm), Hubrich et al.\(^4\) (158–220 nm), and Simon et al.\(^6\) (174–204 nm). The results of Robbins and Stolarski,\(^5\) Hubrich et al.\(^4\) and Simon et al.\(^6\) are in agreement, generally to within 15–20%. However, the data from Green and Wayne\(^3\) deviate significantly. The recommended absorption cross sections in Table 4F-42 are the values from Hubrich et al.\(^4\) in the region 170–172 nm and the values from Simon et al.\(^6\) in the region 174–204 nm. The recommended absorption cross sections for wavelengths >204 nm were obtained from a log-linear
extrapolation of the Simon et al.6 data, log $\sigma(\lambda) = -4.1001 - 0.0870 \lambda$. The measured values of Hubrich et al.4 deviate from the extrapolated values by as much as 20%.

The absorption spectrum has been measured in the far UV by Gilbert et al.2 (60–160 nm) and Doucet et al.1 (120–200 nm).

The temperature dependence of the absorption spectrum has been measured by Hubrich et al.4 (158–220 nm) at 208 and 298 K and Simon et al.6 (174–204 nm) over the range 225–295 K. A weak temperature dependence was observed for wavelengths >190 nm where the cross sections decrease with decreasing temperature. Simon et al.6 parameterized the cross sections temperature dependence using an empirical polynomial expansion

$$\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T - 273) \times \sum B_n \lambda^n$$

and reported calculated cross section values for $T = 210, 230, 250, 270$, and 295 K. The A_n and B_n parameters, valid for the temperature range 210–300 K and wavelength range 174–204 nm, given below are recommended.

\begin{align*}
A_0 &= -106.029 \\
A_1 &= 1.5038 \\
A_2 &= -8.2476 \times 10^{-3} \\
A_3 &= 1.4206 \times 10^{-5}
\end{align*}

\begin{align*}
B_0 &= -1.3399 \times 10^{-1} \\
B_1 &= 2.7405 \times 10^{-3} \\
B_2 &= -1.8028 \times 10^{-5} \\
B_3 &= 3.8504 \times 10^{-8}
\end{align*}

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-42. Recommended Absorption Cross Sections of CHF$_2$Cl at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>12.9</td>
<td>188</td>
<td>0.372</td>
<td>206</td>
<td>0.00842</td>
</tr>
<tr>
<td>172</td>
<td>9.79</td>
<td>190</td>
<td>0.245</td>
<td>208</td>
<td>0.00636</td>
</tr>
<tr>
<td>174</td>
<td>5.72</td>
<td>192</td>
<td>0.156</td>
<td>210</td>
<td>0.00426</td>
</tr>
<tr>
<td>176</td>
<td>4.04</td>
<td>194</td>
<td>0.103</td>
<td>212</td>
<td>0.00285</td>
</tr>
<tr>
<td>178</td>
<td>2.76</td>
<td>196</td>
<td>0.072</td>
<td>214</td>
<td>0.00191</td>
</tr>
<tr>
<td>180</td>
<td>1.91</td>
<td>198</td>
<td>0.048</td>
<td>216</td>
<td>0.00128</td>
</tr>
<tr>
<td>182</td>
<td>1.28</td>
<td>200</td>
<td>0.032</td>
<td>218</td>
<td>0.00086</td>
</tr>
<tr>
<td>184</td>
<td>0.842</td>
<td>202</td>
<td>0.0220</td>
<td>220</td>
<td>0.00057</td>
</tr>
<tr>
<td>186</td>
<td>0.576</td>
<td>204</td>
<td>0.0142</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- 170–172 nm: Hubrich et al.4
- 174–204 nm: Simon et al.6
- 206–220 nm: extrapolation of Simon et al.6 data, log $\sigma(\lambda) = -4.1001 - 0.0870 \lambda$

F41. \(\text{CH}_2\text{FCl} \) (fluorochloromethane, HCFC–31)

\[
\text{CH}_2\text{FCl} (\text{HCFC–31}) + \text{hv} \rightarrow \text{Products} \quad (1)
\]

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of fluorochloromethane (HCFC-31), \(\text{CH}_2\text{FCl} \), has been measured at 208 and 298 K over the wavelength range 160–230 nm by Hubrich and Stuhl.\(^3\) The recommended room temperature cross sections from this study are listed in Table 4F-43.

The absorption spectrum has been measured in the far UV by Gilbert et al.\(^2\) (60–120 nm) and Doucet et al.\(^1\) (120–200 nm). The cross section values reported by Doucet et al. are significantly greater than those of Hubrich and Stuhl\(^3\) for the common wavelength region.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-43. Recommended Absorption Cross Sections of \(\text{CH}_2\text{FCl} \) at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>47.9</td>
</tr>
<tr>
<td>165</td>
<td>55.9</td>
</tr>
<tr>
<td>170</td>
<td>43.0</td>
</tr>
<tr>
<td>175</td>
<td>23.3</td>
</tr>
<tr>
<td>180</td>
<td>12.5</td>
</tr>
<tr>
<td>185</td>
<td>4.20</td>
</tr>
<tr>
<td>190</td>
<td>1.95</td>
</tr>
<tr>
<td>195</td>
<td>0.544</td>
</tr>
<tr>
<td>200</td>
<td>0.209</td>
</tr>
<tr>
<td>205</td>
<td>0.069</td>
</tr>
<tr>
<td>210</td>
<td>0.0188</td>
</tr>
<tr>
<td>215</td>
<td>0.00560</td>
</tr>
<tr>
<td>220</td>
<td>0.00215</td>
</tr>
<tr>
<td>225</td>
<td>0.00049</td>
</tr>
<tr>
<td>230</td>
<td>0.00026</td>
</tr>
</tbody>
</table>

Note:
Hubrich and Stuhl\(^3\)

F42. \(\text{CF}_3\text{CHCl}_2 \) (1,1,1-trifluoro-2,2-dichloroethane, HCFC–123)

\[
\text{CF}_3\text{CHCl}_2 (\text{HCFC–123}) + \text{hv} \rightarrow \text{Products} \quad (1)
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of 1,1,1-trifluoro-2,2-dichloroethane (HCFC-123), \(\text{CF}_3\text{CHCl}_2 \), has been measured at room temperature by Green and Wayne\(^2\) (185–204 nm), Gillotay and Simon\(^1\) (170–250 nm), Orlando et al.\(^4\) (190–230 nm), and Nayak et al.\(^3\) (160–230 nm). The absorption cross sections are within 25% of each other in the region below 220 nm with the exception of the Green and Wayne\(^2\) data that are significantly lower at wavelengths <200 nm. The recommended absorption cross sections in Table 4F-44 are the mean of the values reported by Gillotay and Simon\(^1\) and Nayak et al.\(^3\) in the region 170–188 nm and the mean of the values reported by Gillotay and Simon,\(^1\) Orlando et al.\(^4\) and Nayak et al.\(^3\) in the region 190–230 nm. The recommended cross sections for wavelengths >230 nm were obtained using a log-linear extrapolation of the Orlando et al.\(^4\) data, log \(\sigma(\lambda) = -3.1097 - 0.0794 \lambda \).

The temperature dependence of the absorption spectrum has been reported by Gillotay and Simon\(^1\) (170–250 nm) at 225–295 K, Orlando et al.\(^4\) (190–230 nm) over the range 203–295 K, and Nayak et al.\(^3\) (160–230 nm)
over the range 223–333 K. These studies report a decrease of the absorption cross sections with decreasing temperature at wavelengths >180 nm and <170 nm. Between 170–180 nm, an increase in the cross section with decreasing temperature was reported by Gillotay and Simon and Nayak et al.3 An irregular temperature dependence was reported by Orlando et al.4 for the range 210–230 nm where the absorption spectra show wiggles.

Various empirical functional forms have been proposed to parameterize the temperature dependence of the absorption cross sections. Gillotay and Simon1 parameterized the cross sections and the temperature dependence using the polynomial expansion

$$\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n$$

and report calculated cross section values for $T = 210, 230, 250, 270,$ and 295 K. The A_n and B_n parameters, valid for the temperature range 210–300 K and wavelength range 182–250 nm, are given below.

$$A_0 = -513.996354 \quad B_0 = 1.757133$$
$$A_1 = 9.089141 \quad B_1 = -3.499205 \times 10^{-2}$$
$$A_2 = -6.136794 \times 10^{-2} \quad B_2 = 2.593563 \times 10^{-4}$$
$$A_3 = 1.814826 \times 10^{-4} \quad B_3 = -8.489357 \times 10^{-7}$$
$$A_4 = -1.999514 \times 10^{-7} \quad B_4 = 1.037756 \times 10^{-9}$$

Nayak et al.3 used a sixth-order polynomial of the form

$$\log_{10} (\sigma_T) = \sum C_n (\lambda - 170)^n$$

for the temperatures measured in their study for the wavelength range 160–230 nm. The C_n parameters are listed below.

<table>
<thead>
<tr>
<th>223 K</th>
<th>273 K</th>
<th>295 K</th>
<th>333 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0</td>
<td>-17.6732</td>
<td>-17.6733</td>
<td>-17.6792</td>
</tr>
<tr>
<td>C_1</td>
<td>1.70233×10^{-2}</td>
<td>1.3636×10^{-2}</td>
<td>1.19392×10^{-2}</td>
</tr>
<tr>
<td>C_2</td>
<td>-7.39366×10^{-4}</td>
<td>-4.98553×10^{-4}</td>
<td>-3.71661×10^{-4}</td>
</tr>
<tr>
<td>C_3</td>
<td>-1.83761×10^{-4}</td>
<td>-1.70566×10^{-4}</td>
<td>-1.61218×10^{-4}</td>
</tr>
<tr>
<td>C_4</td>
<td>7.80778×10^{-6}</td>
<td>6.73373×10^{-6}</td>
<td>6.03101×10^{-6}</td>
</tr>
<tr>
<td>C_5</td>
<td>-1.29836×10^{-7}</td>
<td>-1.02726×10^{-7}</td>
<td>-8.76762×10^{-8}</td>
</tr>
<tr>
<td>C_6</td>
<td>8.05415×10^{-10}</td>
<td>5.66688×10^{-10}</td>
<td>4.61745×10^{-10}</td>
</tr>
</tbody>
</table>

Orlando et al.4 used the expression

$$\ln \sigma(\lambda, T) = \sum (\Sigma a_{ij} (T-245.4)^{i-1}) (\lambda - 206.214)^{j-1}, \quad i = 1-4, j = 1-3$$

that is valid for the temperature range 203–295 K and wavelength range 190–230 nm. The coefficients are given below.

$$a_{11} = -4.500 \times 10^1 \quad a_{12} = 3.529 \times 10^3 \quad a_{13} = -4.181 \times 10^8$$
$$a_{21} = -1.985 \times 10^{-1} \quad a_{22} = 6.826 \times 10^{-5} \quad a_{23} = 1.555 \times 10^{-6}$$
$$a_{31} = -2.802 \times 10^{-4} \quad a_{32} = -1.018 \times 10^{-5} \quad a_{33} = 4.037 \times 10^{-8}$$
$$a_{41} = 6.312 \times 10^{-5} \quad a_{42} = -3.055 \times 10^{-7} \quad a_{43} = -2.473 \times 10^{-9}$$

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-44. Recommended Absorption Cross Sections of CF$_3$CHCl$_2$ at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>192</td>
<td>171</td>
<td>198</td>
<td>172</td>
<td>207</td>
</tr>
<tr>
<td>174</td>
<td>214</td>
<td>176</td>
<td>202</td>
<td>178</td>
<td>202</td>
</tr>
<tr>
<td>180</td>
<td>208</td>
<td>182</td>
<td>205</td>
<td>184</td>
<td>215</td>
</tr>
<tr>
<td>186</td>
<td>214</td>
<td>188</td>
<td>216</td>
<td>190</td>
<td>218</td>
</tr>
</tbody>
</table>

4-250
Photolysis Quantum Yield and Product Studies for the temperature range 203–295 K and reported calculated cross section values for T = 210, 230, 250, 270, and 295 K. The absorption cross sections decrease with decreasing temperature. An irregular temperature behavior was observed for 190–220 nm, where the absorption spectra show wiggles. Orlando et al.2 are greater than those of Gillotay and Simon1 by as much as 133%. The recommended room temperature cross sections in Table 4F-45 are the values of Gillotay and Simon1 in the region 170–188 nm and 222–230 nm and the mean of the values reported by Gillotay and Simon1 and Orlando et al.2 in the region 190–220 nm.

The absorption cross sections decrease with decreasing temperature. An irregular temperature behavior was reported by Orlando et al.2 for the range 215–230 nm where the absorption spectra show wiggles. Gillotay and Simon1 parameterized the cross sections and the temperature dependence using an empirical polynomial expansion

$$\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n$$

and reported calculated cross section values for T = 210, 230, 250, 270, and 295 K. The A_n and B_n parameters, valid for the temperature range 210–300 K and wavelength range 170–230 nm, are given below.

- A_0 = -101.230250
- A_1 = 1.333519
- A_2 = -6.888672 x 10^{-3}
- A_3 = 1.114172 x 10^{-5}
- B_0 = -5.795712 x 10^{-2}
- B_1 = 1.053901 x 10^{-3}
- B_2 = -6.530379 x 10^{-6}
- B_3 = 1.382056 x 10^{-8}

Orlando et al.2 report a parameterization using the expression

$$\ln \sigma(\lambda, T) = \sum (\sum a_{ij} (T-251.7)^{i-1}) (\lambda-206.214)^{j-1}, \ i = 1-4, \ j = 1-3$$

for the temperature range 203–295 K and wavelength range 190–220 nm. The reported coefficients are given below.

- a_{11} = -4.967 x 10^{1}
- a_{12} = 6.562 x 10^{-3}
- a_{13} = 1.735 x 10^{-5}
- a_{21} = -2.025 x 10^{-1}
- a_{22} = 2.788 x 10^{-4}
- a_{23} = -3.974 x 10^{-6}
- a_{31} = 6.839 x 10^{-4}
- a_{32} = 5.523 x 10^{-6}
- a_{33} = -3.092 x 10^{-7}
- a_{41} = 1.275 x 10^{-4}
- a_{42} = -2.959 x 10^{-7}
- a_{43} = -1.182 x 10^{-8}

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-45. Recommended Absorption Cross Sections of CF$_3$CHFCl at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>13.6</td>
<td>192</td>
<td>0.548</td>
<td>214</td>
<td>0.00859</td>
</tr>
<tr>
<td>172</td>
<td>11.1</td>
<td>194</td>
<td>0.387</td>
<td>216</td>
<td>0.00610</td>
</tr>
<tr>
<td>174</td>
<td>8.85</td>
<td>196</td>
<td>0.267</td>
<td>218</td>
<td>0.00431</td>
</tr>
<tr>
<td>176</td>
<td>6.93</td>
<td>198</td>
<td>0.185</td>
<td>220</td>
<td>0.00312</td>
</tr>
<tr>
<td>178</td>
<td>5.33</td>
<td>200</td>
<td>0.128</td>
<td>222</td>
<td>0.00214</td>
</tr>
<tr>
<td>180</td>
<td>4.03</td>
<td>202</td>
<td>0.0868</td>
<td>224</td>
<td>0.00153</td>
</tr>
<tr>
<td>182</td>
<td>3.00</td>
<td>204</td>
<td>0.0594</td>
<td>226</td>
<td>0.00111</td>
</tr>
<tr>
<td>184</td>
<td>2.20</td>
<td>206</td>
<td>0.0401</td>
<td>228</td>
<td>0.00082</td>
</tr>
<tr>
<td>186</td>
<td>1.60</td>
<td>208</td>
<td>0.0269</td>
<td>230</td>
<td>0.00061</td>
</tr>
<tr>
<td>188</td>
<td>1.14</td>
<td>210</td>
<td>0.0186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>0.772</td>
<td>212</td>
<td>0.0126</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
170–188 nm: Gillotay and Simon
190–220 nm: mean of the values from Gillotay and Simon and Orlando et al.
222–230 nm: Gillotay and Simon

F44. CF$_3$CH$_2$Cl (1,1,1-trifluoro-2-chloroethane, HCFC–133a)

CF$_3$CH$_2$Cl (HCFC–133a) + hv \rightarrow Products

(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of 1,1,1-trifluoro-2-chloroethane (HCFC–133a), CF$_3$CH$_2$Cl, has been measured at room temperature by Ichimura et al. (147 nm, $\sigma = 1.35 \times 10^{-17}$ cm2 molecule$^{-1}$), and Green and Wayne (186–203 nm), and at 208 and 298 K by Hubrich and Stuhl (160–245 nm). The agreement in the absorption cross sections for wavelengths >180 nm is poor. The recommended absorption cross sections in Table 4F-46 are taken from Hubrich and Stuhl.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-46. Recommended Absorption Cross Sections of CF$_3$CH$_2$Cl at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>59.4</td>
<td>190</td>
<td>6.20</td>
<td>220</td>
<td>0.0887</td>
</tr>
<tr>
<td>165</td>
<td>64.6</td>
<td>195</td>
<td>2.95</td>
<td>225</td>
<td>0.0226</td>
</tr>
<tr>
<td>170</td>
<td>56.4</td>
<td>200</td>
<td>1.14</td>
<td>230</td>
<td>0.0147</td>
</tr>
<tr>
<td>175</td>
<td>37.3</td>
<td>205</td>
<td>0.598</td>
<td>235</td>
<td>0.00404</td>
</tr>
<tr>
<td>180</td>
<td>22.8</td>
<td>210</td>
<td>0.328</td>
<td>240</td>
<td>0.00181</td>
</tr>
<tr>
<td>185</td>
<td>11.6</td>
<td>215</td>
<td>0.169</td>
<td>245</td>
<td>0.00054</td>
</tr>
</tbody>
</table>

Note:
160–245 nm: Hubrich and Stuhl

4-252
Absorption Cross Sections: The UV absorption spectrum of 1,1,1-fluorodichloroethane (HCFC–141b), CH$_3$CFCl$_2$, has been measured over the temperature range 210–295 K by Gillotay and Simon2 (170–240 nm), over the temperature range 203–295 K by Talukdar et al.3 (190–230 nm), and at room temperature by Fahr et al.1 (190–240 nm). Fahr et al.1 also measured the absorption spectrum in the liquid-phase and used a wavelength-shift procedure to derive cross sections for the gas-phase. The agreement between the cross section values reported by Gillotay and Simon2 and Fahr et al.1 for the 190–240 nm region is good (1–10% up to 236 nm). The agreement of the results from Talukdar et al.3 are not as good. Their absorption cross sections are smaller at wavelengths <210 nm by as much as ~20% and are greater at wavelengths >210 nm by as much as 70%. The recommended absorption cross sections in Table 4F-47 are the values of Gillotay and Simon2 in the region 170–188 nm and the mean of the values reported by Gillotay and Simon2 and Fahr et al.1 in the region 190–240 nm.

A decrease of the absorption cross sections with decreasing temperature for wavelengths >188 nm and <172 nm was reported by Gillotay and Simon.2 An increase in the cross sections with decreasing temperature was observed between 172 and 188 nm. Gillotay and Simon2 parameterized the cross sections and the temperature dependence of the absorption cross sections using an empirical polynomial expansion

$$\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n.$$

and report calculated cross section values for T = 210, 230, 250, 270, and 295 K. The A$_n$ and B$_n$ parameters, valid for the temperature range 210–300 K and wavelength range 172-240 nm, given below are recommended.

<table>
<thead>
<tr>
<th>$A_0 = -682.913042$</th>
<th>$B_0 = 4.074747$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1 = 12.12290$</td>
<td>$B_1 = -8.053899 \times 10^{-2}$</td>
</tr>
<tr>
<td>$A_2 = -8.187699 \times 10^{-2}$</td>
<td>$B_2 = 5.946552 \times 10^{-4}$</td>
</tr>
<tr>
<td>$A_3 = 2.437244 \times 10^{-4}$</td>
<td>$B_3 = -1.945048 \times 10^{-6}$</td>
</tr>
<tr>
<td>$A_4 = -2.719103 \times 10^{-7}$</td>
<td>$B_4 = 2.380143 \times 10^{-9}$</td>
</tr>
</tbody>
</table>

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-47. Recommended Absorption Cross Sections of CH$_3$CFCl$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>143.1</td>
<td>194</td>
<td>47.2</td>
<td>218</td>
<td>0.382</td>
</tr>
<tr>
<td>172</td>
<td>145.1</td>
<td>196</td>
<td>34.1</td>
<td>220</td>
<td>0.248</td>
</tr>
<tr>
<td>174</td>
<td>154.2</td>
<td>198</td>
<td>24.0</td>
<td>222</td>
<td>0.161</td>
</tr>
<tr>
<td>176</td>
<td>162.9</td>
<td>200</td>
<td>16.6</td>
<td>224</td>
<td>0.105</td>
</tr>
<tr>
<td>178</td>
<td>172.6</td>
<td>202</td>
<td>11.3</td>
<td>226</td>
<td>0.0680</td>
</tr>
<tr>
<td>180</td>
<td>172.3</td>
<td>204</td>
<td>7.56</td>
<td>228</td>
<td>0.0444</td>
</tr>
<tr>
<td>182</td>
<td>162.9</td>
<td>206</td>
<td>5.02</td>
<td>230</td>
<td>0.0290</td>
</tr>
<tr>
<td>184</td>
<td>146.4</td>
<td>208</td>
<td>3.30</td>
<td>232</td>
<td>0.0189</td>
</tr>
<tr>
<td>186</td>
<td>125.7</td>
<td>210</td>
<td>2.16</td>
<td>234</td>
<td>0.0123</td>
</tr>
<tr>
<td>188</td>
<td>103.6</td>
<td>212</td>
<td>1.40</td>
<td>236</td>
<td>0.00801</td>
</tr>
<tr>
<td>190</td>
<td>83.0</td>
<td>214</td>
<td>0.909</td>
<td>238</td>
<td>0.00518</td>
</tr>
<tr>
<td>192</td>
<td>63.6</td>
<td>216</td>
<td>0.589</td>
<td>240</td>
<td>0.00334</td>
</tr>
</tbody>
</table>

Note:
170–188 nm: Gillotay and Simon2
190–240 nm: mean of data from Gillotay and Simon2 and Fahr et al.1

F46. CH₃CF₂Cl (1,1,1-trifluoroethylene, HCFC–142b)

\[\text{CH}_3\text{CF}_2\text{Cl (HCFC–142b)} + \text{hv} \rightarrow \text{CH}_3\text{CF}_2 + \text{Cl} \quad 355 \text{ kJ mol}^{-1} \quad 337 \text{ nm} \quad (1) \]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of 1,1,1-trifluoroethylene (HCFC–142b), CH₃CF₂Cl, has been measured at room temperature by Doucet et al.² (120–180 nm), Green and Wayne³ (184–201 nm), Hubrich and Stuhl⁴ (160–230 nm), Gillotay and Simon⁵ (170–230 nm), Orlando et al.⁷ (190–230 nm), and Nayak et al.⁸ (160–210 nm). For wavelengths <200 nm, the cross sections reported by Hubrich and Stuhl⁴ and Nayak et al.⁸ agree to within 15%, while those by Gillotay and Simon⁴ and Orlando et al.⁷ are systematically smaller by as much as 30%. Over the wavelength range 200–215 nm, the values of Gillotay and Simon⁴, Orlando et al.⁸, and Nayak et al.⁸ agree to within 15%. For wavelengths >215 nm, the absorption spectrum reported by Orlando et al.⁸ has wiggles and deviations of up to 100% from the data of Gillotay and Simon⁴. The values reported by Hubrich and Stuhl⁴ in the range 205–230 nm have increasingly larger deviations from the values reported by Gillotay and Simon⁴ with increasing wavelength. The results of Green and Wayne³ are significantly different from all the other data sets and are not considered in the recommendation. The recommended room temperature absorption cross sections in Table 4F-48 are the mean of the values reported by Hubrich and Stuhl⁴, Gillotay and Simon⁴, and Nayak et al.⁸ in the region 170–185 nm, the mean of the values reported by Gillotay and Simon⁴, Orlando et al.⁸, and Nayak et al.⁸ in the region 190–210 nm, and the values reported by Gillotay and Simon⁴ in the region 212–230 nm.

The temperature dependence of the absorption spectrum has been measured by Hubrich and Stuhl⁴ (160–230 nm) at 298 and 208 K, Gillotay and Simon⁴ (170–230 nm) over the range 210–295 K, Orlando et al.⁷ (190–230 nm) over the range 203–295 K, and Nayak et al.⁷ (160–210 nm) over the range at 223–333 K. A decrease of the absorption cross sections with decreasing temperature was observed by Gillotay and Simon⁴ and Nayak et al.⁷ over the wavelength range 160–230 nm and by Orlando et al.⁷ between 190 and 200 nm. An irregular temperature behavior was reported by Orlando et al.⁷ for the range 215–230 nm where the absorption spectrum at various temperatures cross. The absorption cross sections and temperature dependence have been parameterized using several different empirical functional forms. Gillotay and Simon⁴ used the polynomial expansion

\[\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T–273) \times \sum B_n \lambda^n \]

and reported calculated cross section values for T = 210, 230, 250, 270, and 295 K. The Aₙ and Bₙ parameters, valid for the temperature range 210–300 K and wavelength range 172–230 nm, are given below.

\[
\begin{align*}
A_0 &= 328.092008 & B_0 &= 4.289533 \times 10^{-1} \\
A_1 &= 6.342799 & B_1 &= 9.042817 \times 10^{-3} \\
A_2 &= 4.810362 \times 10^{-2} & B_2 &= 7.018009 \times 10^{-5} \\
A_3 &= 1.611991 \times 10^{-4} & B_3 &= 2.389065 \times 10^{-7} \\
A_4 &= 2.042613 \times 10^{-7} & B_4 &= 3.039799 \times 10^{-10}
\end{align*}
\]

Nayak et al.⁷ used the expression

\[\log_{10} (\sigma T) = \sum C_n (\lambda - 160)^n \]

and reported coefficients for 223, 233, 253, 273, 295, 313, and 333 K and the wavelength range 160–210 nm. The reported Cₙ parameters are given below.

\[
\begin{array}{cccc}
223 \text{ K} & 273 \text{ K} & 295 \text{ K} & 333 \text{ K} \\
C_1 &= -1.26669 \times 10^{-2} & -7.37889 \times 10^{-3} & -6.48269 \times 10^{-3} & -2.39647 \times 10^{-2} \\
C_2 &= -2.32945 \times 10^{-3} & -2.66537 \times 10^{-3} & -2.80923 \times 10^{-3} & -7.23910 \times 10^{-4} \\
C_3 &= 2.81933 \times 10^{-5} & 4.19193 \times 10^{-5} & 5.01979 \times 10^{-5} & -1.08049 \times 10^{-5} \\
C_4 &= -1.37963 \times 10^{-7} & -2.88472 \times 10^{-7} & -3.96860 \times 10^{-7} & 1.37618 \times 10^{-7}
\end{array}
\]

Orlando et al.⁸ used the expression

\[\ln \sigma(\lambda, T) = \sum (\sum a_{ij} (T–245.4)^{i-1}) (\lambda–206.214)^{j-1}, \quad i = 1–4, \quad j = 1–3 \]

for the temperature range 203–295 K and wavelength range 190–230 nm. The coefficients are given below.
\[a_{11} = -4.973 \times 10^4 \quad a_{12} = 9.077 \times 10^{-3} \quad a_{13} = -4.651 \times 10^{-5} \]
\[a_{21} = -4.175 \times 10^{-1} \quad a_{22} = 4.712 \times 10^{-4} \quad a_{23} = -1.005 \times 10^{-5} \]
\[a_{31} = 4.133 \times 10^{-4} \quad a_{32} = -6.432 \times 10^{-5} \quad a_{33} = 1.141 \times 10^{-6} \]
\[a_{41} = 7.145 \times 10^{-5} \quad a_{42} = -5.396 \times 10^{-6} \quad a_{43} = 1.187 \times 10^{-7} \]

Photolysis Quantum Yield and Product Studies: Quantum yields for Cl (2P3/2) and Cl*(2P1/2) atom formation in the photolysis of CH3CF2Cl at 193.3 nm have been measured by Brownsword et al.\(^2\) to be \(\Phi(\text{Cl} + \text{Cl}^*) = 0.90 \pm 0.17 \) with \(\Phi(\text{Cl}) = 0.65 \pm 0.12 \) and \(\Phi(\text{Cl}^*) = 0.25 \pm 0.05 \). Brownsword et al.\(^1\) reported the quantum yields for H atom formation in the photolysis at 121.6 and 193.3 nm to be 0.53 ± 0.12 and 0.06 ± 0.02, respectively.

Table 4F-48. Recommended Absorption Cross Sections of CH3CF2Cl at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>27.1</td>
<td>200</td>
<td>0.145</td>
<td>218</td>
<td>0.00243</td>
</tr>
<tr>
<td>175</td>
<td>14.0</td>
<td>202</td>
<td>0.0949</td>
<td>220</td>
<td>0.00145</td>
</tr>
<tr>
<td>180</td>
<td>6.38</td>
<td>204</td>
<td>0.0622</td>
<td>222</td>
<td>0.000845</td>
</tr>
<tr>
<td>185</td>
<td>2.73</td>
<td>206</td>
<td>0.0399</td>
<td>224</td>
<td>0.000484</td>
</tr>
<tr>
<td>190</td>
<td>1.02</td>
<td>208</td>
<td>0.0256</td>
<td>226</td>
<td>0.000271</td>
</tr>
<tr>
<td>192</td>
<td>0.706</td>
<td>210</td>
<td>0.0161</td>
<td>228</td>
<td>0.000148</td>
</tr>
<tr>
<td>194</td>
<td>0.482</td>
<td>212</td>
<td>0.0105</td>
<td>230</td>
<td>0.0000783</td>
</tr>
<tr>
<td>196</td>
<td>0.324</td>
<td>214</td>
<td>0.00652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>0.218</td>
<td>216</td>
<td>0.00401</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- 170–185 nm: mean of data from Gillotay and Simon,\(^6\) Hubrich and Stuhl,\(^6\) and Nayak et al.\(^7\)
- 190–210 nm: mean of data from Gillotay and Simon,\(^6\) Orlando et al.,\(^8\) and Nayak et al.\(^7\)
- 212–230 nm: Gillotay and Simon\(^6\)

F47. CH3CICHO (chloroacetalddehyde)

CH3CICHO + hv → Products

(1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of chloroacetalddehyde, CH3CICHO, has been measured at room temperature by Lucazeau and Sanderf\(^2\) (118–182 nm) and Libuda\(^1\) (235–360 nm). The absorption band centered at ~290 nm has prominent diffuse band structure at wavelengths >280 nm. The recommended absorption cross sections in Table 4F-49 are the average absorption cross sections over 1 nm intervals of the spectrum reported by Libuda\(^1\) (0.6 nm resolution).
Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-49. Recommended Absorption Cross Sections of CH₂ClCHO at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10² σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>0.952</td>
<td>270</td>
<td>2.46</td>
<td>300</td>
<td>5.57</td>
<td>330</td>
<td>1.64</td>
</tr>
<tr>
<td>241</td>
<td>0.887</td>
<td>271</td>
<td>2.65</td>
<td>301</td>
<td>5.10</td>
<td>331</td>
<td>1.52</td>
</tr>
<tr>
<td>242</td>
<td>0.885</td>
<td>272</td>
<td>2.85</td>
<td>302</td>
<td>4.92</td>
<td>332</td>
<td>1.68</td>
</tr>
<tr>
<td>243</td>
<td>0.881</td>
<td>273</td>
<td>2.98</td>
<td>303</td>
<td>5.01</td>
<td>333</td>
<td>1.42</td>
</tr>
<tr>
<td>244</td>
<td>0.845</td>
<td>274</td>
<td>3.04</td>
<td>304</td>
<td>5.30</td>
<td>334</td>
<td>1.36</td>
</tr>
<tr>
<td>245</td>
<td>0.814</td>
<td>275</td>
<td>3.13</td>
<td>305</td>
<td>5.27</td>
<td>335</td>
<td>1.06</td>
</tr>
<tr>
<td>246</td>
<td>0.815</td>
<td>276</td>
<td>3.29</td>
<td>306</td>
<td>5.48</td>
<td>336</td>
<td>0.747</td>
</tr>
<tr>
<td>247</td>
<td>0.841</td>
<td>277</td>
<td>3.38</td>
<td>307</td>
<td>5.34</td>
<td>337</td>
<td>0.622</td>
</tr>
<tr>
<td>248</td>
<td>0.857</td>
<td>278</td>
<td>3.57</td>
<td>308</td>
<td>5.44</td>
<td>338</td>
<td>0.502</td>
</tr>
<tr>
<td>249</td>
<td>0.864</td>
<td>279</td>
<td>3.82</td>
<td>309</td>
<td>5.37</td>
<td>339</td>
<td>0.411</td>
</tr>
<tr>
<td>250</td>
<td>0.875</td>
<td>280</td>
<td>3.99</td>
<td>310</td>
<td>5.03</td>
<td>340</td>
<td>0.340</td>
</tr>
<tr>
<td>251</td>
<td>0.884</td>
<td>281</td>
<td>4.23</td>
<td>311</td>
<td>4.61</td>
<td>341</td>
<td>0.281</td>
</tr>
<tr>
<td>252</td>
<td>0.926</td>
<td>282</td>
<td>4.09</td>
<td>312</td>
<td>3.92</td>
<td>342</td>
<td>0.247</td>
</tr>
<tr>
<td>253</td>
<td>0.959</td>
<td>283</td>
<td>4.15</td>
<td>313</td>
<td>3.71</td>
<td>343</td>
<td>0.213</td>
</tr>
<tr>
<td>254</td>
<td>0.977</td>
<td>284</td>
<td>4.31</td>
<td>314</td>
<td>3.73</td>
<td>344</td>
<td>0.190</td>
</tr>
<tr>
<td>255</td>
<td>1.01</td>
<td>285</td>
<td>4.55</td>
<td>315</td>
<td>3.96</td>
<td>345</td>
<td>0.159</td>
</tr>
<tr>
<td>256</td>
<td>1.08</td>
<td>286</td>
<td>4.64</td>
<td>316</td>
<td>3.85</td>
<td>346</td>
<td>0.136</td>
</tr>
<tr>
<td>257</td>
<td>1.18</td>
<td>287</td>
<td>4.80</td>
<td>317</td>
<td>4.16</td>
<td>347</td>
<td>0.0977</td>
</tr>
<tr>
<td>258</td>
<td>1.23</td>
<td>288</td>
<td>4.99</td>
<td>318</td>
<td>3.84</td>
<td>348</td>
<td>0.0791</td>
</tr>
<tr>
<td>259</td>
<td>1.28</td>
<td>289</td>
<td>5.03</td>
<td>319</td>
<td>3.78</td>
<td>349</td>
<td>0.0623</td>
</tr>
<tr>
<td>260</td>
<td>1.33</td>
<td>290</td>
<td>5.20</td>
<td>320</td>
<td>3.84</td>
<td>350</td>
<td>0.0545</td>
</tr>
<tr>
<td>261</td>
<td>1.42</td>
<td>291</td>
<td>4.95</td>
<td>321</td>
<td>3.43</td>
<td>351</td>
<td>0.0558</td>
</tr>
<tr>
<td>262</td>
<td>1.53</td>
<td>292</td>
<td>4.94</td>
<td>322</td>
<td>3.26</td>
<td>352</td>
<td>0.0603</td>
</tr>
<tr>
<td>263</td>
<td>1.68</td>
<td>293</td>
<td>5.14</td>
<td>323</td>
<td>2.49</td>
<td>353</td>
<td>0.0633</td>
</tr>
<tr>
<td>264</td>
<td>1.84</td>
<td>294</td>
<td>3.48</td>
<td>324</td>
<td>2.11</td>
<td>354</td>
<td>0.0565</td>
</tr>
<tr>
<td>265</td>
<td>1.91</td>
<td>295</td>
<td>3.47</td>
<td>325</td>
<td>1.92</td>
<td>355</td>
<td>0.0577</td>
</tr>
<tr>
<td>266</td>
<td>1.98</td>
<td>296</td>
<td>5.64</td>
<td>326</td>
<td>1.87</td>
<td>356</td>
<td>0.0239</td>
</tr>
<tr>
<td>267</td>
<td>2.08</td>
<td>297</td>
<td>5.56</td>
<td>327</td>
<td>1.87</td>
<td>357</td>
<td>0.0123</td>
</tr>
<tr>
<td>268</td>
<td>2.23</td>
<td>298</td>
<td>5.75</td>
<td>328</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>2.33</td>
<td>299</td>
<td>5.63</td>
<td>329</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Libuda¹

F48. CHCl₂CHO (dichloroacetaldehyde)

CHCl₂CHO + hv → Products (1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of dichloroacetaldehyde, CHCl₂CHO, has been measured at room temperature by Lucazeau and Sandorfy² (118–182 nm) and Libuda¹ (253–360 nm), who report an absorption band with weak structure around the maximum at ~300 nm. The recommended absorption cross sections in Table 4F-50 are averages over 1 nm intervals of the spectrum reported by Libuda¹ (0.6 nm resolution).

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-50. Recommended Absorption Cross Sections of CHCl₂CHO at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>0.0462</td>
<td>281</td>
<td>3.66</td>
<td>306</td>
<td>5.76</td>
<td>331</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>0.0787</td>
<td>282</td>
<td>3.85</td>
<td>307</td>
<td>5.70</td>
<td>332</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>0.167</td>
<td>283</td>
<td>4.02</td>
<td>308</td>
<td>5.49</td>
<td>333</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>0.221</td>
<td>284</td>
<td>4.23</td>
<td>309</td>
<td>5.36</td>
<td>334</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>0.247</td>
<td>285</td>
<td>4.43</td>
<td>310</td>
<td>5.25</td>
<td>335</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>0.313</td>
<td>286</td>
<td>4.63</td>
<td>311</td>
<td>4.99</td>
<td>336</td>
<td>0.859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>0.445</td>
<td>287</td>
<td>4.88</td>
<td>312</td>
<td>4.58</td>
<td>337</td>
<td>0.720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>0.596</td>
<td>288</td>
<td>4.96</td>
<td>313</td>
<td>4.40</td>
<td>338</td>
<td>0.594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>0.705</td>
<td>289</td>
<td>5.17</td>
<td>314</td>
<td>4.26</td>
<td>339</td>
<td>0.495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>0.785</td>
<td>290</td>
<td>5.32</td>
<td>315</td>
<td>4.11</td>
<td>340</td>
<td>0.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>0.914</td>
<td>291</td>
<td>5.38</td>
<td>316</td>
<td>3.98</td>
<td>341</td>
<td>0.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>1.09</td>
<td>292</td>
<td>5.51</td>
<td>317</td>
<td>3.85</td>
<td>342</td>
<td>0.315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>1.30</td>
<td>293</td>
<td>5.68</td>
<td>318</td>
<td>3.73</td>
<td>343</td>
<td>0.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>1.49</td>
<td>294</td>
<td>5.85</td>
<td>319</td>
<td>3.51</td>
<td>344</td>
<td>0.209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>1.67</td>
<td>295</td>
<td>5.88</td>
<td>320</td>
<td>3.30</td>
<td>345</td>
<td>0.182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>1.77</td>
<td>296</td>
<td>6.06</td>
<td>321</td>
<td>3.18</td>
<td>346</td>
<td>0.155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>1.91</td>
<td>297</td>
<td>5.97</td>
<td>322</td>
<td>3.00</td>
<td>347</td>
<td>0.134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>2.08</td>
<td>298</td>
<td>6.04</td>
<td>323</td>
<td>2.73</td>
<td>348</td>
<td>0.117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>274</td>
<td>2.28</td>
<td>299</td>
<td>6.02</td>
<td>324</td>
<td>2.48</td>
<td>349</td>
<td>0.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>2.57</td>
<td>300</td>
<td>6.14</td>
<td>325</td>
<td>2.27</td>
<td>350</td>
<td>0.0844</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>2.74</td>
<td>301</td>
<td>5.94</td>
<td>326</td>
<td>2.14</td>
<td>351</td>
<td>0.0707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>3.01</td>
<td>302</td>
<td>5.97</td>
<td>327</td>
<td>1.99</td>
<td>352</td>
<td>0.0697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>3.14</td>
<td>303</td>
<td>5.93</td>
<td>328</td>
<td>1.80</td>
<td>353</td>
<td>0.0638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>3.26</td>
<td>304</td>
<td>5.90</td>
<td>329</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>3.48</td>
<td>305</td>
<td>5.77</td>
<td>330</td>
<td>1.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Libuda¹

F49. CF₂ClCHO (difluorochloroacetaldehyde)

CF₂ClCHO + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of difluorochloroacetaldehyde, CF₂ClCHO, has been measured at room temperature by Libuda¹ (235–355 nm) and Rattigan et al.² (235–370 nm). The spectrum displays an absorption band over the wavelength range of the measurements with a maximum at 300 nm. The room temperature cross section data are in good agreement, within 3-10% around the peak, with the data from Rattigan et al.² being systematic greater than those of Libuda.¹ At wavelengths away from the peak the data from Rattigan et al.² are also greater, by 25% at 340 nm and 15 to 300% between 265 and 355 nm.

Rattigan et al.² also reported the temperature dependence of the absorption spectrum over the range 245–298 K. The cross sections increase near the peak and decrease in the long wavelength wing with decreasing temperature. Rattigan et al.² fit the measured temperature dependence with the empirical expression

$$\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 K) + B(\lambda)(T-298)$$

The recommended room temperature absorption cross sections in Table 4F-51 are the mean values of the data from Libuda¹ (using 1 nm averages of spectra recorded with 0.6 nm resolution) and Rattigan et al.² (5 nm averages of spectra recorded with 0.6 nm resolution) in the region 235–350 nm and the data from Rattigan et al.² in the region 355–370 nm. The temperature coefficients are taken from Rattigan et al.²
Table 4F-51. Recommended Absorption Cross Sections of CFClCHO at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^4 B$ (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^4 B$ (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^4 B$ (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>0.120</td>
<td>−29.0</td>
<td>285</td>
<td>11.8</td>
<td>−10.2</td>
<td>335</td>
<td>4.64</td>
<td>−2.83</td>
</tr>
<tr>
<td>240</td>
<td>0.295</td>
<td>−17.9</td>
<td>290</td>
<td>13.7</td>
<td>−10.6</td>
<td>340</td>
<td>2.66</td>
<td>−2.84</td>
</tr>
<tr>
<td>245</td>
<td>0.584</td>
<td>−13.5</td>
<td>295</td>
<td>15.2</td>
<td>−9.54</td>
<td>345</td>
<td>1.46</td>
<td>14.0</td>
</tr>
<tr>
<td>250</td>
<td>1.07</td>
<td>−11.8</td>
<td>300</td>
<td>16.0</td>
<td>−10.4</td>
<td>350</td>
<td>0.670</td>
<td>37.3</td>
</tr>
<tr>
<td>255</td>
<td>1.78</td>
<td>−10.7</td>
<td>305</td>
<td>15.6</td>
<td>−7.09</td>
<td>355</td>
<td>0.148</td>
<td>68.1</td>
</tr>
<tr>
<td>260</td>
<td>2.78</td>
<td>−10.5</td>
<td>310</td>
<td>15.2</td>
<td>−9.73</td>
<td>360</td>
<td>0.036</td>
<td>75.8</td>
</tr>
<tr>
<td>265</td>
<td>4.09</td>
<td>−10.4</td>
<td>315</td>
<td>13.0</td>
<td>−8.32</td>
<td>365</td>
<td>0.012</td>
<td>52.9</td>
</tr>
<tr>
<td>270</td>
<td>5.75</td>
<td>−10.5</td>
<td>320</td>
<td>11.4</td>
<td>−7.71</td>
<td>370</td>
<td>0.003</td>
<td>63.1</td>
</tr>
<tr>
<td>275</td>
<td>7.67</td>
<td>−9.96</td>
<td>325</td>
<td>9.07</td>
<td>−5.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>9.79</td>
<td>−10.6</td>
<td>330</td>
<td>6.38</td>
<td>−3.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Absorption cross-sections:
- 235–350 nm: mean of data from Libuda and Rattigan et al.
- 355–370 nm: Rattigan et al.

Temperature coefficients:
(1) Rattigan et al. Also reported the temperature dependence of the absorption spectrum over the temperature range 253–298 K.

\[
\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298)
\]

F50. CFClCHO (fluorodichloroacetaldehyde)

CFClCHO + hv → Products

(1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of fluorodichloroacetaldehyde, CFClCHO, has been measured at room temperature by Libuda (235–360 nm) and Rattigan et al. (235–370 nm). Over this wavelength range there is an absorption band with a maximum near 296 nm. The cross section data from Libuda are greater by 10-30% than the data from Rattigan et al. over the entire absorption band (except for a few points in the wings).

Rattigan et al. also reported the temperature dependence of the absorption spectrum over the temperature range 253–298 K. The cross sections increased near the peak and decreased in the long wavelength wing with decreasing temperature. Rattigan et al. fit the measured temperature dependence with the empirical expression

\[
\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298)
\]

The recommended room temperature absorption cross sections in Table 4F-52 are the mean values of the data from Libuda (using 1 nm averages of spectra recorded with 0.6 nm resolution) and Rattigan et al. (5 nm averages of spectra recorded with 0.6 nm resolution) in the region 235–355 nm and the data from Rattigan et al. in the region 360–370 nm. The temperature coefficients are taken from Rattigan et al.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-52. Recommended Absorption Cross Sections of CFCl\textsubscript{2}CHO at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>1020 (\sigma) (cm2)</th>
<th>104 B (K-1)</th>
<th>(\lambda) (nm)</th>
<th>1020 (\sigma) (cm2)</th>
<th>104 B (K-1)</th>
<th>(\lambda) (nm)</th>
<th>1020 (\sigma) (cm2)</th>
<th>104 B (K-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>0.305</td>
<td>136.0</td>
<td>285</td>
<td>14.1</td>
<td>–7.82</td>
<td>335</td>
<td>2.50</td>
<td>24.60</td>
</tr>
<tr>
<td>240</td>
<td>0.599</td>
<td>87.0</td>
<td>290</td>
<td>15.3</td>
<td>–6.89</td>
<td>340</td>
<td>1.20</td>
<td>36.50</td>
</tr>
<tr>
<td>245</td>
<td>1.22</td>
<td>30.6</td>
<td>295</td>
<td>16.1</td>
<td>–6.41</td>
<td>345</td>
<td>0.616</td>
<td>58.10</td>
</tr>
<tr>
<td>250</td>
<td>1.91</td>
<td>6.41</td>
<td>300</td>
<td>15.7</td>
<td>–4.50</td>
<td>350</td>
<td>0.245</td>
<td>84.90</td>
</tr>
<tr>
<td>255</td>
<td>2.89</td>
<td>1.24</td>
<td>305</td>
<td>14.9</td>
<td>–2.93</td>
<td>355</td>
<td>0.067</td>
<td>92.80</td>
</tr>
<tr>
<td>260</td>
<td>4.21</td>
<td>–6.12</td>
<td>310</td>
<td>13.0</td>
<td>1.73</td>
<td>360</td>
<td>0.017</td>
<td>93.20</td>
</tr>
<tr>
<td>265</td>
<td>5.89</td>
<td>–7.55</td>
<td>315</td>
<td>10.9</td>
<td>2.70</td>
<td>365</td>
<td>0.007</td>
<td>103.2</td>
</tr>
<tr>
<td>270</td>
<td>7.84</td>
<td>–8.11</td>
<td>320</td>
<td>8.66</td>
<td>6.97</td>
<td>370</td>
<td>0.002</td>
<td>138.3</td>
</tr>
<tr>
<td>275</td>
<td>9.95</td>
<td>–8.28</td>
<td>325</td>
<td>5.97</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>12.1</td>
<td>–8.04</td>
<td>330</td>
<td>4.11</td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Absorption cross-sections:
- 235–355 nm: mean of data from Libuda \(^1\) and Rattigan et al.\(^2\)
- 360–370 nm: Rattigan et al.\(^2\)

Temperature coefficients:
Rattigan et al.\(^2\)

\[
\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298) \text{ for the temperature range 253–298 K}
\]

F51. **CCl\textsubscript{3}CHO** (trichloroacetaldehyde, chloral)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(\Delta H) (kJ mol-1)</th>
<th>(\lambda) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl\textsubscript{3}CHO + h\nu</td>
<td>351</td>
<td>341 nm</td>
</tr>
<tr>
<td>(\rightarrow) CCl\textsubscript{3}H + HCO</td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>(\rightarrow) CCl\textsubscript{3}CO + H</td>
<td>391</td>
<td>306 nm</td>
</tr>
<tr>
<td>(\rightarrow) CCl\textsubscript{3}CHO + Cl</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>(\rightarrow) CCl\textsubscript{3}H + CO</td>
<td>22.6</td>
<td>5300 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
</tr>
</tbody>
</table>

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of trichloroacetaldehyde (chloral), CCl\textsubscript{3}CHO, has been measured at room temperature by Lucazeau and Sandorfy \(^3\) (118–182 and 250–357 nm), Libuda\(^2\) (235–350 nm), Rattigan et al.\(^4,5\) (200–360 nm), Gillotay et al.\(^1\) (166–348 nm), and Talukdar et al.\(^6\) (200–344 nm). Overlapping absorption bands were observed with a maximum near 290 nm and a strong band peaking below 180 nm. Except for the data of Lucazeau and Sandorfy, the results for the 290 nm absorption band are in reasonable agreement with a 20% range in cross section values at 290 nm. Gillotay et al.\(^1\) report the largest cross section values and Libuda\(^2\) the smallest. The data sets from Rattigan et al.\(^4\) and Talukdar et al.\(^6\) agree to better than 10% around the absorption maximum. At longer wavelengths, the data sets from Rattigan et al.\(^4\) and Talukdar et al.\(^6\) are nearly identical. The cross sections from Gillotay et al.\(^1\) are appreciably higher at the longer wavelengths and there is no explanation for this discrepancy. The temperature dependence of the absorption spectrum has been measured by Rattigan et al.\(^4,5\) (243–296 K), Gillotay et al.\(^1\) (210–295 K), and Talukdar et al.\(^6\) (240–360 K). These studies are in agreement and found that the absorption cross sections decrease with decreasing temperature below ~260 nm and above ~290 nm. Rattigan et al.\(^4\) and Talukdar et al.\(^6\) parameterized the temperature dependence using the empirical expression

\[
\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298)
\]

The recommended absorption cross sections and B(\(\lambda \)) temperature coefficients in Table 4F-53 are taken from Talukdar et al.\(^6\).

Photolysis Quantum Yield and Product Studies: Quantum yields for the production of H, O\(^{(3P)}\), and Cl atoms in the photolysis of CCl\textsubscript{3}CHO at 193, 248, and 308 nm have been measured by Talukdar et al.\(^6\). The yields of H and O atoms were found to be small or below the detection limit, \(\Phi(\text{O}(^{3}\text{P})) < 0.02 \) and \(< 0.01 \) at 248 and 308 nm.
nm, respectively, and $\Phi(H) = 0.04 \pm 0.005$, <0.01, and <0.002 at 193, 248, and 308 nm, respectively. Cl atoms were found to be the primary photolysis product at 308 nm with $\Phi(Cl) = 1.3 \pm 0.3$.

Table 4F-53. Recommended Absorption Cross Sections of CCl$_3$CHO at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^4 B$ (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^4 B$ (K$^{-1}$)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^4 B$ (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>187</td>
<td>22.0</td>
<td>250</td>
<td>2.18</td>
<td>3.73</td>
<td>300</td>
<td>9.25</td>
<td>3.07</td>
</tr>
<tr>
<td>202</td>
<td>153</td>
<td>23.9</td>
<td>252</td>
<td>2.54</td>
<td>1.50</td>
<td>302</td>
<td>8.77</td>
<td>3.60</td>
</tr>
<tr>
<td>204</td>
<td>122</td>
<td>27.2</td>
<td>254</td>
<td>2.92</td>
<td>0.324</td>
<td>304</td>
<td>8.17</td>
<td>4.37</td>
</tr>
<tr>
<td>206</td>
<td>95.7</td>
<td>30.6</td>
<td>256</td>
<td>3.36</td>
<td>-0.569</td>
<td>306</td>
<td>7.50</td>
<td>5.25</td>
</tr>
<tr>
<td>208</td>
<td>73.8</td>
<td>34.1</td>
<td>258</td>
<td>3.84</td>
<td>-0.877</td>
<td>308</td>
<td>6.86</td>
<td>6.10</td>
</tr>
<tr>
<td>210</td>
<td>56.3</td>
<td>37.5</td>
<td>260</td>
<td>4.35</td>
<td>-1.23</td>
<td>310</td>
<td>6.18</td>
<td>6.91</td>
</tr>
<tr>
<td>212</td>
<td>42.6</td>
<td>40.9</td>
<td>262</td>
<td>4.90</td>
<td>-1.65</td>
<td>312</td>
<td>5.58</td>
<td>7.90</td>
</tr>
<tr>
<td>214</td>
<td>31.8</td>
<td>44.0</td>
<td>264</td>
<td>5.48</td>
<td>-1.62</td>
<td>314</td>
<td>4.98</td>
<td>9.30</td>
</tr>
<tr>
<td>216</td>
<td>23.8</td>
<td>47.2</td>
<td>266</td>
<td>6.07</td>
<td>-1.50</td>
<td>316</td>
<td>4.33</td>
<td>11.2</td>
</tr>
<tr>
<td>218</td>
<td>17.1</td>
<td>50.2</td>
<td>268</td>
<td>6.68</td>
<td>-1.41</td>
<td>318</td>
<td>3.68</td>
<td>13.2</td>
</tr>
<tr>
<td>220</td>
<td>13.1</td>
<td>52.9</td>
<td>270</td>
<td>7.28</td>
<td>-1.22</td>
<td>320</td>
<td>3.09</td>
<td>15.1</td>
</tr>
<tr>
<td>222</td>
<td>9.75</td>
<td>55.6</td>
<td>272</td>
<td>7.88</td>
<td>-1.07</td>
<td>322</td>
<td>2.51</td>
<td>16.7</td>
</tr>
<tr>
<td>224</td>
<td>7.24</td>
<td>57.6</td>
<td>274</td>
<td>8.46</td>
<td>-0.931</td>
<td>324</td>
<td>2.09</td>
<td>18.5</td>
</tr>
<tr>
<td>226</td>
<td>5.39</td>
<td>59.0</td>
<td>276</td>
<td>8.99</td>
<td>-0.584</td>
<td>326</td>
<td>1.76</td>
<td>21.1</td>
</tr>
<tr>
<td>228</td>
<td>4.06</td>
<td>60.4</td>
<td>278</td>
<td>9.49</td>
<td>-0.412</td>
<td>328</td>
<td>1.43</td>
<td>25.0</td>
</tr>
<tr>
<td>230</td>
<td>3.07</td>
<td>60.5</td>
<td>280</td>
<td>9.94</td>
<td>-0.481</td>
<td>330</td>
<td>1.12</td>
<td>30.3</td>
</tr>
<tr>
<td>232</td>
<td>2.39</td>
<td>59.5</td>
<td>282</td>
<td>10.3</td>
<td>-0.235</td>
<td>332</td>
<td>0.849</td>
<td>36.6</td>
</tr>
<tr>
<td>234</td>
<td>1.90</td>
<td>55.9</td>
<td>284</td>
<td>10.6</td>
<td>0.242</td>
<td>334</td>
<td>0.590</td>
<td>43.3</td>
</tr>
<tr>
<td>236</td>
<td>1.62</td>
<td>49.2</td>
<td>286</td>
<td>10.8</td>
<td>0.475</td>
<td>336</td>
<td>0.373</td>
<td>49.8</td>
</tr>
<tr>
<td>238</td>
<td>1.43</td>
<td>41.6</td>
<td>288</td>
<td>10.9</td>
<td>0.750</td>
<td>338</td>
<td>0.261</td>
<td>55.6</td>
</tr>
<tr>
<td>240</td>
<td>1.39</td>
<td>33.0</td>
<td>290</td>
<td>10.9</td>
<td>1.09</td>
<td>340</td>
<td>0.188</td>
<td>60.2</td>
</tr>
<tr>
<td>242</td>
<td>1.41</td>
<td>24.0</td>
<td>292</td>
<td>10.8</td>
<td>1.51</td>
<td>342</td>
<td>0.136</td>
<td>65.0</td>
</tr>
<tr>
<td>244</td>
<td>1.53</td>
<td>16.4</td>
<td>294</td>
<td>10.6</td>
<td>1.96</td>
<td>344</td>
<td>0.100</td>
<td>69.0</td>
</tr>
<tr>
<td>246</td>
<td>1.66</td>
<td>10.4</td>
<td>296</td>
<td>10.3</td>
<td>2.38</td>
<td>298</td>
<td>9.92</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Note:
Absorption cross-sections (σ):
Talukdar et al.6
Temperature coefficients (B):
Talukdar et al.6

$\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298) \text{ (240} - 360 \text{ K range)}$

4-260
Absorption Cross Sections: The UV absorption spectrum of acetyl chloride, CH₃C(O)Cl, has been measured at room temperature by Libuda¹ (233–300 nm) and Maricq² (190–341 nm). In this wavelength range the spectrum has two overlapping continuous absorption bands, one centered near 240 nm and a stronger band peaking below 190 nm. Both studies report a peak cross section for the 240 nm band of ~1.16 × 10⁻¹⁹ cm² molecule⁻¹. However, the wavelength dependence of the 240 nm band is significantly different in the two studies. Libuda¹ report a narrower band with a peak shifted to longer wavelength compared to that of Maricq². At wavelengths >280 nm the cross section data reported by Maricq² is very noisy making any comparisons difficult. The recommended absorption cross sections in Table 4F-54 are 1 nm averages of data from Maricq² (0.5 nm resolution) for the region 191–292 nm and 1 nm averages of the data from Libuda¹ (0.6 nm resolution) for the region 293–302 nm.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4F-54. Recommended Absorption Cross Sections of CH₃C(O)Cl at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10⁻²⁰σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁻²⁰σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁻²⁰σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁻²⁰σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>191</td>
<td>34.7</td>
<td>219</td>
<td>5.95</td>
<td>247</td>
<td>11.0</td>
<td>275</td>
<td>1.98</td>
</tr>
<tr>
<td>192</td>
<td>26.3</td>
<td>220</td>
<td>6.28</td>
<td>248</td>
<td>10.9</td>
<td>276</td>
<td>1.90</td>
</tr>
<tr>
<td>193</td>
<td>23.6</td>
<td>221</td>
<td>6.57</td>
<td>249</td>
<td>10.6</td>
<td>277</td>
<td>1.67</td>
</tr>
<tr>
<td>194</td>
<td>20.5</td>
<td>222</td>
<td>6.93</td>
<td>250</td>
<td>10.4</td>
<td>278</td>
<td>1.42</td>
</tr>
<tr>
<td>195</td>
<td>17.1</td>
<td>223</td>
<td>7.15</td>
<td>251</td>
<td>10.1</td>
<td>279</td>
<td>1.24</td>
</tr>
<tr>
<td>196</td>
<td>14.1</td>
<td>224</td>
<td>7.53</td>
<td>252</td>
<td>9.76</td>
<td>280</td>
<td>1.12</td>
</tr>
<tr>
<td>197</td>
<td>11.4</td>
<td>225</td>
<td>7.99</td>
<td>253</td>
<td>9.51</td>
<td>281</td>
<td>0.959</td>
</tr>
<tr>
<td>198</td>
<td>9.08</td>
<td>226</td>
<td>8.23</td>
<td>254</td>
<td>9.17</td>
<td>282</td>
<td>0.781</td>
</tr>
<tr>
<td>199</td>
<td>7.53</td>
<td>227</td>
<td>8.59</td>
<td>255</td>
<td>8.77</td>
<td>283</td>
<td>0.653</td>
</tr>
<tr>
<td>200</td>
<td>6.37</td>
<td>228</td>
<td>8.98</td>
<td>256</td>
<td>8.36</td>
<td>284</td>
<td>0.479</td>
</tr>
<tr>
<td>201</td>
<td>5.17</td>
<td>229</td>
<td>9.27</td>
<td>257</td>
<td>8.03</td>
<td>285</td>
<td>0.391</td>
</tr>
<tr>
<td>202</td>
<td>4.34</td>
<td>230</td>
<td>9.61</td>
<td>258</td>
<td>7.67</td>
<td>286</td>
<td>0.389</td>
</tr>
<tr>
<td>203</td>
<td>3.83</td>
<td>231</td>
<td>9.93</td>
<td>259</td>
<td>7.27</td>
<td>287</td>
<td>0.327</td>
</tr>
<tr>
<td>204</td>
<td>3.54</td>
<td>232</td>
<td>10.1</td>
<td>260</td>
<td>6.86</td>
<td>288</td>
<td>0.307</td>
</tr>
<tr>
<td>205</td>
<td>3.45</td>
<td>233</td>
<td>10.3</td>
<td>261</td>
<td>6.55</td>
<td>289</td>
<td>0.267</td>
</tr>
<tr>
<td>206</td>
<td>3.28</td>
<td>234</td>
<td>10.5</td>
<td>262</td>
<td>6.20</td>
<td>290</td>
<td>0.213</td>
</tr>
<tr>
<td>207</td>
<td>3.12</td>
<td>235</td>
<td>10.7</td>
<td>263</td>
<td>5.79</td>
<td>291</td>
<td>0.200</td>
</tr>
<tr>
<td>208</td>
<td>3.16</td>
<td>236</td>
<td>10.9</td>
<td>264</td>
<td>5.40</td>
<td>292</td>
<td>0.173</td>
</tr>
<tr>
<td>209</td>
<td>3.35</td>
<td>237</td>
<td>11.2</td>
<td>265</td>
<td>5.11</td>
<td>293</td>
<td>0.129</td>
</tr>
<tr>
<td>210</td>
<td>3.48</td>
<td>238</td>
<td>11.3</td>
<td>266</td>
<td>4.76</td>
<td>294</td>
<td>0.103</td>
</tr>
<tr>
<td>211</td>
<td>3.72</td>
<td>239</td>
<td>11.3</td>
<td>267</td>
<td>4.39</td>
<td>295</td>
<td>0.0846</td>
</tr>
<tr>
<td>212</td>
<td>3.89</td>
<td>240</td>
<td>11.4</td>
<td>268</td>
<td>4.03</td>
<td>296</td>
<td>0.0716</td>
</tr>
<tr>
<td>213</td>
<td>4.06</td>
<td>241</td>
<td>11.5</td>
<td>269</td>
<td>3.70</td>
<td>297</td>
<td>0.0599</td>
</tr>
<tr>
<td>214</td>
<td>4.40</td>
<td>242</td>
<td>11.5</td>
<td>270</td>
<td>3.36</td>
<td>298</td>
<td>0.0500</td>
</tr>
<tr>
<td>215</td>
<td>4.68</td>
<td>243</td>
<td>11.4</td>
<td>271</td>
<td>3.06</td>
<td>299</td>
<td>0.0404</td>
</tr>
<tr>
<td>216</td>
<td>4.88</td>
<td>244</td>
<td>11.3</td>
<td>272</td>
<td>2.77</td>
<td>300</td>
<td>0.0336</td>
</tr>
<tr>
<td>217</td>
<td>5.14</td>
<td>245</td>
<td>11.2</td>
<td>273</td>
<td>2.49</td>
<td>301</td>
<td>0.0298</td>
</tr>
<tr>
<td>218</td>
<td>5.54</td>
<td>246</td>
<td>11.1</td>
<td>274</td>
<td>2.19</td>
<td>302</td>
<td>0.0265</td>
</tr>
</tbody>
</table>

Note:
191–292 nm: Maricq²
293–302 nm: Libuda¹

(2) Maricq, M. M., personal communication.
F53. **CH$_2$ClC(O)Cl (chloroacetyl chloride)**

CH$_2$ClC(O)Cl $+$ hv \rightarrow Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of chloroacetyl chloride, CH$_2$ClC(O)Cl, has been measured at room temperature and 234–342 nm by Libuda.1 The spectrum has an absorption band with the maximum around 248 nm. Above 315 nm the data shows a somewhat irregular behavior and is considered unreliable. Therefore, the recommended absorption cross sections in Table 4F-55 are the 1 nm averages of the data from Libuda1 (0.6 nm resolution) excluding this region.

Photolysis Quantum Yield and Product Studies: No recommendation.

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>9.50</td>
<td>256</td>
<td>11.2</td>
<td>277</td>
<td>4.00</td>
<td>298</td>
<td>0.409</td>
</tr>
<tr>
<td>236</td>
<td>10.0</td>
<td>257</td>
<td>11.0</td>
<td>278</td>
<td>3.71</td>
<td>299</td>
<td>0.353</td>
</tr>
<tr>
<td>237</td>
<td>10.4</td>
<td>258</td>
<td>10.7</td>
<td>279</td>
<td>3.41</td>
<td>300</td>
<td>0.300</td>
</tr>
<tr>
<td>238</td>
<td>11.0</td>
<td>259</td>
<td>10.4</td>
<td>280</td>
<td>3.15</td>
<td>301</td>
<td>0.248</td>
</tr>
<tr>
<td>239</td>
<td>11.5</td>
<td>260</td>
<td>10.0</td>
<td>281</td>
<td>2.89</td>
<td>302</td>
<td>0.199</td>
</tr>
<tr>
<td>240</td>
<td>11.8</td>
<td>261</td>
<td>9.67</td>
<td>282</td>
<td>2.65</td>
<td>303</td>
<td>0.170</td>
</tr>
<tr>
<td>241</td>
<td>12.0</td>
<td>262</td>
<td>9.32</td>
<td>283</td>
<td>2.43</td>
<td>304</td>
<td>0.157</td>
</tr>
<tr>
<td>242</td>
<td>12.3</td>
<td>263</td>
<td>8.94</td>
<td>284</td>
<td>2.21</td>
<td>305</td>
<td>0.131</td>
</tr>
<tr>
<td>243</td>
<td>12.5</td>
<td>264</td>
<td>8.55</td>
<td>285</td>
<td>2.03</td>
<td>306</td>
<td>0.113</td>
</tr>
<tr>
<td>244</td>
<td>12.7</td>
<td>265</td>
<td>8.16</td>
<td>286</td>
<td>1.85</td>
<td>307</td>
<td>0.0909</td>
</tr>
<tr>
<td>245</td>
<td>12.7</td>
<td>266</td>
<td>7.80</td>
<td>287</td>
<td>1.67</td>
<td>308</td>
<td>0.0809</td>
</tr>
<tr>
<td>246</td>
<td>12.7</td>
<td>267</td>
<td>7.41</td>
<td>288</td>
<td>1.50</td>
<td>309</td>
<td>0.0657</td>
</tr>
<tr>
<td>247</td>
<td>12.7</td>
<td>268</td>
<td>7.06</td>
<td>289</td>
<td>1.33</td>
<td>310</td>
<td>0.0547</td>
</tr>
<tr>
<td>248</td>
<td>12.8</td>
<td>269</td>
<td>6.72</td>
<td>290</td>
<td>1.17</td>
<td>311</td>
<td>0.0522</td>
</tr>
<tr>
<td>249</td>
<td>12.7</td>
<td>270</td>
<td>6.30</td>
<td>291</td>
<td>1.04</td>
<td>312</td>
<td>0.0419</td>
</tr>
<tr>
<td>250</td>
<td>12.5</td>
<td>271</td>
<td>5.90</td>
<td>292</td>
<td>0.918</td>
<td>313</td>
<td>0.0380</td>
</tr>
<tr>
<td>251</td>
<td>12.4</td>
<td>272</td>
<td>5.53</td>
<td>293</td>
<td>0.814</td>
<td>314</td>
<td>0.0311</td>
</tr>
<tr>
<td>252</td>
<td>12.3</td>
<td>273</td>
<td>5.23</td>
<td>294</td>
<td>0.717</td>
<td>315</td>
<td>0.0286</td>
</tr>
<tr>
<td>253</td>
<td>12.1</td>
<td>274</td>
<td>4.93</td>
<td>295</td>
<td>0.628</td>
<td>316</td>
<td>0.0214</td>
</tr>
<tr>
<td>254</td>
<td>11.8</td>
<td>275</td>
<td>4.61</td>
<td>296</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>11.5</td>
<td>276</td>
<td>4.33</td>
<td>297</td>
<td>0.473</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Libuda1

F54. **CHCl$_2$C(O)Cl (dichloroacetyl chloride)**

CHCl$_2$C(O)Cl $+$ hv \rightarrow Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of dichloroacetyl chloride, CHCl$_2$C(O)Cl, has been measured at room temperature by Libuda1 (235–338 nm) and Villenave et al.2 (200–300 nm). The spectrum has an absorption band with the maximum around 258 nm. The reported cross sections are in very good agreement between 242 and 300 nm with the Villenave et al.2 cross sections being systematically smaller by 1–10%. At shorter wavelengths the absorption cross sections reported by Libuda1 are smaller by up to ~25% at 235 nm. Villenave et al.2 observed a minimum near 232 nm and increasing cross sections between 230 and 220 nm. At the longer wavelengths the absorption spectrum reported by Libuda1 is irregular at wavelengths >316 nm. The recommended absorption cross sections in Table 4F-56 are from Villenave et al.2

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-56. Recommended Absorption Cross Sections of CHCl₂C(O)Cl at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>21.7</td>
</tr>
<tr>
<td>230</td>
<td>13.2</td>
</tr>
<tr>
<td>240</td>
<td>15.7</td>
</tr>
<tr>
<td>250</td>
<td>20.0</td>
</tr>
<tr>
<td>256</td>
<td>20.9</td>
</tr>
<tr>
<td>260</td>
<td>20.8</td>
</tr>
<tr>
<td>270</td>
<td>17.1</td>
</tr>
<tr>
<td>280</td>
<td>10.5</td>
</tr>
<tr>
<td>290</td>
<td>4.7</td>
</tr>
<tr>
<td>300</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Note:
Villenave et al.²

F55. CCl₃C(O)Cl (trichloroacetyl chloride)

CCl₃C(O)Cl + h\(\nu \) → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of trichloroacetyl chloride, CCl₃C(O)Cl, has been measured at room temperature by Libuda² (235–342 nm), Villenave et al.³ (220–290 nm), and Gillotay et al.¹ (166–338 nm). The absorption spectrum has two overlapping bands with a peak near 256 nm and a stronger band at shorter wavelengths with a peak at ~176 nm. The spectra reported by Gillotay et al.¹ and Villenave et al.³ are in good agreement. Although the absolute absorption cross sections are similar, the absorption spectrum reported by Libuda² has a significantly different wavelength dependence than reported in the other studies. Although the cross section data from Villenave et al.³ and Gillotay et al.¹ are in good agreement, the recommended absorption cross sections in Table 4F-57 are from Gillotay et al.¹ (0.015 nm resolution) and are averages over the 500 cm⁻¹ and 5 nm intervals generally used in stratospheric photodissociation calculations.

The temperature dependence of the absorption spectrum has been measured by Gillotay et al.¹ over the temperature range 210–295 K. They report an increase in absorption cross section with increasing temperature at all wavelengths.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-57. Recommended Absorption Cross Sections of CCl₃C(O)Cl at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.7–169.5</td>
<td>671</td>
<td>204.1–206.2</td>
<td>231</td>
<td>256.4–259.7</td>
<td>22.6</td>
</tr>
<tr>
<td>169.5–172.4</td>
<td>699</td>
<td>206.2–208.3</td>
<td>194</td>
<td>259.7–263.2</td>
<td>22.3</td>
</tr>
<tr>
<td>172.4–173.9</td>
<td>712</td>
<td>208.3–210.5</td>
<td>160</td>
<td>263.2–266.7</td>
<td>21.1</td>
</tr>
<tr>
<td>173.9–175.4</td>
<td>716</td>
<td>210.5–212.8</td>
<td>129</td>
<td>266.7–270.3</td>
<td>19.1</td>
</tr>
<tr>
<td>175.4–177.0</td>
<td>717</td>
<td>212.8–215.0</td>
<td>102</td>
<td>270.3–274.0</td>
<td>16.6</td>
</tr>
<tr>
<td>177.0–178.6</td>
<td>714</td>
<td>215.0–217.4</td>
<td>78.9</td>
<td>274.0–277.8</td>
<td>13.7</td>
</tr>
<tr>
<td>178.6–180.2</td>
<td>706</td>
<td>217.4–219.8</td>
<td>59.5</td>
<td>277.8–281.7</td>
<td>10.7</td>
</tr>
<tr>
<td>180.2–181.8</td>
<td>694</td>
<td>219.8–222.2</td>
<td>44.0</td>
<td>281.7–285.7</td>
<td>8.14</td>
</tr>
<tr>
<td>181.8–183.5</td>
<td>677</td>
<td>222.2–224.7</td>
<td>31.8</td>
<td>285.7–289.9</td>
<td>5.86</td>
</tr>
<tr>
<td>183.5–185.2</td>
<td>655</td>
<td>224.7–227.3</td>
<td>25.8</td>
<td>289.9–294.1</td>
<td>4.03</td>
</tr>
<tr>
<td>185.2–186.9</td>
<td>630</td>
<td>227.3–229.9</td>
<td>21.9</td>
<td>294.1–298.5</td>
<td>2.67</td>
</tr>
<tr>
<td>186.9–188.7</td>
<td>599</td>
<td>229.9–232.6</td>
<td>19.5</td>
<td>298.5–303.0</td>
<td>1.68</td>
</tr>
<tr>
<td>188.7–190.5</td>
<td>567</td>
<td>232.6–235.3</td>
<td>18.3</td>
<td>303.0–307.7</td>
<td>0.921</td>
</tr>
<tr>
<td>190.5–192.3</td>
<td>528</td>
<td>235.3–238.1</td>
<td>17.9</td>
<td>307.7–312.5</td>
<td>0.605</td>
</tr>
<tr>
<td>192.3–194.2</td>
<td>487</td>
<td>238.1–241.0</td>
<td>18.1</td>
<td>312.5–317.5</td>
<td>0.339</td>
</tr>
<tr>
<td>194.2–196.1</td>
<td>445</td>
<td>241.0–243.9</td>
<td>18.7</td>
<td>317.5–322.5</td>
<td>0.188</td>
</tr>
<tr>
<td>196.1–198.0</td>
<td>402</td>
<td>243.9–246.9</td>
<td>19.7</td>
<td>322.5–327.5</td>
<td>0.104</td>
</tr>
<tr>
<td>198.0–200.0</td>
<td>358</td>
<td>246.9–250.0</td>
<td>20.9</td>
<td>327.5–332.5</td>
<td>0.0578</td>
</tr>
<tr>
<td>200.0–202.0</td>
<td>314</td>
<td>250.0–253.2</td>
<td>21.8</td>
<td>332.5–337.5</td>
<td>0.0326</td>
</tr>
<tr>
<td>202.0–204.1</td>
<td>272</td>
<td>253.2–256.4</td>
<td>22.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Gillotay et al.¹

F56. CF₃CF₂CHCl₂ (1,1,1,2,2-pentafluoro-3,3-dichloropropane, HCFC–225ca)

CF₃CF₂CHCl₂ (HCFC–225ca) + hv → Products

(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of 1,1,1,2,2-pentafluoro-3,3-dichloropropane (HCFC–225ca), CF₃CF₂CHCl₂, has been measured in the gas and liquid phase at 298 K by Braun et al.¹ (160–250 nm). The recommended absorption cross sections in Table 4F-58 are taken from this work. Braun et al.¹ give an expression that can be used to calculate the gas-phase absorption cross sections over the wavelength range 170–270 nm

\[
\log_{10} \varepsilon = \sum a_n(\lambda - 160)^n
\]

\[
a_0 = 1.425 \quad a_1 = 4.542 \times 10^{-2} \quad a_2 = -2.036 \times 10^{-3} \quad a_3 = 1.042 \times 10^{-5}
\]

where the absorption coefficients \(\varepsilon \) are in units of (atm, 298 K)⁻¹ cm⁻¹ (\(\lambda = 4.06 \times 10^{-20} \varepsilon \)).

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-58. Recommended Absorption Cross Sections of CF$_3$CF$_2$CHCl$_2$ (HCFC-225ca) at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>268.7</td>
<td>202</td>
<td>11.58</td>
</tr>
<tr>
<td>162</td>
<td>236.8</td>
<td>204</td>
<td>8.185</td>
</tr>
<tr>
<td>164</td>
<td>207.6</td>
<td>206</td>
<td>5.802</td>
</tr>
<tr>
<td>166</td>
<td>189.0</td>
<td>208</td>
<td>4.084</td>
</tr>
<tr>
<td>168</td>
<td>181.4</td>
<td>210</td>
<td>2.903</td>
</tr>
<tr>
<td>170</td>
<td>182.7</td>
<td>212</td>
<td>2.042</td>
</tr>
<tr>
<td>172</td>
<td>182.8</td>
<td>214</td>
<td>1.429</td>
</tr>
<tr>
<td>174</td>
<td>189.0</td>
<td>216</td>
<td>1.05</td>
</tr>
<tr>
<td>176</td>
<td>190.9</td>
<td>218</td>
<td>0.727</td>
</tr>
<tr>
<td>178</td>
<td>187.9</td>
<td>220</td>
<td>0.463</td>
</tr>
<tr>
<td>180</td>
<td>177.5</td>
<td>222</td>
<td>0.308</td>
</tr>
<tr>
<td>182</td>
<td>161.1</td>
<td>224</td>
<td>0.209</td>
</tr>
<tr>
<td>184</td>
<td>140.3</td>
<td>226</td>
<td>0.145</td>
</tr>
<tr>
<td>186</td>
<td>118.3</td>
<td>228</td>
<td>0.0987</td>
</tr>
<tr>
<td>188</td>
<td>96.51</td>
<td>230</td>
<td>0.0653</td>
</tr>
<tr>
<td>190</td>
<td>74.30</td>
<td>232</td>
<td>0.0434</td>
</tr>
<tr>
<td>192</td>
<td>57.08</td>
<td>234</td>
<td>0.0299</td>
</tr>
<tr>
<td>194</td>
<td>42.83</td>
<td>236</td>
<td>0.0193</td>
</tr>
<tr>
<td>196</td>
<td>31.75</td>
<td>238</td>
<td>0.0134</td>
</tr>
<tr>
<td>198</td>
<td>23.22</td>
<td>239</td>
<td>0.0119</td>
</tr>
<tr>
<td>200</td>
<td>16.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Braun et al.1

F57. CF$_3$CICF$_2$CHFCl (1,1,2,2,3-pentafluoro-1,3-dichloropropane, HCFC–225cb)

CF$_3$CICF$_2$CHFCl (HCFC–225cb) + hv \rightarrow Products

(1) (Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of 1,1,2,2,3-pentafluoro-1,3-dichloropropane (HCFC–225cb), CF$_3$CICF$_2$CHFCl, has been measured in the gas and liquid phase at 298 K by Braun et al.1 (160–250 nm). The recommended absorption cross sections in Table 4F-59 are taken from this work. Braun et al.1 give an expression that can be used to calculate the gas-phase absorption cross sections over the wavelength range 165–250 nm

$$\log_{10} \varepsilon = \sum a_n (\lambda - 160)^n$$

$\begin{align*}
a_0 &= 1.677 \\
a_1 &= -2.175 \times 10^{-2} \\
a_2 &= -1.484 \times 10^{-3} \\
a_3 &= 1.147 \times 10^{-5}
\end{align*}$

where the absorption coefficients ε are in units of (atm, 298 K)$^{-1}$ cm$^{-1}$ ($\sigma = 4.06 \times 10^{-20} \varepsilon$).

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4F-59. Recommended Absorption Cross Sections of CF₂CIF₂CHFCI (HCFC-225cb) at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm<sup>2</sup>)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm<sup>2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>187.9</td>
<td>186</td>
<td>7.308</td>
</tr>
<tr>
<td>162</td>
<td>173.3</td>
<td>188</td>
<td>5.075</td>
</tr>
<tr>
<td>164</td>
<td>154.8</td>
<td>190</td>
<td>3.492</td>
</tr>
<tr>
<td>166</td>
<td>135.1</td>
<td>192</td>
<td>2.412</td>
</tr>
<tr>
<td>168</td>
<td>113.2</td>
<td>194</td>
<td>1.661</td>
</tr>
<tr>
<td>170</td>
<td>91.35</td>
<td>196</td>
<td>1.165</td>
</tr>
<tr>
<td>172</td>
<td>70.68</td>
<td>198</td>
<td>0.873</td>
</tr>
<tr>
<td>174</td>
<td>54.73</td>
<td>200</td>
<td>0.633</td>
</tr>
<tr>
<td>176</td>
<td>40.68</td>
<td>202</td>
<td>0.479</td>
</tr>
<tr>
<td>178</td>
<td>30.04</td>
<td>204</td>
<td>0.369</td>
</tr>
<tr>
<td>180</td>
<td>21.11</td>
<td>206</td>
<td>0.291</td>
</tr>
<tr>
<td>182</td>
<td>14.90</td>
<td>208</td>
<td>0.254</td>
</tr>
<tr>
<td>184</td>
<td>10.47</td>
<td>210</td>
<td>0.250</td>
</tr>
</tbody>
</table>

Note:
Braun et al.¹

F58. CH₃C(O)CH₂Cl (chloroacetone)

CH₃C(O)CH₂Cl + hv \(\rightarrow \) Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption cross sections of chloroacetone, CH₃C(O)CH₂Cl, have been measured over the temperature range 243–296 K between 210 and 370 nm by Burkholder et al.¹ using diode array spectroscopy (~0.6 nm resolution). The spectrum has two absorption bands, a strong band with the maximum at \(~224\text{ nm} (3.35 \times 10^{19} \text{ cm}^2 \text{ molecule}^{-1} \text{ at } 296 \text{ K})\) and a weaker broader band with the maximum at \(~292\text{ nm} (1.02 \times 10^{19} \text{ cm}^2 \text{ molecule}^{-1} \text{ at } 296 \text{ K})\). A systematic decrease in the absorption cross section with decreasing temperature was observed at wavelengths >290 nm. A temperature dependence of the absorption cross sections was also reported for the short wavelength absorption band. The reported values at 253 K are larger than those at 273 K below ~240 nm and even larger than those at 296 K below ~230 nm. The recommended absorption cross sections in Table 4F-60 are taken from Burkholder et al.¹

Photolysis Quantum Yield and Product Studies: Photodissociation quantum yields were measured by Burkholder et al.¹ to be 0.5 ± 0.08 at 308 nm and 351 nm. At both wavelengths, the yields of CO and CO₂ were 0.50 and ~0.25, respectively. The yield of HCOOH and HCl were reported to be 0.25 and 0.5, respectively, at both photolysis wavelengths.
Table 4F-60. Recommended Absorption Cross Sections of CH₂C(O)CH₂Cl at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>22.0</td>
<td>248</td>
<td>3.36</td>
<td>286</td>
<td>9.89</td>
<td>324</td>
<td>2.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>23.0</td>
<td>249</td>
<td>3.11</td>
<td>287</td>
<td>9.98</td>
<td>325</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>24.3</td>
<td>250</td>
<td>2.96</td>
<td>288</td>
<td>10.00</td>
<td>326</td>
<td>2.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>25.5</td>
<td>251</td>
<td>2.90</td>
<td>289</td>
<td>10.10</td>
<td>327</td>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>26.4</td>
<td>252</td>
<td>2.92</td>
<td>290</td>
<td>10.20</td>
<td>328</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>27.5</td>
<td>253</td>
<td>3.00</td>
<td>291</td>
<td>10.20</td>
<td>329</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>28.9</td>
<td>254</td>
<td>3.10</td>
<td>292</td>
<td>10.20</td>
<td>330</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>30.1</td>
<td>255</td>
<td>3.24</td>
<td>293</td>
<td>10.20</td>
<td>331</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>30.9</td>
<td>256</td>
<td>3.39</td>
<td>294</td>
<td>10.10</td>
<td>332</td>
<td>0.979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>31.7</td>
<td>257</td>
<td>3.56</td>
<td>295</td>
<td>10.00</td>
<td>333</td>
<td>0.832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>32.4</td>
<td>258</td>
<td>3.75</td>
<td>296</td>
<td>9.89</td>
<td>334</td>
<td>0.707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>32.8</td>
<td>259</td>
<td>3.97</td>
<td>297</td>
<td>9.77</td>
<td>335</td>
<td>0.598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>33.2</td>
<td>260</td>
<td>4.19</td>
<td>298</td>
<td>9.66</td>
<td>336</td>
<td>0.506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>33.5</td>
<td>261</td>
<td>4.40</td>
<td>299</td>
<td>9.54</td>
<td>337</td>
<td>0.427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>33.5</td>
<td>262</td>
<td>4.63</td>
<td>300</td>
<td>9.41</td>
<td>338</td>
<td>0.361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>33.0</td>
<td>263</td>
<td>4.86</td>
<td>301</td>
<td>9.25</td>
<td>339</td>
<td>0.302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>32.3</td>
<td>264</td>
<td>5.12</td>
<td>302</td>
<td>9.04</td>
<td>340</td>
<td>0.2520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>31.8</td>
<td>265</td>
<td>5.38</td>
<td>303</td>
<td>8.80</td>
<td>341</td>
<td>0.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>31.3</td>
<td>266</td>
<td>5.65</td>
<td>304</td>
<td>8.53</td>
<td>342</td>
<td>0.176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>30.3</td>
<td>267</td>
<td>5.89</td>
<td>305</td>
<td>8.24</td>
<td>343</td>
<td>0.145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>28.9</td>
<td>268</td>
<td>6.14</td>
<td>306</td>
<td>7.94</td>
<td>344</td>
<td>0.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>27.3</td>
<td>269</td>
<td>6.39</td>
<td>307</td>
<td>7.63</td>
<td>345</td>
<td>0.103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>25.7</td>
<td>270</td>
<td>6.65</td>
<td>308</td>
<td>7.34</td>
<td>346</td>
<td>0.0887</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>24.0</td>
<td>271</td>
<td>6.93</td>
<td>309</td>
<td>7.06</td>
<td>347</td>
<td>0.0757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>22.2</td>
<td>272</td>
<td>7.20</td>
<td>310</td>
<td>6.77</td>
<td>348</td>
<td>0.0642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>20.3</td>
<td>273</td>
<td>7.47</td>
<td>311</td>
<td>6.50</td>
<td>349</td>
<td>0.0547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>18.4</td>
<td>274</td>
<td>7.71</td>
<td>312</td>
<td>6.22</td>
<td>350</td>
<td>0.0458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>16.5</td>
<td>275</td>
<td>7.94</td>
<td>313</td>
<td>5.93</td>
<td>351</td>
<td>0.0411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>14.6</td>
<td>276</td>
<td>8.16</td>
<td>314</td>
<td>5.61</td>
<td>352</td>
<td>0.0328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>12.7</td>
<td>277</td>
<td>8.37</td>
<td>315</td>
<td>5.28</td>
<td>353</td>
<td>0.0319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>11.0</td>
<td>278</td>
<td>8.59</td>
<td>316</td>
<td>4.92</td>
<td>354</td>
<td>0.0220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>9.50</td>
<td>279</td>
<td>8.82</td>
<td>317</td>
<td>4.57</td>
<td>355</td>
<td>0.0193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>8.15</td>
<td>280</td>
<td>9.03</td>
<td>318</td>
<td>4.22</td>
<td>356</td>
<td>0.0138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>6.93</td>
<td>281</td>
<td>9.23</td>
<td>319</td>
<td>3.89</td>
<td>357</td>
<td>0.0134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>5.85</td>
<td>282</td>
<td>9.41</td>
<td>320</td>
<td>3.58</td>
<td>358</td>
<td>0.00917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>4.95</td>
<td>283</td>
<td>9.56</td>
<td>321</td>
<td>3.30</td>
<td>359</td>
<td>0.0155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>4.26</td>
<td>284</td>
<td>9.69</td>
<td>322</td>
<td>3.04</td>
<td>360</td>
<td>0.0128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>3.74</td>
<td>285</td>
<td>9.80</td>
<td>323</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Burkholder et al.¹

F59. (E)-1,2-c-C₃Cl₂F₆ ((E)-1,2-dichlorohexafluorocyclobutane)

1,2-c-C₃Cl₂F₆(E) + hν → Products

(1)

(New Entry)

Absorption Cross Sections: The UV absorption cross sections of (E)-1,2-dichlorohexafluorocyclobutane, 1,2-c-C₃Cl₂F₆(E), have been measured by Papadimitriou et al.¹ (184.95–230 nm) at temperatures between 214 and 296 K. UV absorption spectra of (E)- and (Z)-isomeric mixtures (0.94:0.06 and 0.475:0.525) were measured experimentally and individual isomer spectra were determined using the measured sample mixing ratios. Over the 185–230 nm wavelength range the spectrum is continuous with a broad peak near 195 nm.

4-267
The absorption cross sections decrease nearly exponentially at wavelengths greater than ~200 nm. The (E)-isomer was observed to be a stronger absorber than the (Z)-isomer over this wavelength range. The 296 K absorption cross section uncertainty was estimated to be ~3% (2σ) at all wavelengths included in their study.

Papadimitriou et al. measured the spectrum temperature dependence over the range 214–296 K. They observed a systematic decrease in absorption cross section with decreasing temperature at all wavelengths included in their study. The absorption spectrum was parameterized using the empirical formula

$$\log_{10}(\sigma(\lambda,T)) = \sum_i A_i(\lambda - 200)^i + (296 - T) \sum_i B_i(\lambda - 200)^i$$

and the optimized parameters are given in Table 4F-61. The parameterization reproduces the absorption spectrum to within the estimated measurement precision and is valid over the 190–220 nm wavelength range and 210–296 K temperature range.

Table 4F-61. Recommended (E)-1,2-c-ClrfF₆ Absorption Spectrum, $\sigma(\lambda,T)$, Parameterization

<table>
<thead>
<tr>
<th>i</th>
<th>Aᵢ</th>
<th>Bᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-18.45</td>
<td>-0.000553</td>
</tr>
<tr>
<td>1</td>
<td>-0.0876</td>
<td>-8.036 x 10⁻⁵</td>
</tr>
<tr>
<td>2</td>
<td>-0.003737</td>
<td>-4.24 x 10⁻⁶</td>
</tr>
<tr>
<td>3</td>
<td>0.0001124</td>
<td>-6.01 x 10⁻⁷</td>
</tr>
<tr>
<td>4</td>
<td>2.444 x 10⁻⁶</td>
<td>6.00 x 10⁻⁸</td>
</tr>
<tr>
<td>5</td>
<td>-9.33 x 10⁻⁸</td>
<td>-1.279 x 10⁻⁹</td>
</tr>
</tbody>
</table>

Photoysis Quantum Yield and Product Studies: Quantum yields for the production of Cl atoms and c-ClrfF₆ in the photolysis of 1,2-c-ClrfF₆(E) at 193 nm were measured by Papadimitriou et al. A value of φ(Cl) = 1.9 ± 0.27 was determined for a 0.475:0.525 isomeric mixture (i.e., quantum yields for the individual isomers were not determined). A value of φ(Cl) = 2 is recommended. The c-ClrfF₆ product yield in the photolysis of 1,2-c-ClrfF₆(E) was found to be 0.7 ± 0.1.

F60. (Z)-1,2-c-ClrfF₆ ((Z)-1,2-dichlorohexafluorocyclobutane)

1,2-c-Cl₆F₆(Z) + hv → Products

(1)

(New Entry)

Absorption Cross Sections: The UV absorption cross sections of (Z)-1,2-dichlorohexafluorocyclobutane, 1,2-c-Cl₆F₆(Z), have been measured by Papadimitriou et al. (184.95–230 nm) at temperatures between 214 and 296 K. UV absorption spectra of (E)- and (Z)- isomeric mixtures (0.94:0.06 and 0.475:0.525) were measured experimentally and individual isomer spectra were determined using the measured mixing ratios. The (Z)-isomer was found to be a significantly weaker absorber than the (E)-isomer over this wavelength range. The uncertainty in the (Z)-isomer 296 K absorption cross sections were estimated to be significantly greater than for the (E)-isomer, e.g. ~25% (2σ) at 210 nm.

Papadimitriou et al. measured the spectrum temperature dependence over the range 214–296 K. They observed a systematic decrease in absorption cross section with decreasing temperature at all wavelengths included in their study. The absorption spectrum was parameterized using the empirical formula

$$\log_{10}(\sigma(\lambda,T)) = \sum_i A_i(\lambda - 200)^i + (296 - T) \sum_i B_i(\lambda - 200)^i$$

and the optimized parameters are given in Table 4F-62. The parameterization reproduces the absorption spectrum to within the estimated measurement precision and is valid over the 190–220 nm wavelength range and 210–296 K temperature range.
Table 4F-62. Recommended (Z)-1,2-c-C₄Cl₂F₆ Absorption Spectrum, σ(λ,T), Parameterization

<table>
<thead>
<tr>
<th>i</th>
<th>Aᵢ</th>
<th>Bᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>−19.24</td>
<td>−0.00155</td>
</tr>
<tr>
<td>1</td>
<td>−0.1037</td>
<td>−0.000761</td>
</tr>
<tr>
<td>2</td>
<td>0.00203</td>
<td>−1.22 × 10⁻⁵</td>
</tr>
<tr>
<td>3</td>
<td>4.9656 × 10⁻⁶</td>
<td>5.52 × 10⁻⁶</td>
</tr>
<tr>
<td>4</td>
<td>−1.65 × 10⁻⁵</td>
<td>−2.365 × 10⁻⁷</td>
</tr>
<tr>
<td>5</td>
<td>5.03 × 10⁻⁷</td>
<td>3.33 × 10⁻⁹</td>
</tr>
</tbody>
</table>

Photolysis Quantum Yield and Product Studies: Quantum yields for the production of Cl atoms and c-C₄F₆ in the photolysis of 1,2-c-C₄Cl₂F₆(Z) at 193 nm were measured by Papadimitriou et al.¹ A value of Φ(Cl) = 1.9 ± 0.27 was determined for a 0.475:0.525 isomeric mixture (i.e., quantum yields for the individual isomers were not determined). A value of Φ(Cl) = 2 is recommended. The c-C₄F₆ product yield in the photolysis of 1,2-c-C₄Cl₂F₆(Z) was found to be 1.0 ± 0.1.

4.9 Bibliography – ClO\textsubscript{x} Photochemistry

Barton, S. A.; Coxon, J. A.; Roychowdhury, U. K. Absolute absorption cross sections at high-resolution in the A2\Pi-R2\Sigma\textsubscript{u}+ band system of ClO. *Can. J. Phys.* **1984**, *62*, 473-486.

Bishenden, E.; Haddock, J.; Donaldson, D. J. Resonance-enhanced multiphoton ionization measurement of Cl(2\Pi\textsubscript{3/2} and 2\Pi\textsubscript{1/2}) produced in the photolysis of OCIO from 355 to 370 nm. *J. Phys. Chem.* **1991**, *95*, 2113-2115.

Burton, G. R.; Chan, W. F.; Cooper, G.; Brion, C. E. Valence and inner-shell (Cl 2p, 2s; C 1s) photoabsorption and photoionization of carbon tetrachloride. Absolute oscillator strengths (5-400 eV) and dipole-induced breakdown pathways. *Chem. Phys.* **1994**, *181*, 147-172.

Clark, R. H.; Husain, D. Quantum yield measurements of Cl(3P½) and Cl(3P½) in the photolysis of Cl₂O in the vacuum UV. *J. Photochem.* **1984**, *24*, 103-115.

Maricq, M. M. personal communication.

Talukdar, R.; Mellouki, A.; Gierczak, T.; Burkholder, J. B.; McKeen, S. A.; Ravishankara, A. R. Atmospheric fate of CF₃H₂, CH₂Cl₂, CH₂ClF, and CH₂FCl₂: Rate coefficients for reactions with OH and UV absorption cross sections of CH₂FCl₂. J. Phys. Chem. 1991, 95, 5815-5821.

G1. **Br₂ (molecular bromine)**

\[
\text{Br}_2 + \text{hv} \rightarrow 2\text{Br} \quad \text{193 kJ mol}^{-1} \quad 620 \text{ nm} \quad (1)
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV/vis absorption spectrum of Br₂, molecular bromine, has been extensively studied as summarized in Table 4G-1.

Table 4G-1. Summary of Br₂ Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength Range (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribaud⁴</td>
<td>1919</td>
<td>289, 593, 893</td>
<td>356–608</td>
</tr>
<tr>
<td>Gray and Style³</td>
<td>1930</td>
<td>294</td>
<td>240–579</td>
</tr>
<tr>
<td>Acton et al.¹</td>
<td>1936</td>
<td>293, 400, 531, 657, 767, 906</td>
<td>327.4–571.7</td>
</tr>
<tr>
<td>Seery and Britton¹⁶</td>
<td>1964</td>
<td>298</td>
<td>320–590</td>
</tr>
<tr>
<td>Maric et al.¹²</td>
<td>1966</td>
<td>298</td>
<td>200–599</td>
</tr>
<tr>
<td>Passchier et al.¹²</td>
<td>1967</td>
<td>298, 348, 423, 298, 573, 648, 713</td>
<td>200–750</td>
</tr>
<tr>
<td>Wen and Noyes¹⁸</td>
<td>1972</td>
<td>303</td>
<td>220–290</td>
</tr>
<tr>
<td>Hemenway et al.⁵</td>
<td>1979</td>
<td>296</td>
<td>556–616.3</td>
</tr>
<tr>
<td>Roxlo and Mandl¹⁵</td>
<td>1980</td>
<td>298</td>
<td>170–230</td>
</tr>
<tr>
<td>Marie et al.¹⁰</td>
<td>1994</td>
<td>298</td>
<td>200–650</td>
</tr>
<tr>
<td>Hubinger and Nee⁶</td>
<td>1995</td>
<td>295</td>
<td>190–600</td>
</tr>
<tr>
<td>Tellinghuisen¹⁷</td>
<td>2008</td>
<td>295</td>
<td>190–300</td>
</tr>
</tbody>
</table>

The Br₂ spectrum exhibits an absorption band between 190 and 300 nm with a maximum near 223 nm and another stronger band between 300 and 600 nm, which is composed of three overlapping bands with maxima at ~412, 480, and 549 nm. The reported absorption cross sections are in very good agreement in the region of the UV-visible absorption band. Discrepancies are observed at wavelengths >550 nm, where the data of McMillan¹¹ and Hemenway et al.⁵ are as much as 60% and 100% lower, respectively, than the values measured in the other studies. Large discrepancies arise in the region of the absorption minimum between 230 and 340 nm due to a pressure dependent absorption component of Br₂ vapor, possibly due to a Br₂-Br₂ dimer absorption. A detailed discussion of the available absorption data for Br₂ and an evaluation is given by Marie et al.¹⁰. Marie et al. fit the most reliable data, those of Passchier et al.¹² and Wen and Noyes,¹⁸ to a four-band semi-logarithmic distribution function and derived the following expression for the calculation of the Br₂ absorption spectrum over the wavelength region 200–650 nm

\[
\sigma(298 \text{ K}) = 1.06 \times 10^{-20} \times \exp(-52.3[\ln(223.3/\lambda)])^2 + 6.19 \times 10^{-19} \times \exp(-108.5[\ln(411.9/\lambda)])^2 + 3.39 \times 10^{-19} \times \exp(-106.8[\ln(480.2/\lambda)])^2 + 3.78 \times 10^{-20} \times \exp(-112.0[\ln(549.3/\lambda)])^2
\]

where \(\lambda\) is the wavelength in nm (vacuum) and \(\sigma\) is the absorption cross section in cm² molecule⁻¹. The recommended absorption cross sections calculated using this expression are listed in Table 4G-2. The results of Marie et al.¹⁰ have been confirmed, in general, in a subsequent study by Hubinger and Nee,⁶ who reported absorption cross sections for the wavelength range 190–600 nm. The Hubinger and Nee cross sections values that are below 10⁻²¹ cm² molecule⁻¹, i.e., between 260 and 340 nm, differ from the parameterized data of Marie et al.¹⁰ and should be considered as upper limits.

The temperature dependence of the absorption spectrum has been measured by Acton et al.¹ (293–906 K) and Passchier et al.¹² (298–713 K). These studies report a decrease of the cross sections around the absorption maximum, between ~380 and ~500 nm, and an increase in the short and long wavelength tails with increasing temperature.

Photolysis Quantum Yield and Product Studies: Photodissociation of Br₂ leads to the formation of Br atoms in the ground Br(2P⁳/₂) and excited Br*(2P⁵/₂) states. A few studies have been performed to establish the relative quantum yields of (Br + Br) and (Br + Br*) at various photolysis wavelengths. Petersen and Smith¹³
found the yield of Br* atoms to increase from 0.4 to 0.89 from 444 to 510 nm and decrease at longer wavelengths to a value of ~0.4 at 530 nm. Lindeman and Wiesenfeld\(^8\) observed the relative quantum yield (Br + Br*) to increase from 0.07 at 434 nm to 0.64 at 482 nm and then to decrease to 0.57 at 511 nm. Haugen et al.\(^9\) determined the relative quantum yield (Br + Br*) to increase from 0.44 at 445 nm to 0.87 at 500 nm followed by a decrease to 0.40 at 530 nm. Cooper et al.\(^2\) measured the relative (Br + Br*) yield to be zero in the range 360 to 430 nm and to increase at longer wavelengths to 0.79 at 580 nm; at 260 nm they observed (Br + Br*) to be dominant. Jee et al.\(^7\) measured the relative yield of the photodissociation channel into (Br + Br*) at 234 nm to be unity and at 265 nm to be 0.96. Zaraga et al.\(^19\) calculated the zero pressure predissociation quantum yield from high resolution spectroscopic studies in the banded region (B \(^3\)Π(0,\(^a\)) state) overlapping a continuum at 588 nm to be near unity.

Table 4G-2. Recommended Absorption Cross Sections of Br\(_2\) at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20}\ \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.562</td>
<td>315</td>
<td>0.0274</td>
<td>430</td>
<td>60.1</td>
<td>545</td>
<td>10.1</td>
</tr>
<tr>
<td>205</td>
<td>0.723</td>
<td>320</td>
<td>0.0626</td>
<td>435</td>
<td>57.1</td>
<td>550</td>
<td>8.68</td>
</tr>
<tr>
<td>210</td>
<td>0.870</td>
<td>325</td>
<td>0.141</td>
<td>440</td>
<td>54.0</td>
<td>555</td>
<td>7.47</td>
</tr>
<tr>
<td>215</td>
<td>0.983</td>
<td>330</td>
<td>0.300</td>
<td>445</td>
<td>51.2</td>
<td>560</td>
<td>6.43</td>
</tr>
<tr>
<td>220</td>
<td>1.05</td>
<td>335</td>
<td>0.602</td>
<td>450</td>
<td>48.8</td>
<td>565</td>
<td>5.54</td>
</tr>
<tr>
<td>225</td>
<td>1.06</td>
<td>340</td>
<td>1.14</td>
<td>455</td>
<td>46.8</td>
<td>570</td>
<td>4.77</td>
</tr>
<tr>
<td>230</td>
<td>1.01</td>
<td>345</td>
<td>2.05</td>
<td>460</td>
<td>45.2</td>
<td>575</td>
<td>4.09</td>
</tr>
<tr>
<td>235</td>
<td>0.925</td>
<td>350</td>
<td>3.49</td>
<td>465</td>
<td>44.0</td>
<td>580</td>
<td>3.50</td>
</tr>
<tr>
<td>240</td>
<td>0.808</td>
<td>355</td>
<td>5.63</td>
<td>470</td>
<td>42.8</td>
<td>585</td>
<td>2.98</td>
</tr>
<tr>
<td>245</td>
<td>0.676</td>
<td>360</td>
<td>8.66</td>
<td>475</td>
<td>41.6</td>
<td>590</td>
<td>2.52</td>
</tr>
<tr>
<td>250</td>
<td>0.544</td>
<td>365</td>
<td>12.7</td>
<td>480</td>
<td>40.3</td>
<td>595</td>
<td>2.11</td>
</tr>
<tr>
<td>255</td>
<td>0.422</td>
<td>370</td>
<td>17.8</td>
<td>485</td>
<td>38.6</td>
<td>600</td>
<td>1.76</td>
</tr>
<tr>
<td>260</td>
<td>0.316</td>
<td>375</td>
<td>23.9</td>
<td>490</td>
<td>36.6</td>
<td>605</td>
<td>1.45</td>
</tr>
<tr>
<td>265</td>
<td>0.229</td>
<td>380</td>
<td>30.7</td>
<td>495</td>
<td>34.3</td>
<td>610</td>
<td>1.19</td>
</tr>
<tr>
<td>270</td>
<td>0.161</td>
<td>385</td>
<td>37.9</td>
<td>500</td>
<td>31.8</td>
<td>615</td>
<td>0.958</td>
</tr>
<tr>
<td>275</td>
<td>0.110</td>
<td>390</td>
<td>45.1</td>
<td>505</td>
<td>29.0</td>
<td>620</td>
<td>0.767</td>
</tr>
<tr>
<td>280</td>
<td>0.0728</td>
<td>395</td>
<td>51.8</td>
<td>510</td>
<td>26.2</td>
<td>625</td>
<td>0.607</td>
</tr>
<tr>
<td>285</td>
<td>0.0472</td>
<td>400</td>
<td>57.4</td>
<td>515</td>
<td>23.4</td>
<td>630</td>
<td>0.475</td>
</tr>
<tr>
<td>290</td>
<td>0.0299</td>
<td>405</td>
<td>61.6</td>
<td>520</td>
<td>20.6</td>
<td>635</td>
<td>0.368</td>
</tr>
<tr>
<td>295</td>
<td>0.0187</td>
<td>410</td>
<td>64.2</td>
<td>525</td>
<td>18.0</td>
<td>640</td>
<td>0.282</td>
</tr>
<tr>
<td>300</td>
<td>0.0122</td>
<td>415</td>
<td>65.1</td>
<td>530</td>
<td>15.7</td>
<td>645</td>
<td>0.214</td>
</tr>
<tr>
<td>305</td>
<td>0.0100</td>
<td>420</td>
<td>64.5</td>
<td>535</td>
<td>13.6</td>
<td>650</td>
<td>0.161</td>
</tr>
<tr>
<td>310</td>
<td>0.0135</td>
<td>425</td>
<td>62.8</td>
<td>540</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Calculated using the expression given by Maric et al.\(^{10}\) (see text).

(5) Hemenway, C. P.; Lindeman, T. G.; Wiesenfeld, J. R. Measurement of the A \(^3\)Π\(_{1u}\) \(\rightarrow\) X \(^1\Sigma_g^+\) continuum absorptivity in Br\(_2\). *J. Chem. Phys.* **1979**, *70*, 3560-3561.

G2. HBr (hydrogen bromide)

HBr + hv \rightarrow H + Br

366 kJ mol$^{-1}$

327 nm

(1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of HBr, hydrogen bromide, at wavelengths >180 nm consists of a continuous band with a maximum near 178 nm and monotonically decreasing absorption cross sections that have been measured out to 270 nm. At shorter wavelengths the spectrum shows a large number of strong sharp bands that extend to 105 nm.

The room temperature absorption cross sections of HBr have been measured in a number of studies as outlined in Table 4G-3. The absorption cross sections near the maximum of the absorption band reported by Nee et al.7 and Huebert and Martin6 are in good agreement, 2.4×10^{-18} and 2.7×10^{-18} cm2 molecule$^{-1}$, respectively. The values reported by Romand12 and Roxlo and Mandl13 are substantially lower, 2×10^{-18} and 1.4×10^{-18} cm2 molecule$^{-1}$, respectively. The cross section at 193 nm reported by Vaghjiani14 and Barone et al.1 are consistent with the absorption spectra reported by Nee et al.7 and Huebert and Martin.6 The cross sections at 184.9 nm measured by Ravishankara et al.10 and Barone et al.1 fall between those reported by Nee et al.7 and Huebert and Martin.6 The cross section at 184.9 nm measured by Okabe8 lies between those of Goodeve and Taylor5 and Romand.12 The recommended values in Table 4G-4 were derived as follows: the spectra of Goodeve and Taylor,5 Romand,12 Huebert and Martin,6 and Nee et al.7 have been scaled to 2.21×10^{-18} cm2 molecule$^{-1}$ at 184.9 nm, which is the mean of the values reported by Okabe,8 Ravishankara et al.10 and Barone et al.1; the scaled spectra have been averaged, the recommended cross sections for the range 152–168 nm are those of Romand12 and Nee et al.7 for the range 170–180 nm those of Romand,12 Huebert and Martin,6 and Nee et al.7 and for the range 182–230 nm those of Goodeve and Taylor,5 Romand,12 Huebert and Martin,6 and Nee et al.7.

Back to Index
Table 4G-3. Summary of HBr UV Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength Range (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodeve and Taylor⁵</td>
<td>1935</td>
<td>298</td>
<td>182–286</td>
</tr>
<tr>
<td>Romand¹²</td>
<td>1949</td>
<td>298</td>
<td>139–228</td>
</tr>
<tr>
<td>Huebert and Martin⁶</td>
<td>1968</td>
<td>297</td>
<td>170–230</td>
</tr>
<tr>
<td>Bridges and White³</td>
<td>1973</td>
<td>298</td>
<td>214</td>
</tr>
<tr>
<td>Okabe⁸</td>
<td>1977</td>
<td>296</td>
<td>240–270</td>
</tr>
<tr>
<td>Ravishankara et al.¹⁰</td>
<td>1979</td>
<td>298</td>
<td>184.9</td>
</tr>
<tr>
<td>Roxlo and Mandl¹¹</td>
<td>1980</td>
<td>298</td>
<td>170–230</td>
</tr>
<tr>
<td>Okabe⁹</td>
<td>1983</td>
<td>296</td>
<td>184.9</td>
</tr>
<tr>
<td>Brion et al.⁴</td>
<td>1985</td>
<td>298</td>
<td>30–177</td>
</tr>
<tr>
<td>Nee et al.⁷</td>
<td>1986</td>
<td>298</td>
<td>105–238</td>
</tr>
<tr>
<td>Vaghjiani¹⁴</td>
<td>1993</td>
<td>296</td>
<td>193</td>
</tr>
<tr>
<td>Barone et al.¹</td>
<td>1994</td>
<td>298</td>
<td>184.9, 193.0</td>
</tr>
</tbody>
</table>

Photolysis Quantum Yield and Product Studies: The branching fraction for the formation of excited Br²(²P₁/₂) atoms was determined by Regan et al.¹¹ in the wavelength range 201–253 nm to vary between 0.15 and 0.23. Baumfalk et al.⁵ obtained a Br* branching fraction, Br²(²P₁/₂)/(Total Br), of 0.20 ± 0.03 at 243 nm and 0.18 ± 0.03 at 193 nm.

Table 4G-4. Recommended Absorption Cross Sections of HBr at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>139</td>
<td>172</td>
<td>233</td>
<td>192</td>
<td>181</td>
<td>212</td>
<td>54.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>124</td>
<td>174</td>
<td>240</td>
<td>194</td>
<td>168</td>
<td>214</td>
<td>45.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>138</td>
<td>176</td>
<td>244</td>
<td>196</td>
<td>154</td>
<td>216</td>
<td>38.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>148</td>
<td>178</td>
<td>244</td>
<td>198</td>
<td>140</td>
<td>218</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>161</td>
<td>180</td>
<td>242</td>
<td>200</td>
<td>125</td>
<td>220</td>
<td>28.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>176</td>
<td>182</td>
<td>233</td>
<td>202</td>
<td>111</td>
<td>222</td>
<td>22.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>189</td>
<td>184</td>
<td>225</td>
<td>204</td>
<td>98.1</td>
<td>224</td>
<td>18.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>201</td>
<td>186</td>
<td>217</td>
<td>206</td>
<td>85.5</td>
<td>226</td>
<td>14.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>211</td>
<td>188</td>
<td>206</td>
<td>208</td>
<td>74.7</td>
<td>228</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>225</td>
<td>190</td>
<td>194</td>
<td>210</td>
<td>64.4</td>
<td>230</td>
<td>9.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Goodeve and Taylor⁵, Romand,¹² Huebert and Martin,⁶ and Nee et al.⁷ data scaled to 2.21 × 10⁻¹⁸ cm² molecule⁻¹ at 184.9 nm:
152–168 nm: mean of Romand¹² and Nee et al.⁷ data
170–180 nm: mean of Romand,¹² Huebert and Martin,⁶ and Nee et al.⁷ data
182–230 nm: mean of Goodeve and Taylor,⁵ Romand,¹² Huebert and Martin,⁶ and Nee et al.⁷ data

(1) Barone, S. B.; Turnipseed, A. A.; Gierczak, T.; Ravishankara, A. R. Quantum yields of H(3S) and CH₃S(3E) from the photolysis of simple organosulfur compounds at 193, 222, and 248 nm. J. Phys. Chem. 1994, 98, 11969-11977.
Absorption Cross Sections: The BrO (bromine monoxide) radical has a UV absorption spectrum in the 290–380 nm range, with vibrational band structure, which is attributed to the A 2Π$_{1/2}$ \leftrightarrow X 2Π$_{3/2}$ transition. The spectrum measured by Wilmouth et al.11 (0.5 nm) is shown in Figure 4G-1 and laboratory measurements are summarized in Table 4G-5. The absorption spectrum has been measured and cross sections determined for several absorption peaks in the studies listed in Table 4G-5, e.g. for the strongest (7,0) band at 338.5 nm and the (11,0) and (12,0) bands at 320.8 nm and 317.3 nm.

Table 4G-5. Summary of BrO Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength Range (nm)</th>
<th>Resolution (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clyne and Cruse5</td>
<td>1970</td>
<td>293</td>
<td>338.3</td>
<td>0.15</td>
</tr>
<tr>
<td>Basco and Dogra1</td>
<td>1971</td>
<td>298</td>
<td>320.8, 338.3</td>
<td>not given</td>
</tr>
<tr>
<td>Cox et al.3</td>
<td>1982</td>
<td>298</td>
<td>296–370</td>
<td>0.22</td>
</tr>
<tr>
<td>Wahner et al.9</td>
<td>1988</td>
<td>228, 243, 298</td>
<td>312–380</td>
<td>0.4</td>
</tr>
<tr>
<td>Sander and Friedl6</td>
<td>1989</td>
<td>220, 298</td>
<td>338.5</td>
<td>0.06–1.25</td>
</tr>
<tr>
<td>Orlando et al.7</td>
<td>1991</td>
<td>298</td>
<td>338.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Laszlo et al.6</td>
<td>1997</td>
<td>295</td>
<td>338.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Gilles et al.5</td>
<td>1997</td>
<td>204, 222, 237, 252, 273, 298, 329, 369</td>
<td>338.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Wheeler et al.10</td>
<td>1998</td>
<td>298</td>
<td>338, 317</td>
<td>4 cm-1</td>
</tr>
<tr>
<td>Wilmouth et al.11</td>
<td>1999</td>
<td>298</td>
<td>317–388</td>
<td>1.0 cm-1</td>
</tr>
<tr>
<td>Wilmouth et al.11</td>
<td>1999</td>
<td>228, 298</td>
<td>286–386</td>
<td>10 cm-1</td>
</tr>
<tr>
<td>Fleischmann et al.4</td>
<td>2003</td>
<td>203, 223, 243, 273, 298</td>
<td>300–385</td>
<td>4 cm-1</td>
</tr>
</tbody>
</table>

The cross sections are both temperature and resolution dependent, i.e., the peaks of the vibrational bands become greater and the bands sharper with decreasing temperature and at higher resolution. Wilmouth et al.11 used their absorption spectrum, recorded at 10 cm-1 resolution, in a combined analysis of the results from Cox et al.3 Wahner et al.9 Orlando et al.7 Laszlo et al.6 and Gilles et al.5 at a common resolution of 0.40 nm (details of this procedure are described in Wilmouth et al.11). The vibrational band peak absorption cross sections at 298 ± 2 and 228 ± 2 K obtained in their analysis are listed in Table 4G-6. Absorption cross sections of the spectrum reported by Wilmouth et al.11 averaged over 0.5 nm intervals are listed in Table 4G-7.

Absorption cross sections for the rotational peaks of the (7,0) and (12,0) bands were measured at high resolution (1.0 cm-1) by Wilmouth et al.11 to be $\sigma = 2.17 \times 10^{-17}$ cm2 molecule$^{-1}$ for the peak of the (7,0) band and $\sigma = 1.38 \times 10^{-17}$ cm2 molecule$^{-1}$ for the peak of the (12,0) band.
The (7,0) absorption maximum (338 nm) temperature dependence was measured by Gilles et al.\(^5\) over the range 204–388 K at a resolution of 0.5 nm and given by the expression.

\[
\sigma(T)_{338\,\text{nm}} = 3.29 - (5.58 \times 10^{-3}) \times T, \text{ in units of } 10^{-17} \text{ cm}^2\text{molecule}^{-1}
\]

Photolysis Quantum Yield and Product Studies: Transitions in the A\(\rightarrow\)X system are expected to be dissociative.

Table 4G-6. Absorption Cross Sections at the Vibrational Band Peaks in the A\(\rightarrow\)X Spectrum of BrO (0.4 nm resolution)

<table>
<thead>
<tr>
<th>(v', v'')</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2) molecule(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>298 ± 2 K</td>
</tr>
<tr>
<td>26, 0</td>
<td>286.46</td>
<td>107</td>
</tr>
<tr>
<td>25, 0</td>
<td>287.38</td>
<td>132</td>
</tr>
<tr>
<td>24, 0</td>
<td>288.45</td>
<td>145</td>
</tr>
<tr>
<td>23, 0</td>
<td>289.83</td>
<td>188</td>
</tr>
<tr>
<td>22, 0</td>
<td>291.40</td>
<td>188</td>
</tr>
<tr>
<td>21, 0</td>
<td>292.99</td>
<td>242</td>
</tr>
<tr>
<td>20, 0</td>
<td>294.88</td>
<td>295</td>
</tr>
<tr>
<td>19, 0</td>
<td>296.97</td>
<td>356</td>
</tr>
<tr>
<td>18, 0</td>
<td>299.30</td>
<td>447</td>
</tr>
<tr>
<td>17, 0</td>
<td>301.81</td>
<td>523</td>
</tr>
<tr>
<td>16, 0</td>
<td>304.54</td>
<td>601</td>
</tr>
<tr>
<td>15, 0</td>
<td>307.46</td>
<td>679</td>
</tr>
<tr>
<td>14, 0</td>
<td>310.54</td>
<td>772</td>
</tr>
<tr>
<td>13, 0</td>
<td>313.81</td>
<td>904</td>
</tr>
<tr>
<td>12, 0</td>
<td>317.29</td>
<td>1190</td>
</tr>
<tr>
<td>11, 0</td>
<td>321.20</td>
<td>1360</td>
</tr>
<tr>
<td>10, 0</td>
<td>325.37</td>
<td>1260</td>
</tr>
<tr>
<td>9, 0</td>
<td>329.56</td>
<td>1210</td>
</tr>
<tr>
<td>8, 0</td>
<td>333.89</td>
<td>1250</td>
</tr>
<tr>
<td>7, 0</td>
<td>338.69</td>
<td>1580</td>
</tr>
<tr>
<td>6, 0</td>
<td>344.04</td>
<td>923</td>
</tr>
<tr>
<td>5, 0</td>
<td>349.09</td>
<td>715</td>
</tr>
<tr>
<td>4, 0</td>
<td>355.02</td>
<td>723</td>
</tr>
<tr>
<td>3, 0</td>
<td>360.64</td>
<td>267</td>
</tr>
<tr>
<td>4, 1</td>
<td>364.32</td>
<td>126</td>
</tr>
<tr>
<td>2, 0</td>
<td>367.94</td>
<td>128</td>
</tr>
<tr>
<td>1, 0</td>
<td>374.69</td>
<td>74.5</td>
</tr>
<tr>
<td>2, 1</td>
<td>377.78</td>
<td>27.5</td>
</tr>
<tr>
<td>0, 0</td>
<td>381.27</td>
<td>22.5</td>
</tr>
<tr>
<td>1, 1</td>
<td>384.87</td>
<td>9.86</td>
</tr>
</tbody>
</table>

Note: Wilmouth et al.\(^{11}\), analysis of spectra from Wilmouth et al.\(^{11}\), Cox et al.\(^{3}\), Wahner et al.\(^{9}\), Orlando et al.\(^{7}\), Laszlo et al.\(^{6}\), Gilles et al.\(^{3}\) at a common resolution of 0.40 nm.
Table 4G-7. Recommended Absorption Cross Sections of BrO at 298 K
1020 
1020 


(nm)
(cm2)
(nm)
(cm2)
286.5
104.8
311.5
453.1
287.0
106.5
312.0
294.8
287.5
128.8
312.5
203.7
288.0
95.04
313.0
197.3
288.5
147.7
313.5
723.9
289.0
109.8
314.0
901.3
289.5
126.4
314.5
650.8
290.0
183.8
315.0
443.2
290.5
133.1
315.5
310.9
291.0
133.5
316.0
231.7
291.5
188.6
316.5
173.7
292.0
157.2
317.0
721.1
292.5
128.3
317.5
1136.0
293.0
248.2
318.0
730.7
293.5
192.5
318.5
482.3
294.0
140.4
319.0
344.6
294.5
161.5
319.5
275.1
295.0
294.4
320.0
251.4
295.5
216.1
320.5
293.7
296.0
163.9
321.0
1138.0
296.5
152.9
321.5
1155.0
297.0
361.1
322.0
676.9
297.5
276.5
322.5
419.6
298.0
193.5
323.0
300.6
298.5
156.4
323.5
261.7
299.0
284.0
324.0
288.2
299.5
421.1
324.5
433.6
300.0
275.3
325.0
982.6
300.5
193.5
325.5
1283.0
301.0
180.1
326.0
837.6
301.5
350.9
326.5
494.8
302.0
502.3
327.0
312.0
302.5
318.4
327.5
231.1
303.0
217.4
328.0
223.5
303.5
195.9
328.5
343.1
304.0
274.0
329.0
789.1
304.5
609.6
329.5
1261.0
305.0
466.2
330.0
1058.0
305.5
298.4
330.5
706.2
306.0
221.1
331.0
453.4
306.5
209.7
331.5
295.9
307.0
407.2
332.0
203.1
307.5
703.1
332.5
164.7
308.0
518.3
333.0
259.8
308.5
343.6
333.5
952.8
309.0
227.6
334.0
1294.0
309.5
193.6
334.5
963.3
310.0
395.5
335.0
652.3
310.5
798.9
335.5
457.5
311.0
659.2
336.0
338.8
Note:
Wilmouth et al.,11 averages over 0.5 nm intervals


(nm)
336.5
337.0
337.5
338.0
338.5
339.0
339.5
340.0
340.5
341.0
341.5
342.0
342.5
343.0
343.5
344.0
344.5
345.0
345.5
346.0
346.5
347.0
347.5
348.0
348.5
349.0
349.5
350.0
350.5
351.0
351.5
352.0
352.5
353.0
353.5
354.0
354.5
355.0
355.5
356.0
356.5
357.0
357.5
358.0
358.5
359.0
359.5
360.0
360.5
361.0

4-286

1020 
(cm2)
258.7
222.1
202.0
201.8
1287.0
1296.0
734.4
444.8
303.1
243.1
217.5
235.0
291.6
423.8
711.9
967.8
814.4
542.1
345.0
225.9
160.3
146.4
162.2
257.8
529.5
747.7
667.4
499.2
363.4
272.4
215.3
181.9
165.9
162.8
163.2
179.5
309.3
789.4
498.6
276.2
166.2
119.9
111.1
115.3
123.6
143.6
182.7
236.4
272.3
264.4


(nm)
361.5
362.0
362.5
363.0
363.5
364.0
364.5
365.0
365.5
366.0
366.5
367.0
367.5
368.0
368.5
369.0
369.5
370.0
370.5
371.0
371.5
372.0
372.5
373.0
373.5
374.0
374.5
375.0
375.5
376.0
376.5
377.0
377.5
378.0
378.5
379.0
379.5
380.0
380.5
381.0
381.5
382.0
382.5
383.0
383.5
384.0
384.5
385.0

1020 
(cm2)
226.6
182.9
145.2
119.9
103.7
113.3
122.2
99.15
87.15
86.23
91.26
105.0
123.4
130.5
119.5
100.9
86.11
74.79
64.46
53.91
46.47
39.44
35.13
34.13
35.68
48.08
74.97
70.53
51.46
35.44
30.47
27.46
25.66
25.61
21.82
18.60
14.96
12.28
13.03
19.55
20.93
16.76
9.049
3.059
4.924
3.892
6.695
10.93


Figure 4G-1. Absorption Spectrum of BrO

OBrO (bromine dioxide)

\[
\begin{align*}
\text{OBrO} + \text{hv} & \rightarrow \text{Br} + \text{O}_2 & -52 \text{ kJ mol}^{-1} & \text{All} & (1) \\
& \rightarrow \text{BrO} + \text{O}^{(3P)} & 209 \text{ kJ mol}^{-1} & 573 \text{ nm} & (2)
\end{align*}
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The visible absorption spectrum of OBrO, bromine dioxide, has been measured in the 400–600 nm region at room temperature by Rowley et al.4 and Knight et al.,1 at ~250 K by Miller et al.,2 and at 273, 298, and 338 K by Rattigan et al.3 The OBrO spectrum measured by Knight et al. is shown in Figure 4G-2. The spectrum has a highly structured absorption band consisting of a progression of doublets with a maximum intensity near 500 nm and a progression of less intense bands between the doublets. The spectrum was assigned to the \(C^2\text{A}_2 \leftarrow X^2\text{B}_1\) electronic transition by Miller et al.2 who combined \textit{ab initio} calculations of the lowest doublet electronic states of OBrO with Franck-Condon simulations. Knight et al.1 reported absorption cross section data. The peak positions and cross sections for the vibrational progressions \((n,0,0) \leftarrow (0,0,0)\) and \((n,1,0) \leftarrow (0,0,0)\) in Table 4G-8 are taken from Knight et al.1 Table 4G-9 gives the absorption cross section averages over 1 nm intervals of the spectrum reported by Knight et al.1 (0.66 nm resolution).

Photolysis Quantum Yield and Product Studies: No quantum yields are available but theoretical calculations by Vetter et al.5 indicate that photodissociation occurs via the \(\text{BrO} + \text{O}^{(3P)}\) channel because of a large transition dipole moment for the \(C^2\text{A}_2 \leftarrow X^2\text{B}_1\) transition. Photodissociation into \(\text{Br} + \text{O}_2\) occurs via the \(1^2\text{B}_2\) state and is less probable and therefore less important.

Table 4G-8. Peak Absorption Cross Sections of OBrO at 298 K

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\lambda (\text{nm})) (\sigma (\text{cm}^2))</th>
<th>(\lambda (\text{nm})) (\sigma (\text{cm}^2))</th>
<th>(\lambda (\text{nm})) (\sigma (\text{cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>630.4</td>
<td>622.0</td>
<td>630.4</td>
</tr>
<tr>
<td>1</td>
<td>606.1</td>
<td>598.4</td>
<td>606.1</td>
</tr>
<tr>
<td>2</td>
<td>583.8</td>
<td>576.8</td>
<td>583.8</td>
</tr>
<tr>
<td>3</td>
<td>563.4</td>
<td>556.8</td>
<td>563.4</td>
</tr>
<tr>
<td>4</td>
<td>544.4</td>
<td>538.5</td>
<td>544.4</td>
</tr>
<tr>
<td>5</td>
<td>527.1</td>
<td>521.6</td>
<td>527.1</td>
</tr>
<tr>
<td>6</td>
<td>510.7</td>
<td>505.5</td>
<td>510.7</td>
</tr>
<tr>
<td>7</td>
<td>495.5</td>
<td>490.7</td>
<td>495.5</td>
</tr>
<tr>
<td>8</td>
<td>481.2</td>
<td>476.9</td>
<td>481.2</td>
</tr>
<tr>
<td>9</td>
<td>468.2</td>
<td>464.1</td>
<td>468.2</td>
</tr>
<tr>
<td>10</td>
<td>455.8</td>
<td>452.2</td>
<td>455.8</td>
</tr>
<tr>
<td>11</td>
<td>444.4</td>
<td>440.8</td>
<td>444.4</td>
</tr>
<tr>
<td>12</td>
<td>433.7</td>
<td>430.4</td>
<td>433.7</td>
</tr>
<tr>
<td>13</td>
<td>423.5</td>
<td>420.6</td>
<td>423.5</td>
</tr>
<tr>
<td>14</td>
<td>414.1</td>
<td>411.0</td>
<td>414.1</td>
</tr>
<tr>
<td>15</td>
<td>405.1</td>
<td>402.3</td>
<td>405.1</td>
</tr>
</tbody>
</table>

Note: Knight et al.1
Table 4G-9. Recommended Absorption Cross Sections of OBrO at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>66.7</td>
<td>443</td>
<td>363</td>
<td>485</td>
<td>301</td>
<td>527</td>
<td>1530</td>
</tr>
<tr>
<td>402</td>
<td>112</td>
<td>444</td>
<td>834</td>
<td>486</td>
<td>463</td>
<td>528</td>
<td>1100</td>
</tr>
<tr>
<td>403</td>
<td>116</td>
<td>445</td>
<td>777</td>
<td>487</td>
<td>368</td>
<td>529</td>
<td>584</td>
</tr>
<tr>
<td>404</td>
<td>153</td>
<td>446</td>
<td>452</td>
<td>488</td>
<td>298</td>
<td>530</td>
<td>326</td>
</tr>
<tr>
<td>405</td>
<td>243</td>
<td>447</td>
<td>292</td>
<td>489</td>
<td>425</td>
<td>531</td>
<td>218</td>
</tr>
<tr>
<td>406</td>
<td>180</td>
<td>448</td>
<td>254</td>
<td>490</td>
<td>868</td>
<td>532</td>
<td>347</td>
</tr>
<tr>
<td>407</td>
<td>131</td>
<td>449</td>
<td>214</td>
<td>491</td>
<td>1580</td>
<td>533</td>
<td>547</td>
</tr>
<tr>
<td>408</td>
<td>113</td>
<td>450</td>
<td>180</td>
<td>492</td>
<td>993</td>
<td>534</td>
<td>361</td>
</tr>
<tr>
<td>409</td>
<td>105</td>
<td>451</td>
<td>323</td>
<td>493</td>
<td>641</td>
<td>535</td>
<td>344</td>
</tr>
<tr>
<td>410</td>
<td>128</td>
<td>452</td>
<td>854</td>
<td>494</td>
<td>583</td>
<td>536</td>
<td>539</td>
</tr>
<tr>
<td>411</td>
<td>201</td>
<td>453</td>
<td>672</td>
<td>495</td>
<td>1160</td>
<td>537</td>
<td>434</td>
</tr>
<tr>
<td>412</td>
<td>171</td>
<td>454</td>
<td>394</td>
<td>496</td>
<td>1430</td>
<td>538</td>
<td>1200</td>
</tr>
<tr>
<td>413</td>
<td>239</td>
<td>455</td>
<td>633</td>
<td>497</td>
<td>826</td>
<td>539</td>
<td>1500</td>
</tr>
<tr>
<td>414</td>
<td>380</td>
<td>456</td>
<td>1110</td>
<td>498</td>
<td>458</td>
<td>540</td>
<td>888</td>
</tr>
<tr>
<td>415</td>
<td>260</td>
<td>457</td>
<td>729</td>
<td>499</td>
<td>291</td>
<td>541</td>
<td>546</td>
</tr>
<tr>
<td>416</td>
<td>180</td>
<td>458</td>
<td>426</td>
<td>500</td>
<td>405</td>
<td>542</td>
<td>442</td>
</tr>
<tr>
<td>417</td>
<td>156</td>
<td>459</td>
<td>292</td>
<td>501</td>
<td>512</td>
<td>543</td>
<td>312</td>
</tr>
<tr>
<td>418</td>
<td>133</td>
<td>460</td>
<td>314</td>
<td>502</td>
<td>336</td>
<td>544</td>
<td>991</td>
</tr>
<tr>
<td>419</td>
<td>147</td>
<td>461</td>
<td>262</td>
<td>503</td>
<td>419</td>
<td>545</td>
<td>1230</td>
</tr>
<tr>
<td>420</td>
<td>269</td>
<td>462</td>
<td>213</td>
<td>504</td>
<td>483</td>
<td>546</td>
<td>716</td>
</tr>
<tr>
<td>421</td>
<td>274</td>
<td>463</td>
<td>399</td>
<td>505</td>
<td>1230</td>
<td>547</td>
<td>395</td>
</tr>
<tr>
<td>422</td>
<td>229</td>
<td>464</td>
<td>1100</td>
<td>506</td>
<td>1630</td>
<td>548</td>
<td>252</td>
</tr>
<tr>
<td>423</td>
<td>479</td>
<td>465</td>
<td>868</td>
<td>507</td>
<td>962</td>
<td>549</td>
<td>161</td>
</tr>
<tr>
<td>424</td>
<td>481</td>
<td>466</td>
<td>506</td>
<td>508</td>
<td>651</td>
<td>550</td>
<td>302</td>
</tr>
<tr>
<td>425</td>
<td>287</td>
<td>467</td>
<td>562</td>
<td>509</td>
<td>556</td>
<td>551</td>
<td>476</td>
</tr>
<tr>
<td>426</td>
<td>207</td>
<td>468</td>
<td>1230</td>
<td>510</td>
<td>1030</td>
<td>552</td>
<td>300</td>
</tr>
<tr>
<td>427</td>
<td>175</td>
<td>469</td>
<td>1020</td>
<td>511</td>
<td>1570</td>
<td>553</td>
<td>255</td>
</tr>
<tr>
<td>428</td>
<td>149</td>
<td>470</td>
<td>568</td>
<td>512</td>
<td>953</td>
<td>554</td>
<td>461</td>
</tr>
<tr>
<td>429</td>
<td>194</td>
<td>471</td>
<td>341</td>
<td>513</td>
<td>506</td>
<td>555</td>
<td>349</td>
</tr>
<tr>
<td>430</td>
<td>422</td>
<td>472</td>
<td>298</td>
<td>514</td>
<td>307</td>
<td>556</td>
<td>532</td>
</tr>
<tr>
<td>431</td>
<td>382</td>
<td>473</td>
<td>362</td>
<td>515</td>
<td>282</td>
<td>557</td>
<td>1250</td>
</tr>
<tr>
<td>432</td>
<td>274</td>
<td>474</td>
<td>239</td>
<td>516</td>
<td>532</td>
<td>558</td>
<td>870</td>
</tr>
<tr>
<td>433</td>
<td>577</td>
<td>475</td>
<td>286</td>
<td>517</td>
<td>433</td>
<td>559</td>
<td>472</td>
</tr>
<tr>
<td>434</td>
<td>661</td>
<td>476</td>
<td>563</td>
<td>518</td>
<td>303</td>
<td>560</td>
<td>350</td>
</tr>
<tr>
<td>435</td>
<td>392</td>
<td>477</td>
<td>1390</td>
<td>519</td>
<td>529</td>
<td>561</td>
<td>267</td>
</tr>
<tr>
<td>436</td>
<td>251</td>
<td>478</td>
<td>990</td>
<td>520</td>
<td>504</td>
<td>562</td>
<td>204</td>
</tr>
<tr>
<td>437</td>
<td>208</td>
<td>479</td>
<td>567</td>
<td>521</td>
<td>1390</td>
<td>563</td>
<td>791</td>
</tr>
<tr>
<td>438</td>
<td>179</td>
<td>480</td>
<td>577</td>
<td>522</td>
<td>1610</td>
<td>564</td>
<td>885</td>
</tr>
<tr>
<td>439</td>
<td>166</td>
<td>481</td>
<td>1260</td>
<td>523</td>
<td>921</td>
<td>565</td>
<td>504</td>
</tr>
<tr>
<td>440</td>
<td>363</td>
<td>482</td>
<td>1310</td>
<td>524</td>
<td>622</td>
<td>566</td>
<td>275</td>
</tr>
<tr>
<td>441</td>
<td>651</td>
<td>483</td>
<td>745</td>
<td>525</td>
<td>516</td>
<td>567</td>
<td>170</td>
</tr>
<tr>
<td>442</td>
<td>425</td>
<td>484</td>
<td>403</td>
<td>526</td>
<td>654</td>
<td>568</td>
<td>107</td>
</tr>
</tbody>
</table>

Note:
Knight et al.\(^1\), data averages over 1 nm intervals
Figure 4G-2. Absorption spectrum of OBrO

G5. Br$_2$O (dibromine monoxide)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Cross Section (10^{-17} cm2 molecule$^{-1}$)</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br$_2$O + hv \rightarrow Br + BrO</td>
<td>128 kJ mol$^{-1}$</td>
<td>938 nm</td>
</tr>
<tr>
<td>\rightarrow Br$_2$ + O</td>
<td>173 kJ mol$^{-1}$</td>
<td>693 nm</td>
</tr>
<tr>
<td>\rightarrow Br + Br + O</td>
<td>366 kJ mol$^{-1}$</td>
<td>327 nm</td>
</tr>
</tbody>
</table>

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of Br$_2$O, dibromine monoxide, has been measured at room temperature by Orlando and Burkholder3 (196–432 nm), Rattigan et al.4 (240–515 nm), and Deters et al.2 (208–444 nm). The spectrum exhibits a strong narrow band at wavelengths <220 nm with a maximum at 200 nm, a weaker and broader band extending from 250 nm to about 460 nm with a maximum at 313 nm and a shoulder near 350 nm, and two weak bands at 460–580 nm and 580–750 nm with maxima at ~520 nm and ~665 nm. There is good agreement between the various data sets in the wavelength region <380 nm where the data of Orlando and Burkholder3 and Deters et al.2 are nearly identical and those of Rattigan et al.4 are smaller by ~10% below 250 nm and above 290 nm and smaller by up to ~25% in the region of the absorption
minimum near 270 nm. Large discrepancies exist between the data sets at wavelengths >380 nm. The absorption cross sections reported by Orlando and Burkholder\(^3\) and Deters et al.\(^2\) decrease at longer wavelengths to values \(\leq 1 \times 10^{-20} \text{ cm}^2 \text{ molecule}^{-1}\) whereas the values reported by Rattigan et al.\(^4\) show a decrease between 400 and 470 nm and evidence for another absorption band at longer wavelengths. The cutoff at 440 nm of the absorption spectrum reported by Orlando and Burkholder\(^3\) is a result of the assumption that the absorbance of Br\(_2\)O is zero at wavelengths >440 nm. The correction procedure used by Rattigan et al.\(^4\) taking the vibrational structure of the Br\(_2\) spectrum into account resulted in appreciable absorption for Br\(_2\)O at wavelengths above 440 nm. The recommended cross sections in Table 4G-10 are the data from Orlando and Burkholder\(^3\) at 196 and 200 nm, the mean of the data from Orlando and Burkholder\(^3\) and Deters et al.\(^2\) for the region 210–230 nm, and the mean of the data from Orlando and Burkholder\(^3\), Deters et al.\(^2\), and Rattigan et al.\(^4\) for the region 240–400 nm. No recommendation is given for wavelengths >400 nm.

Photolysis Quantum Yield and Product Studies: By analogy to Cl\(_2\)O the predominate photodissociation channel is expected to be Br + BrO. Burkholder\(^1\) measured the BrO yield at 308 nm to be near unity.

Table 4G-10. Recommended Absorption Cross Sections of Br\(_2\)O at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>1740</td>
</tr>
<tr>
<td>200</td>
<td>2000</td>
</tr>
<tr>
<td>210</td>
<td>1050</td>
</tr>
<tr>
<td>220</td>
<td>288</td>
</tr>
<tr>
<td>230</td>
<td>140</td>
</tr>
<tr>
<td>240</td>
<td>85.8</td>
</tr>
<tr>
<td>250</td>
<td>45.4</td>
</tr>
<tr>
<td>260</td>
<td>24.6</td>
</tr>
<tr>
<td>270</td>
<td>18.8</td>
</tr>
<tr>
<td>280</td>
<td>33.5</td>
</tr>
<tr>
<td>290</td>
<td>85.5</td>
</tr>
<tr>
<td>300</td>
<td>167</td>
</tr>
<tr>
<td>310</td>
<td>220</td>
</tr>
<tr>
<td>320</td>
<td>212</td>
</tr>
<tr>
<td>330</td>
<td>192</td>
</tr>
<tr>
<td>340</td>
<td>188</td>
</tr>
<tr>
<td>350</td>
<td>186</td>
</tr>
<tr>
<td>360</td>
<td>162</td>
</tr>
<tr>
<td>370</td>
<td>132</td>
</tr>
<tr>
<td>380</td>
<td>99.0</td>
</tr>
<tr>
<td>390</td>
<td>74.8</td>
</tr>
<tr>
<td>400</td>
<td>54.0</td>
</tr>
</tbody>
</table>

Note:
196, 200 nm: Orlando and Burkholder\(^3\)
210–230 nm: mean of data from Orlando and Burkholder\(^3\) and Deters et al.\(^2\)
240–400 nm: mean of data from Orlando and Burkholder\(^3\), Deters et al.\(^2\), and Rattigan et al.\(^4\)

G6. HOBr (hypobromous acid)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of HOBr, hypobromous acid, has been measured by Orlando and Burkholder (240–404 nm), Deters et al. (250–400 nm), Benter et al. (234–390 nm), Rattigan et al. (240–510 nm), and Ingham et al. (260–600 nm). Orlando and Burkholder, Deters et al., and Benter et al. observed two absorption bands with maxima near 284 and 351 nm. The reported spectra agree reasonably well in their wavelength dependence with a sharp decrease in cross section at wavelengths greater than 400 nm. In contrast, the cross sections reported by Rattigan et al. and Ingham et al. are roughly 50% greater between 300 and 400 nm. In addition, the spectrum reported by Rattigan et al. has pronounced long wavelength absorption that extends to 520 nm. Ingham et al. report a similar spectrum to Rattigan et al., but with a more prominent absorption band at long wavelength with a maximum at 457 nm. These two studies are consistent with the observations of Barnes et al., who showed that laser photolysis of HOBr between 440–600 nm gives rise to OH photofragments. The presence of a weak band beyond 400 nm is attributable to the presence of a forbidden transition from the ground electronic to a triplet state as predicted by the ab initio calculations of Francisco et al. and Minaev. The differences in the spectral shapes are probably attributable to impurities such as Br2O and Br2, and/or the use of different Br2O cross sections. However, the presence of impurities alone cannot explain the large difference in cross sections at the peak of the absorption bands.

The recommended absorption cross sections in Table 4G-11 are based on the study by Ingham et al. These authors generated HOBr in situ by laser photolytic production of OH in the presence of Br2, and determined the HOBr spectrum using a gated diode camera shortly after the pulse, circumventing the problem associated with the presence of the strong absorbing impurity Br2O, which was present in previous studies. The calibration of the absorption cross sections was made relative to the cross sections of Br2. No recommendation is given for wavelengths <250 nm where the data are uncertain. On the basis of the level of agreement among the available studies, cross section uncertainty factors (2σ) of 1.25 (250–300 nm), 1.5 (300–400 nm), 3 (400–500 nm), and 10 (>500 nm) are estimated for the wavelength ranges given in parenthesis.

The data presented in Table 4G-11 were computed with the following expression taken from Ingham et al., which is based on a combination of three Gaussian functions, one for each absorption band

\[\sigma(\lambda) = 24.77\exp \left(-109.80 \ln \left(\frac{284.01}{\lambda} \right)^2 \right) + 12.22\exp \left(-93.63 \ln \left(\frac{350.57}{\lambda} \right)^2 \right)
+ 2.283\exp \left(-242.40 \ln \left(\frac{457.38}{\lambda} \right)^2 \right) \]

where \(\sigma(\lambda) \) is in units of \(10^{-20} \) cm\(^2\) molecule\(^{-1}\) and \(\lambda \) is in nm.

Photolysis Quantum Yield and Product Studies: Benter et al. measured quantum yields for HOBr photolysis at 261 and 363 nm (near the band peaks). The observed quantum yield for Br formation at 363 nm was greater than 0.95 and a unity quantum yield for the OH + Br product channel is recommended. No evidence for the O + HBr product channel was observed. The laser photofragment study of Barnes et al. claimed that OH was the major photolysis product at wavelengths >400 nm. Lock et al. found that at 490 and 510 nm OH and Br photofragments are in their respective vibrational and spin-orbit ground states.
Table 4G-11. Recommended Absorption Cross Sections of HOBr at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{30} σ (cm^2)</th>
<th>λ (nm)</th>
<th>10^{30} σ (cm^2)</th>
<th>λ (nm)</th>
<th>10^{30} σ (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>4.15</td>
<td>355</td>
<td>12.1</td>
<td>460</td>
<td>2.28</td>
</tr>
<tr>
<td>255</td>
<td>6.19</td>
<td>360</td>
<td>11.5</td>
<td>465</td>
<td>2.14</td>
</tr>
<tr>
<td>260</td>
<td>10.5</td>
<td>365</td>
<td>10.5</td>
<td>470</td>
<td>1.91</td>
</tr>
<tr>
<td>265</td>
<td>14.6</td>
<td>370</td>
<td>9.32</td>
<td>475</td>
<td>1.62</td>
</tr>
<tr>
<td>270</td>
<td>18.7</td>
<td>375</td>
<td>7.99</td>
<td>480</td>
<td>1.30</td>
</tr>
<tr>
<td>275</td>
<td>22.1</td>
<td>380</td>
<td>6.65</td>
<td>485</td>
<td>0.993</td>
</tr>
<tr>
<td>280</td>
<td>24.3</td>
<td>385</td>
<td>5.38</td>
<td>490</td>
<td>0.723</td>
</tr>
<tr>
<td>285</td>
<td>25.0</td>
<td>390</td>
<td>4.22</td>
<td>495</td>
<td>0.502</td>
</tr>
<tr>
<td>290</td>
<td>24.0</td>
<td>395</td>
<td>3.23</td>
<td>500</td>
<td>0.333</td>
</tr>
<tr>
<td>295</td>
<td>21.9</td>
<td>400</td>
<td>2.43</td>
<td>505</td>
<td>0.212</td>
</tr>
<tr>
<td>300</td>
<td>19.1</td>
<td>405</td>
<td>1.80</td>
<td>510</td>
<td>0.129</td>
</tr>
<tr>
<td>305</td>
<td>16.2</td>
<td>410</td>
<td>1.36</td>
<td>515</td>
<td>0.076</td>
</tr>
<tr>
<td>310</td>
<td>13.6</td>
<td>415</td>
<td>1.08</td>
<td>520</td>
<td>0.042</td>
</tr>
<tr>
<td>315</td>
<td>11.8</td>
<td>420</td>
<td>0.967</td>
<td>525</td>
<td>0.023</td>
</tr>
<tr>
<td>320</td>
<td>10.8</td>
<td>425</td>
<td>0.998</td>
<td>530</td>
<td>0.012</td>
</tr>
<tr>
<td>325</td>
<td>10.5</td>
<td>430</td>
<td>1.15</td>
<td>535</td>
<td>0.0059</td>
</tr>
<tr>
<td>330</td>
<td>10.8</td>
<td>435</td>
<td>1.40</td>
<td>540</td>
<td>0.0029</td>
</tr>
<tr>
<td>335</td>
<td>11.3</td>
<td>440</td>
<td>1.68</td>
<td>545</td>
<td>0.0013</td>
</tr>
<tr>
<td>340</td>
<td>11.9</td>
<td>445</td>
<td>1.96</td>
<td>550</td>
<td>0.0006</td>
</tr>
<tr>
<td>345</td>
<td>12.3</td>
<td>450</td>
<td>2.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>12.4</td>
<td>455</td>
<td>2.29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Ingham et al.\(^5\), calculated using the expression given in the text

G7. **BrNO (nitrosyl bromide)**

\[
\text{BrNO} + \text{hv} \rightarrow \text{Br} + \text{NO} \quad 120.8 \text{ kJ mol}^{-1} \quad 991 \text{ nm} \quad (1)
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of BrNO, nitrosyl bromide, has been measured at room temperature by Eden et al.\(^1\) (275–550 nm), Houel and van den Bergh\(^3\) (200–800 nm), Uthman et al.\(^5\) (189–300 nm), Hippler et al.\(^2\) (266 nm), and Maloney and Palmer\(^4\) (270 nm). The spectrum exhibits four absorption bands between 200 and 800 nm, a strong band between 190 and 290 nm with the maximum at ~213 nm, a weaker band between 290 and 600 nm with the maximum at 338 nm and a shoulder near 420 nm, and a still weaker band between 600 and 800 nm with the maximum at 708 nm. The absorption cross sections from these studies are in good agreement (after correction of an error in Maloney and Palmer\(^4\)). The recommended absorption cross sections in Table 4G-12 are from Uthman et al.\(^5\) for the region 189–300 nm and the cross sections at 338, 416, and 708 nm reported by Houel and van den Bergh\(^3\).

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-12. Recommended Absorption Cross Sections of BrNO at 298 K

<table>
<thead>
<tr>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>18.3</td>
<td>224</td>
<td>4740</td>
</tr>
<tr>
<td>193</td>
<td>39.0</td>
<td>230</td>
<td>2990</td>
</tr>
<tr>
<td>194</td>
<td>46.2</td>
<td>235</td>
<td>1920</td>
</tr>
<tr>
<td>197</td>
<td>166</td>
<td>240</td>
<td>1090</td>
</tr>
<tr>
<td>200</td>
<td>566</td>
<td>250</td>
<td>360</td>
</tr>
<tr>
<td>201</td>
<td>861</td>
<td>260</td>
<td>117</td>
</tr>
<tr>
<td>203</td>
<td>1690</td>
<td>270</td>
<td>40.1</td>
</tr>
<tr>
<td>205.5</td>
<td>2950</td>
<td>280</td>
<td>19.5</td>
</tr>
<tr>
<td>207</td>
<td>4340</td>
<td>290</td>
<td>16.8</td>
</tr>
<tr>
<td>210</td>
<td>6470</td>
<td>300</td>
<td>18.0</td>
</tr>
<tr>
<td>211</td>
<td>6910</td>
<td>338</td>
<td>31.0</td>
</tr>
<tr>
<td>213</td>
<td>7270</td>
<td>416</td>
<td>20.1</td>
</tr>
<tr>
<td>216</td>
<td>7060</td>
<td>708</td>
<td>2.94</td>
</tr>
<tr>
<td>220</td>
<td>6070</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 189–300 nm: Uthman et al.\(^5\) 338, 416, 708 nm: Houel and van den Bergh\(^3\)

G8. **cis-BrONO (bromine nitrite)**

\[
cis-\text{BrONO} + \text{hv} \rightarrow \text{Products} \quad (1)
\]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of *cis*-BrONO, bromine nitrite, has been measured in the temperature range 228–296 K by Burkholder and Orlando\(^1\) (200–365 nm). The spectrum exhibits a strong absorption band between 200 and 270 nm with a maximum at 228 nm and a broader and weaker band between 270 and 364 nm with a maximum at 316 nm. The shape of the *cis*-BrONO spectrum was...
independent of temperature over the 228–296 K range to within the uncertainty of the measurements. The results from Burkholder and Orlando\(^1\) are recommended and listed in Table 4G-13.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-13. Recommended Absorption Cross Sections of BrONO at 253 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>–</td>
<td>242</td>
<td>1070</td>
<td>284</td>
<td>297</td>
<td>330</td>
<td>380</td>
</tr>
<tr>
<td>202</td>
<td>116</td>
<td>244</td>
<td>874</td>
<td>286</td>
<td>262</td>
<td>328</td>
<td>394</td>
</tr>
<tr>
<td>204</td>
<td>221</td>
<td>246</td>
<td>720</td>
<td>288</td>
<td>277</td>
<td>330</td>
<td>387</td>
</tr>
<tr>
<td>206</td>
<td>358</td>
<td>248</td>
<td>602</td>
<td>290</td>
<td>293</td>
<td>332</td>
<td>382</td>
</tr>
<tr>
<td>208</td>
<td>496</td>
<td>250</td>
<td>514</td>
<td>292</td>
<td>310</td>
<td>334</td>
<td>375</td>
</tr>
<tr>
<td>210</td>
<td>687</td>
<td>252</td>
<td>446</td>
<td>294</td>
<td>331</td>
<td>336</td>
<td>364</td>
</tr>
<tr>
<td>212</td>
<td>822</td>
<td>254</td>
<td>391</td>
<td>296</td>
<td>350</td>
<td>338</td>
<td>350</td>
</tr>
<tr>
<td>214</td>
<td>1070</td>
<td>256</td>
<td>345</td>
<td>298</td>
<td>366</td>
<td>340</td>
<td>332</td>
</tr>
<tr>
<td>216</td>
<td>1280</td>
<td>258</td>
<td>306</td>
<td>300</td>
<td>377</td>
<td>342</td>
<td>308</td>
</tr>
<tr>
<td>218</td>
<td>1610</td>
<td>260</td>
<td>273</td>
<td>302</td>
<td>386</td>
<td>344</td>
<td>284</td>
</tr>
<tr>
<td>220</td>
<td>1940</td>
<td>262</td>
<td>244</td>
<td>304</td>
<td>393</td>
<td>346</td>
<td>263</td>
</tr>
<tr>
<td>222</td>
<td>2240</td>
<td>264</td>
<td>221</td>
<td>306</td>
<td>400</td>
<td>348</td>
<td>248</td>
</tr>
<tr>
<td>224</td>
<td>2520</td>
<td>266</td>
<td>205</td>
<td>308</td>
<td>407</td>
<td>350</td>
<td>233</td>
</tr>
<tr>
<td>226</td>
<td>2630</td>
<td>268</td>
<td>196</td>
<td>310</td>
<td>413</td>
<td>352</td>
<td>214</td>
</tr>
<tr>
<td>228</td>
<td>2710</td>
<td>270</td>
<td>192</td>
<td>312</td>
<td>415</td>
<td>354</td>
<td>195</td>
</tr>
<tr>
<td>230</td>
<td>2620</td>
<td>272</td>
<td>191</td>
<td>314</td>
<td>413</td>
<td>356</td>
<td>176</td>
</tr>
<tr>
<td>232</td>
<td>2390</td>
<td>274</td>
<td>194</td>
<td>316</td>
<td>409</td>
<td>358</td>
<td>157</td>
</tr>
<tr>
<td>234</td>
<td>2170</td>
<td>276</td>
<td>200</td>
<td>318</td>
<td>406</td>
<td>360</td>
<td>138</td>
</tr>
<tr>
<td>236</td>
<td>1860</td>
<td>278</td>
<td>211</td>
<td>320</td>
<td>406</td>
<td>362</td>
<td>123</td>
</tr>
<tr>
<td>238</td>
<td>1550</td>
<td>280</td>
<td>223</td>
<td>322</td>
<td>406</td>
<td>364</td>
<td>117</td>
</tr>
<tr>
<td>240</td>
<td>1240</td>
<td>282</td>
<td>235</td>
<td>324</td>
<td>405</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Burkholder and Orlando\(^1\)

G9. BrNO\(_2\) (nitryl bromide)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(\Delta H) (kJ mol(^{-1}))</th>
<th>(\lambda) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrNO(_2) + hv (\rightarrow) Br + NO(_2)</td>
<td>101</td>
<td>1185</td>
</tr>
<tr>
<td>BrNO(_2) + hv (\rightarrow) BrO + NO</td>
<td>172</td>
<td>693</td>
</tr>
<tr>
<td>BrNO(_2) + hv (\rightarrow) Br + NO + O</td>
<td>407</td>
<td>294</td>
</tr>
</tbody>
</table>

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Scheffler et al.\(^2\) measured the room temperature absorption spectrum of BrNO\(_2\), nitryl bromide, over the wavelength range 185–530 nm. The spectrum consists of several overlapping electronic transitions with a strong band in the actinic region (>200 nm). The recommended absorption cross sections in Table 4G-14 are taken from Scheffler et al.\(^2\) between 185 and 430 nm while values at \(\lambda\) >430 nm were obtained from a log-linear fit of the data reported by Scheffler et al. The BrNO\(_2\) spectrum recorded in the Burkholder and Orlando\(^1\) study of cis-BrONO was reported to be in good agreement with the Scheffler et al. spectrum.

Photolysis Quantum Yield and Product Studies: By analogy with ClNO\(_2\), the most likely photolysis products are expected to be Br + NO\(_2\).
Table 4G-14. Recommended Absorption Cross Sections of BrNO₂ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>2048</td>
<td>310</td>
<td>11</td>
<td>435</td>
<td>8.03</td>
</tr>
<tr>
<td>190</td>
<td>3601</td>
<td>315</td>
<td>11</td>
<td>440</td>
<td>7.19</td>
</tr>
<tr>
<td>195</td>
<td>5013</td>
<td>320</td>
<td>10</td>
<td>445</td>
<td>6.44</td>
</tr>
<tr>
<td>200</td>
<td>5386</td>
<td>325</td>
<td>12</td>
<td>450</td>
<td>5.77</td>
</tr>
<tr>
<td>205</td>
<td>4499</td>
<td>330</td>
<td>13</td>
<td>455</td>
<td>5.17</td>
</tr>
<tr>
<td>210</td>
<td>2521</td>
<td>335</td>
<td>14</td>
<td>460</td>
<td>4.63</td>
</tr>
<tr>
<td>215</td>
<td>1170</td>
<td>340</td>
<td>16</td>
<td>465</td>
<td>4.15</td>
</tr>
<tr>
<td>220</td>
<td>554</td>
<td>345</td>
<td>15</td>
<td>470</td>
<td>3.71</td>
</tr>
<tr>
<td>225</td>
<td>373</td>
<td>350</td>
<td>16</td>
<td>475</td>
<td>3.33</td>
</tr>
<tr>
<td>230</td>
<td>343</td>
<td>355</td>
<td>16</td>
<td>480</td>
<td>2.98</td>
</tr>
<tr>
<td>235</td>
<td>362</td>
<td>360</td>
<td>18</td>
<td>485</td>
<td>2.67</td>
</tr>
<tr>
<td>240</td>
<td>387</td>
<td>365</td>
<td>19</td>
<td>490</td>
<td>2.39</td>
</tr>
<tr>
<td>245</td>
<td>390</td>
<td>370</td>
<td>17</td>
<td>495</td>
<td>2.14</td>
</tr>
<tr>
<td>250</td>
<td>363</td>
<td>375</td>
<td>18</td>
<td>500</td>
<td>1.92</td>
</tr>
<tr>
<td>255</td>
<td>310</td>
<td>380</td>
<td>17</td>
<td>505</td>
<td>1.72</td>
</tr>
<tr>
<td>260</td>
<td>251</td>
<td>385</td>
<td>17</td>
<td>510</td>
<td>1.54</td>
</tr>
<tr>
<td>265</td>
<td>197</td>
<td>390</td>
<td>16</td>
<td>515</td>
<td>1.38</td>
</tr>
<tr>
<td>270</td>
<td>154</td>
<td>395</td>
<td>15</td>
<td>520</td>
<td>1.23</td>
</tr>
<tr>
<td>275</td>
<td>116</td>
<td>400</td>
<td>14</td>
<td>525</td>
<td>1.10</td>
</tr>
<tr>
<td>280</td>
<td>88</td>
<td>405</td>
<td>14</td>
<td>530</td>
<td>0.99</td>
</tr>
<tr>
<td>285</td>
<td>63</td>
<td>410</td>
<td>13</td>
<td>540</td>
<td>0.79</td>
</tr>
<tr>
<td>290</td>
<td>44</td>
<td>415</td>
<td>12</td>
<td>550</td>
<td>0.64</td>
</tr>
<tr>
<td>295</td>
<td>30</td>
<td>420</td>
<td>11</td>
<td>560</td>
<td>0.51</td>
</tr>
<tr>
<td>300</td>
<td>20</td>
<td>425</td>
<td>10</td>
<td>570</td>
<td>0.41</td>
</tr>
<tr>
<td>305</td>
<td>15</td>
<td>430</td>
<td>9</td>
<td>580</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Note:
- 185–430 nm: Scheffler et al.2
- 435–530 nm: log-linear fit to data reported in Scheffler et al.2
- 540–580 nm: log-linear extrapolation

G10. BrONO₂ (bromine nitrate)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy (kJ mol⁻¹)</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrONO₂ + hv → BrO + NO₂</td>
<td>115</td>
<td>1044</td>
</tr>
<tr>
<td>→ Br + NO</td>
<td>144</td>
<td>831</td>
</tr>
<tr>
<td>→ BrO + NO + O(³P)</td>
<td>421</td>
<td>284</td>
</tr>
</tbody>
</table>

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV/vis absorption spectrum of BrONO₂, bromine nitrate, has been measured at room temperature by Spencer and Rowland5 (186–390 nm), Burkholder et al.1 (200–500 nm), and Deters et al.2 (210–500 nm). The absorption cross sections reported by Burkholder et al.1 and Deters et al.2 are nearly identical over the range of spectral overlap. The results of Spencer and Rowland5 agree to within 10% with those of Burkholder et al.1 and Deters et al.2 except for the region between 315 and 350 nm where the Spencer data are higher by 10 to 20%.

The temperature dependence of the absorption spectrum has been measured by Burkholder et al.1 (200–500 nm) at 220, 250, and 298 K and Deters et al.2 (210–500 nm) at 230 and 298 K. The temperature dependence of the absorption cross sections is in general weak. Burkholder et al.1 observed decreasing cross sections with decreasing temperature between 200 and 215 nm and between 230 and 500 nm and a slight increase between 215 and 230 nm. The reported ratio $\sigma(220 \text{ K})/\sigma(298 \text{ K})$ has values of ~0.8 to 1.03 between 200 and 235 nm,
a minimum of 0.90 at 260 nm, nearly constant values of ~0.95 between 290 and 370 nm, a minimum of ~0.87 at 430 nm, two maxima of ~0.98 around 445 nm, and decreases to ~0.5 at 500 nm. The measurements of Deters et al.\(^2\) show a similar behavior of \(\sigma(230 \text{ K})/\sigma(298 \text{ K})\) vs. \(\lambda\) with all values below 1, i.e., a decrease of the cross sections with decreasing temperature is observed over the entire spectrum. Burkholder et al.\(^1\) parameterized the cross section temperature dependence using the expression

\[
\sigma(\lambda,T) = \sigma(\lambda, 296 \text{ K}) \left[1 + A_1(\lambda)(T-296) + A_2(\lambda)(T-296)^2 \right]
\]

The recommended absorption cross sections and temperature coefficients in Table 4G-15 are taken from Burkholder et al.\(^1\). A cross section uncertainty factor of 1.2 (2\(\sigma\)), independent of wavelength, is assigned, which encompasses the results from all the room temperature studies.

Photolysis Quantum Yield and Product Studies: Photodissociation quantum yields have been measured for photolysis wavelengths between 248 and 355 nm as summarized in Table 4G-16. The quantum yields for NO\(_3\) production were measured by Harwood et al.\(^3\) to be \(\Phi(\text{NO}_3) = 0.28 \pm 0.09\) at 248 nm, 1.01 \pm 0.35 at 305 nm and 0.92 \pm 0.43 at 352.5 nm. The quantum yields for BrO and Br were also estimated at 248 nm to be \(\Phi(\text{BrO}) \approx 0.5\) and \(\Phi(\text{Br}) \approx 0.5\). Soller et al.\(^4\) investigated the production of Br, O(\(^3\)P), and BrO from the photolysis of BrONO\(_2\) in the wavelength range 248–355 nm. The quantum yield for the Br atom are 0.35 \pm 0.08, 0.65 \pm 0.14, >0.62 \pm 0.11, and 0.77 \pm 0.19 at 248, 266, 308, and 355 nm, respectively. The values for the O(\(^3\)P) atom quantum yields are 0.66 \pm 0.15, 0.18 \pm 0.04, <0.13 \pm 0.03, and <0.02 at 248, 266, 308 and 355 nm, respectively. The measured quantum yields for BrO are 0.37 \pm 0.12 at 266 nm and 0.23 \pm 0.08 at 355 nm. A total quantum yield \(\Phi_{\text{BrONO}_2}\) of unity is recommended for wavelengths >300 nm with \(\Phi_{\text{Br+NO}_3} = 0.85\) and \(\Phi_{\text{BrO+NO}_2} = 0.15\). No recommendation is given for wavelengths <300 nm.
Table 4G-15. Recommended Absorption Cross Sections of BrONO2 at 296 K and
Temperature Coefficients
3
3
1020  10 A1 106 A2
1020  10 A1 106 A2



–1
–1
–2
–2
2
2
K

K

(K) (nm)
(K) (nm)
(nm)
(cm)
(cm)
200 680
0.852 -26.0
302
17.5
0.781 0.784
404
202 616
0.608 -26.1
304
16.6
0.870 1.88
406
204 552
0.308 -26.2
306
15.8
0.872 1.62
408
206 488
0.138 -23.7
308
15.0
0.772 -0.229
410
208 425
0.158 -17.5
310
14.2
0.660 -2.28
412
210 361
0.184
-9.09
312
13.5
0.652 -1.95
414
212 334
0.401
-2.61
314
12.8
0.643 -1.58
416
214 307
0.657
5.03
316
12.1
0.652 -1.42
418
216 286
0.882
11.2
318
11.6
0.684 -1.48
420
218 272
1.05
15.3
320
11.0
0.719 -1.56
422
220 258
1.24
19.7
322
10.5
0.719 -1.06
424
222 247
1.19
19.7
324
10.1
0.720 -0.508
426
224 236
1.12
19.6
326
9.64 0.743 0.087
428
226 226
1.14
20.3
328
9.29 0.791 0.722
430
228 215
1.26
21.8
330
8.94 0.843 1.41
432
230 205
1.40
23.4
332
8.65 0.825 1.33
434
232 193
1.40
23.1
334
8.36 0.806 1.25
436
234 180
1.41
22.8
336
8.10 0.800 1.30
438
236 167
1.47
22.8
338
7.87 0.809 1.49
440
238 153
1.59
23.4
340
7.64 0.818 1.70
442
240 139
1.73
24.0
342
7.45 0.898 2.52
444
242 126
1.65
20.9
344
7.26 0.982 3.38
446
244 113
1.56
17.2
346
7.07 0.991 3.48
448
246 101
1.62
15.5
348
6.86 0.918 2.75
450
248
90.0
1.88
16.8
350
6.66 0.842 1.98
452
250
79.5
2.22
18.5
352
6.48 0.942 2.83
454
252
71.7
2.24
17.4
354
6.30 1.05
3.74
456
254
64.0
2.27
16.0
356
6.11 1.08
4.10
458
256
57.5
2.30
14.9
358
5.90 1.03
3.87
460
258
52.3
2.32
14.6
360
5.69 0.969 3.62
462
260
47.1
2.36
14.1
362
5.48 1.02
4.08
464
262
43.8
2.38
14.4
364
5.27 1.08
4.57
466
264
40.5
2.40
14.7
366
5.07 1.13
5.16
468
266
37.9
2.38
14.6
368
4.86 1.18
5.87
470
268
35.8
2.31
14.0
370
4.66 1.24
6.63
472
270
33.8
2.22
13.4
372
4.46 1.29
6.93
474
272
32.5
2.19
13.6
374
4.26 1.35
7.25
476
274
31.2
2.16
13.8
376
4.07 1.44
7.74
478
276
30.0
2.10
13.7
378
3.88 1.54
8.41
480
278
28.9
2.01
13.2
380
3.69 1.66
9.15
482
280
27.9
1.91
12.7
382
3.51 1.60
8.15
484
282
27.0
1.85
12.5
384
3.32 1.54
7.04
486
284
26.1
1.78
12.3
386
3.16 1.62
7.02
488
286
25.1
1.66
11.2
388
3.02 1.85
8.28
490
288
24.2
1.46
9.01
390
2.88 2.11
9.67
492
290
23.2
1.24
6.66
392
2.74 2.16
9.74
494
292
22.2
1.01
4.11
394
2.60 2.22
9.83
496
294
21.2
0.758
1.31
396
2.47 2.21
9.05
498
296
20.2
0.636
-0.188 398
2.36 2.10
7.28
500
298
19.3
0.666
-0.197 400
2.25 1.98
5.34
300
18.4
0.699
-0.207 402
2.15 1.95
4.53
Note: Burkholder et al.,1 (,T) = (, 296 K) [1 + A1 (T–296) + A2 (T–296)2]

4-298

1020 
(cm2)
2.04
1.95
1.88
1.81
1.75
1.69
1.63
1.56
1.50
1.45
1.40
1.36
1.33
1.30
1.26
1.22
1.18
1.15
1.11
1.08
1.05
1.02
0.974
0.930
0.892
0.853
0.816
0.779
0.743
0.707
0.670
0.635
0.600
0.566
0.524
0.482
0.447
0.418
0.390
0.344
0.298
0.269
0.256
0.243
0.231
0.220
0.198
0.167
0.135

103 A1
K–1
1.91
1.86
1.78
1.70
1.59
1.49
1.40
1.35
1.29
1.00
0.694
0.599
0.734
0.877
0.747
0.609
0.519
0.484
0.447
0.384
0.318
0.335
0.446
0.567
0.739
0.926
1.09
1.23
1.39
1.32
1.24
1.39
1.83
2.32
2.72
3.18
3.75
4.45
5.24
5.92
6.80
7.91
9.11
10.4
11.7
13.2
14.5
16.0
18.2

106 A2
(K–2)
3.64
2.63
1.52
0.316
-0.981
-2.37
-2.60
-1.54
-0.381
-2.34
-4.43
-4.31
-1.78
0.880
0.484
0.0625
0.0968
0.632
1.20
-0.388
-2.06
-1.82
0.568
3.18
4.40
5.74
6.94
8.00
9.16
5.99
2.46
1.87
4.74
7.95
10.9
14.4
17.9
21.4
25.4
36.6
51.2
61.2
63.1
65.2
70.6
76.5
85.0
98.6
119


Table 4G-16. Summary of BrONO₂ Photolysis Quantum Yield Results

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>(\Phi\text{(NO}_3\text{)})</th>
<th>(\Phi\text{(Br)})</th>
<th>(\Phi\text{(BrO)})</th>
<th>(\Phi\text{(O}^3\text{P)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>0.28 ± 0.09\text{a}</td>
<td>≈ 0.5\text{a}</td>
<td>≈ 0.5\text{a}</td>
<td>0.66 ± 0.15\text{b}</td>
</tr>
<tr>
<td>266</td>
<td>0.35 ± 0.08\text{b}</td>
<td>0.65 ± 0.14\text{b}</td>
<td>0.37 ± 0.12\text{b}</td>
<td>0.18 ± 0.04\text{b}</td>
</tr>
<tr>
<td>305</td>
<td>1.01 ± 0.35\text{a}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>308</td>
<td>–</td>
<td>>0.62 ± 0.11\text{b}</td>
<td>–</td>
<td><0.13 ± 0.03\text{b}</td>
</tr>
<tr>
<td>352.5</td>
<td>0.92 ± 0.43\text{a}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>0.77 ± 0.19\text{b}</td>
<td>0.23 ± 0.08\text{b}</td>
<td><0.02\text{b}</td>
</tr>
</tbody>
</table>

Note:
\text{a} Harwood et al.3
\text{b} Soller et al.4

G11. BrCl (bromine chloride)

\(\text{BrCl} + \text{hv} \rightarrow \text{Br} + \text{Cl} \) 218 kJ mol-1 548 nm (1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

\textit{Absorption Cross Sections:} The UV absorption spectrum of BrCl, bromine chloride, has been measured at room temperature by Gray and Style1 (240–313 nm and 546 nm), Jost4 (486–548 nm), Seery and Britton5 (220–510 nm), Maric et al.6 (200–600 nm), Hubinger and Nee7 (190–560 nm), and Tellinghuisen7 (200–600 nm). The spectrum exhibits an absorption band between 190 and 290 nm with a maximum at 230 nm (\(\sigma \approx (6.0-7.2) \times 10^{-20} \text{ cm}^2 \text{ molecule}^{-1} \)) and a stronger band between 290 and 600 nm with the maximum at 375 nm (\(\sigma \approx (3.9-4.1) \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1} \)) and a shoulder near 470 nm. There is good agreement between the cross section results of the studies except for the values at 289 and 297 nm reported by Gray and Style,1 which are smaller by a factor of ~2.5 than the rest of the results. The agreement is within 20% for the short wavelength band around 230 nm between the results of Seery and Britton,7 Maric et al.,4 and Hubinger and Nee,7 where Seery and Britton5 report the highest and Hubinger and Nee2 the lowest values. There is good agreement, to within ~5-15%, for the stronger band around 375 nm where Seery and Britton7 and Tellinghuisen7 report the highest and Hubinger and Nee2 the lowest cross sections. The discrepancies are larger, up to 50%, in the region of the absorption minimum around 290 nm where Seery and Britton7 and Hubinger and Nee2 report the highest cross sections and Tellinghuisen7 the lowest. Excellent agreement is observed in the long wavelength tail above 450 nm between the data of Maric et al.4 and Tellinghuisen7 whereas those from Hubinger and Nee2 are 50% or more larger and those from Jost3 are lower by ~20–40%. Maric et al.4 fit a three-band semi-logarithmic Gaussian distribution function to their 0.2 nm resolution data (200–600 nm) and obtained:

\[
\sigma(298 \text{ K}) = 6.52 \times 10^{-20} \times \exp(−54.1 \ln(227.6/\lambda))^2 \]
\[
+ 3.86 \times 10^{-19} \times \exp(−97.6 \ln(372.5/\lambda))^2 \]
\[
+ 9.99 \times 10^{-20} \times \exp(−66.9 \ln(442.4/\lambda))^2 \]

where \(\lambda \) is the wavelength in nm and \(\sigma \) is the absorption cross section in cm² molecule⁻¹. The recommended absorption cross sections calculated using this expression are listed in Table 4G-17.

A semi-empirical expression based on the theory of Sulzer and Wieland,6 which describes the temperature and wavelength dependence of an absorption spectrum, was derived by Maric et al.4 to be
\[
\sigma(T, \lambda) = 7.34 \times 10^{-20} \times \tanh^{0.5} \times \exp(-68.6 \times \tanh \times [\ln (227.6/\lambda)]^2) \\
+ 4.35 \times 10^{-19} \times \tanh^{0.5} \times \exp(-123.6 \times \tanh \times [\ln (372.5/\lambda)]^2) \\
+ 1.12 \times 10^{-19} \times \tanh^{0.5} \times \exp(-84.8 \times \tanh \times [\ln (442.4/\lambda)]^2)
\]

where \(\lambda \) is the wavelength in vacuum (200–600 nm), \(\tanh = \tanh (\hbar \omega_\lambda / kT) = \tanh (318.8 / T) \) (with \(\omega_\lambda = 443.1 \text{ cm}^{-1} \)), and T is the temperature (195–300 K).

Photoysis Quantum Yield and Product Studies: It is expected that BrCl photodissociates with unit quantum yield.

Table 4G-17. Recommended Absorption Cross Sections of BrCl at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2.64</td>
<td>305</td>
<td>0.845</td>
<td>410</td>
<td>22.51</td>
<td>515</td>
<td>2.13</td>
</tr>
<tr>
<td>205</td>
<td>3.61</td>
<td>310</td>
<td>1.47</td>
<td>415</td>
<td>19.95</td>
<td>520</td>
<td>1.74</td>
</tr>
<tr>
<td>210</td>
<td>4.59</td>
<td>315</td>
<td>2.51</td>
<td>420</td>
<td>17.80</td>
<td>525</td>
<td>1.41</td>
</tr>
<tr>
<td>215</td>
<td>5.47</td>
<td>320</td>
<td>4.08</td>
<td>425</td>
<td>16.04</td>
<td>530</td>
<td>1.13</td>
</tr>
<tr>
<td>220</td>
<td>6.13</td>
<td>325</td>
<td>6.30</td>
<td>430</td>
<td>14.63</td>
<td>535</td>
<td>0.892</td>
</tr>
<tr>
<td>225</td>
<td>6.47</td>
<td>330</td>
<td>9.25</td>
<td>435</td>
<td>13.49</td>
<td>540</td>
<td>0.700</td>
</tr>
<tr>
<td>230</td>
<td>6.48</td>
<td>335</td>
<td>12.92</td>
<td>440</td>
<td>12.55</td>
<td>545</td>
<td>0.544</td>
</tr>
<tr>
<td>235</td>
<td>6.17</td>
<td>340</td>
<td>17.21</td>
<td>445</td>
<td>11.73</td>
<td>450</td>
<td>0.419</td>
</tr>
<tr>
<td>240</td>
<td>5.60</td>
<td>345</td>
<td>21.90</td>
<td>450</td>
<td>10.98</td>
<td>455</td>
<td>0.320</td>
</tr>
<tr>
<td>245</td>
<td>4.86</td>
<td>350</td>
<td>26.68</td>
<td>455</td>
<td>10.25</td>
<td>460</td>
<td>0.243</td>
</tr>
<tr>
<td>250</td>
<td>4.05</td>
<td>355</td>
<td>31.18</td>
<td>460</td>
<td>9.52</td>
<td>465</td>
<td>0.182</td>
</tr>
<tr>
<td>255</td>
<td>3.24</td>
<td>360</td>
<td>35.03</td>
<td>465</td>
<td>8.78</td>
<td>470</td>
<td>0.136</td>
</tr>
<tr>
<td>260</td>
<td>2.50</td>
<td>365</td>
<td>37.91</td>
<td>470</td>
<td>8.02</td>
<td>475</td>
<td>0.101</td>
</tr>
<tr>
<td>265</td>
<td>1.86</td>
<td>370</td>
<td>39.61</td>
<td>475</td>
<td>7.24</td>
<td>480</td>
<td>0.0739</td>
</tr>
<tr>
<td>270</td>
<td>1.35</td>
<td>375</td>
<td>40.04</td>
<td>480</td>
<td>6.47</td>
<td>485</td>
<td>0.0539</td>
</tr>
<tr>
<td>275</td>
<td>0.945</td>
<td>380</td>
<td>39.26</td>
<td>485</td>
<td>5.72</td>
<td>490</td>
<td>0.0390</td>
</tr>
<tr>
<td>280</td>
<td>0.653</td>
<td>385</td>
<td>37.45</td>
<td>490</td>
<td>4.99</td>
<td>495</td>
<td>0.0281</td>
</tr>
<tr>
<td>285</td>
<td>0.458</td>
<td>390</td>
<td>34.87</td>
<td>495</td>
<td>4.31</td>
<td>500</td>
<td>0.0200</td>
</tr>
<tr>
<td>290</td>
<td>0.357</td>
<td>395</td>
<td>31.82</td>
<td>500</td>
<td>3.68</td>
<td>505</td>
<td>3.10</td>
</tr>
<tr>
<td>295</td>
<td>0.360</td>
<td>400</td>
<td>28.59</td>
<td>505</td>
<td>3.10</td>
<td>510</td>
<td>2.59</td>
</tr>
<tr>
<td>300</td>
<td>0.504</td>
<td>405</td>
<td>25.43</td>
<td>510</td>
<td>2.59</td>
<td>515</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Note:
Maric et al.\(^4\) calculated using the expression given in the text.

G12. BrOCI (bromochloromonoxide)

\[\text{BrOCI} + \text{hv} \rightarrow \text{Products} \quad (1) \]

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of BrOCI, bromochloromonoxide, was measured at room temperature over the wavelength range 230–390 nm by Burkholder et al.\(^1\). Their results are recommended and given in Table 4G-18.

Photolysis Quantum Yield and Product Studies: No recommendation.

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^2 \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^2 \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^2 \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^2 \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>16.8</td>
<td>272</td>
<td>200</td>
<td>314</td>
<td>55.8</td>
<td>338</td>
<td>46.7</td>
</tr>
<tr>
<td>232</td>
<td>15.4</td>
<td>274</td>
<td>199</td>
<td>316</td>
<td>56.6</td>
<td>358</td>
<td>22.5</td>
</tr>
<tr>
<td>234</td>
<td>15.2</td>
<td>276</td>
<td>191</td>
<td>318</td>
<td>57.2</td>
<td>360</td>
<td>20.2</td>
</tr>
<tr>
<td>236</td>
<td>15.5</td>
<td>278</td>
<td>179</td>
<td>320</td>
<td>57.4</td>
<td>362</td>
<td>18.1</td>
</tr>
<tr>
<td>238</td>
<td>16.6</td>
<td>280</td>
<td>165</td>
<td>322</td>
<td>57.3</td>
<td>364</td>
<td>16.1</td>
</tr>
<tr>
<td>240</td>
<td>18.6</td>
<td>282</td>
<td>149</td>
<td>324</td>
<td>56.9</td>
<td>366</td>
<td>14.2</td>
</tr>
<tr>
<td>242</td>
<td>21.7</td>
<td>284</td>
<td>132</td>
<td>326</td>
<td>56.1</td>
<td>368</td>
<td>12.3</td>
</tr>
<tr>
<td>244</td>
<td>26.1</td>
<td>286</td>
<td>115</td>
<td>328</td>
<td>55.1</td>
<td>370</td>
<td>10.6</td>
</tr>
<tr>
<td>246</td>
<td>31.6</td>
<td>288</td>
<td>100</td>
<td>330</td>
<td>53.8</td>
<td>372</td>
<td>8.66</td>
</tr>
<tr>
<td>248</td>
<td>39.1</td>
<td>290</td>
<td>87.2</td>
<td>332</td>
<td>52.3</td>
<td>374</td>
<td>7.34</td>
</tr>
<tr>
<td>250</td>
<td>48.1</td>
<td>292</td>
<td>76.3</td>
<td>334</td>
<td>50.6</td>
<td>376</td>
<td>6.12</td>
</tr>
<tr>
<td>252</td>
<td>59.9</td>
<td>294</td>
<td>67.9</td>
<td>336</td>
<td>48.7</td>
<td>378</td>
<td>5.01</td>
</tr>
<tr>
<td>254</td>
<td>73.8</td>
<td>296</td>
<td>61.6</td>
<td>340</td>
<td>44.5</td>
<td>380</td>
<td>4.00</td>
</tr>
<tr>
<td>256</td>
<td>89.4</td>
<td>298</td>
<td>57.0</td>
<td>342</td>
<td>42.3</td>
<td>382</td>
<td>3.10</td>
</tr>
<tr>
<td>258</td>
<td>107</td>
<td>300</td>
<td>54.0</td>
<td>344</td>
<td>39.9</td>
<td>384</td>
<td>2.30</td>
</tr>
<tr>
<td>260</td>
<td>126</td>
<td>302</td>
<td>52.4</td>
<td>346</td>
<td>37.3</td>
<td>386</td>
<td>1.62</td>
</tr>
<tr>
<td>262</td>
<td>145</td>
<td>304</td>
<td>52.1</td>
<td>348</td>
<td>34.7</td>
<td>388</td>
<td>1.03</td>
</tr>
<tr>
<td>264</td>
<td>163</td>
<td>306</td>
<td>52.3</td>
<td>350</td>
<td>32.4</td>
<td>390</td>
<td>0.55</td>
</tr>
<tr>
<td>266</td>
<td>179</td>
<td>308</td>
<td>53.0</td>
<td>352</td>
<td>29.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>192</td>
<td>310</td>
<td>53.9</td>
<td>354</td>
<td>27.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>198</td>
<td>312</td>
<td>54.7</td>
<td>356</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Burkholder et al.\(^1\)

G13. CH\(_3\)Br (methyl bromide)

\[\text{CH}_3\text{Br} + \text{hv} \rightarrow \text{CH}_3 + \text{Br} \quad 295 \text{ kJ mol}^{-1} \quad \text{406 nm} \quad (1) \]

\[\rightarrow \text{CH}_2\text{Br} + \text{H} \quad 310 \text{ kJ mol}^{-1} \quad \text{387 nm} \quad (2) \]

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The UV absorption spectrum of CH\(_3\)Br, methyl bromide, has been measured at room temperature by Davidson\(^1\) (205–270 nm), Gordus and Bernstein\(^5\) (204–260 nm), Robbins\(^10\) (174–270 nm), Uthman et al.\(^12\) (200–260 nm), Molina et al.\(^8\) (190–290 nm), Felps et al.\(^3\) (201.6 nm), Man et al.\(^7\) (180–264 nm), and over the temperature range 210–295 K by Gillotay and Simon\(^1\) (180–280 nm). At wavelengths \(>180\) nm and \(<270\) nm, the room temperature values of Gordus and Bernstein,\(^5\) Robbins,\(^10\) Uthman et al.,\(^12\) Molina et al.,\(^8\) Gillotay and Simon,\(^1\) and the values of Davidson\(^1\) at wavelengths \(>210\) nm are in very good agreement, to within 10% and within 2% at the absorption maximum \(~201\) nm. The value from Felps et al.\(^3\) at 202 nm is lower by \(~10\)% than the other studies. The cross section data of Man et al.,\(^7\) reported graphically, are lower by 20–30% over the entire band in comparison with the other data sets. The recommended absorption cross sections in Table 4G-19 are the mean of the values reported by Gillotay and Simon,\(^4\) Robbins\(^10\) for the range 182–188 nm, the mean of the values reported by Gillotay and Simon,\(^4\) Uthman et al.,\(^12\) and Robbins\(^10\) for the range 190–198 nm, the mean of the values reported by Gillotay and

4-301
Simon, Molina et al., Uthman et al., and Robbins for the range 200–260 nm, the mean of the values reported by Gillotay and Simon, Molina et al., and Robbins for the range 262–268 nm; the mean of the values reported by Gillotay and Simon and Molina et al. for the range 270–280 nm, and the data from Molina et al. for the range 285–290 nm. A wavelength independent cross section uncertainty factor of 1.2

(2σ) is assigned for the recommended wavelength range.

The VUV absorption spectrum at 298 K was measured by Olney et al. (2.8–199 nm) and Locht et al. (50–207 nm). A Lyman-α cross section of 3.2 × 10⁻¹⁷ cm² molecule⁻¹ from the Locht et al. study is recommended with an uncertainty factor of 1.3 (2σ), which covers the range in the available experimental data.

Gillotay and Simon report a slight temperature dependence in the absorption cross sections for wavelengths >220 nm where the values decrease with decreasing temperature. Gillotay and Simon parameterized the cross sections and the temperature dependence using an empirical polynomial expansion

\[
\log_{10}(\sigma(\lambda, T)) = \sum A_n \lambda^n + (T–273) \times \sum B_n \lambda^n
\]

and reported calculated values for T = 210, 230, 250, 270, and 295 K. However, the fit parameters given in Gillotay et al. result in a systematic bias in the calculated cross sections at wavelengths greater than 200 nm and a poor fit to their experimental data at shorter wavelengths. A re-fit of their data yielded the A_n and B_n parameters below, which are valid for the wavelength range 210–290 nm and temperature range 210–300 K. The re-fit removes the systematic bias and reproduces the experimental data to within 5%, while improving the short wavelength fit although deviations are still significant. This fit is recommended.

\[
\begin{align*}
A_0 &= 7.997 \\
A_1 &= -0.889724 \\
A_2 &= 0.00838084 \\
A_3 &= -3.03191 \times 10^{-5} \\
A_4 &= 3.69427 \times 10^{-8}
\end{align*}
\]

\[
\begin{align*}
B_0 &= 0.457415 \\
B_1 &= -0.00882996 \\
B_2 &= 6.40235 \times 10^{-5} \\
B_3 &= -2.06827 \times 10^{-7} \\
B_4 &= 2.51393 \times 10^{-10}
\end{align*}
\]

Photolysis Quantum Yield and Product Studies: Quantum yields for Br and H atom formation in the photodissociation of CH₃Br were measured at 298 K by Talukdar et al. The quantum yields for Br atom formation were found to be close to unity, \(\Phi(\text{Br}) = 1.05 \pm 0.11, 1.10 \pm 0.20, \) and \(1.01 \pm 0.16 \) at 193, 222, and 248 nm, respectively. The quantum yield for H atom formation in the photolysis at 193 nm was measured to be \(\Phi(\text{H}) = 0.002 \pm 0.001, \) whereas H atoms could not be detected in the photolysis at 222 and 248 nm. Using broadband flash photolysis of CH₃Br, Ebenstein et al. reported a Br⁺(2P½) fractional yield, Br⁺(2P½)/(Total Br), of 0.15 ± 0.12.

Table 4G-19. Recommended Absorption Cross Sections of CH₃Br at 296 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>182</td>
<td>19.8</td>
<td>218</td>
<td>42.3</td>
<td>254</td>
<td>0.484</td>
</tr>
<tr>
<td>184</td>
<td>21.0</td>
<td>220</td>
<td>36.6</td>
<td>256</td>
<td>0.340</td>
</tr>
<tr>
<td>186</td>
<td>27.8</td>
<td>222</td>
<td>31.1</td>
<td>258</td>
<td>0.240</td>
</tr>
<tr>
<td>188</td>
<td>35.2</td>
<td>224</td>
<td>26.6</td>
<td>260</td>
<td>0.162</td>
</tr>
<tr>
<td>190</td>
<td>44.2</td>
<td>226</td>
<td>22.2</td>
<td>262</td>
<td>0.115</td>
</tr>
<tr>
<td>192</td>
<td>53.8</td>
<td>228</td>
<td>18.1</td>
<td>264</td>
<td>0.0795</td>
</tr>
<tr>
<td>194</td>
<td>62.6</td>
<td>230</td>
<td>14.7</td>
<td>266</td>
<td>0.0551</td>
</tr>
<tr>
<td>196</td>
<td>69.7</td>
<td>232</td>
<td>11.9</td>
<td>268</td>
<td>0.0356</td>
</tr>
<tr>
<td>198</td>
<td>76.1</td>
<td>234</td>
<td>9.41</td>
<td>270</td>
<td>0.0246</td>
</tr>
<tr>
<td>200</td>
<td>79.0</td>
<td>236</td>
<td>7.38</td>
<td>272</td>
<td>0.0172</td>
</tr>
<tr>
<td>202</td>
<td>79.2</td>
<td>238</td>
<td>5.73</td>
<td>274</td>
<td>0.0114</td>
</tr>
<tr>
<td>204</td>
<td>78.0</td>
<td>240</td>
<td>4.32</td>
<td>276</td>
<td>0.00808</td>
</tr>
<tr>
<td>206</td>
<td>75.2</td>
<td>242</td>
<td>3.27</td>
<td>278</td>
<td>0.00553</td>
</tr>
<tr>
<td>208</td>
<td>70.4</td>
<td>244</td>
<td>2.37</td>
<td>280</td>
<td>0.00382</td>
</tr>
<tr>
<td>210</td>
<td>65.5</td>
<td>246</td>
<td>1.81</td>
<td>285</td>
<td>0.00110</td>
</tr>
<tr>
<td>212</td>
<td>59.9</td>
<td>248</td>
<td>1.31</td>
<td>290</td>
<td>0.00030</td>
</tr>
<tr>
<td>214</td>
<td>54.2</td>
<td>250</td>
<td>0.921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>47.9</td>
<td>252</td>
<td>0.683</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
182–188 nm: mean of data from Gillotay and Simon and Robbins

4-302
190–198 nm: mean of data from Gillotay ad Simon,4 Uthman et al.,12 and Robbins10
200–260 nm: mean of data from Gillotay and Simon,4 Molina et al.,8 Uthman et al.,12 and Robbins10
262–268 nm: mean of data from Gillotay and Simon,4 Molina et al.,8 and Robbins10
270–280 nm: mean of Gillotay and Simon4 and Molina et al.8
285–290 nm: Molina et al.8

G14. CH3Br (dibromomethane)

CH3Br + hv → CH2Br + Br 281 kJ mol⁻¹ 426 nm (1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of CH2Br2, dibromomethane, has been measured at room temperature by Molina et al.1 (200–300 nm), Gillotay et al.1,2 (174–290 nm), and Mössinger et al.4 (215–300 nm). The absorption cross sections are in good agreement in the range 200–255 nm, to within 10%, and at 275 nm they are within 30%. The recommended absorption cross sections in Table 4G-20 are the values from Gillotay et al.1,2 in the region 174–198 nm, the mean of the values reported by Molina et al.3 and Gillotay et al.1,2 for the range 200–215 nm, the mean of the values reported by the three groups for the range 220–290 nm, and values from Mössinger et al.4 for the range 295–300 nm. On the basis of the level of agreement among the available studies, cross section uncertainty factors (2σ) of 1.05 (200–250 nm), 1.1 (250–270 nm), and 1.2 (270–300 nm) are estimated for the wavelength ranges given in parenthesis.

The absorption spectrum temperature dependence was measured by Gillotay et al.1,2 (174–290 nm) over the temperature range 210–295 K and Mössinger et al.4 (215–300 nm) over the range 250–348 K. The absorption cross sections decrease at wavelength >235 nm and increase between 235 and 207 nm with decreasing temperature. At shorter wavelengths, Gillotay et al.1,2 report a slight increase in the cross sections in the range 175–189 nm and a slight decrease around the maximum near 200 nm. Gillotay et al.1,2 parameterized the cross sections and the temperature dependence using an empirical polynomial expansion

\[\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n \]

and report calculated values for T = 210, 230, 250, 270, and 295 K. The A_n and B_n parameters, which are valid for the wavelength range 210–290 nm and temperature range 210–300 K are given below.

4-303
Mössinger et al.\(^4\) parameterized their cross section data using the expression

\[
\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298)
\]

for the ranges 215–300 nm and 250–348 K. The parameterizations given by Gillotay et al.\(^1,2\) and Mössinger et al.\(^3\) yield cross sections that agree at 250 K to within 5% in the range 215–265 nm and to within 10% in the range 270–285 nm. The B(\(\lambda\)) coefficients from Mössinger et al.\(^4\) are given in Table 4G-20 and recommended for use in model calculations.

Photolysis Quantum Yield and Product Studies: It is expected that photolysis will rupture the C-Br bond with unity quantum yield.

Table 4G-20. Recommended Absorption Cross Sections of CH\(_2\)Br\(_2\) at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^{-1}))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^{-1}))</th>
<th>(10^3 B) (K(^{-1}))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^{-1}))</th>
<th>(10^3 B) (K(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>1170.9</td>
<td>198</td>
<td>226.0</td>
<td>255</td>
<td>14.10</td>
<td>3.91</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>662.4</td>
<td>200</td>
<td>225.6</td>
<td>260</td>
<td>6.607</td>
<td>5.16</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>377.2</td>
<td>205</td>
<td>215.3</td>
<td>265</td>
<td>3.037</td>
<td>6.33</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>241.0</td>
<td>210</td>
<td>234.5</td>
<td>270</td>
<td>1.347</td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>178.4</td>
<td>215</td>
<td>263.2</td>
<td>-2.02</td>
<td>275</td>
<td>0.590</td>
<td>8.74</td>
</tr>
<tr>
<td>184</td>
<td>154.4</td>
<td>220</td>
<td>272.0</td>
<td>-1.79</td>
<td>280</td>
<td>0.255</td>
<td>11.6</td>
</tr>
<tr>
<td>186</td>
<td>153.5</td>
<td>225</td>
<td>247.4</td>
<td>-1.50</td>
<td>285</td>
<td>0.114</td>
<td>13.8</td>
</tr>
<tr>
<td>188</td>
<td>166.1</td>
<td>230</td>
<td>195.8</td>
<td>-0.96</td>
<td>290</td>
<td>0.0499</td>
<td>15.3</td>
</tr>
<tr>
<td>190</td>
<td>187.0</td>
<td>235</td>
<td>138.9</td>
<td>-0.04</td>
<td>295</td>
<td>0.0210</td>
<td>16.5</td>
</tr>
<tr>
<td>192</td>
<td>209.3</td>
<td>240</td>
<td>88.60</td>
<td>0.71</td>
<td>300</td>
<td>0.0090</td>
<td>21.9</td>
</tr>
<tr>
<td>194</td>
<td>222.5</td>
<td>245</td>
<td>51.90</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>228.3</td>
<td>250</td>
<td>28.03</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Absorption cross sections (\(\sigma\)):
- 174–198 nm: Gillotay et al.\(^1,2\)
- 200–210 nm: mean of data from Molina et al.\(^3\) and Gillotay et al.\(^1,2\)
- 215–290 nm: mean of data from Molina et al.\(^3\) Gillotay et al.\(^1,2\) and Mössinger et al.\(^4\)
- 295–300 nm: Mössinger et al.\(^4\)

Temperature dependence (B):
Mössinger et al.\(^4\)

G15. CHBr\(_3\) (tribromomethane, bromoform)

CHBr\(_3\) + hv \(\rightarrow\) CHBr\(_2\) + Br

\[
245 \text{ kJ mol}^{-1}
\]

489 nm

(1)

CHBr\(_3\) \(\rightarrow\) CHBr + Br

\[
354 \text{ kJ mol}^{-1}
\]

338 nm

(2)

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The UV absorption spectrum of CHBr\(_3\), tribromomethane (bromoform), has been measured by Gillotay et al.\(^3\) (170–310 nm, 240–295 K), Moortgat et al.\(^4\) (286–362 nm, 256–296 K), and Papanastasiou et al.\(^5\) (300–345 nm, 260–330 K). The agreement in the cross sections reported in these studies
at wavelengths less than 310 nm is very good. Moortgat et al. reported possible complications to their measurements at the longer wavelengths due to the possible presence of impurities as well as optical artifacts arising from adsorption of CHBr₃ on the cell windows. The Papanastasiou et al. study addressed these potential complications in their cavity ring-down spectroscopy measurements, while also addressing contributions from Rayleigh scattering. The recommended cross sections in Table 4G-21 are the values from Gillotay et al. for the range 170–258 nm and for wavelengths greater than 258 nm from the spectrum parameterization of Papanastasiou et al. given below.

The absorption cross sections increase around the three absorption maxima in the ranges 178–189 nm, 194–208 nm, and 208–234 nm, and decrease at wavelengths <179 nm, over the range 189–194 nm, and >235 nm with decreasing temperature. Gillotay et al.³ parameterized the cross sections and the temperature dependence using an empirical polynomial expansion

\[\log_{10}(\sigma(\lambda, T)) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n \]

and report calculated values for 210, 230, 250, 270, and 295 K. The \(A_n \) and \(B_n \) parameters, which are valid for the wavelength range 240–310 nm and temperature range 210–300 K are given below.

\[
\begin{align*}
A_0 & = -110.2782 \\
A_1 & = 1.0281 \\
A_2 & = -3.6626 \times 10^{-3} \\
A_3 & = 4.1226 \times 10^{-6}
\end{align*}
\]

\[
\begin{align*}
B_0 & = -1.5312 \times 10^{-1} \\
B_1 & = 1.6109 \times 10^{-3} \\
B_2 & = -5.8075 \times 10^{-6} \\
B_3 & = 7.2893 \times 10^{-9}
\end{align*}
\]

Moortgat et al.⁴ parameterized their data using the expression

\[\sigma(\lambda,T) = \exp \left[(0.06183 - 0.000241 \lambda) (273 - T) - (2.376 + 0.14757 \lambda) \right] \]

for the wavelength range 290–340 nm and temperature range 210–300 K.

Papanastasiou et al. parameterized the CHBr₃ spectrum using their experimental data and the data from Gillotay et al. and Moortgat et al. between 260–310 nm using the expression

\[\log_{10}(\sigma(\lambda,T)) = \sum A_n \lambda^n + (296 - T) \times \sum B_n \lambda^n \]

The obtained parameters are

<table>
<thead>
<tr>
<th>i</th>
<th>(A_i)</th>
<th>(B_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-32.6367</td>
<td>0.1582</td>
</tr>
<tr>
<td>1</td>
<td>0.10308</td>
<td>-0.001475</td>
</tr>
<tr>
<td>2</td>
<td>6.39 \times 10^{-5}</td>
<td>3.8058 \times 10^{-6}</td>
</tr>
<tr>
<td>3</td>
<td>-7.7392 \times 10^{-7}</td>
<td>9.187 \times 10^{-10}</td>
</tr>
<tr>
<td>4</td>
<td>-2.2513 \times 10^{-9}</td>
<td>-1.0772 \times 10^{-11}</td>
</tr>
<tr>
<td>5</td>
<td>6.1376 \times 10^{-12}</td>
<td>-</td>
</tr>
</tbody>
</table>

and the parameterization is valid over the wavelength range 260–345 nm for temperatures in the range 260–330 K. This parameterization is recommended, while the Gillotay et al. parameterization is recommended for wavelengths <260 nm. A cross section uncertainty factor (2\(\sigma \)) of 1.2 (330–345 nm) and 1.1 (240 to <330 nm) is assigned to the room temperature spectrum.

The VUV absorption spectrum was measured by Causley and Russell² (112–190 nm) and the absorption cross section at Lyman-\(\alpha \) was measured by Vasta and Volpp⁷ at 298 K. A Lyman-\(\alpha \) cross section of 7.1 \times 10^{-17} \text{ cm}² \text{ molecule}^{-1} from the direct study of Vasta and Volpp is recommended. There is good agreement between these two studies at Lyman-\(\alpha \) and an uncertainty factor of 1.1 (2\(\sigma \)) is assigned.

Photolysis Quantum Yield and Product Studies: The quantum yield for the formation of Br atoms were determined by Bayes et al.¹ between 266 and 324 nm. In the wavelength range 303–306 nm, the Br atom quantum yield is unity within experimental error. At longer wavelengths, the quantum yield decreases to 0.76 at 324 nm. Bayes et al.¹ claim that the lower than unity quantum yield may be due to systematic errors in the recommended absorption cross sections used in their data analysis. Their Br atom quantum yields in the wavelength range 300 to 324 nm would be greater and would encompass unity within their state uncertainty with the cross section data from Papanastasiou et al. Support for a unity quantum yield at \(\lambda >300 \) nm comes from theoretical calculations by Peterson and Francisco.⁶ At 266 nm, the Br atom quantum yield is 0.76 ± 0.03, indicating that another photodissociation channel becomes important. Xu et al.⁸ measured atomic Br and molecular Br₂ by TOF mass spectrometry from bromoform photolysis at 234 and 267 nm and report evidence for the formation of CHBr + Br₂. Xu et al.⁸ report \(\Phi(\text{Br}) = 0.74 \) and \(\Phi(\text{Br}_2) = 0.26 \) for 234
nm photolysis and $\Phi(\text{Br}) = 0.84$ and $\Phi(\text{Br}_2) = 0.16$ for 267 nm photolysis. A Br atom quantum yield of unity for wavelengths >300 nm is recommended.

Table 4G-21. Recommended Absorption Cross Sections of CHBr$_3$ at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>1603.8</td>
<td>236</td>
<td>323.9</td>
<td>302</td>
<td>0.526</td>
</tr>
<tr>
<td>172</td>
<td>1173.2</td>
<td>238</td>
<td>294.7</td>
<td>304</td>
<td>0.392</td>
</tr>
<tr>
<td>174</td>
<td>969.6</td>
<td>240</td>
<td>272.8</td>
<td>306</td>
<td>0.292</td>
</tr>
<tr>
<td>176</td>
<td>872.0</td>
<td>242</td>
<td>253.3</td>
<td>308</td>
<td>0.216</td>
</tr>
<tr>
<td>178</td>
<td>857.6</td>
<td>244</td>
<td>233.7</td>
<td>310</td>
<td>0.160</td>
</tr>
<tr>
<td>180</td>
<td>831.3</td>
<td>246</td>
<td>214.4</td>
<td>312</td>
<td>0.118</td>
</tr>
<tr>
<td>182</td>
<td>770.3</td>
<td>248</td>
<td>193.9</td>
<td>314</td>
<td>0.0874</td>
</tr>
<tr>
<td>184</td>
<td>683.3</td>
<td>250</td>
<td>174.1</td>
<td>316</td>
<td>0.0644</td>
</tr>
<tr>
<td>186</td>
<td>570.4</td>
<td>252</td>
<td>157.7</td>
<td>318</td>
<td>0.0475</td>
</tr>
<tr>
<td>188</td>
<td>470.8</td>
<td>254</td>
<td>136.1</td>
<td>320</td>
<td>0.0349</td>
</tr>
<tr>
<td>190</td>
<td>399.1</td>
<td>256</td>
<td>116.4</td>
<td>322</td>
<td>0.0257</td>
</tr>
<tr>
<td>192</td>
<td>360.2</td>
<td>258</td>
<td>98.6</td>
<td>324</td>
<td>0.0189</td>
</tr>
<tr>
<td>194</td>
<td>351.3</td>
<td>260</td>
<td>82.9</td>
<td>326</td>
<td>0.0139</td>
</tr>
<tr>
<td>196</td>
<td>366.1</td>
<td>262</td>
<td>69.7</td>
<td>328</td>
<td>0.0102</td>
</tr>
<tr>
<td>198</td>
<td>393.6</td>
<td>264</td>
<td>58.1</td>
<td>330</td>
<td>0.00754</td>
</tr>
<tr>
<td>200</td>
<td>416.4</td>
<td>266</td>
<td>48.0</td>
<td>332</td>
<td>0.00556</td>
</tr>
<tr>
<td>202</td>
<td>433.6</td>
<td>268</td>
<td>39.4</td>
<td>334</td>
<td>0.00441</td>
</tr>
<tr>
<td>204</td>
<td>440.6</td>
<td>270</td>
<td>32.0</td>
<td>336</td>
<td>0.00304</td>
</tr>
<tr>
<td>206</td>
<td>445.0</td>
<td>272</td>
<td>25.9</td>
<td>338</td>
<td>0.00225</td>
</tr>
<tr>
<td>208</td>
<td>451.4</td>
<td>274</td>
<td>20.7</td>
<td>340</td>
<td>0.00167</td>
</tr>
<tr>
<td>210</td>
<td>468.5</td>
<td>276</td>
<td>16.5</td>
<td>342</td>
<td>0.00124</td>
</tr>
<tr>
<td>212</td>
<td>493.4</td>
<td>278</td>
<td>13.1</td>
<td>344</td>
<td>0.000928</td>
</tr>
<tr>
<td>214</td>
<td>524.2</td>
<td>280</td>
<td>10.3</td>
<td>346</td>
<td>0.000694</td>
</tr>
<tr>
<td>216</td>
<td>553.5</td>
<td>282</td>
<td>8.04</td>
<td>348</td>
<td>0.000521</td>
</tr>
<tr>
<td>218</td>
<td>573.9</td>
<td>284</td>
<td>6.25</td>
<td>350</td>
<td>0.000393</td>
</tr>
<tr>
<td>220</td>
<td>582.6</td>
<td>286</td>
<td>4.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>578.0</td>
<td>288</td>
<td>3.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>557.8</td>
<td>290</td>
<td>2.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>527.2</td>
<td>292</td>
<td>2.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>486.8</td>
<td>294</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>441.2</td>
<td>296</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>397.4</td>
<td>298</td>
<td>0.936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>361.8</td>
<td>300</td>
<td>0.703</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
170–258 nm: Gillotay et al.3
260–350 nm: Papanastasiou et al.5 parameterization

G16. CH₂BrCH₂Br (1,2-dibromoethane)

\[\text{CH}_2\text{BrCH}_2\text{Br} + \text{hv} \rightarrow \text{Products} \quad (1) \]

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CH₂BrCH₂Br, 1,2-dibromoethane, was measured at room temperature over the wavelength range 190–270 nm by Uthman et al.¹ Their data is recommended and listed in Table 4G-22.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-22. Recommended Absorption Cross Sections of CH₂BrCH₂Br at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>230</td>
<td>218</td>
<td>170</td>
<td>246</td>
<td>9.3</td>
</tr>
<tr>
<td>192</td>
<td>250</td>
<td>220</td>
<td>150</td>
<td>248</td>
<td>7.1</td>
</tr>
<tr>
<td>194</td>
<td>270</td>
<td>222</td>
<td>130</td>
<td>250</td>
<td>5.9</td>
</tr>
<tr>
<td>196</td>
<td>290</td>
<td>224</td>
<td>110</td>
<td>252</td>
<td>4.4</td>
</tr>
<tr>
<td>198</td>
<td>300</td>
<td>226</td>
<td>89</td>
<td>254</td>
<td>4.0</td>
</tr>
<tr>
<td>200</td>
<td>310</td>
<td>228</td>
<td>75</td>
<td>256</td>
<td>2.8</td>
</tr>
<tr>
<td>202</td>
<td>310</td>
<td>230</td>
<td>62</td>
<td>258</td>
<td>2.1</td>
</tr>
<tr>
<td>204</td>
<td>300</td>
<td>232</td>
<td>50</td>
<td>260</td>
<td>1.9</td>
</tr>
<tr>
<td>206</td>
<td>290</td>
<td>234</td>
<td>41</td>
<td>262</td>
<td>1.7</td>
</tr>
<tr>
<td>208</td>
<td>280</td>
<td>236</td>
<td>32</td>
<td>264</td>
<td>1.4</td>
</tr>
<tr>
<td>210</td>
<td>260</td>
<td>238</td>
<td>26</td>
<td>266</td>
<td>1.1</td>
</tr>
<tr>
<td>212</td>
<td>230</td>
<td>240</td>
<td>20</td>
<td>268</td>
<td>0.9</td>
</tr>
<tr>
<td>214</td>
<td>210</td>
<td>242</td>
<td>16</td>
<td>270</td>
<td>0.7</td>
</tr>
<tr>
<td>216</td>
<td>190</td>
<td>244</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
190–270 nm: Uthman et al.¹

G17. C₂H₅Br (bromoethane)

\[\text{C}_2\text{H}_5\text{Br} + \text{hv} \rightarrow \text{Products} \quad (1) \]

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of C₂H₅Br, bromoethane, was measured at 295 K over the wavelength range 200–260 nm by Zhang et al.² In this wavelength range the spectrum shows part of an absorption band with a maximum cross section of ~6 × 10⁻¹⁹ cm² at ~200 nm. The cross section at 200 nm reported by Porret and Goodeve¹ is ~10% less than in the Zhang et al. spectrum. The recommended absorption cross sections in Table 4G-23 are estimated from a figure in Zhang et al.²

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4G-23. Recommended Absorption Cross Sections of C₂H₅Br at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>61</td>
</tr>
<tr>
<td>205</td>
<td>60</td>
</tr>
<tr>
<td>210</td>
<td>54</td>
</tr>
<tr>
<td>215</td>
<td>45</td>
</tr>
<tr>
<td>220</td>
<td>34</td>
</tr>
<tr>
<td>225</td>
<td>24</td>
</tr>
<tr>
<td>230</td>
<td>15</td>
</tr>
<tr>
<td>235</td>
<td>8.3</td>
</tr>
<tr>
<td>240</td>
<td>4.3</td>
</tr>
<tr>
<td>245</td>
<td>2.3</td>
</tr>
<tr>
<td>250</td>
<td>1.1</td>
</tr>
<tr>
<td>255</td>
<td>0.5</td>
</tr>
<tr>
<td>260</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note:
Zhang et al.², values read from logarithmic plot

G18. COBr₂ (carbonyl dibromide, dibromophosgene)

COBr₂ + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of COBr₂, carbonyl dibromide (dibromophosgene), was measured at room temperature over the wavelength range 235–353 nm by Libuda et al.¹ ² The spectrum exhibits monotonically decreasing absorption cross sections with increasing wavelength over this range. The recommended absorption cross sections in Table 4G-24 are the averages over 1 nm intervals of the spectrum reported at 0.6 nm intervals.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-24. Recommended Absorption Cross Sections of COBr₂ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²° σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>58.3</td>
<td>263</td>
<td>20.9</td>
<td>286</td>
<td>4.50</td>
<td>309</td>
<td>0.301</td>
</tr>
<tr>
<td>241</td>
<td>56.5</td>
<td>264</td>
<td>19.9</td>
<td>287</td>
<td>4.13</td>
<td>310</td>
<td>0.260</td>
</tr>
<tr>
<td>242</td>
<td>55.3</td>
<td>265</td>
<td>18.8</td>
<td>288</td>
<td>3.73</td>
<td>311</td>
<td>0.230</td>
</tr>
<tr>
<td>243</td>
<td>54.1</td>
<td>266</td>
<td>17.9</td>
<td>289</td>
<td>3.38</td>
<td>312</td>
<td>0.204</td>
</tr>
<tr>
<td>244</td>
<td>52.3</td>
<td>267</td>
<td>17.0</td>
<td>290</td>
<td>3.09</td>
<td>313</td>
<td>0.178</td>
</tr>
<tr>
<td>245</td>
<td>50.6</td>
<td>268</td>
<td>16.1</td>
<td>291</td>
<td>2.81</td>
<td>314</td>
<td>0.159</td>
</tr>
<tr>
<td>246</td>
<td>48.8</td>
<td>269</td>
<td>15.2</td>
<td>292</td>
<td>2.58</td>
<td>315</td>
<td>0.143</td>
</tr>
<tr>
<td>247</td>
<td>47.1</td>
<td>270</td>
<td>14.4</td>
<td>293</td>
<td>2.32</td>
<td>316</td>
<td>0.127</td>
</tr>
<tr>
<td>248</td>
<td>45.2</td>
<td>271</td>
<td>13.6</td>
<td>294</td>
<td>2.07</td>
<td>317</td>
<td>0.114</td>
</tr>
<tr>
<td>249</td>
<td>43.2</td>
<td>272</td>
<td>12.8</td>
<td>295</td>
<td>1.82</td>
<td>318</td>
<td>0.0995</td>
</tr>
<tr>
<td>250</td>
<td>41.3</td>
<td>273</td>
<td>12.0</td>
<td>296</td>
<td>1.62</td>
<td>319</td>
<td>0.0892</td>
</tr>
<tr>
<td>251</td>
<td>39.5</td>
<td>274</td>
<td>11.4</td>
<td>297</td>
<td>1.42</td>
<td>320</td>
<td>0.0789</td>
</tr>
<tr>
<td>252</td>
<td>37.7</td>
<td>275</td>
<td>10.7</td>
<td>298</td>
<td>1.26</td>
<td>321</td>
<td>0.0694</td>
</tr>
<tr>
<td>253</td>
<td>35.7</td>
<td>276</td>
<td>9.98</td>
<td>299</td>
<td>1.11</td>
<td>322</td>
<td>0.0633</td>
</tr>
<tr>
<td>254</td>
<td>33.7</td>
<td>277</td>
<td>9.24</td>
<td>300</td>
<td>0.971</td>
<td>323</td>
<td>0.0578</td>
</tr>
<tr>
<td>255</td>
<td>32.0</td>
<td>278</td>
<td>8.56</td>
<td>301</td>
<td>0.858</td>
<td>324</td>
<td>0.0528</td>
</tr>
<tr>
<td>256</td>
<td>30.4</td>
<td>279</td>
<td>7.99</td>
<td>302</td>
<td>0.750</td>
<td>325</td>
<td>0.0499</td>
</tr>
<tr>
<td>257</td>
<td>28.9</td>
<td>280</td>
<td>7.44</td>
<td>303</td>
<td>0.661</td>
<td>326</td>
<td>0.0449</td>
</tr>
</tbody>
</table>

Back to Index

4-308
<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>18.7</td>
<td>262</td>
<td>32.4</td>
<td>284</td>
<td>21.7</td>
<td>306</td>
<td>2.77</td>
</tr>
<tr>
<td>241</td>
<td>20.1</td>
<td>263</td>
<td>29.9</td>
<td>285</td>
<td>20.1</td>
<td>307</td>
<td>2.43</td>
</tr>
<tr>
<td>242</td>
<td>19.4</td>
<td>264</td>
<td>31.1</td>
<td>286</td>
<td>19.1</td>
<td>308</td>
<td>2.12</td>
</tr>
<tr>
<td>243</td>
<td>19.8</td>
<td>265</td>
<td>29.9</td>
<td>287</td>
<td>17.5</td>
<td>309</td>
<td>1.90</td>
</tr>
<tr>
<td>244</td>
<td>19.1</td>
<td>266</td>
<td>32.5</td>
<td>288</td>
<td>17.3</td>
<td>310</td>
<td>1.65</td>
</tr>
<tr>
<td>245</td>
<td>20.0</td>
<td>267</td>
<td>31.6</td>
<td>289</td>
<td>14.9</td>
<td>311</td>
<td>1.51</td>
</tr>
<tr>
<td>246</td>
<td>22.6</td>
<td>268</td>
<td>33.8</td>
<td>290</td>
<td>15.5</td>
<td>312</td>
<td>1.34</td>
</tr>
<tr>
<td>247</td>
<td>22.6</td>
<td>269</td>
<td>30.9</td>
<td>291</td>
<td>12.7</td>
<td>313</td>
<td>1.13</td>
</tr>
<tr>
<td>248</td>
<td>23.6</td>
<td>270</td>
<td>31.9</td>
<td>292</td>
<td>13.3</td>
<td>314</td>
<td>1.01</td>
</tr>
<tr>
<td>249</td>
<td>22.5</td>
<td>271</td>
<td>30.9</td>
<td>293</td>
<td>11.1</td>
<td>315</td>
<td>0.801</td>
</tr>
<tr>
<td>250</td>
<td>22.3</td>
<td>272</td>
<td>29.6</td>
<td>294</td>
<td>10.8</td>
<td>316</td>
<td>0.687</td>
</tr>
<tr>
<td>251</td>
<td>24.0</td>
<td>273</td>
<td>31.4</td>
<td>295</td>
<td>9.79</td>
<td>317</td>
<td>0.613</td>
</tr>
<tr>
<td>252</td>
<td>25.0</td>
<td>274</td>
<td>29.3</td>
<td>296</td>
<td>9.08</td>
<td>318</td>
<td>0.611</td>
</tr>
<tr>
<td>253</td>
<td>27.1</td>
<td>275</td>
<td>31.5</td>
<td>297</td>
<td>8.03</td>
<td>319</td>
<td>0.576</td>
</tr>
<tr>
<td>254</td>
<td>26.9</td>
<td>276</td>
<td>28.5</td>
<td>298</td>
<td>7.35</td>
<td>320</td>
<td>0.522</td>
</tr>
<tr>
<td>255</td>
<td>27.5</td>
<td>277</td>
<td>29.1</td>
<td>299</td>
<td>5.97</td>
<td>321</td>
<td>0.476</td>
</tr>
<tr>
<td>256</td>
<td>27.5</td>
<td>278</td>
<td>26.8</td>
<td>300</td>
<td>5.86</td>
<td>322</td>
<td>0.424</td>
</tr>
<tr>
<td>257</td>
<td>26.9</td>
<td>279</td>
<td>25.6</td>
<td>301</td>
<td>5.25</td>
<td>323</td>
<td>0.363</td>
</tr>
<tr>
<td>258</td>
<td>28.8</td>
<td>280</td>
<td>25.1</td>
<td>302</td>
<td>4.47</td>
<td>324</td>
<td>0.308</td>
</tr>
<tr>
<td>259</td>
<td>28.9</td>
<td>281</td>
<td>23.2</td>
<td>303</td>
<td>4.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>31.9</td>
<td>282</td>
<td>23.8</td>
<td>304</td>
<td>3.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>30.1</td>
<td>283</td>
<td>22.0</td>
<td>305</td>
<td>3.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Libuda et al.¹,²

G19. COHBr (formyl bromide)

COHBr + hν → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of COHBr, formyl bromide, was measured at room temperature over the wavelength range 240–340 nm by Libuda et al.¹,² The absorption spectrum exhibits a highly structured absorption band with a maximum near 268 nm. The recommended absorption cross sections in Table 4G-25 are averages over 1 nm intervals of the spectrum reported at 0.6 nm intervals.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-25. Recommended Absorption Cross Sections of COHBr at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm^2)</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm^2)</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>18.7</td>
<td>262</td>
<td>32.4</td>
<td>284</td>
<td>21.7</td>
</tr>
<tr>
<td>241</td>
<td>20.1</td>
<td>263</td>
<td>29.9</td>
<td>285</td>
<td>20.1</td>
</tr>
<tr>
<td>242</td>
<td>19.4</td>
<td>264</td>
<td>31.1</td>
<td>286</td>
<td>19.1</td>
</tr>
<tr>
<td>243</td>
<td>19.8</td>
<td>265</td>
<td>29.9</td>
<td>287</td>
<td>17.5</td>
</tr>
<tr>
<td>244</td>
<td>19.1</td>
<td>266</td>
<td>32.5</td>
<td>288</td>
<td>17.3</td>
</tr>
<tr>
<td>245</td>
<td>20.0</td>
<td>267</td>
<td>31.6</td>
<td>289</td>
<td>14.9</td>
</tr>
<tr>
<td>246</td>
<td>22.6</td>
<td>268</td>
<td>33.8</td>
<td>290</td>
<td>15.5</td>
</tr>
<tr>
<td>247</td>
<td>22.6</td>
<td>269</td>
<td>30.9</td>
<td>291</td>
<td>12.7</td>
</tr>
<tr>
<td>248</td>
<td>23.6</td>
<td>270</td>
<td>31.9</td>
<td>292</td>
<td>13.3</td>
</tr>
<tr>
<td>249</td>
<td>22.5</td>
<td>271</td>
<td>30.9</td>
<td>293</td>
<td>11.1</td>
</tr>
<tr>
<td>250</td>
<td>22.3</td>
<td>272</td>
<td>29.6</td>
<td>294</td>
<td>10.8</td>
</tr>
<tr>
<td>251</td>
<td>24.0</td>
<td>273</td>
<td>31.4</td>
<td>295</td>
<td>9.79</td>
</tr>
<tr>
<td>252</td>
<td>25.0</td>
<td>274</td>
<td>29.3</td>
<td>296</td>
<td>9.08</td>
</tr>
<tr>
<td>253</td>
<td>27.1</td>
<td>275</td>
<td>31.5</td>
<td>297</td>
<td>8.03</td>
</tr>
<tr>
<td>254</td>
<td>26.9</td>
<td>276</td>
<td>28.5</td>
<td>298</td>
<td>7.35</td>
</tr>
<tr>
<td>255</td>
<td>27.5</td>
<td>277</td>
<td>29.1</td>
<td>299</td>
<td>5.97</td>
</tr>
<tr>
<td>256</td>
<td>27.5</td>
<td>278</td>
<td>26.8</td>
<td>300</td>
<td>5.86</td>
</tr>
<tr>
<td>257</td>
<td>26.9</td>
<td>279</td>
<td>25.6</td>
<td>301</td>
<td>5.25</td>
</tr>
<tr>
<td>258</td>
<td>28.8</td>
<td>280</td>
<td>25.1</td>
<td>302</td>
<td>4.47</td>
</tr>
<tr>
<td>259</td>
<td>28.9</td>
<td>281</td>
<td>23.2</td>
<td>303</td>
<td>4.38</td>
</tr>
<tr>
<td>260</td>
<td>31.9</td>
<td>282</td>
<td>23.8</td>
<td>304</td>
<td>3.53</td>
</tr>
<tr>
<td>261</td>
<td>30.1</td>
<td>283</td>
<td>22.0</td>
<td>305</td>
<td>3.18</td>
</tr>
</tbody>
</table>
Absorption Cross Sections: The UV absorption spectrum of CH$_2$ClBr, chlorobromomethane (Halon–1011), has been measured at room temperature by Cadman and Simons1 (210–260 nm) and Orkin et al.3 (187–290 nm). The cross section data from Cadman and Simons, reported in graphical form, are up to 20% less than the data from Orkin et al.3 The recommended absorption cross sections in Table 4G-26 are taken from Orkin et al.3

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>1020 σ (cm2)</th>
<th>Φ(Br (P$^3/2$))</th>
<th>Φ(Br* (P$^1/2$))</th>
</tr>
</thead>
<tbody>
<tr>
<td>187</td>
<td>151.1</td>
<td>0.82 ± 0.10</td>
<td>0.18 ± 0.10</td>
</tr>
<tr>
<td>188</td>
<td>126.4</td>
<td>0.80 ± 0.10</td>
<td>0.20 ± 0.10</td>
</tr>
<tr>
<td>190</td>
<td>104.6</td>
<td>0.86 ± 0.10</td>
<td>0.14 ± 0.10</td>
</tr>
<tr>
<td>192</td>
<td>100.5</td>
<td>0.84 ± 0.10</td>
<td>0.16 ± 0.10</td>
</tr>
<tr>
<td>194</td>
<td>104.7</td>
<td>0.91 ± 0.10</td>
<td>0.09 ± 0.10</td>
</tr>
<tr>
<td>196</td>
<td>111.8</td>
<td>0.86 ± 0.10</td>
<td>0.14 ± 0.10</td>
</tr>
<tr>
<td>198</td>
<td>119.4</td>
<td>0.84 ± 0.10</td>
<td>0.16 ± 0.10</td>
</tr>
<tr>
<td>200</td>
<td>124.7</td>
<td>0.91 ± 0.10</td>
<td>0.09 ± 0.10</td>
</tr>
<tr>
<td>202</td>
<td>127.1</td>
<td>0.86 ± 0.10</td>
<td>0.14 ± 0.10</td>
</tr>
<tr>
<td>204</td>
<td>126.3</td>
<td>0.84 ± 0.10</td>
<td>0.16 ± 0.10</td>
</tr>
<tr>
<td>206</td>
<td>122.5</td>
<td>0.91 ± 0.10</td>
<td>0.09 ± 0.10</td>
</tr>
<tr>
<td>208</td>
<td>116.3</td>
<td>0.86 ± 0.10</td>
<td>0.14 ± 0.10</td>
</tr>
<tr>
<td>210</td>
<td>108.4</td>
<td>0.84 ± 0.10</td>
<td>0.16 ± 0.10</td>
</tr>
<tr>
<td>212</td>
<td>99.6</td>
<td>0.91 ± 0.10</td>
<td>0.09 ± 0.10</td>
</tr>
<tr>
<td>214</td>
<td>90.5</td>
<td>0.86 ± 0.10</td>
<td>0.14 ± 0.10</td>
</tr>
<tr>
<td>216</td>
<td>81.5</td>
<td>0.91 ± 0.10</td>
<td>0.09 ± 0.10</td>
</tr>
<tr>
<td>218</td>
<td>72.9</td>
<td>0.86 ± 0.10</td>
<td>0.14 ± 0.10</td>
</tr>
<tr>
<td>220</td>
<td>64.8</td>
<td>0.84 ± 0.10</td>
<td>0.16 ± 0.10</td>
</tr>
</tbody>
</table>

Note: Orkin et al.3

Absorption Cross Sections: The UV absorption spectrum of CHClBr₂, chlorodibromomethane (Halon–1012), has been measured at room temperature by Ibuki et al.² (106–200 nm, presented graphically) and Taketani et al.⁵ (193.3 nm) and at 240, 261, and 296 K by Bilde et al.¹ (200–310 nm). Two overlapping absorption bands are apparent at wavelengths >200 nm with maxima near 206 nm and 240 nm. The peak cross sections of these bands at 240 K are approximately 10% greater than at room temperature. In the long wavelength tail of the spectrum, the cross sections decrease with decreasing temperature, the room temperature cross section at 270 nm being ~15% greater than at 240 K. The recommended absorption cross sections in Table 4G-27 are from Bilde et al.¹ (reported at 1 nm intervals). Taketani et al.⁵ reported a value of 304 × 10⁻²⁰ cm² molecule⁻¹ at 193.3 nm.

Photolysis Quantum Yield and Product Studies: Quantum yields for dissociation have been reported by Tzeng et al.⁶ (193 and 248 nm), McGivern et al.⁴ (248–268 nm), Zou et al.⁷ (193–242 nm), Lee et al.⁸ (234 nm), and Taketani et al.⁵ (193.3 nm). In the range 248–262 nm, CHClBr₂ undergoes C–Br bond rupture exclusively, whereas in the range 193–242 nm it dissociates predominantly via C–Br bond rupture with a minor contribution from C–Cl bond rupture. The relative quantum yield for ground state Br(2P½) varies from 0.80 to 0.90 for photolysis in the range 193 to 267 nm.

Table 4G-27. Recommended Absorption Cross Sections of CHClBr₂ at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>274.6</td>
<td>230</td>
<td>141.4</td>
<td>272</td>
<td>9.415</td>
</tr>
<tr>
<td>201</td>
<td>282.8</td>
<td>232</td>
<td>136.4</td>
<td>274</td>
<td>7.552</td>
</tr>
<tr>
<td>202</td>
<td>293.9</td>
<td>234</td>
<td>131.4</td>
<td>276</td>
<td>5.950</td>
</tr>
<tr>
<td>203</td>
<td>306.7</td>
<td>236</td>
<td>126.8</td>
<td>278</td>
<td>4.687</td>
</tr>
<tr>
<td>204</td>
<td>314.2</td>
<td>238</td>
<td>122.2</td>
<td>280</td>
<td>3.691</td>
</tr>
<tr>
<td>205</td>
<td>320.6</td>
<td>240</td>
<td>116.0</td>
<td>282</td>
<td>2.884</td>
</tr>
<tr>
<td>206</td>
<td>324.9</td>
<td>242</td>
<td>109.2</td>
<td>284</td>
<td>2.261</td>
</tr>
<tr>
<td>207</td>
<td>323.7</td>
<td>244</td>
<td>101.2</td>
<td>286</td>
<td>1.734</td>
</tr>
<tr>
<td>208</td>
<td>322.9</td>
<td>246</td>
<td>92.70</td>
<td>288</td>
<td>1.331</td>
</tr>
<tr>
<td>209</td>
<td>324.6</td>
<td>248</td>
<td>83.52</td>
<td>290</td>
<td>1.016</td>
</tr>
<tr>
<td>210</td>
<td>317.8</td>
<td>250</td>
<td>74.04</td>
<td>292</td>
<td>0.7907</td>
</tr>
<tr>
<td>211</td>
<td>306.2</td>
<td>252</td>
<td>64.83</td>
<td>294</td>
<td>0.6116</td>
</tr>
<tr>
<td>212</td>
<td>297.4</td>
<td>254</td>
<td>55.95</td>
<td>296</td>
<td>0.4583</td>
</tr>
<tr>
<td>214</td>
<td>279.4</td>
<td>256</td>
<td>47.67</td>
<td>298</td>
<td>0.3489</td>
</tr>
<tr>
<td>216</td>
<td>261.7</td>
<td>258</td>
<td>39.92</td>
<td>300</td>
<td>0.2692</td>
</tr>
<tr>
<td>218</td>
<td>234.9</td>
<td>260</td>
<td>33.35</td>
<td>302</td>
<td>0.2076</td>
</tr>
<tr>
<td>220</td>
<td>215.1</td>
<td>262</td>
<td>27.50</td>
<td>304</td>
<td>0.1588</td>
</tr>
<tr>
<td>222</td>
<td>199.1</td>
<td>264</td>
<td>22.50</td>
<td>306</td>
<td>0.1208</td>
</tr>
<tr>
<td>224</td>
<td>184.5</td>
<td>266</td>
<td>18.28</td>
<td>308</td>
<td>0.0945</td>
</tr>
<tr>
<td>226</td>
<td>165.3</td>
<td>268</td>
<td>14.78</td>
<td>310</td>
<td>0.0742</td>
</tr>
<tr>
<td>228</td>
<td>151.7</td>
<td>270</td>
<td>11.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Bilde et al.¹

Back to Index
Absorption Cross Sections: The absorption spectrum of CHClBr, dichlorobromomethane (Halon–1021), has been measured at room temperature by Ibuki (106–200 nm, presented graphically), Cadman and Simons (201–270 nm, presented graphically), and Bilde et al. (200–320 nm). Cadman and Simons' cross section data agree to within 15% with the room temperature cross section results from Bilde et al., however, the absorption maximum is shifted to lower wavelengths. The recommended absorption cross sections in Table 4G-28 are taken from Bilde et al.

Bilde et al. (200–320 nm) reported absorption spectrum measurements at 253, 273, and 298 K. A decrease of the absorption cross sections with decreasing temperature was observed over the entire wavelength range of their measurements. The cross section at 220 nm is ~6% lower at 253 K than at room temperature. A stronger temperature dependence was observed at longer wavelengths, the room temperature cross section at 320 nm being about four times larger than at 253 K.

Photoysis Quantum Yield and Product Studies: No recommendation.

Table 4G-28. Recommended Absorption Cross Sections of CHClBr at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^20 σ (cm^2)</th>
<th>λ (nm)</th>
<th>10^20 σ (cm^2)</th>
<th>λ (nm)</th>
<th>10^20 σ (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>115.0</td>
<td>230</td>
<td>58.1</td>
<td>276</td>
<td>1.63</td>
</tr>
<tr>
<td>202</td>
<td>93.8</td>
<td>232</td>
<td>54.6</td>
<td>278</td>
<td>1.32</td>
</tr>
<tr>
<td>204</td>
<td>81.1</td>
<td>234</td>
<td>50.0</td>
<td>280</td>
<td>1.07</td>
</tr>
<tr>
<td>206</td>
<td>73.6</td>
<td>236</td>
<td>45.8</td>
<td>282</td>
<td>0.865</td>
</tr>
<tr>
<td>208</td>
<td>69.0</td>
<td>238</td>
<td>41.6</td>
<td>284</td>
<td>0.694</td>
</tr>
<tr>
<td>209</td>
<td>69.8</td>
<td>240</td>
<td>37.3</td>
<td>286</td>
<td>0.573</td>
</tr>
<tr>
<td>210</td>
<td>68.8</td>
<td>242</td>
<td>33.0</td>
<td>288</td>
<td>0.454</td>
</tr>
<tr>
<td>211</td>
<td>67.4</td>
<td>244</td>
<td>29.3</td>
<td>290</td>
<td>0.384</td>
</tr>
<tr>
<td>212</td>
<td>68.4</td>
<td>246</td>
<td>25.8</td>
<td>292</td>
<td>0.317</td>
</tr>
<tr>
<td>213</td>
<td>70.0</td>
<td>248</td>
<td>22.2</td>
<td>294</td>
<td>0.265</td>
</tr>
<tr>
<td>214</td>
<td>70.1</td>
<td>250</td>
<td>19.2</td>
<td>296</td>
<td>0.217</td>
</tr>
<tr>
<td>215</td>
<td>70.2</td>
<td>252</td>
<td>16.5</td>
<td>298</td>
<td>0.176</td>
</tr>
<tr>
<td>216</td>
<td>71.1</td>
<td>254</td>
<td>13.6</td>
<td>300</td>
<td>0.146</td>
</tr>
<tr>
<td>217</td>
<td>71.0</td>
<td>256</td>
<td>11.5</td>
<td>302</td>
<td>0.118</td>
</tr>
<tr>
<td>218</td>
<td>70.7</td>
<td>258</td>
<td>9.75</td>
<td>304</td>
<td>0.0962</td>
</tr>
<tr>
<td>219</td>
<td>71.3</td>
<td>260</td>
<td>8.19</td>
<td>306</td>
<td>0.0761</td>
</tr>
<tr>
<td>220</td>
<td>71.6</td>
<td>262</td>
<td>6.82</td>
<td>308</td>
<td>0.0617</td>
</tr>
<tr>
<td>221</td>
<td>70.6</td>
<td>264</td>
<td>5.61</td>
<td>310</td>
<td>0.0496</td>
</tr>
</tbody>
</table>
G23. CCl₃Br (Halon–1031, trichlorobromomethane)

Absorption Cross Sections: The UV absorption spectrum of CCl₃Br, trichlorobromomethane (Halon–1031), has been measured at room temperature by Cadman and Simons¹ (207–305 nm), Sidebottom et al.⁶ (365 nm), Roxlo and Mandl⁴ (170–230 nm), Ibuki et al.² (105–198 nm), and Seccombe et al.⁵ (50–200 nm). The absorption spectrum has a strong absorption band between 170 and 220 nm with the maximum near 185 nm and \(\sigma \approx (1.1–1.4) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1} \) with a shoulder in the range 220–305 nm. The recommended absorption cross sections in Table 4G-29 for the wavelength region 235–305 nm have been read at 5 nm intervals from a figure in the paper of Cadman and Simons¹ and the value for 365 nm was reported by Sidebottom et al.⁶.

Photolysis Quantum Yield and Product Studies: Product quantum yields were studied at 365 nm by Sidebottom et al.⁶ They report evidence that Br + CCl₃ are the primary products and the yields are pressure and temperature dependent. Quantum yields for Br*(2P₁/₂) atom formation in the photolysis at 234 and 265 nm were reported to be 0.31 ± 0.01 and 0.68 ± 0.02, respectively, by Jung et al.³

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>50</td>
</tr>
<tr>
<td>240</td>
<td>50</td>
</tr>
<tr>
<td>245</td>
<td>49</td>
</tr>
<tr>
<td>250</td>
<td>48</td>
</tr>
<tr>
<td>255</td>
<td>46</td>
</tr>
<tr>
<td>260</td>
<td>42</td>
</tr>
<tr>
<td>265</td>
<td>34</td>
</tr>
<tr>
<td>270</td>
<td>19</td>
</tr>
<tr>
<td>275</td>
<td>11</td>
</tr>
<tr>
<td>280</td>
<td>7.2</td>
</tr>
<tr>
<td>285</td>
<td>5.0</td>
</tr>
<tr>
<td>290</td>
<td>3.3</td>
</tr>
<tr>
<td>295</td>
<td>2.2</td>
</tr>
<tr>
<td>300</td>
<td>1.4</td>
</tr>
<tr>
<td>305</td>
<td>1.0</td>
</tr>
<tr>
<td>365</td>
<td>0.0077</td>
</tr>
</tbody>
</table>

Table 4G-29. Recommended Absorption Cross Sections of CCl₃Br at 298 K

Note: 235–305 nm: Cadman and Simons¹
365 nm: Sidebottom et al.⁶

G24. CHF₂Br (Halon–1201, difluorobromomethane)
CHF₂Br (Halon–1201) + hv → Products
(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of CHF₂Br, difluorobromomethane (Halon–1201), has been measured at room temperature by Davidson¹ (207–255 nm), Talukdar et al.² (190–280 nm), Gillotay et al.³ (166–267 nm), and Orkin and Kasimovskaya ⁴ (190–280 nm). Gillotay et al.² carried out measurements at 210–295 K over the wavelength range 166–267 nm and report smoothed calculated cross sections for 210, 230, 250, 270, and 295 K. The results of Davidson,¹ Orkin and Kasimovskaya,³ and Gillotay et al.² are in excellent agreement at wavelengths <240 nm. The values from Gillotay et al.² are increasingly smaller (by up to about 40% at 260 nm) and those of Davidson¹ are smaller (by up to about 30% at 250 nm) than the values measured by Orkin and Kasimovskaya.³ The results of Talukdar et al.², who report a spectrum in graphical form with extrapolated values out to 360 nm, appear to be in agreement with the results of Orkin and Kasimovskaya.³ The recommended absorption cross sections in Table 4G-30 are the values from Gillotay et al.² at the centers of the 500 cm⁻¹ intervals between 168 and 188 nm and the values from Orkin and Kasimovskaya³ in the region 190–280 nm.

An increase in the absorption cross sections around the absorption peak (168–215 nm) and a decrease at wavelengths >215 nm with decreasing temperature (295–210 K) was reported by Gillotay et al.²

Photolysis Quantum Yield and Product Studies: No recommendation.

<table>
<thead>
<tr>
<th>Table 4G-30. Recommended Absorption Cross Sections of CHF₂Br at 298 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ (nm)</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>168.10</td>
</tr>
<tr>
<td>170.95</td>
</tr>
<tr>
<td>173.15</td>
</tr>
<tr>
<td>174.65</td>
</tr>
<tr>
<td>176.20</td>
</tr>
<tr>
<td>177.80</td>
</tr>
<tr>
<td>179.40</td>
</tr>
<tr>
<td>181.00</td>
</tr>
<tr>
<td>182.65</td>
</tr>
<tr>
<td>184.35</td>
</tr>
<tr>
<td>186.05</td>
</tr>
<tr>
<td>187.80</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>192</td>
</tr>
<tr>
<td>194</td>
</tr>
<tr>
<td>196</td>
</tr>
<tr>
<td>198</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>202</td>
</tr>
</tbody>
</table>

4-314

G25. **CF₂Br₂ (Halon–1202, difluorodibromomethane)**

Absorption Cross Sections: The UV absorption spectrum of CF₂Br₂, difluorodibromomethane (Halon–1202), has been measured at room temperature by Davidson,² and at 290 K by Walton,³ Molina et al.,⁴ (190–340 nm), Orkin and Kasimovskaya,⁵ (190–320 nm), Gillotay and Simon⁶ (170–304 nm), Burkholder et al.,⁷ (190–320 nm), and Papanastasiou et al.³ (300-350 nm). The study by Papanastasiou et al. reported absorption cross section data in the long wavelength region that were corrected for Rayleigh scattering, which is most important at the longest wavelengths. The room temperature cross section data, except those of Walton,³ are in good agreement, better than 10%, over the wavelength range 190–300 nm. At the absorption maximum near 226 nm, the data of Davidson² and Molina et al.,⁴ are the highest and lowest, respectively. At wavelengths >300 nm, the values from Orkin and Kasimovskaya,⁵ Burkholder et al.,⁷ and Papanastasiou et al. agree to within 15%, whereas those of Molina et al.,⁴ are larger with the difference increasing with increasing wavelength, up to ~200% at 320 nm and ~660% at 340 nm. The recommended absorption cross sections in Table 4G-31 are the values from Gillotay and Simon in the region 170–188 nm, the mean of the values reported by Gillotay and Simon,⁶ Orkin and Kasimovskaya,⁵ and Burkholder et al.⁷ for the wavelength range 190–264 nm, and for the wavelength range 266–350 nm from the parameterization given by Papanastasiou et al. (see below). Uncertainty factors (2σ) for the room temperature absorption cross sections are estimated to be 1.05 for the wavelength range 180 to 230 nm, 1.1 for the wavelength range 230 to 280 nm, and 1.2 for wavelengths in the range 280 to 350 nm. The uncertainty factors encompass the range of the data used to develop the recommendation.

The UV absorption spectrum at room temperature has been measured Doucet et al.³ (60–220 nm) and Seccombe et al.¹³ (55–175 nm). The reported spectra show some systematic discrepancies in their wavelength dependence, although the two studies are in reasonable agreement at Lyman-α, 121.567 nm. The high-resolution σ(Lyman-α, 298 K) measurement of Seccombe et al., 10 × 10⁻¹⁷ cm² molecule⁻¹, is recommended with an uncertainty factor of 1.5 (2σ).

The absorption spectrum temperature dependence was measured by Gillotay and Simon⁶ (170–304 nm) over the range 210–295 K, Burkholder et al.¹ (190–320 nm) over the range 210–296 K, and Papanastasiou et al. (300–325 nm) over the range 210–296 K. The absorption cross sections increase at the absorption peaks, near 190 and 225 nm, and decrease at wavelengths >240 nm and <177 nm with decreasing temperature. Gillotay and Simon⁶ observed a systematic temperature behavior with an increase in the peak cross section at ~225 nm of ~9 × 10⁻²⁰ cm² molecule⁻¹ per 20 K decrease in temperature. Burkholder et al.¹ observed a less pronounced temperature behavior below 250 K with the peak cross section at 210 K that is 5% lower than that observed by Gillotay and Simon⁶ (the room temperature cross sections from these two studies are nearly identical). Different empirical parameterizations for the temperature dependence of the absorption cross section were proposed. Gillotay and Simon⁶ used a polynomial expansion

$$\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n$$

and report calculated values for 210, 230, 250, 270, and 295 K. The Aₙ and Bₙ parameters, which are valid for the wavelength range 222–304 nm and temperature range 210–300 K are as follows. This parameterization is recommended for wavelengths in the range 222 nm < λ < 266 nm.
Photolysis at 248 nm and confirm that the C
photodissociation of CF
Quantum yields for Br atom formation of
quantum yield at 265 nm decreases from unity when the system pressure is raised to 50 Torr of CO
Photolysis Quantum Yield
combination of their cross section data and the data from Burkholder et al. The
parameterization for wavelengths ≥260 nm and temperatures between 210 and 298 K using a
The recommended spectrum parameterization for wavelengths >264 nm is taken from the Papanastasiou et al.
Note: In the Burkholder et al. paper, the parameterization equation is written in terms of log\(\sigma(\lambda,T)\) but the
The transient CF
Br bond is broken.

\[A_0 = -206.2 \quad B_0 = 1.0460 \times 10^{-1} \]
\[A_1 = 2.3726 \quad B_1 = -1.4124 \times 10^{-3} \]
\[A_2 = -1.0527 \times 10^{-2} \quad B_2 = 6.9015 \times 10^{-6} \]
\[A_3 = 1.9239 \times 10^{-5} \quad B_3 = -1.5164 \times 10^{-8} \]
\[A_4 = -1.2242 \times 10^{-8} \quad B_4 = 1.3990 \times 10^{-11} \]
Burkholder et al.\(^1\) used the expression
\[\ln \sigma(\lambda, T) = (\sum A_i (\lambda - 268.7998)^i) (1 + (296 - T) \sum B_i (\lambda - 268.7998)^i) \]
and reported the following \(A_i\) and \(B_i\) parameters for the wavelength range 235–260 nm and temperature range
210–296 K.
\[A_0 = -44.42756 \quad B_0 = 1.481886 \times 10^{-4} \]
\[A_1 = -1.464955 \times 10^{-1} \quad B_1 = 6.77182 \times 10^{-6} \]
\[A_2 = -5.692188 \times 10^{-4} \quad B_2 = 1.154347 \times 10^{-7} \]
\[A_3 = 1.155366 \times 10^{-5} \quad B_3 = -2.77145 \times 10^{-11} \]
\[A_4 = -1.399502 \times 10^{-7} \quad B_4 = -6.619515 \times 10^{-11} \]
Burkholder et al.\(^1\) also report a parameterization for cross sections extrapolated out to 400 nm
\[\ln \sigma(\lambda, T) = (\sum A_i (\lambda - 301.0104)^i) (1 + (296 - T) \sum B_i (\lambda - 301.0104)^i) \]
with the following parameters.
\[A_0 = -49.50456 \quad B_0 = 3.616315 \times 10^{-4} \]
\[A_1 = -1.633525 \times 10^{-1} \quad B_1 = 5.534952 \times 10^{-6} \]
\[A_2 = 5.170758 \times 10^{-6} \quad B_2 = -1.997903 \times 10^{-8} \]
\[A_3 = 4.332654 \times 10^{-6} \quad B_3 = -9.234512 \times 10^{-11} \]
\[A_4 = -3.899051 \times 10^{-8} \quad B_4 = 1.776346 \times 10^{-12} \]

Note: In the Burkholder et al.\(^1\) paper, the parameterization equation is written in terms of log\(\sigma(\lambda,T)\) but the
correct expression should be given in terms of \(\ln(\sigma(\lambda,T))\), as given here.

The recommended spectrum parameterization for wavelengths >264 nm is taken from the Papanastasiou et al.
study, which accounted for Rayleigh scattering that was significant for wavelengths >300 nm. They used the
same empirical expression used in the Burkholder et al. study
\[\ln(\sigma(\lambda, T)) = \sum_i A_i (\lambda - \overline{\lambda})^i \times \left[1 + (296 - T) \sum_i B_i (\lambda - \overline{\lambda})^i \right] \]
to parameterize the spectrum for wavelengths ≥260 nm and temperatures between 210 and 298 K using a
combination of their cross section data and the data from Burkholder et al. The parameters are given below.

<table>
<thead>
<tr>
<th>(\overline{\lambda}) = 287.861</th>
<th>(i)</th>
<th>(A_i)</th>
<th>(B_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-47.4178</td>
<td>0.0003173</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-0.1567273</td>
<td>1.2323 \times 10^{-5}</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-2.624376 \times 10^{-4}</td>
<td>2.68 \times 10^{-8}</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-6.78412 \times 10^{-6}</td>
<td>-5.28 \times 10^{-9}</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1.261478 \times 10^{-7}</td>
<td>6.99 \times 10^{-11}</td>
</tr>
</tbody>
</table>

Photolysis Quantum Yield and Product Studies: The quantum yield for formation of CF\(_2\)O and Br\(_2\) in the
photolysis of CF\(_2\)Br\(_2\) at 206, 248, and 302 nm in the presence of O\(_2\) has been measured to be unity, independent of pressure, by Molina and Molina.\(^7\) This is in contrast to an earlier report by Walton\(^15\) that the
quantum yield at 265 nm decreases from unity when the system pressure is raised to 50 Torr of CO\(_2\).
Quantum yields for Br atom formation of \(\Phi(\text{Br}) = 1.96 \pm 0.27, 1.63 \pm 0.19, \) and \(1.01 \pm 0.15,\) in the
photodissociation of CF\(_2\)Br\(_2\) at 193, 222, and 248 nm, respectively, were reported by Talukdar et al.\(^13\) A
quantum yield for CF\(_2\) formation, \(\Phi(\text{CF}_2) = 1.15 \pm 0.30,\) in the 193 nm photolysis was reported by Talukdar
et al.\(^12\) The transient CF\(_2\)Br radical was detected by molecular beam\(^6\) and spectroscopic studies\(^5,14\) during
photolysis at 248 nm and confirm that the C-Br bond is broken.
Table 4G-31. Recommended Absorption Cross Sections of CF₂Br₂ at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10⁻²₀ σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁻²₀ σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁻²₀ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>124.5</td>
<td>232</td>
<td>230.2</td>
<td>294</td>
<td>0.0964</td>
</tr>
<tr>
<td>172</td>
<td>78.1</td>
<td>234</td>
<td>211.9</td>
<td>296</td>
<td>0.0698</td>
</tr>
<tr>
<td>174</td>
<td>55.3</td>
<td>236</td>
<td>191.6</td>
<td>298</td>
<td>0.0504</td>
</tr>
<tr>
<td>176</td>
<td>49.5</td>
<td>238</td>
<td>169.3</td>
<td>300</td>
<td>0.0363</td>
</tr>
<tr>
<td>178</td>
<td>60.3</td>
<td>240</td>
<td>147.3</td>
<td>302</td>
<td>0.0260</td>
</tr>
<tr>
<td>180</td>
<td>75.0</td>
<td>242</td>
<td>125.8</td>
<td>304</td>
<td>0.0186</td>
</tr>
<tr>
<td>182</td>
<td>86.6</td>
<td>244</td>
<td>106.0</td>
<td>306</td>
<td>0.0133</td>
</tr>
<tr>
<td>184</td>
<td>100.9</td>
<td>246</td>
<td>87.8</td>
<td>308</td>
<td>0.00943</td>
</tr>
<tr>
<td>186</td>
<td>111.8</td>
<td>248</td>
<td>72.0</td>
<td>310</td>
<td>0.00668</td>
</tr>
<tr>
<td>188</td>
<td>118.0</td>
<td>250</td>
<td>58.3</td>
<td>312</td>
<td>0.00472</td>
</tr>
<tr>
<td>190</td>
<td>115.9</td>
<td>252</td>
<td>46.5</td>
<td>314</td>
<td>0.00333</td>
</tr>
<tr>
<td>192</td>
<td>110.3</td>
<td>254</td>
<td>36.8</td>
<td>316</td>
<td>0.00234</td>
</tr>
<tr>
<td>194</td>
<td>101.6</td>
<td>256</td>
<td>28.9</td>
<td>318</td>
<td>0.00164</td>
</tr>
<tr>
<td>196</td>
<td>91.4</td>
<td>258</td>
<td>22.4</td>
<td>320</td>
<td>0.00115</td>
</tr>
<tr>
<td>198</td>
<td>82.1</td>
<td>260</td>
<td>17.3</td>
<td>322</td>
<td>0.000808</td>
</tr>
<tr>
<td>200</td>
<td>74.9</td>
<td>262</td>
<td>13.1</td>
<td>324</td>
<td>0.000565</td>
</tr>
<tr>
<td>202</td>
<td>71.7</td>
<td>264</td>
<td>9.90</td>
<td>326</td>
<td>0.000396</td>
</tr>
<tr>
<td>204</td>
<td>73.4</td>
<td>266</td>
<td>7.65</td>
<td>328</td>
<td>0.000277</td>
</tr>
<tr>
<td>206</td>
<td>80.7</td>
<td>268</td>
<td>5.56</td>
<td>330</td>
<td>0.000194</td>
</tr>
<tr>
<td>208</td>
<td>93.0</td>
<td>270</td>
<td>4.06</td>
<td>332</td>
<td>0.000136</td>
</tr>
<tr>
<td>210</td>
<td>110.0</td>
<td>272</td>
<td>2.97</td>
<td>334</td>
<td>0.0000960</td>
</tr>
<tr>
<td>212</td>
<td>131.0</td>
<td>274</td>
<td>2.18</td>
<td>336</td>
<td>0.0000678</td>
</tr>
<tr>
<td>214</td>
<td>154.9</td>
<td>276</td>
<td>1.60</td>
<td>338</td>
<td>0.0000481</td>
</tr>
<tr>
<td>216</td>
<td>180.4</td>
<td>278</td>
<td>1.18</td>
<td>340</td>
<td>0.0000334</td>
</tr>
<tr>
<td>218</td>
<td>204.7</td>
<td>280</td>
<td>0.864</td>
<td>342</td>
<td>0.0000246</td>
</tr>
<tr>
<td>220</td>
<td>226.0</td>
<td>282</td>
<td>0.634</td>
<td>344</td>
<td>0.0000178</td>
</tr>
<tr>
<td>222</td>
<td>244.2</td>
<td>284</td>
<td>0.466</td>
<td>346</td>
<td>0.0000129</td>
</tr>
<tr>
<td>224</td>
<td>253.3</td>
<td>286</td>
<td>0.341</td>
<td>348</td>
<td>0.00000948</td>
</tr>
<tr>
<td>226</td>
<td>256.8</td>
<td>288</td>
<td>0.252</td>
<td>350</td>
<td>0.00000703</td>
</tr>
<tr>
<td>228</td>
<td>253.4</td>
<td>290</td>
<td>0.182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>244.7</td>
<td>292</td>
<td>0.133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
170–188 nm: Gillotay and Simon
190–264 nm: mean of data from Gillotay and Simon, Orkin and Kasimovskaya, and Burkholder et al.
266–350 nm: Papanastasiou et al. parameterization

G26. CF₂ClBr (Halon–1211, difluorochlorobromomethane)

Absorption Cross Sections: The UV absorption spectrum of CF₂ClBr, difluorochlorobromomethane (Halon–1211), has been measured at room temperature by Giolando et al.⁴ (191–307 nm), Molina et al.⁵ (190–330 nm), Orkin and Kasimovskaya⁶ (190–304 nm), Gillotay and Simon⁷ (170–302 nm), Burkholder et al.⁸ (190–320 nm), and Papanastasiou et al.⁹ (300-335 nm). The most recent study by Papanastasiou et al. reported absorption cross section data in the long wavelength region that were corrected for Rayleigh scattering, which is most important at the longest wavelengths. The agreement between the room temperature cross section data of Orkin and Kasimovskaya, Gillotay and Simon, and Burkholder et al. is very good, to within 10%, over the range 190–240 nm and to within 3% at the spectrum maximum near 205 nm. The data from Gillotay and Simon⁷ near the absorption maximum differs from the other observations by ~10%. Molina et al.⁵ reported values in the range 190–240 nm that are lower by 10–20% than the other data. The few data points of Giolando et al.⁴ agree well with the absorption spectra reported by Orkin and Kasimovskaya, Gillotay and Simon, and Burkholder et al.¹ The differences between the various data sets are greater at the longer wavelengths. The recommended absorption cross sections in Table 4G-32 are the values of Gillotay and Simon in the region 170–188 nm, the mean of the values reported by Molina et al.⁵ Gillotay and Simon, Burkholder et al.¹ and Orkin and Kasimovskaya in the region 190–298 nm, the spectrum parameterization from Papanastasiou et al. for the region 300 to 350 nm (see below) (values ≥336 nm are an extrapolation beyond the range of the experimental data). The uncertainty factor for the room temperature spectrum is 1.15 (2σ) for the range of data given in Table 4G-32, which encompasses the full range of the experimental data at wavelengths <300 nm as well as the data from Papanastasiou et al. at longer wavelengths.

The VUV absorption spectrum at room temperature was measured by Doucet et al.² (60–220 nm). A recommended Lyman-α cross section of 7.75 × 10⁻¹⁷ cm² molecule⁻¹ was obtained from the two reported spectra by these authors. An uncertainty factor of 1.5 (2σ) is assigned, primarily due to the fact that there is only a single study available.

The temperature dependence of the absorption spectrum has been measured by Gillotay and Simon⁸ (210–296 K, 170–302 nm), Burkholder et al.¹ (210–296 K, 190–320 nm), and Papanastasiou et al. (210–296 K, 300-335 nm). The absorption cross sections increase near the peak, 204–206 nm, and decrease at wavelengths >233 nm and <180 nm with decreasing temperature. Gillotay and Simon observed a systematic temperature dependence with an increase in the peak cross section by ~5 × 10⁻²⁰ cm² molecule⁻¹ per 20 K decrease in temperature. Burkholder et al.¹ reported a less pronounced temperature dependence with the peak cross
The parameters are given below.

\[
\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n
\]

and report calculated cross sections for 210, 230, 250, 270, and 295 K. The \(A_n\) and \(B_n\) parameters, which are valid for the wavelength range 200–302 nm and temperature range 210–296 K, are given below.

\[
\begin{align*}
A_0 &= -134.80 & B_0 &= 3.3070 \times 10^{-1} \\
A_1 &= 1.7084 & B_1 &= -5.0957 \times 10^{-3} \\
A_2 &= -9.1540 \times 10^{-3} & B_2 &= 2.9361 \times 10^{-5} \\
A_3 &= 2.1644 \times 10^{-5} & B_3 &= -7.6198 \times 10^{-8} \\
A_4 &= -1.9863 \times 10^{-8} & B_4 &= 7.6825 \times 10^{-11}
\end{align*}
\]

Burkholder et al.\(^1\) parameterized their data using the expression

\[
\ln \sigma(\lambda, T) = (\sum A_i (\lambda - 259.8989)^i) (1 + (296 - T) \sum B_i (\lambda - 259.8989)^i)
\]

and report the following \(A_i\) and \(B_i\) parameters valid for the wavelength range 220–260 nm and temperature range 210–296 K.

\[
\begin{align*}
A_0 &= -45.4087 & B_0 &= 1.528905 \times 10^{-4} \\
A_1 &= -1.304811 \times 10^{-1} & B_1 &= 6.024833 \times 10^{-6} \\
A_2 &= -6.995443 \times 10^{-4} & B_2 &= 1.030995 \times 10^{-7} \\
A_3 &= 6.159709 \times 10^{-6} & B_3 &= -6.387931 \times 10^{-11} \\
A_4 &= -9.384074 \times 10^{-9} & B_4 &= -3.718503 \times 10^{-11}
\end{align*}
\]

Burkholder et al.\(^1\) also report a parameterization for cross sections extrapolated to 400 nm

\[
\ln \sigma(\lambda, T) = (\sum A_i (\lambda - 292.2083)^i) (1 + (296 - T) \sum B_i (\lambda - 292.2083)^i)
\]

with the following parameters.

\[
\begin{align*}
A_0 &= -50.15428 & B_0 &= 3.778659 \times 10^{-4} \\
A_1 &= -1.547025 \times 10^{-1} & B_1 &= 6.338322 \times 10^{-6} \\
A_2 &= -9.551083 \times 10^{-5} & B_2 &= -1.294407 \times 10^{-8} \\
A_3 &= 4.076334 \times 10^{-6} & B_3 &= -2.430137 \times 10^{-10} \\
A_4 &= -2.747685 \times 10^{-8} & B_4 &= 2.234599 \times 10^{-12}
\end{align*}
\]

Note: Errors in the Burkholder et al.\(^1\) paper are corrected here.

The recommended spectrum parameterization for wavelengths >298 nm is taken from the Papanastasiou et al. study, which accounted for Rayleigh scattering that was significant for wavelengths >290 nm. They used the same empirical expression used in the Burkholder et al. study

\[
\ln(\sigma(\lambda,T)) = \frac{1}{i} \sum A_i (\lambda - \bar{\lambda})^i \times \left[1 + (296 - T) \sum B_i (\lambda - \bar{\lambda})^i\right]
\]

to parameterize the spectrum for wavelengths ≥260 nm and temperatures between 210 and 298 K using a combination of their cross section data and the data from Burkholder et al. The parameters are given below.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(A_i)</th>
<th>(B_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-48.3578</td>
<td>0.0002989</td>
</tr>
<tr>
<td>1</td>
<td>-0.1547325</td>
<td>8.5306 \times 10^{-6}</td>
</tr>
<tr>
<td>2</td>
<td>-4.966942 \times 10^{-4}</td>
<td>4.26 \times 10^{-8}</td>
</tr>
<tr>
<td>3</td>
<td>1.56338 \times 10^{-6}</td>
<td>-1.84 \times 10^{-9}</td>
</tr>
<tr>
<td>4</td>
<td>3.664034 \times 10^{-8}</td>
<td>1.284 \times 10^{-11}</td>
</tr>
</tbody>
</table>

Photolysis Quantum Yield and Product Studies: Quantum yields for Cl and Br atom formation in the photodissociation of CF2ClBr at 193, 222, and 248 nm, \(\Phi(Cl) = 1.03 \pm 0.14, 0.27 \pm 0.04,\) and 0.18 ± 0.003, \(\Phi(Br) = 1.04 \pm 0.13, 0.86 \pm 0.11,\) and 0.75 ± 0.13, respectively, and a quantum yield for CF2 formation in the 193 nm photolysis, \(\Phi(CF_2) = 0.91 \pm 0.30,\) were reported by Talukdar et al.\(^8\)
Table 4G-32. Recommended Absorption Cross Sections of CF$_2$ClBr at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>323.0</td>
<td>232</td>
<td>33.8</td>
<td>294</td>
<td>0.0106</td>
</tr>
<tr>
<td>172</td>
<td>234.2</td>
<td>234</td>
<td>28.8</td>
<td>296</td>
<td>0.00764</td>
</tr>
<tr>
<td>174</td>
<td>176.0</td>
<td>236</td>
<td>24.4</td>
<td>298</td>
<td>0.00544</td>
</tr>
<tr>
<td>176</td>
<td>120.9</td>
<td>238</td>
<td>20.4</td>
<td>300</td>
<td>0.00402</td>
</tr>
<tr>
<td>178</td>
<td>84.7</td>
<td>240</td>
<td>16.9</td>
<td>302</td>
<td>0.00285</td>
</tr>
<tr>
<td>180</td>
<td>58.1</td>
<td>242</td>
<td>13.9</td>
<td>304</td>
<td>0.00202</td>
</tr>
<tr>
<td>182</td>
<td>41.9</td>
<td>244</td>
<td>11.4</td>
<td>306</td>
<td>0.00142</td>
</tr>
<tr>
<td>184</td>
<td>35.0</td>
<td>246</td>
<td>9.28</td>
<td>308</td>
<td>0.00100</td>
</tr>
<tr>
<td>186</td>
<td>34.1</td>
<td>248</td>
<td>7.50</td>
<td>310</td>
<td>0.000705</td>
</tr>
<tr>
<td>188</td>
<td>38.9</td>
<td>250</td>
<td>5.99</td>
<td>312</td>
<td>0.000495</td>
</tr>
<tr>
<td>190</td>
<td>46.1</td>
<td>252</td>
<td>4.76</td>
<td>314</td>
<td>0.000348</td>
</tr>
<tr>
<td>192</td>
<td>57.0</td>
<td>254</td>
<td>3.76</td>
<td>316</td>
<td>0.000244</td>
</tr>
<tr>
<td>194</td>
<td>69.1</td>
<td>256</td>
<td>2.94</td>
<td>318</td>
<td>0.000171</td>
</tr>
<tr>
<td>196</td>
<td>81.4</td>
<td>258</td>
<td>2.29</td>
<td>320</td>
<td>0.000120</td>
</tr>
<tr>
<td>198</td>
<td>93.5</td>
<td>260</td>
<td>1.76</td>
<td>322</td>
<td>0.0000840</td>
</tr>
<tr>
<td>200</td>
<td>106.0</td>
<td>262</td>
<td>1.36</td>
<td>324</td>
<td>0.0000589</td>
</tr>
<tr>
<td>202</td>
<td>113.3</td>
<td>264</td>
<td>1.03</td>
<td>326</td>
<td>0.0000414</td>
</tr>
<tr>
<td>204</td>
<td>117.4</td>
<td>266</td>
<td>0.784</td>
<td>328</td>
<td>0.0000291</td>
</tr>
<tr>
<td>206</td>
<td>118.7</td>
<td>268</td>
<td>0.593</td>
<td>330</td>
<td>0.0000205</td>
</tr>
<tr>
<td>208</td>
<td>117.7</td>
<td>270</td>
<td>0.447</td>
<td>332</td>
<td>0.0000145</td>
</tr>
<tr>
<td>210</td>
<td>114.2</td>
<td>272</td>
<td>0.336</td>
<td>334</td>
<td>0.0000103</td>
</tr>
<tr>
<td>212</td>
<td>108.5</td>
<td>274</td>
<td>0.250</td>
<td>336</td>
<td>0.00000728</td>
</tr>
<tr>
<td>214</td>
<td>101.5</td>
<td>276</td>
<td>0.184</td>
<td>338</td>
<td>0.00000519</td>
</tr>
<tr>
<td>216</td>
<td>93.6</td>
<td>278</td>
<td>0.135</td>
<td>340</td>
<td>0.00000371</td>
</tr>
<tr>
<td>218</td>
<td>85.3</td>
<td>280</td>
<td>0.0991</td>
<td>342</td>
<td>0.00000267</td>
</tr>
<tr>
<td>220</td>
<td>76.8</td>
<td>282</td>
<td>0.0724</td>
<td>344</td>
<td>0.00000193</td>
</tr>
<tr>
<td>222</td>
<td>68.3</td>
<td>284</td>
<td>0.0527</td>
<td>346</td>
<td>0.00000140</td>
</tr>
<tr>
<td>224</td>
<td>60.4</td>
<td>286</td>
<td>0.0385</td>
<td>348</td>
<td>0.00000102</td>
</tr>
<tr>
<td>226</td>
<td>52.7</td>
<td>288</td>
<td>0.0282</td>
<td>350</td>
<td>0.000000754</td>
</tr>
<tr>
<td>228</td>
<td>45.7</td>
<td>290</td>
<td>0.0205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>39.2</td>
<td>292</td>
<td>0.0148</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
170–188 nm: Gillotay and Simon3
190–298 nm: mean of values from Molina et al.5 Gillotay and Simon,3 Burkholder et al.4, and Orkin and Kasimovskaya6
300–350 nm: Papanastasiou et al.7 parameterization with \geq336 nm values based on an extrapolation.

G27. CF₃Br (Halon–1301, trifluorobromomethane)

CF₃Br (Halon–1301) + hv → CF₃ + Br

(1)

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The UV absorption spectrum of CF₃Br, trifluorobromomethane (Halon–1301), has been measured at room temperature by Davidson² (207–255 nm), Roxlo and Mandl¹⁰ (170–230 nm), Pence et al.⁹ (180–400 nm), Molina et al.⁷ (190–300 nm), Orkin and Kasimovskaya⁸ (190–270 nm), Gillotay and Simon⁵ (168–280 nm), and Burkholder et al.¹ (190–285 nm). The agreement between the room temperature data is in general good in the region between 190 and 230 nm, 10% or better. The exceptions are the data of Davidson² below 210 nm and the data set from Roxlo and Mandl.¹⁰ Pence et al.⁹ report a spectrum graphically and an absorption cross section at 193 nm that is significantly less than the rest of the data at 193 nm. For wavelengths >250 nm, Burkholder et al.,¹ and Orkin and Kasimovskaya⁸ report values greater by up to ~35% at 270 nm than reported by Molina et al.⁷ and Gillotay and Simon.⁵ The recommended absorption cross sections in Table 4G-33 are the values from Gillotay and Simon⁵ in the region 168–188 nm, the mean of the values reported by Molina et al.⁷ Gillotay and Simon,⁵ Burkholder et al.,¹ and Orkin and Kasimovskaya⁸ in the region 190–270 nm, the mean of the values reported by Molina et al.⁷ Gillotay and Simon,⁵ and Burkholder et al.¹ in the region 272–280 nm, and the values of Molina et al.⁷ in the region 295–300 nm. The recommended uncertainty factors (2σ) are 1.15 (170–190 nm), 1.1 (190–230 nm), and 1.2 (230–280 nm) for the wavelength ranges in parenthesis. Due to the limited available experimental data, the uncertainty factor for wavelengths >280 nm is assigned a value of 2.

The UUV absorption spectrum has been measured by Doucet et al.⁴ (120–206 nm), Doucet et al.³ (60–128 nm), Suto and Lee¹¹ (106–152 nm), and Washida et al.¹³ (116–130 nm). The Doucet et al. results near Lyman-α, 121.567 nm, are lower by ~40% than the Suto and Lee and Washida et al. results. The recommended Lyman-α cross section of 2.5 × 10⁻¹⁷ cm² molecule⁻¹ is adopted from the SPARC lifetime report,⁶ which is an average of the four studies, linearly interpolated to 121.567 nm. An uncertainty factor of 1.4 (2σ) that encompasses the available data is assigned.

The temperature dependence of the absorption spectrum has been measured by Gillotay and Simon⁵ (168–280 nm) over the range 210–295 K and Burkholder et al.¹ (190–285 nm) over the range 210–296 K. The absorption cross sections increase between 174 and 216 nm and decrease at wavelengths >218 nm and <174 nm with decreasing temperature. Gillotay and Simon⁵ observed a systematic temperature behavior with an increase of the peak cross section by ~0.6 × 10⁻²⁰ cm² molecule⁻¹ per 20 K decrease in temperature. Burkholder et al.¹ reported a less pronounced temperature dependence with the peak cross section at 210 K being ~25% lower than reported by Gillotay and Simon⁵ (the cross sections at room temperature are within 6%). Different parameterizations for the temperature dependence of the absorption cross section have been proposed. Gillotay and Simon⁵ give the polynomial expansion

\[\log_{10}\sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n \]

and report calculated values for T = 210, 230, 250, 270, and 295 K. The Aₙ and Bₙ parameters, which are valid for the wavelength range 178–280 nm and temperature range 210–300 K are as follows.

\[A_0 = 62.563 \quad B_0 = -9.1755 \times 10^{-1} \]
\[A_1 = -2.0068 \quad B_1 = 1.8575 \times 10^{-2} \]
\[A_2 = 1.6592 \times 10^{-2} \quad B_2 = -1.3857 \times 10^{-4} \]
\[A_3 = -5.6465 \times 10^{-5} \quad B_3 = 4.5066 \times 10^{-7} \]
\[A_4 = 6.7459 \times 10^{-8} \quad B_4 = -5.3803 \times 10^{-10} \]

Burkholder et al.¹ parameterized their data using the expression

\[\ln \sigma(\lambda, T) = (\sum A_i (\lambda-242.2466)^i) + (1 + (296-T) \sum B_i (\lambda-242.266)^i) \]

and report the following Aₙ and Bₙ parameters valid for the wavelength range 214–285 nm and temperature range 210–296 K.

4-321
A₀ = −46.70542 B₀ = 1.694026 × 10⁻⁴
A₁ = −1.55047 × 10⁻¹ B₁ = 8.723247 × 10⁻⁴
A₂ = −1.020187 × 10⁻³ B₂ = 5.953165 × 10⁻⁹
A₃ = 2.246169 × 10⁻⁵ B₃ = −3.872168 × 10⁻⁹
A₄ = −1.300982 × 10⁻⁷ B₄ = −1.803325 × 10⁻¹¹

Note: In the Burkholder et al.¹ paper, the parameterization equation is written in terms of log₁₀ σ(λ, T) but the correct expression should be given in terms of ln σ(λ, T), as given here.

There is no apparent reason to prefer the spectrum temperature dependence reported by either Gillotay and Simon or Burkholder et al.

Photolysis Quantum Yield and Product Studies: Talukdar et al.¹² reported quantum yields for Br (Br(²P₃/2) + Br*(²P₃/2)) atom formation in the photodissociation of CF₃Br at 193 and 222 nm to be 1.12 ± 0.16 and 0.92 ± 0.15, respectively. A Br*(²P₃/2) atom fractional yield, Br*(²P₃/2)/(Total Br), of 0.56 ± 0.05 was reported by Pence et al.⁹ for 193 nm photolysis.

Table 4G-33. Recommended Absorption Cross Sections of CF₃Br at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>168</td>
<td>0.517</td>
<td>210</td>
<td>12.1</td>
<td>252</td>
<td>0.107</td>
</tr>
<tr>
<td>170</td>
<td>0.696</td>
<td>212</td>
<td>11.4</td>
<td>254</td>
<td>0.0743</td>
</tr>
<tr>
<td>172</td>
<td>0.928</td>
<td>214</td>
<td>10.6</td>
<td>256</td>
<td>0.0516</td>
</tr>
<tr>
<td>174</td>
<td>1.22</td>
<td>216</td>
<td>9.71</td>
<td>258</td>
<td>0.0357</td>
</tr>
<tr>
<td>176</td>
<td>1.60</td>
<td>218</td>
<td>8.65</td>
<td>260</td>
<td>0.0248</td>
</tr>
<tr>
<td>178</td>
<td>2.05</td>
<td>220</td>
<td>7.56</td>
<td>262</td>
<td>0.0171</td>
</tr>
<tr>
<td>180</td>
<td>2.61</td>
<td>222</td>
<td>6.50</td>
<td>264</td>
<td>0.0118</td>
</tr>
<tr>
<td>182</td>
<td>3.26</td>
<td>224</td>
<td>5.47</td>
<td>266</td>
<td>0.00827</td>
</tr>
<tr>
<td>184</td>
<td>4.02</td>
<td>226</td>
<td>4.52</td>
<td>268</td>
<td>0.00580</td>
</tr>
<tr>
<td>186</td>
<td>4.88</td>
<td>228</td>
<td>3.69</td>
<td>270</td>
<td>0.00399</td>
</tr>
<tr>
<td>188</td>
<td>5.82</td>
<td>230</td>
<td>2.91</td>
<td>272</td>
<td>0.00271</td>
</tr>
<tr>
<td>190</td>
<td>6.56</td>
<td>232</td>
<td>2.32</td>
<td>274</td>
<td>0.00188</td>
</tr>
<tr>
<td>192</td>
<td>7.58</td>
<td>234</td>
<td>1.80</td>
<td>276</td>
<td>0.00129</td>
</tr>
<tr>
<td>194</td>
<td>8.63</td>
<td>236</td>
<td>1.39</td>
<td>278</td>
<td>0.00092</td>
</tr>
<tr>
<td>196</td>
<td>9.61</td>
<td>238</td>
<td>1.04</td>
<td>280</td>
<td>0.00064</td>
</tr>
<tr>
<td>198</td>
<td>10.5</td>
<td>240</td>
<td>0.766</td>
<td>285</td>
<td>0.00022</td>
</tr>
<tr>
<td>200</td>
<td>11.3</td>
<td>242</td>
<td>0.563</td>
<td>290</td>
<td>0.00008</td>
</tr>
<tr>
<td>202</td>
<td>11.9</td>
<td>244</td>
<td>0.414</td>
<td>295</td>
<td>0.00003</td>
</tr>
<tr>
<td>204</td>
<td>12.4</td>
<td>246</td>
<td>0.296</td>
<td>300</td>
<td>0.00001</td>
</tr>
<tr>
<td>206</td>
<td>12.5</td>
<td>248</td>
<td>0.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>12.4</td>
<td>250</td>
<td>0.149</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
170–188 nm: Gillotay and Simon⁵
190–270 nm: mean of Molina et al.,⁷ Gillotay and Simon,⁵ Burkholder et al.,¹ and Orkin and Kasimovskaya⁴
272–280 nm: mean of Molina et al.⁷ and Burkholder et al.¹
285–300 nm: Molina et al.⁷

G28. CH2=CHBr (bromoethene, vinyl bromide)

\[
\text{CH}_2\text{=CHBr + hv } \rightarrow \text{Products}
\]

(1)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of CH2=CHBr, bromoethene (vinyl bromide), has been measured at room temperature by Schander and Russell\(^1\) (168–208 nm), Hoxha et al.\(^1\) (62–248 nm), and Orkin et al.\(^2\) (164–254 nm). The spectrum has a very strong absorption band with the maximum at 192 nm, characteristic of the CH2=CBr- group. The absorption cross sections reported in the Orkin et al.\(^2\) study (reported in 0.5 nm increments) are recommended and given in Table 4G-34 for wavelengths ≥184 nm.

Photoysis Quantum Yield and Product Studies: No recommendation.

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>1970</td>
<td>208</td>
<td>306</td>
<td>232</td>
<td>18.2</td>
</tr>
<tr>
<td>186</td>
<td>2320</td>
<td>210</td>
<td>266</td>
<td>234</td>
<td>12.6</td>
</tr>
<tr>
<td>188</td>
<td>2710</td>
<td>212</td>
<td>232</td>
<td>236</td>
<td>8.47</td>
</tr>
<tr>
<td>190</td>
<td>3000</td>
<td>214</td>
<td>198</td>
<td>238</td>
<td>5.70</td>
</tr>
<tr>
<td>192</td>
<td>3160</td>
<td>216</td>
<td>166</td>
<td>240</td>
<td>3.69</td>
</tr>
<tr>
<td>194</td>
<td>2950</td>
<td>218</td>
<td>136</td>
<td>242</td>
<td>2.43</td>
</tr>
<tr>
<td>196</td>
<td>2470</td>
<td>220</td>
<td>109</td>
<td>244</td>
<td>1.58</td>
</tr>
<tr>
<td>198</td>
<td>1800</td>
<td>222</td>
<td>85.9</td>
<td>246</td>
<td>1.03</td>
</tr>
<tr>
<td>200</td>
<td>996</td>
<td>224</td>
<td>65.3</td>
<td>248</td>
<td>0.683</td>
</tr>
<tr>
<td>202</td>
<td>605</td>
<td>226</td>
<td>49.1</td>
<td>250</td>
<td>0.454</td>
</tr>
<tr>
<td>204</td>
<td>440</td>
<td>228</td>
<td>35.7</td>
<td>252</td>
<td>0.315</td>
</tr>
<tr>
<td>206</td>
<td>359</td>
<td>230</td>
<td>25.5</td>
<td>254</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Note:
Orkin et al.\(^2\)

4-323
G29. CHBr=CF₂ (1-bromo-2,2-difluoroethene)

CHBr=CF₂ + hν → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CHBr=CF₂, 1-bromo-2,2-difluoroethene, has been measured at room temperature over the wavelength range 164–266 nm by Orkin et al.¹ The spectrum has strong absorption bands between 164 and 190 nm, a weaker and less pronounced band between 190 and 210 nm (maximum 194 nm), and a still weaker band above 210 nm with the maximum near 220 nm. The absorption cross sections reported in the Orkin et al.¹ study (reported in 0.5 nm increments) are recommended and given in Table 4G-35 for wavelengths ≥184 nm.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-35. Recommended Absorption Cross Sections of CHBr=CF₂ at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>2160</td>
<td>206</td>
<td>87.6</td>
<td>228</td>
<td>74.0</td>
<td>250</td>
<td>8.81</td>
</tr>
<tr>
<td>186</td>
<td>1020</td>
<td>208</td>
<td>70.1</td>
<td>230</td>
<td>68.2</td>
<td>252</td>
<td>6.51</td>
</tr>
<tr>
<td>188</td>
<td>670</td>
<td>210</td>
<td>63.4</td>
<td>232</td>
<td>61.3</td>
<td>254</td>
<td>4.75</td>
</tr>
<tr>
<td>190</td>
<td>635</td>
<td>212</td>
<td>63.5</td>
<td>234</td>
<td>53.7</td>
<td>256</td>
<td>3.49</td>
</tr>
<tr>
<td>192</td>
<td>671</td>
<td>214</td>
<td>66.7</td>
<td>236</td>
<td>45.9</td>
<td>258</td>
<td>2.54</td>
</tr>
<tr>
<td>194</td>
<td>703</td>
<td>216</td>
<td>71.1</td>
<td>238</td>
<td>38.8</td>
<td>260</td>
<td>1.86</td>
</tr>
<tr>
<td>196</td>
<td>610</td>
<td>218</td>
<td>75.8</td>
<td>240</td>
<td>31.7</td>
<td>262</td>
<td>1.37</td>
</tr>
<tr>
<td>198</td>
<td>471</td>
<td>220</td>
<td>79.3</td>
<td>242</td>
<td>25.5</td>
<td>264</td>
<td>1.04</td>
</tr>
<tr>
<td>200</td>
<td>306</td>
<td>222</td>
<td>80.7</td>
<td>244</td>
<td>20.1</td>
<td>266</td>
<td>0.796</td>
</tr>
<tr>
<td>202</td>
<td>193</td>
<td>224</td>
<td>80.6</td>
<td>246</td>
<td>15.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>124</td>
<td>226</td>
<td>78.4</td>
<td>248</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Orkin et al.¹

G30. CFBr=CF₂ (trifluorobromoethene)

CFBr=CF₂ + hν → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CFBr=CF₂, trifluorobromoethene, has been measured at room temperature over the wavelength range 164–274 nm by Orkin et al.¹ The spectrum has strong absorption bands between 164 and 188 nm, a weaker and less pronounced band between 188 and 213 nm (maximum 194.5 nm), and a still weaker band above 213 nm with the maximum near 229 nm. The absorption cross sections reported in the Orkin et al.¹ study (reported in 0.5 nm increments) are recommended and given in Table 4G-36 for wavelengths ≥184 nm.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4G-36. Recommended Absorption Cross Sections of CFBr=CF₂ at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>456</td>
<td>208</td>
<td>56.1</td>
<td>202</td>
<td>232</td>
<td>58.1</td>
<td>2056</td>
<td>6.87</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>367</td>
<td>210</td>
<td>39.5</td>
<td>204</td>
<td>234</td>
<td>54.7</td>
<td>258</td>
<td>5.15</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>350</td>
<td>212</td>
<td>34.1</td>
<td>206</td>
<td>236</td>
<td>50.4</td>
<td>250</td>
<td>3.77</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>373</td>
<td>214</td>
<td>34.5</td>
<td>208</td>
<td>238</td>
<td>45.1</td>
<td>262</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>415</td>
<td>216</td>
<td>37.7</td>
<td>210</td>
<td>240</td>
<td>39.5</td>
<td>264</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>439</td>
<td>218</td>
<td>42.2</td>
<td>212</td>
<td>242</td>
<td>33.9</td>
<td>266</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>434</td>
<td>220</td>
<td>47.2</td>
<td>214</td>
<td>244</td>
<td>28.5</td>
<td>268</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>412</td>
<td>222</td>
<td>52.1</td>
<td>216</td>
<td>246</td>
<td>23.5</td>
<td>270</td>
<td>0.812</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>354</td>
<td>224</td>
<td>56.2</td>
<td>218</td>
<td>248</td>
<td>19.2</td>
<td>272</td>
<td>0.613</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>263</td>
<td>226</td>
<td>59.0</td>
<td>220</td>
<td>250</td>
<td>15.2</td>
<td>274</td>
<td>0.469</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>167</td>
<td>228</td>
<td>60.4</td>
<td>222</td>
<td>252</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>95.1</td>
<td>230</td>
<td>60.0</td>
<td>230</td>
<td>254</td>
<td>9.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Orkin et al.¹

G31. CH₂=CBrCF₃ (2-bromo-3,3,3-trifluoro-1-propene) Back to Index

Absorption Cross Sections: The absorption spectrum of CH₂=CBrCF₃, 2-bromo-3,3,3-trifluoro-1-propene, has been measured at room temperature over the wavelength range 164–254 nm by Orkin et al.¹ The spectrum has a very strong absorption band at wavelengths >174 nm with a maximum at 194 nm, similar to the CH₂=CHBr spectrum and characteristic of a CH₂=CBr- group. The recommended absorption cross sections in Table 4G-37 are taken from Orkin et al.¹ (reported in 0.5 nm increments).

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-37. Recommended Absorption Cross Sections of CH₂=CBrCF₃ at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>1370</td>
<td>202</td>
<td>1520</td>
<td>220</td>
<td>126</td>
<td>238</td>
<td>6.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>1700</td>
<td>204</td>
<td>1080</td>
<td>222</td>
<td>97.3</td>
<td>240</td>
<td>4.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>2040</td>
<td>206</td>
<td>774</td>
<td>224</td>
<td>73.1</td>
<td>242</td>
<td>3.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>2350</td>
<td>208</td>
<td>581</td>
<td>226</td>
<td>54.9</td>
<td>244</td>
<td>2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>2590</td>
<td>210</td>
<td>440</td>
<td>228</td>
<td>40.1</td>
<td>246</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>2700</td>
<td>212</td>
<td>338</td>
<td>230</td>
<td>28.8</td>
<td>248</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>2620</td>
<td>214</td>
<td>263</td>
<td>232</td>
<td>20.5</td>
<td>250</td>
<td>0.705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>2370</td>
<td>216</td>
<td>208</td>
<td>234</td>
<td>14.4</td>
<td>252</td>
<td>0.496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1980</td>
<td>218</td>
<td>162</td>
<td>236</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Orkin et al.¹

G32. **CF₃CH₂Br (Halon–2301, 1,1,1-trifluoro-2-bromoethane)**

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CF₃CH₂Br, 1,1,1-trifluoro-2-bromoethane (Halon–2301), has been measured at 295 K over the wavelength range 190–294 nm by Orkin and Kasimovskaya.¹ The recommended absorption cross sections in Table 4G-38 are taken from this study.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-38. Recommended Absorption Cross Sections of CF₃CH₂Br at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>45.4</td>
<td>226</td>
<td>16.6</td>
<td>262</td>
<td>0.190</td>
</tr>
<tr>
<td>192</td>
<td>49.5</td>
<td>228</td>
<td>14.1</td>
<td>264</td>
<td>0.137</td>
</tr>
<tr>
<td>194</td>
<td>52.5</td>
<td>230</td>
<td>11.9</td>
<td>266</td>
<td>0.0983</td>
</tr>
<tr>
<td>196</td>
<td>54.4</td>
<td>232</td>
<td>9.85</td>
<td>268</td>
<td>0.0705</td>
</tr>
<tr>
<td>198</td>
<td>55.1</td>
<td>234</td>
<td>8.10</td>
<td>270</td>
<td>0.0504</td>
</tr>
<tr>
<td>200</td>
<td>54.7</td>
<td>236</td>
<td>6.58</td>
<td>272</td>
<td>0.0361</td>
</tr>
<tr>
<td>202</td>
<td>53.3</td>
<td>238</td>
<td>5.28</td>
<td>274</td>
<td>0.0258</td>
</tr>
<tr>
<td>204</td>
<td>51.2</td>
<td>240</td>
<td>4.20</td>
<td>276</td>
<td>0.0184</td>
</tr>
<tr>
<td>206</td>
<td>48.6</td>
<td>242</td>
<td>3.31</td>
<td>278</td>
<td>0.0132</td>
</tr>
<tr>
<td>208</td>
<td>45.7</td>
<td>244</td>
<td>2.58</td>
<td>280</td>
<td>0.0096</td>
</tr>
<tr>
<td>210</td>
<td>42.5</td>
<td>246</td>
<td>2.01</td>
<td>282</td>
<td>0.0069</td>
</tr>
<tr>
<td>212</td>
<td>39.1</td>
<td>248</td>
<td>1.53</td>
<td>284</td>
<td>0.0048</td>
</tr>
<tr>
<td>214</td>
<td>35.7</td>
<td>250</td>
<td>1.16</td>
<td>286</td>
<td>0.0034</td>
</tr>
<tr>
<td>216</td>
<td>32.2</td>
<td>252</td>
<td>0.876</td>
<td>288</td>
<td>0.0025</td>
</tr>
<tr>
<td>218</td>
<td>28.8</td>
<td>254</td>
<td>0.653</td>
<td>290</td>
<td>0.0018</td>
</tr>
<tr>
<td>220</td>
<td>25.5</td>
<td>256</td>
<td>0.484</td>
<td>292</td>
<td>0.0013</td>
</tr>
<tr>
<td>222</td>
<td>22.3</td>
<td>258</td>
<td>0.357</td>
<td>294</td>
<td>0.0011</td>
</tr>
<tr>
<td>224</td>
<td>19.4</td>
<td>260</td>
<td>0.261</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

Orkin and Kasimovskaya¹

G33. **CF₃CHClBr (Halon–2311, 1,1,1-trifluoro-2,2-chlorobromoethane)**

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CF₃CHClBr, 1,1,1-trifluoro-2,2-chlorobromoethane (Halon–2311), has been measured at room temperature by Orkin and Kasimovskaya² (190–310 nm), Gillotay et al.²³ (170–290 nm), Bilde et al.¹ (200–310 nm), and Taketani et al.³ (193.3 nm). The room temperature cross section values are in good agreement, to within 5–15%, at wavelengths <280 nm. In this region, Gillotay et al.²³ report the lowest cross section values and Orkin and Kasimovskaya the greatest values. At wavelengths >280 nm, the data from Bilde et al. are greater than those of Orkin and Kasimovskaya with the difference increasing with increasing wavelength, up to a factor of two at 310 nm. The recommended absorption cross sections in Table 4G-39 are the values from Gillotay et al.³ in the region 170–188 nm, the mean of the values reported by Gillotay et al.³ and Orkin and Kasimovskaya³ in the region 190–198 nm, the mean of the values reported by the three groups in the region 200–290 nm, and the mean of the values reported by Orkin and Kasimovskaya³ and Bilde et al.¹ in the region 292–310 nm.

The absorption spectrum temperature dependence has been measured by Gillotay et al.³ (170–290 nm) over the range 210–295 K and Bilde et al.¹ (200–310 nm) over the range 223–298 K. Gillotay et al.³ report an increase of the absorption cross sections near the maximum of the absorption band between 192 and 238 nm.
with decreasing temperature and the opposite effect at wavelengths >238 nm and <192 nm. The increase at ~202 nm is ~2.4 \times 10^{-20} \text{ cm}^2 \text{ molecule}^{-1} \text{ per 20 K decrease in temperature}, i.e., an increase of ~10% between 295 and 210 K. Bilde et al.1 observed a less pronounced temperature behavior in the absorption band and a decrease of the absorption cross sections with decreasing temperature at wavelengths above 214 nm.

Gillotay et al.3 parameterized the cross sections and the temperature dependence using an empirical polynomial expansion

\[
\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n
\]

and report calculated values for 210, 230, 250, 270, and 295 K. The \(A_n\) and \(B_n\) parameters, which are valid for the wavelength range 190–290 nm and temperature range 210–300 K, are given below and are recommended.

\[
\begin{align*}
A_0 &= -127.157358 & B_0 &= -7.959828 \times 10^{-2} \\
A_1 &= 1.635435 & B_1 &= 1.978026 \times 10^{-3} \\
A_2 &= -9.002683 \times 10^{-3} & B_2 &= -1.627866 \times 10^{-5} \\
A_3 &= 2.190678 \times 10^{-5} & B_3 &= 5.480744 \times 10^{-8} \\
A_4 &= -2.062651 \times 10^{-8} & B_4 &= -6.480935 \times 10^{-11}
\end{align*}
\]

Photolysis Quantum Yield and Product Studies: Taketani et al.5 reported the total yield of Cl atoms to be 0.28 ± 0.02 in the photodissociation of CF\(_3\)CHClBr at 193.3 nm. Assuming a unit quantum yield for photodissociation this implies that the rupture of the C-Br bond should be dominant photodissociation channel.

Table 4G-39. Recommended Absorption Cross Sections of CF\(_3\)CHClBr at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>702.6</td>
<td>178</td>
<td>78.7</td>
<td>266</td>
<td>0.980</td>
</tr>
<tr>
<td>172</td>
<td>614.6</td>
<td>180</td>
<td>71.0</td>
<td>268</td>
<td>0.765</td>
</tr>
<tr>
<td>174</td>
<td>496.8</td>
<td>182</td>
<td>63.3</td>
<td>270</td>
<td>0.575</td>
</tr>
<tr>
<td>176</td>
<td>379.8</td>
<td>184</td>
<td>56.3</td>
<td>272</td>
<td>0.444</td>
</tr>
<tr>
<td>178</td>
<td>281.1</td>
<td>186</td>
<td>49.5</td>
<td>274</td>
<td>0.339</td>
</tr>
<tr>
<td>180</td>
<td>206.1</td>
<td>188</td>
<td>43.3</td>
<td>276</td>
<td>0.258</td>
</tr>
<tr>
<td>182</td>
<td>153.3</td>
<td>190</td>
<td>37.3</td>
<td>278</td>
<td>0.196</td>
</tr>
<tr>
<td>184</td>
<td>118.4</td>
<td>192</td>
<td>32.2</td>
<td>280</td>
<td>0.149</td>
</tr>
<tr>
<td>186</td>
<td>97.1</td>
<td>194</td>
<td>27.6</td>
<td>282</td>
<td>0.111</td>
</tr>
<tr>
<td>188</td>
<td>86.6</td>
<td>196</td>
<td>23.6</td>
<td>284</td>
<td>0.0818</td>
</tr>
<tr>
<td>190</td>
<td>93.4</td>
<td>198</td>
<td>20.0</td>
<td>286</td>
<td>0.0606</td>
</tr>
<tr>
<td>192</td>
<td>99.8</td>
<td>200</td>
<td>16.8</td>
<td>288</td>
<td>0.0448</td>
</tr>
<tr>
<td>194</td>
<td>107.1</td>
<td>202</td>
<td>14.0</td>
<td>290</td>
<td>0.0331</td>
</tr>
<tr>
<td>196</td>
<td>114.3</td>
<td>204</td>
<td>11.7</td>
<td>292</td>
<td>0.0263</td>
</tr>
<tr>
<td>198</td>
<td>119.7</td>
<td>206</td>
<td>9.51</td>
<td>294</td>
<td>0.0198</td>
</tr>
<tr>
<td>200</td>
<td>121.5</td>
<td>208</td>
<td>7.79</td>
<td>296</td>
<td>0.0147</td>
</tr>
<tr>
<td>202</td>
<td>123.0</td>
<td>210</td>
<td>6.38</td>
<td>298</td>
<td>0.0109</td>
</tr>
<tr>
<td>204</td>
<td>122.3</td>
<td>212</td>
<td>5.15</td>
<td>300</td>
<td>0.00808</td>
</tr>
<tr>
<td>206</td>
<td>119.7</td>
<td>214</td>
<td>4.13</td>
<td>302</td>
<td>0.00583</td>
</tr>
<tr>
<td>208</td>
<td>115.1</td>
<td>216</td>
<td>3.31</td>
<td>304</td>
<td>0.00450</td>
</tr>
<tr>
<td>210</td>
<td>109.0</td>
<td>218</td>
<td>2.63</td>
<td>306</td>
<td>0.00313</td>
</tr>
<tr>
<td>212</td>
<td>102.0</td>
<td>220</td>
<td>2.06</td>
<td>308</td>
<td>0.00235</td>
</tr>
<tr>
<td>214</td>
<td>94.6</td>
<td>222</td>
<td>1.61</td>
<td>310</td>
<td>0.00180</td>
</tr>
<tr>
<td>216</td>
<td>86.7</td>
<td>224</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
170–188 nm: Gillotay et al.2,3
190–198 nm: mean of values from Gillotay et al.2,3 and Orkin and Kasimovskaya4
200–290 nm: mean of values from Gillotay et al.2,3, Orkin and Kasimovskaya4 and Bilde et al.1
292–310 nm: mean of values from Orkin and Kasimovskaya4 and Bilde et al.1

4-327

G34. CF$_3$CHFBr (Halon–2401, 1,1,1,2-tetrafluoro-2-bromoethane)

CF$_3$CHFBr (Halon–2401) + hv → Products

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CF$_3$CHFBr, 1,1,1,2-tetrafluoro-2-bromoethane (Halon–2401), has been measured at 295 K over the wavelength range 190–280 nm by Orkin and Kasimovskaya1. Their results are recommended and given in Table 4G-40.

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-40. Recommended Absorption Cross Sections of CF$_3$CHFBr at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
<th>λ (nm)</th>
<th>10^{20} σ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>24.9</td>
<td>222</td>
<td>11.0</td>
<td>254</td>
<td>0.226</td>
</tr>
<tr>
<td>192</td>
<td>26.1</td>
<td>224</td>
<td>9.38</td>
<td>256</td>
<td>0.166</td>
</tr>
<tr>
<td>194</td>
<td>27.0</td>
<td>226</td>
<td>7.91</td>
<td>258</td>
<td>0.121</td>
</tr>
<tr>
<td>196</td>
<td>27.5</td>
<td>228</td>
<td>6.58</td>
<td>260</td>
<td>0.0873</td>
</tr>
<tr>
<td>198</td>
<td>27.7</td>
<td>230</td>
<td>5.42</td>
<td>262</td>
<td>0.0628</td>
</tr>
<tr>
<td>200</td>
<td>27.4</td>
<td>232</td>
<td>4.42</td>
<td>264</td>
<td>0.0450</td>
</tr>
<tr>
<td>202</td>
<td>26.9</td>
<td>234</td>
<td>3.53</td>
<td>266</td>
<td>0.0325</td>
</tr>
<tr>
<td>204</td>
<td>26.0</td>
<td>236</td>
<td>2.79</td>
<td>268</td>
<td>0.0235</td>
</tr>
<tr>
<td>206</td>
<td>24.8</td>
<td>238</td>
<td>2.19</td>
<td>270</td>
<td>0.0171</td>
</tr>
<tr>
<td>208</td>
<td>23.4</td>
<td>240</td>
<td>1.69</td>
<td>272</td>
<td>0.0124</td>
</tr>
<tr>
<td>210</td>
<td>21.9</td>
<td>242</td>
<td>1.30</td>
<td>274</td>
<td>0.0093</td>
</tr>
<tr>
<td>212</td>
<td>20.2</td>
<td>244</td>
<td>0.991</td>
<td>276</td>
<td>0.0069</td>
</tr>
<tr>
<td>214</td>
<td>18.3</td>
<td>246</td>
<td>0.736</td>
<td>278</td>
<td>0.0053</td>
</tr>
<tr>
<td>216</td>
<td>16.5</td>
<td>248</td>
<td>0.556</td>
<td>280</td>
<td>0.0040</td>
</tr>
<tr>
<td>218</td>
<td>14.6</td>
<td>250</td>
<td>0.416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>12.8</td>
<td>252</td>
<td>0.308</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Orkin and Kasimovskaya1

G35. CF$_3$BrCF$_2$Br (Halon–2402, 1,1,2,2-tetrafluoro-1,2-dibromoethane)

CF$_3$BrCF$_2$Br (Halon–2402) + hv → CF$_2$BrCF$_2$ + Br

→ CF$_2$CF$_2$ + Br + Br

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The absorption cross sections of CF$_3$BrCF$_2$Br, 1,1,2,2-tetrafluoro-1,2-dibromoethane (Halon–2402), has been measured at room temperature by Molina et al. 3 (195–320 nm), Orkin and Kasimovskaya4 (190–300 nm), Gillotay et al.2 (170–280 nm), Burkholder et al.1 (190–320 nm), and Papanastasiou et al.5 (300–320 nm). The most recent study by Papanastasiou et al. reported absorption cross
section data in the long wavelength region that were corrected for Rayleigh scattering, which is most important at the longest wavelengths. The room temperature absorption cross sections are in good agreement in the region 180–290 nm, generally to within 10%. The agreement at the absorption maximum near 200 nm is to within 5% and in the long wavelength tail out to 310 nm it is to within 15%. The recommended absorption cross sections in Table 4G-41 are the values from Gillotay et al.\(^2\) in the region 170–186 nm, the mean of the values reported by Molina et al.\(^3\) Gillotay et al.\(^2\), Burkholder et al.\(^1\), and Orkin and Kasimovskaya\(^4\) in the region 196–264 nm, and the parameterization from Papanastasiou et al.\(^5\) in the region >264 nm (see below). In the region 186 and 196 nm, a smoothed absorption spectrum was used to estimate values at 188, 190, 192, and 194 nm. An uncertainty factor of 1.15 (2\(\sigma\)) is recommended for the room temperature spectrum over the wavelength range where experimental data are available.

There are no VUV spectrum measurements available for Halon-2402. The Lyman-\(\alpha\), 121.567 nm, cross section is expected to be greater than that for CF\(_3\)Br (Halon-1301) and less than that for CF\(_2\)Br\(_2\) (Halon-1202). A Lyman-\(\alpha\) cross section of \(5 \times 10^{-17}\) cm\(^2\) molecule\(^{-1}\) is estimated and an uncertainty factor of 2 assigned.

The temperature dependence of the absorption spectrum has been measured by Gillotay et al.\(^2\) (170–280 nm) over the range 210–295 K, Burkholder et al.\(^1\) (190–320 nm) over the range 210–296 K, and Papanastasiou et al. over the range 250–296 K. The Gillotay et al. and Burkholder et al. studies do not agree on the spectrum temperature dependence with the Burkholder et al. spectrum having a systematically greater temperature dependence at wavelengths <230 nm and weaker dependence at longer wavelengths. Gillotay et al. report a decrease in the absorption maximum at 200 nm of \(-1.0 \times 10^{-20}\) cm\(^2\) molecule\(^{-1}\) per 20 K temperature decrease, i.e., a decrease of \(-4\%) between 295 and 210 K. Burkholder et al.\(^1\) report an increase in the peak absorption cross section of \(-20\%\) with decreasing temperature over the full temperature range studied. Gillotay et al.\(^2\) parameterized the cross section temperature dependence using an empirical polynomial expansion

\[
\log_{10} \sigma(\lambda, T) = \sum A_n \lambda^n + (T-273) \times \sum B_n \lambda^n
\]

and report calculated values for 210, 230, 250, 270, and 295 K. The \(A_n\) and \(B_n\) parameters, which are valid for the wavelength range 190–290 nm and temperature range 210–300 K are given below.

\[
\begin{align*}
A_0 &= 34.026000 & B_0 &= 4.010664 \times 10^{-1} \\
A_1 &= -1.152616 & B_1 &= -8.358968 \times 10^{-3} \\
A_2 &= 8.959798 \times 10^{-3} & B_2 &= 6.415741 \times 10^{-5} \\
A_3 &= -2.9089 \times 10^{-5} & B_3 &= -2.157554 \times 10^{-7} \\
A_4 &= 3.307212 \times 10^{-8} & B_4 &= 2.691871 \times 10^{-10}
\end{align*}
\]

Burkholder et al.\(^1\) parameterized the temperature dependence using the empirical expression

\[
\ln(\sigma(\lambda, T)) = (\sum A_i (\lambda-242.4015)^i) (1 + (296-T) \sum B_i (\lambda-242.4015)^i)
\]

and report the following \(A_i\) and \(B_i\) parameters for the wavelength range 190–320 nm and temperature range 210–296 K.

\[
\begin{align*}
A_0 &= -43.69218 & B_0 &= 3.301341 \times 10^{-5} \\
A_1 &= -1.124704 \times 10^{-1} & B_1 &= 4.695917 \times 10^{-6} \\
A_2 &= -1.213301 \times 10^{-3} & B_2 &= 6.128629 \times 10^{-8} \\
A_3 &= 5.275007 \times 10^{-6} & B_3 &= -5.443107 \times 10^{-10} \\
A_4 &= 6.936195 \times 10^{-8} & B_4 &= -1.035596 \times 10^{-11}
\end{align*}
\]

Note: In the original Burkholder et al.\(^1\) paper, the parameterization equation is written in terms of \(\log_{10} \sigma(\lambda, T)\) but the correct expression should be given in terms of \(\ln(\sigma(\lambda, T))\), as given here.

The recommended spectrum parameterization for wavelengths >264 nm is taken from the Papanastasiou et al. study, which accounted for Rayleigh scattering that was significant for wavelengths >290 nm. They used the empirical expression used in the Burkholder et al. study

\[
\ln(\sigma(\lambda, T)) = \sum A_i (\lambda-\lambda_i)^i \times \left[1 + (296-T) \sum B_i (\lambda-\lambda_i)^i\right]
\]

to parameterize the spectrum for wavelengths ≥260 nm and temperatures between 210 and 298 K using a combination of their cross section data and data from Burkholder et al. The parameters are given below.
For wavelengths <266 nm, there is no apparent reason to prefer the spectrum temperature dependence reported by either Gillotay et al. or Burkholder et al.

Photolysis Quantum Yield and Product Studies: Zou et al.\(^6\) report quantum yields for Br atom formation in the photodissociation of CF\(_2\)BrCF\(_2\)Br at 193, 233, and 266 nm to be 1.9 ± 0.1, 1.9 ± 0.1, and 1.4 ± 0.1, respectively. These results indicate bond breaking of both C–Br bonds for photolysis at 193 and 233 nm and at an appreciable fraction at 266 nm.

Table 4G-41. Recommended Absorption Cross Sections of CF\(_2\)BrCF\(_2\)Br at 296 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>50.9</td>
<td>232</td>
<td>28.8</td>
<td>294</td>
<td>0.00404</td>
</tr>
<tr>
<td>174</td>
<td>56.4</td>
<td>235</td>
<td>24.1</td>
<td>296</td>
<td>0.00284</td>
</tr>
<tr>
<td>176</td>
<td>68.5</td>
<td>238</td>
<td>19.9</td>
<td>298</td>
<td>0.00199</td>
</tr>
<tr>
<td>178</td>
<td>75.1</td>
<td>240</td>
<td>16.4</td>
<td>300</td>
<td>0.00139</td>
</tr>
<tr>
<td>180</td>
<td>81.8</td>
<td>242</td>
<td>13.2</td>
<td>302</td>
<td>0.000967</td>
</tr>
<tr>
<td>182</td>
<td>88.6</td>
<td>244</td>
<td>10.6</td>
<td>304</td>
<td>0.000669</td>
</tr>
<tr>
<td>184</td>
<td>95.3</td>
<td>246</td>
<td>8.45</td>
<td>306</td>
<td>0.000461</td>
</tr>
<tr>
<td>186</td>
<td>101.8</td>
<td>248</td>
<td>6.68</td>
<td>308</td>
<td>0.000316</td>
</tr>
<tr>
<td>188</td>
<td>107.0</td>
<td>250</td>
<td>5.25</td>
<td>310</td>
<td>0.000216</td>
</tr>
<tr>
<td>190</td>
<td>112.0</td>
<td>252</td>
<td>4.03</td>
<td>312</td>
<td>0.000147</td>
</tr>
<tr>
<td>192</td>
<td>116.5</td>
<td>254</td>
<td>3.12</td>
<td>314</td>
<td>0.000100</td>
</tr>
<tr>
<td>194</td>
<td>120.0</td>
<td>256</td>
<td>2.37</td>
<td>316</td>
<td>0.0000678</td>
</tr>
<tr>
<td>196</td>
<td>122.3</td>
<td>258</td>
<td>1.78</td>
<td>318</td>
<td>0.0000458</td>
</tr>
<tr>
<td>198</td>
<td>123.7</td>
<td>260</td>
<td>1.34</td>
<td>320</td>
<td>0.0000309</td>
</tr>
<tr>
<td>200</td>
<td>124.3</td>
<td>262</td>
<td>0.973</td>
<td>322</td>
<td>0.0000209</td>
</tr>
<tr>
<td>202</td>
<td>123.6</td>
<td>264</td>
<td>0.718</td>
<td>324</td>
<td>0.0000141</td>
</tr>
<tr>
<td>204</td>
<td>120.3</td>
<td>266</td>
<td>0.529</td>
<td>326</td>
<td>0.00000949</td>
</tr>
<tr>
<td>206</td>
<td>115.9</td>
<td>268</td>
<td>0.395</td>
<td>328</td>
<td>0.00000641</td>
</tr>
<tr>
<td>208</td>
<td>110.4</td>
<td>270</td>
<td>0.286</td>
<td>330</td>
<td>0.00000434</td>
</tr>
<tr>
<td>210</td>
<td>104.2</td>
<td>272</td>
<td>0.208</td>
<td>332</td>
<td>0.00000295</td>
</tr>
<tr>
<td>212</td>
<td>97.4</td>
<td>274</td>
<td>0.151</td>
<td>334</td>
<td>0.00000201</td>
</tr>
<tr>
<td>214</td>
<td>90.1</td>
<td>276</td>
<td>0.110</td>
<td>336</td>
<td>0.00000137</td>
</tr>
<tr>
<td>216</td>
<td>82.4</td>
<td>278</td>
<td>0.0799</td>
<td>338</td>
<td>0.000000946</td>
</tr>
<tr>
<td>218</td>
<td>74.8</td>
<td>280</td>
<td>0.0580</td>
<td>340</td>
<td>0.000000656</td>
</tr>
<tr>
<td>220</td>
<td>67.0</td>
<td>282</td>
<td>0.0420</td>
<td>342</td>
<td>0.000000459</td>
</tr>
<tr>
<td>222</td>
<td>59.6</td>
<td>284</td>
<td>0.0304</td>
<td>344</td>
<td>0.000000324</td>
</tr>
<tr>
<td>224</td>
<td>52.6</td>
<td>286</td>
<td>0.0219</td>
<td>346</td>
<td>0.000000231</td>
</tr>
<tr>
<td>226</td>
<td>45.9</td>
<td>288</td>
<td>0.0157</td>
<td>348</td>
<td>0.000000167</td>
</tr>
<tr>
<td>228</td>
<td>39.7</td>
<td>290</td>
<td>0.0113</td>
<td>350</td>
<td>0.000000122</td>
</tr>
<tr>
<td>230</td>
<td>33.9</td>
<td>292</td>
<td>0.00804</td>
<td>0.0000571</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 170–186 nm: Gillotay et al.\(^2\)
- 188–194 nm: values estimated by smoothing the absorption curve
- 196–264 nm: mean of data from Molina et al.,\(^3\) Gillotay et al.,\(^2\) Burkholder et al.,\(^1\) and Orkin and Kasimovskaya\(^4\)
- >264 nm: Papanastasiou et al.\(^5\) parameterization with values at ≥322 obtained by an extrapolation.

G36. CF₃CF₂Br (Halon–2501, pentafluorobromoethane)

CF₃CF₂Br (Halon–2501) + hv → CF₃CF₂ + Br 284 kJ mol⁻¹ 420 nm (1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of CF₃CF₂Br, pentafluorobromoethane (Halon–2501), has been measured at room temperature by Molina et al.² (190–300 nm), Zhang et al.⁴ (200–250 nm), and Pence et al.³ (180–400 nm, 193 nm). The absorption cross sections from Zhang et al.⁴ reported graphically, are ~30% greater than the results from Molina et al.² Pence et al.³ report a spectrum graphically over the range 180–400 nm and a 193 nm cross section that is ~40% less than reported by Molina et al.² The recommended absorption cross sections in Table 4G-42 are taken from Molina et al.²

Photolysis Quantum Yield and Product Studies: Ebenstein et al.¹ used broadband flash photolysis of CF₃CF₂Br and reported a Br*(2P₃/2) fractional yield, Br*(2P₃/2)/(Total Br), of 0.48 ± 0.02. A Br*(2P₃/2) fractional yield of 0.16 ± 0.08 was reported by Pence et al.¹ for 193 nm photolysis.

Table 4G-42. Recommended Absorption Cross Sections of CF₃CF₂Br at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10⁻²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁻²⁰ σ (cm²)</th>
<th>λ (nm)</th>
<th>10⁻²⁰ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>18.1</td>
<td>230</td>
<td>3.83</td>
<td>270</td>
<td>0.0112</td>
</tr>
<tr>
<td>195</td>
<td>18.4</td>
<td>235</td>
<td>2.22</td>
<td>275</td>
<td>0.00505</td>
</tr>
<tr>
<td>200</td>
<td>18.1</td>
<td>240</td>
<td>1.20</td>
<td>280</td>
<td>0.00218</td>
</tr>
<tr>
<td>205</td>
<td>16.9</td>
<td>245</td>
<td>0.620</td>
<td>285</td>
<td>0.00100</td>
</tr>
<tr>
<td>210</td>
<td>14.8</td>
<td>250</td>
<td>0.305</td>
<td>290</td>
<td>0.00045</td>
</tr>
<tr>
<td>215</td>
<td>12.0</td>
<td>255</td>
<td>0.135</td>
<td>295</td>
<td>0.00020</td>
</tr>
<tr>
<td>220</td>
<td>8.94</td>
<td>260</td>
<td>0.0590</td>
<td>300</td>
<td>0.00009</td>
</tr>
<tr>
<td>225</td>
<td>6.13</td>
<td>265</td>
<td>0.0260</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 190–300 nm: Molina et al.²

G37. CH₃CH₂CH₂Br (1-bromopropane, n-propyl bromide)

CH₃CH₂CH₂Br + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CH₃CH₂CH₂Br, 1-bromopropane (n-propyl bromide), has been measured at room temperature by Kozlov et al.¹ (164–270 nm). The spectrum has an absorption band above 180 nm with maxima at ~201 nm and structured features at wavelengths <180 nm similar to those in the CH₃Br spectrum, i.e., characteristic of the C-Br band absorptions in bromoalkanes. The recommended absorption cross sections in Table 4G-43 are taken from Kozlov et al.¹

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4G-43. Recommended Absorption Cross Sections of CH₃CH₂CH₂Br and CH₃CHBrCH₃ at 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²₀ σ (cm²)</th>
<th>λ (nm)</th>
<th>10²₀ σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₃CH₂CH₂Br</td>
<td>CH₃CHBrCH₃</td>
<td>CH₃CH₂CH₂Br</td>
</tr>
<tr>
<td>180</td>
<td>108.5</td>
<td>220.2</td>
<td>206</td>
</tr>
<tr>
<td>182</td>
<td>29.9</td>
<td>36.5</td>
<td>208</td>
</tr>
<tr>
<td>184</td>
<td>29.5</td>
<td>18.2</td>
<td>210</td>
</tr>
<tr>
<td>186</td>
<td>35.6</td>
<td>17.6</td>
<td>212</td>
</tr>
<tr>
<td>188</td>
<td>42.7</td>
<td>19.4</td>
<td>214</td>
</tr>
<tr>
<td>190</td>
<td>49.8</td>
<td>22.1</td>
<td>216</td>
</tr>
<tr>
<td>192</td>
<td>56.5</td>
<td>24.8</td>
<td>218</td>
</tr>
<tr>
<td>194</td>
<td>62.5</td>
<td>28.0</td>
<td>220</td>
</tr>
<tr>
<td>196</td>
<td>67.0</td>
<td>31.3</td>
<td>222</td>
</tr>
<tr>
<td>198</td>
<td>70.2</td>
<td>34.3</td>
<td>224</td>
</tr>
<tr>
<td>200</td>
<td>71.8</td>
<td>37.3</td>
<td>226</td>
</tr>
<tr>
<td>202</td>
<td>72.6</td>
<td>39.9</td>
<td>228</td>
</tr>
<tr>
<td>204</td>
<td>71.2</td>
<td>42.0</td>
<td>230</td>
</tr>
</tbody>
</table>

Note:
Kozlov et al.¹

G38. CH₃CHBrCH₃ (2-bromopropane, isopropyl bromide)

CH₃CHBrCH₃ + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CH₃CHBrCH₃, 2-bromopropane (isopropyl bromide), was measured at room temperature by Kozlov et al.¹ (164–270 nm). The spectrum has an absorption band above 180 nm with maxima at ~209 nm and structured features at wavelengths <180 nm similar to those in the CH₃Br and CH₃CH₂CH₃Br spectra, i.e., characteristic of the C-Br band absorptions in bromoalkanes. The recommended absorption cross sections in Table 4G-43 are taken from Kozlov et al.¹

Photolysis Quantum Yield and Product Studies: No recommendation.

G39. CH₃C(O)CH₂Br (bromoacetone)

CH₃C(O)CH₂Br + hv → Products

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)
Absorption Cross Sections: The absorption spectrum of CH₃C(O)CH₂Br, bromoacetone, has been measured by Burkholder et al.¹ (210-370 nm) over the temperature range 238–296 K using a diode array spectrometer (0.6 nm resolution). The spectrum has overlapping absorption bands with a maximum at 299 nm (σ = 1.15 × 10⁻¹⁹ cm² molecule⁻¹ at room temperature) and increasing absorption cross sections below 255 nm to a second stronger band peaking below 210 nm. The recommended absorption cross sections in Table 4G-44 are taken from Burkholder et al.¹ A slight, but not systematic, decrease of the absorption cross sections with decreasing temperature was observed around the absorption minimum at 255 nm and in the long wavelength wings of both absorption bands.

Photolysis Quantum Yield and Product Studies: The photodissociation quantum yield was measured by Burkholder et al.¹ to be 1.6 ± 0.25 at 308 nm and 1.0 ± 0.15 at 351 nm. At both wavelengths, the yields of CO and CO₂ were unity and ~0.5, respectively, whereas the yield of HC(O)OH was measured to be 0.15 and that of HBr to be ~0.15.

Table 4G-44. Recommended Absorption Cross Sections of CH₃C(O)CH₂Br at 296 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10³σ (cm²)</th>
<th>λ (nm)</th>
<th>10³σ (cm²)</th>
<th>λ (nm)</th>
<th>10³σ (cm²)</th>
<th>λ (nm)</th>
<th>10³σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>59.2</td>
<td>248</td>
<td>6.40</td>
<td>286</td>
<td>9.78</td>
<td>324</td>
<td>5.55</td>
</tr>
<tr>
<td>211</td>
<td>58.0</td>
<td>249</td>
<td>6.07</td>
<td>287</td>
<td>9.98</td>
<td>325</td>
<td>5.20</td>
</tr>
<tr>
<td>212</td>
<td>57.5</td>
<td>250</td>
<td>5.77</td>
<td>288</td>
<td>10.2</td>
<td>326</td>
<td>4.87</td>
</tr>
<tr>
<td>213</td>
<td>56.2</td>
<td>251</td>
<td>5.49</td>
<td>289</td>
<td>10.4</td>
<td>327</td>
<td>4.55</td>
</tr>
<tr>
<td>214</td>
<td>53.2</td>
<td>252</td>
<td>5.25</td>
<td>290</td>
<td>10.6</td>
<td>328</td>
<td>4.24</td>
</tr>
<tr>
<td>215</td>
<td>50.7</td>
<td>253</td>
<td>5.14</td>
<td>291</td>
<td>10.8</td>
<td>329</td>
<td>3.94</td>
</tr>
<tr>
<td>216</td>
<td>48.4</td>
<td>254</td>
<td>4.98</td>
<td>292</td>
<td>11.0</td>
<td>330</td>
<td>3.64</td>
</tr>
<tr>
<td>217</td>
<td>46.2</td>
<td>255</td>
<td>4.88</td>
<td>293</td>
<td>11.1</td>
<td>331</td>
<td>3.35</td>
</tr>
<tr>
<td>218</td>
<td>43.9</td>
<td>256</td>
<td>4.76</td>
<td>294</td>
<td>11.2</td>
<td>332</td>
<td>3.06</td>
</tr>
<tr>
<td>219</td>
<td>41.8</td>
<td>257</td>
<td>4.68</td>
<td>295</td>
<td>11.3</td>
<td>333</td>
<td>2.77</td>
</tr>
<tr>
<td>220</td>
<td>39.7</td>
<td>258</td>
<td>4.62</td>
<td>296</td>
<td>11.4</td>
<td>334</td>
<td>2.51</td>
</tr>
<tr>
<td>221</td>
<td>37.5</td>
<td>259</td>
<td>4.66</td>
<td>297</td>
<td>11.4</td>
<td>335</td>
<td>2.26</td>
</tr>
<tr>
<td>222</td>
<td>35.6</td>
<td>260</td>
<td>4.70</td>
<td>298</td>
<td>11.5</td>
<td>336</td>
<td>2.02</td>
</tr>
<tr>
<td>223</td>
<td>33.9</td>
<td>261</td>
<td>4.76</td>
<td>299</td>
<td>11.5</td>
<td>337</td>
<td>1.80</td>
</tr>
<tr>
<td>224</td>
<td>32.0</td>
<td>262</td>
<td>4.72</td>
<td>300</td>
<td>11.5</td>
<td>338</td>
<td>1.60</td>
</tr>
<tr>
<td>225</td>
<td>30.1</td>
<td>263</td>
<td>4.79</td>
<td>301</td>
<td>11.4</td>
<td>339</td>
<td>1.41</td>
</tr>
<tr>
<td>226</td>
<td>28.5</td>
<td>264</td>
<td>4.91</td>
<td>302</td>
<td>11.4</td>
<td>340</td>
<td>1.24</td>
</tr>
<tr>
<td>227</td>
<td>26.8</td>
<td>265</td>
<td>5.01</td>
<td>303</td>
<td>11.3</td>
<td>341</td>
<td>1.09</td>
</tr>
<tr>
<td>228</td>
<td>25.2</td>
<td>266</td>
<td>5.12</td>
<td>304</td>
<td>11.2</td>
<td>342</td>
<td>0.955</td>
</tr>
<tr>
<td>229</td>
<td>23.7</td>
<td>267</td>
<td>5.39</td>
<td>305</td>
<td>11.1</td>
<td>343</td>
<td>0.831</td>
</tr>
<tr>
<td>230</td>
<td>22.1</td>
<td>268</td>
<td>5.44</td>
<td>306</td>
<td>11.1</td>
<td>344</td>
<td>0.724</td>
</tr>
<tr>
<td>231</td>
<td>20.7</td>
<td>269</td>
<td>5.57</td>
<td>307</td>
<td>10.9</td>
<td>345</td>
<td>0.627</td>
</tr>
<tr>
<td>232</td>
<td>19.4</td>
<td>270</td>
<td>5.77</td>
<td>308</td>
<td>10.7</td>
<td>346</td>
<td>0.545</td>
</tr>
<tr>
<td>233</td>
<td>18.1</td>
<td>271</td>
<td>6.03</td>
<td>309</td>
<td>10.4</td>
<td>347</td>
<td>0.473</td>
</tr>
<tr>
<td>234</td>
<td>16.9</td>
<td>272</td>
<td>6.25</td>
<td>310</td>
<td>10.2</td>
<td>348</td>
<td>0.408</td>
</tr>
<tr>
<td>235</td>
<td>15.7</td>
<td>273</td>
<td>6.48</td>
<td>311</td>
<td>9.89</td>
<td>349</td>
<td>0.351</td>
</tr>
<tr>
<td>236</td>
<td>14.7</td>
<td>274</td>
<td>6.68</td>
<td>312</td>
<td>9.62</td>
<td>350</td>
<td>0.303</td>
</tr>
<tr>
<td>237</td>
<td>13.6</td>
<td>275</td>
<td>6.90</td>
<td>313</td>
<td>9.36</td>
<td>351</td>
<td>0.259</td>
</tr>
<tr>
<td>238</td>
<td>12.6</td>
<td>276</td>
<td>7.16</td>
<td>314</td>
<td>9.10</td>
<td>352</td>
<td>0.223</td>
</tr>
<tr>
<td>239</td>
<td>11.7</td>
<td>277</td>
<td>7.45</td>
<td>315</td>
<td>8.82</td>
<td>353</td>
<td>0.190</td>
</tr>
<tr>
<td>240</td>
<td>10.9</td>
<td>278</td>
<td>7.74</td>
<td>316</td>
<td>8.52</td>
<td>354</td>
<td>0.164</td>
</tr>
<tr>
<td>241</td>
<td>10.2</td>
<td>279</td>
<td>8.00</td>
<td>317</td>
<td>8.19</td>
<td>355</td>
<td>0.140</td>
</tr>
<tr>
<td>242</td>
<td>9.47</td>
<td>280</td>
<td>8.25</td>
<td>318</td>
<td>7.83</td>
<td>356</td>
<td>0.120</td>
</tr>
<tr>
<td>243</td>
<td>8.80</td>
<td>281</td>
<td>8.50</td>
<td>319</td>
<td>7.45</td>
<td>357</td>
<td>0.108</td>
</tr>
<tr>
<td>244</td>
<td>8.18</td>
<td>282</td>
<td>8.75</td>
<td>320</td>
<td>7.06</td>
<td>358</td>
<td>0.0952</td>
</tr>
<tr>
<td>245</td>
<td>7.68</td>
<td>283</td>
<td>9.04</td>
<td>321</td>
<td>6.66</td>
<td>359</td>
<td>0.0838</td>
</tr>
<tr>
<td>246</td>
<td>7.22</td>
<td>284</td>
<td>9.29</td>
<td>322</td>
<td>6.28</td>
<td>360</td>
<td>0.0784</td>
</tr>
<tr>
<td>247</td>
<td>6.79</td>
<td>285</td>
<td>9.58</td>
<td>323</td>
<td>5.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Burkholder et al.¹

4-333
4.10 Bibliography – BrO₃ Photochemistry

Barone, S. B.; Turnipseed, A. A.; Gierczak, T.; Ravishankara, A. R. Quantum yields of H(3S) and CH₃S(3E) from the photolysis of simple organosulfur compounds at 193, 222, and 248 nm. J. Phys. Chem. 1994, 98, 11969-11977.

SECTION 4H. IOX PHOTOCHEMISTRY

H1. I₂ (molecular iodine)

Absorption Cross Sections: The UV/vis absorption spectrum of I₂ molecular iodine, between 180 and 750 nm consists of several overlapping electronic transitions. The spectrum has a strong absorption band below 210 nm that peaks at ~181 nm and contains some diffuse band structure. Between 210 and 380 nm the spectrum is continuous with decreasing absorption cross sections toward longer wavelength and a minimum cross section of ~1 × 10⁻²⁰ cm² molecule⁻¹ at 380 nm. The visible region of the spectrum shows a strong broad band between 400 and 650 nm that is continuous below 500 nm but shows pronounced rovibrational structure between 500 and 630 nm. The structure is due to the transition from the X¹Σ upper state. There is also a weaker underlying continuum in the structured region with a maximum near 533 nm that is due to a transition to a A¹Π repulsive state. At wavelengths >650 nm there is evidence for another weak absorption band. There have been numerous studies of the I₂ absorption spectrum as summarized in Table 4H-1.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength (nm)</th>
<th>10²⁰ σ(500 nm) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vogt and Koenigsberger</td>
<td>1923</td>
<td>321–673</td>
<td>400–600</td>
<td>~291</td>
</tr>
<tr>
<td>Rabinowitch and Wood</td>
<td>1936</td>
<td>298</td>
<td>440–650</td>
<td>~160 ± 30</td>
</tr>
<tr>
<td>Kortüm and Friedheim</td>
<td>1947</td>
<td>353</td>
<td>450–580</td>
<td>~170 ± 30</td>
</tr>
<tr>
<td>Kortüm and Friedheim</td>
<td>1947</td>
<td>613</td>
<td>230–600</td>
<td>~219</td>
</tr>
<tr>
<td>Sulzer and Wieland</td>
<td>1952</td>
<td>423–1323</td>
<td>360–740</td>
<td></td>
</tr>
<tr>
<td>Mathieson and Rees</td>
<td>1956</td>
<td>393</td>
<td>600–850</td>
<td></td>
</tr>
<tr>
<td>McMillan</td>
<td>1966</td>
<td>348</td>
<td>400–650</td>
<td>218</td>
</tr>
<tr>
<td>Myer and Samson</td>
<td>1970</td>
<td>298</td>
<td>105–220</td>
<td></td>
</tr>
<tr>
<td>Tellinghuisen</td>
<td>1973</td>
<td>298</td>
<td>420–800</td>
<td>219</td>
</tr>
<tr>
<td>Roxlo and Mandl</td>
<td>1980</td>
<td>298</td>
<td>170–230</td>
<td></td>
</tr>
<tr>
<td>Bauer et al.</td>
<td>1998</td>
<td>298</td>
<td>436, 500</td>
<td>225 ± 9</td>
</tr>
<tr>
<td>Saiz-Lopez et al.</td>
<td>2004</td>
<td>298</td>
<td>182–750</td>
<td>229 ± 27</td>
</tr>
<tr>
<td>Spiezt</td>
<td>2005</td>
<td>298</td>
<td>428–588</td>
<td></td>
</tr>
<tr>
<td>Spiezt et al.</td>
<td>2006</td>
<td>298</td>
<td>500</td>
<td>219 ± 2</td>
</tr>
<tr>
<td>Tellinghuisen</td>
<td>2011</td>
<td>273–337</td>
<td>520–640</td>
<td></td>
</tr>
</tbody>
</table>

Note:
Uncertainties as reported
* Cross section values at 488 nm are in the range (176–113) × 10⁻²⁰ cm² molecule⁻¹ over the temperature range 423–1323 K

The cross section data sets from Tellinghuisen,¹³ Saiz-Lopez et al.,⁹ and Spiezt et al.,¹⁰,¹¹ are the primary focus of this evaluation. Tellinghuisen¹³ reported room temperature cross sections obtained with a continuum light source at moderate resolution (~2.5 nm). Saiz-Lopez et al.,⁹ used a Fourier transform spectrometer to record spectra at a resolution of 4 cm⁻¹ (0.1 nm at 500 nm). Spiezt¹⁰,¹¹ used a grating/CCD spectrometer with a resolution of 0.25 nm. The reported spectra show the largest differences in the structured and long wavelength regions of the spectrum. A direct comparison of cross section data in the structured region is, however, difficult due to the differences in measurement resolution. Saiz-Lopez et al.,⁹ examined the cross section dependence on absolute I₂ concentration and bath gas pressure. Their final cross section data were obtained at high bath gas pressure and high resolution. The cross section data sets agree in the structured region to within ~15% when averages over 5 nm intervals are compared. There are significant discrepancies between the Tellinghuisen¹³ and Saiz-Lopez et al.,⁹ spectra at wavelengths ~600 nm with differences increasing from 35% at 600 nm to factors of ~2 and ~20 at 710 and 740 nm, respectively. The cross sections reported by Bauer et al.,¹ at 436 and 500 nm, (1.41 ± 0.05) × 10⁻¹⁸ and (2.25 ± 0.09) × 10⁻¹⁸ cm² molecule⁻¹, respectively, are in agreement with the Saiz-Lopez et al.,⁹ values. Tellinghuisen¹⁴ used his I₂ spectrum measured at 0.1 nm resolution to determine the B-X transition moment.

4-340
The absorption cross sections listed in Table 4H-2 are averages over 5 nm intervals (+2 to -2 nm of the center wavelength) of the data reported by Saiz-Lopez et al. The average values in Table 4H-2 removes the vibrational band structure in the spectrum and smooths the data elsewhere. The data in Table 4H-2 are appropriate for atmospheric photolysis rate calculations. Higher resolution cross section data should be obtained from the original studies. Table 4H-3 lists the absorption cross sections at the maxima and minima in the banded region reported by Saiz-Lopez et al.

Photolysis Quantum Yield and Product Studies: Photodissociation quantum yields for I\(_2\) in the structured region of the spectrum were measured by Brewer and Tellinghuisen\(^2\) using atomic fluorescence under conditions of steady-state irradiation of I\(_2\) at 12 wavelengths in the region 501–624 nm. The quantum yields were determined relative to the purely dissociative continuum at 492 nm, where a unity quantum yield is assumed. The quantum yields were found to be wavelength dependent with values ranging from 0.9 to 0.33.

Table 4H-2. Absorption Cross Sections of I\(_2\) at 295 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>1853</td>
<td>315</td>
<td>15.1</td>
<td>445</td>
<td>25.8</td>
<td>575</td>
<td>96.6</td>
</tr>
<tr>
<td>190</td>
<td>2012</td>
<td>320</td>
<td>12.2</td>
<td>450</td>
<td>33.3</td>
<td>580</td>
<td>92.7</td>
</tr>
<tr>
<td>195</td>
<td>1226</td>
<td>325</td>
<td>10.5</td>
<td>455</td>
<td>44.0</td>
<td>585</td>
<td>74.1</td>
</tr>
<tr>
<td>200</td>
<td>732</td>
<td>330</td>
<td>7.79</td>
<td>460</td>
<td>57.1</td>
<td>590</td>
<td>65.8</td>
</tr>
<tr>
<td>205</td>
<td>519</td>
<td>335</td>
<td>6.18</td>
<td>465</td>
<td>72.2</td>
<td>595</td>
<td>59.4</td>
</tr>
<tr>
<td>210</td>
<td>418</td>
<td>340</td>
<td>4.71</td>
<td>470</td>
<td>89.7</td>
<td>600</td>
<td>47.4</td>
</tr>
<tr>
<td>215</td>
<td>352</td>
<td>345</td>
<td>4.08</td>
<td>475</td>
<td>109</td>
<td>605</td>
<td>43.3</td>
</tr>
<tr>
<td>220</td>
<td>302</td>
<td>350</td>
<td>2.58</td>
<td>480</td>
<td>131</td>
<td>610</td>
<td>40.8</td>
</tr>
<tr>
<td>225</td>
<td>260</td>
<td>355</td>
<td>1.94</td>
<td>485</td>
<td>155</td>
<td>615</td>
<td>34.4</td>
</tr>
<tr>
<td>230</td>
<td>225</td>
<td>360</td>
<td>1.24</td>
<td>490</td>
<td>179</td>
<td>620</td>
<td>30.5</td>
</tr>
<tr>
<td>235</td>
<td>197</td>
<td>365</td>
<td>1.02</td>
<td>495</td>
<td>204</td>
<td>625</td>
<td>28.2</td>
</tr>
<tr>
<td>240</td>
<td>169</td>
<td>370</td>
<td>0.659</td>
<td>500</td>
<td>228</td>
<td>630</td>
<td>28.0</td>
</tr>
<tr>
<td>245</td>
<td>147</td>
<td>375</td>
<td>0.823</td>
<td>505</td>
<td>254</td>
<td>635</td>
<td>22.6</td>
</tr>
<tr>
<td>250</td>
<td>128</td>
<td>380</td>
<td>1.14</td>
<td>510</td>
<td>277</td>
<td>640</td>
<td>23.6</td>
</tr>
<tr>
<td>255</td>
<td>110</td>
<td>385</td>
<td>1.01</td>
<td>515</td>
<td>297</td>
<td>645</td>
<td>22.8</td>
</tr>
<tr>
<td>260</td>
<td>97.1</td>
<td>390</td>
<td>0.925</td>
<td>520</td>
<td>309</td>
<td>650</td>
<td>21.6</td>
</tr>
<tr>
<td>265</td>
<td>84.2</td>
<td>395</td>
<td>1.11</td>
<td>525</td>
<td>319</td>
<td>655</td>
<td>20.7</td>
</tr>
<tr>
<td>270</td>
<td>72.9</td>
<td>400</td>
<td>2.93</td>
<td>530</td>
<td>326</td>
<td>660</td>
<td>19.0</td>
</tr>
<tr>
<td>275</td>
<td>63.1</td>
<td>405</td>
<td>3.89</td>
<td>535</td>
<td>320</td>
<td>665</td>
<td>17.3</td>
</tr>
<tr>
<td>280</td>
<td>54.4</td>
<td>410</td>
<td>4.43</td>
<td>540</td>
<td>306</td>
<td>670</td>
<td>17.7</td>
</tr>
<tr>
<td>285</td>
<td>45.9</td>
<td>415</td>
<td>5.44</td>
<td>545</td>
<td>281</td>
<td>675</td>
<td>15.9</td>
</tr>
<tr>
<td>290</td>
<td>38.9</td>
<td>420</td>
<td>5.96</td>
<td>550</td>
<td>265</td>
<td>680</td>
<td>14.9</td>
</tr>
<tr>
<td>295</td>
<td>32.4</td>
<td>425</td>
<td>8.32</td>
<td>555</td>
<td>237</td>
<td>685</td>
<td>13.9</td>
</tr>
<tr>
<td>300</td>
<td>27.4</td>
<td>430</td>
<td>13.5</td>
<td>560</td>
<td>191</td>
<td>690</td>
<td>12.8</td>
</tr>
<tr>
<td>305</td>
<td>23.1</td>
<td>435</td>
<td>15.7</td>
<td>565</td>
<td>155</td>
<td>695</td>
<td>10.9</td>
</tr>
<tr>
<td>310</td>
<td>18.1</td>
<td>440</td>
<td>20.3</td>
<td>570</td>
<td>130</td>
<td>700</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Note: Saiz-Lopez et al.,\(^9\) averaged (see text).
Table 4H-3. Cross Sections at the Maxima and Minima of I\(_2\) at 295 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>500.6</td>
<td>500.7</td>
<td>501.0</td>
<td>501.2</td>
<td>501.4</td>
<td>501.8</td>
<td>502.1</td>
</tr>
<tr>
<td></td>
<td>232.5</td>
<td>231.5</td>
<td>231.0</td>
<td>233.7</td>
<td>234.8</td>
<td>236.3</td>
<td>238.8</td>
</tr>
<tr>
<td>Minimum</td>
<td>500.7</td>
<td>500.7</td>
<td>501.0</td>
<td>501.2</td>
<td>501.4</td>
<td>501.8</td>
<td>502.1</td>
</tr>
<tr>
<td></td>
<td>543.6</td>
<td>545.4</td>
<td>545.8</td>
<td>547.6</td>
<td>548.4</td>
<td>549.8</td>
<td>550.0</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>506.7</td>
<td>505.1</td>
<td>504.8</td>
<td>504.4</td>
<td>504.0</td>
<td>504.5</td>
</tr>
<tr>
<td></td>
<td>500.8</td>
<td>500.8</td>
<td>501.0</td>
<td>501.2</td>
<td>501.4</td>
<td>501.8</td>
<td>502.1</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>545.1</td>
<td>545.1</td>
<td>545.1</td>
<td>545.1</td>
<td>545.1</td>
<td>545.1</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td>508.7</td>
<td>508.7</td>
<td>508.7</td>
<td>508.7</td>
<td>508.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>509.6</td>
<td>509.6</td>
<td>509.6</td>
<td>509.6</td>
<td>509.6</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td>557.1</td>
<td>557.1</td>
<td>557.1</td>
<td>557.1</td>
<td>557.1</td>
</tr>
</tbody>
</table>

Note:
Saiz-Lopez et al.\(^9\)

H2. IO (iodine monoxide)

Absorption Cross Sections: The A $^2\Pi_{3/2} \leftrightarrow X^2\Pi_{3/2}$ electronic transition for IO, iodine monoxide, yields a UV/vis absorption spectrum between 338 and 488 nm. The A–X band consists of a continuous absorption band with a maximum near 400 nm with a broad progression of vibrational bands superimposed on the continuum at wavelengths >400 nm. The pronounced vibrational band structure has been assigned to progressions in $v', \, \nu$ with a maximum near 400 nm. Of particular interest (e.g. for the study of the reaction kinetics of IO) is the peak absorption cross section of the strongest vibrational band (4,0) at 427.2 nm. A summary of the available studies (which utilized photolysis of N$_2$O/I$_2$, N$_2$O/CF$_3$I, and O$_3$/I$_2$ mixtures to produce IO) and the corresponding (4,0) peak cross sections at room temperature is given in Table 4H-4.

Table 4H-4. Summary of IO Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength Range (nm)</th>
<th>Resolution (nm)</th>
<th>σ(427.2 nm) 10^{-17} cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox and Coker3</td>
<td>1983</td>
<td>303</td>
<td>415–470</td>
<td>0.27</td>
<td>3.1$^{+2.0}_{-1.5}$</td>
</tr>
<tr>
<td>Jenkins and Cox8</td>
<td>1985</td>
<td>303</td>
<td>426.9</td>
<td>0.27</td>
<td>2.2 ± 0.5</td>
</tr>
<tr>
<td>Sander10</td>
<td>1986</td>
<td>250, 273, 298, 317, 341, 373</td>
<td>427.2</td>
<td>0.17</td>
<td>3.1 ± 0.3</td>
</tr>
<tr>
<td>Stickel et al.12</td>
<td>1988</td>
<td>300</td>
<td>420–455</td>
<td>0.3</td>
<td>3.1 ± 0.6</td>
</tr>
<tr>
<td>Laszlo et al.9</td>
<td>1995</td>
<td>295</td>
<td>340–447</td>
<td>0.3</td>
<td>2.8 ± 0.5</td>
</tr>
<tr>
<td>Harwood et al.6</td>
<td>1997</td>
<td>203, 220, 250, 298, 323, 353, 373</td>
<td>427.2</td>
<td>0.14</td>
<td>3.6 ± 0.5*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>203, 213, 233, 253, 273, 298</td>
<td>338–488</td>
<td>0.44</td>
</tr>
<tr>
<td>Atkinson et al.1</td>
<td>1999</td>
<td>295</td>
<td>444.48–447.83</td>
<td>0.0013</td>
<td>445.04, 455.17</td>
</tr>
</tbody>
</table>

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)
The shape of the 298 K spectra reported by Laszlo et al., Harwood et al., and Bloss et al. are similar but with notable differences in the magnitude of the vibrational features due to the dependence on the resolution of the measurement. The absorption cross sections reported by Harwood et al. with a resolution of 0.44 nm and scaled to 0.83 of the value obtained for the (4,0) peak cross section at higher resolution, 0.14 nm, are generally (with exceptions in the region 350–415 nm) higher than those reported by Lazlo et al. (0.3 nm resolution) and Bloss et al. (1.13 nm resolution). The Bloss et al. cross section data are the lowest throughout the spectral region 340–465 nm. The Bloss et al. cross section data are lower than the values reported by Harwood et al. by a factor of ~1.5 in the continuous region of the spectrum and at the peaks of the vibrational bands and up to factor of 5 at the minima between the vibrational bands. Bloss et al. attributed the differences in the spectra to an underlying absorption due to the absorbing species I$_2$O$_2$ that is considered to be a product of the IO self-reaction. The absorption spectrum of I$_2$O$_2$ is currently not known.

The absorption spectrum reported by Laszlo et al. is higher by a factor of ~1.2–1.5 in the wavelength region 350–370 nm and at the maxima in the 395–405 nm region than the values reported by Harwood et al. However, the spectra are similar in the region of the (6,0) to (4,0) maxima. The absorption cross section measured by Atkinson et al. at high resolution (0.0013 nm) for the (2,0) peak is higher by a factor of ~5 than that reported by Harwood et al., whereas the cross sections reported by Atkinson et al. and Harwood et al. for the (1,0) maximum are nearly the same.

The recommended cross sections in Table 4H-5 were obtained as follows: (1) the spectra of Harwood et al. and Laszlo et al. were degraded to the resolution of the spectrum of Bloss et al. (1.13 nm), (2) the degraded spectra of Harwood et al. were normalized to the (4,0) peak value of Bloss et al., (3) the mean of the degraded and normalized spectra of Harwood et al. and Laszlo et al. and that of Bloss et al. were calculated and averaged over 1 nm intervals. The studies of Dillon et al., Gómez Martín et al., and Spietz et al. are noted but not considered in the present evaluation.

The temperature dependence of the absorption cross section of the (4,0) peak has been studied by Sander (250–373 K), Harwood et al. (203–373 K), and Bloss et al. (220–325 K). The results from these studies are significantly different. Sander report a significant increase in $\sigma(427 \text{ nm})$ from a value of $(2.1 \pm 0.1) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}$ at 373 K to $(5.3 \pm 0.5) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}$ at 250 K. Bloss et al. report a smaller increase in the absorption cross sections with the ratio $\sigma(T)/\sigma(295 \text{ K})$ being 0.85 and 1.23 at 325 K and 220 K, respectively. Harwood et al. used several pulsed laser photolysis sources of IO (N$_2$O/CF$_3$I, O$_3$/I$_2$, and N$_2$O/I$_2$) in their experiments and reported absorption cross sections between $(3.1 \pm 0.4) \times 10^{-17}$ and $(3.9 \pm 0.1) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}$ independent of temperature (203–373 K) and report an average value of $(3.6 \pm 0.5) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}$.

Photolysis Quantum Yield and Product Studies: The quantum yield for O(3P) formation following photolysis of IO at 355 nm was measured relative to NO$_2$ photolysis at the same wavelength to be 0.91 ($^{+0.19}_{-0.26}$) by Ingham et al. The lifetime of the $^3\Pi_{1/2}$ was measured to be < 20 ns by Turnipseed et al., which indicates that electronic collisional quenching does not compete with the dissociation into O(3P) + I. This is consistent with the results of Ingham et al.
Table 4H-5. Recommended Absorption Cross Sections of IO at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>339</td>
<td>81.2</td>
<td>373</td>
<td>381</td>
<td>407</td>
<td>606</td>
<td>441</td>
<td>219</td>
</tr>
<tr>
<td>340</td>
<td>118</td>
<td>374</td>
<td>413</td>
<td>408</td>
<td>578</td>
<td>442</td>
<td>168</td>
</tr>
<tr>
<td>341</td>
<td>100</td>
<td>375</td>
<td>422</td>
<td>409</td>
<td>643</td>
<td>443</td>
<td>183</td>
</tr>
<tr>
<td>342</td>
<td>107</td>
<td>376</td>
<td>402</td>
<td>410</td>
<td>813</td>
<td>444</td>
<td>195</td>
</tr>
<tr>
<td>343</td>
<td>89</td>
<td>377</td>
<td>413</td>
<td>411</td>
<td>1010</td>
<td>445</td>
<td>957</td>
</tr>
<tr>
<td>344</td>
<td>96.2</td>
<td>378</td>
<td>435</td>
<td>412</td>
<td>976</td>
<td>446</td>
<td>805</td>
</tr>
<tr>
<td>345</td>
<td>86.2</td>
<td>379</td>
<td>463</td>
<td>413</td>
<td>786</td>
<td>447</td>
<td>392</td>
</tr>
<tr>
<td>346</td>
<td>126</td>
<td>380</td>
<td>504</td>
<td>414</td>
<td>589</td>
<td>448</td>
<td>214</td>
</tr>
<tr>
<td>347</td>
<td>112</td>
<td>381</td>
<td>548</td>
<td>415</td>
<td>568</td>
<td>449</td>
<td>269</td>
</tr>
<tr>
<td>348</td>
<td>108</td>
<td>382</td>
<td>472</td>
<td>416</td>
<td>414</td>
<td>450</td>
<td>156</td>
</tr>
<tr>
<td>349</td>
<td>142</td>
<td>383</td>
<td>435</td>
<td>417</td>
<td>460</td>
<td>451</td>
<td>96.9</td>
</tr>
<tr>
<td>350</td>
<td>160</td>
<td>384</td>
<td>523</td>
<td>418</td>
<td>734</td>
<td>452</td>
<td>102</td>
</tr>
<tr>
<td>351</td>
<td>154</td>
<td>385</td>
<td>560</td>
<td>419</td>
<td>1380</td>
<td>453</td>
<td>87.3</td>
</tr>
<tr>
<td>352</td>
<td>165</td>
<td>386</td>
<td>591</td>
<td>420</td>
<td>1200</td>
<td>454</td>
<td>100</td>
</tr>
<tr>
<td>353</td>
<td>163</td>
<td>387</td>
<td>603</td>
<td>421</td>
<td>681</td>
<td>455</td>
<td>457</td>
</tr>
<tr>
<td>354</td>
<td>181</td>
<td>388</td>
<td>580</td>
<td>422</td>
<td>365</td>
<td>456</td>
<td>441</td>
</tr>
<tr>
<td>355</td>
<td>185</td>
<td>389</td>
<td>598</td>
<td>423</td>
<td>253</td>
<td>457</td>
<td>213</td>
</tr>
<tr>
<td>356</td>
<td>194</td>
<td>390</td>
<td>622</td>
<td>424</td>
<td>204</td>
<td>458</td>
<td>132</td>
</tr>
<tr>
<td>357</td>
<td>207</td>
<td>391</td>
<td>620</td>
<td>425</td>
<td>205</td>
<td>459</td>
<td>183</td>
</tr>
<tr>
<td>358</td>
<td>223</td>
<td>392</td>
<td>617</td>
<td>426</td>
<td>302</td>
<td>460</td>
<td>123</td>
</tr>
<tr>
<td>359</td>
<td>230</td>
<td>393</td>
<td>642</td>
<td>427</td>
<td>2050</td>
<td>461</td>
<td>82.3</td>
</tr>
<tr>
<td>360</td>
<td>242</td>
<td>394</td>
<td>684</td>
<td>428</td>
<td>1370</td>
<td>462</td>
<td>51.9</td>
</tr>
<tr>
<td>361</td>
<td>247</td>
<td>395</td>
<td>694</td>
<td>429</td>
<td>543</td>
<td>463</td>
<td>53.6</td>
</tr>
<tr>
<td>362</td>
<td>242</td>
<td>396</td>
<td>709</td>
<td>430</td>
<td>309</td>
<td>464</td>
<td>38.2</td>
</tr>
<tr>
<td>363</td>
<td>241</td>
<td>397</td>
<td>701</td>
<td>431</td>
<td>208</td>
<td>465</td>
<td>43.4</td>
</tr>
<tr>
<td>364</td>
<td>268</td>
<td>398</td>
<td>654</td>
<td>432</td>
<td>173</td>
<td>466</td>
<td>118</td>
</tr>
<tr>
<td>365</td>
<td>273</td>
<td>399</td>
<td>671</td>
<td>433</td>
<td>166</td>
<td>467</td>
<td>134</td>
</tr>
<tr>
<td>366</td>
<td>291</td>
<td>400</td>
<td>671</td>
<td>434</td>
<td>177</td>
<td>468</td>
<td>67.2</td>
</tr>
<tr>
<td>367</td>
<td>313</td>
<td>401</td>
<td>700</td>
<td>435</td>
<td>653</td>
<td>469</td>
<td>24.2</td>
</tr>
<tr>
<td>368</td>
<td>326</td>
<td>402</td>
<td>765</td>
<td>436</td>
<td>1880</td>
<td>470</td>
<td>125</td>
</tr>
<tr>
<td>369</td>
<td>343</td>
<td>403</td>
<td>859</td>
<td>437</td>
<td>807</td>
<td>471</td>
<td>76.4</td>
</tr>
<tr>
<td>370</td>
<td>346</td>
<td>404</td>
<td>864</td>
<td>438</td>
<td>381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>339</td>
<td>405</td>
<td>787</td>
<td>439</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>360</td>
<td>406</td>
<td>667</td>
<td>440</td>
<td>256</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
See text

Absorption Cross Sections: A qualitative absorption spectrum of OIO, iodine dioxide, was first reported by Himmelmann et al.\(^7\) at 298 K over the wavelength range 476–667 nm. The absorption spectrum is highly structured due to transitions in the A (\(^{2}\)A\(_2\)) (i,j,k) \(\leftrightarrow\) X (\(^{2}\)B\(_1\)) (0,0,0) band with vibrational progressions in the upper state of the symmetric I-O stretch (i = 0-9) and O-I-O bend (j = 0, 1, 2). Absorption cross sections have been measured at room temperature by Cox et al.\(^3\) (400–600 nm) and Bloss et al.\(^\text{2}\) (514–573 nm) at a resolution of 1.13 nm, by Spiesz et al.\(^10\) (392–660 nm) and Gómez Martín et al.\(^6\) at a resolution of 1.3 nm who report a cross section of \((1.3 \pm 0.3) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}\) at 549.1 nm, and at high resolution (<0.006 nm) using cavity ring-down spectroscopy by Ashworth et al.\(^1\) and Joseph et al.\(^9\) (558–578 nm). Joseph et al.\(^9\) report a cross section of \((1.5 \pm 0.18) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}\) at 567.93 nm.

The peak cross sections at 562 and 568 nm obtained at high resolution are higher by a factor \(\sim 1.7\) than those reported for a resolution of 1.13 nm. The recommended cross sections listed in Table 4H-6 were obtained by averaging the data reported by Bloss et al.\(^2\) over 1 nm intervals (reported at intervals of 0.22 nm). The estimated uncertainty in the absolute absorption cross sections is a factor of 3.

Photoysis Quantum Yield and Product Studies: Ingham et al.\(^8\) studied the photodissociation of OIO at 532 nm. O(\(^{3}\)P) atom formation was not detected and an upper limit for the O atom quantum yield of \(<0.012\) was reported (based on an OIO absorption cross section of \(2.4 \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}\) at 532 nm). Subsequently, Ashworth et al.\(^1\) inferred that OIO predissociates to I + O\(_2\) via the upper \(^3\)B\(_2\) state. Ingham et al.\(^8\) detected I(\(^{2}\)P) atoms at high photoysis laser fluence, presumably in a sequential two-photon process, and an upper limit for the I atom quantum yield of \(<0.15\) was reported. Joseph et al.\(^9\) report the photolysis quantum yield of OIO at 562 nm to be \(<0.10\). Tuceri et al.\(^11\) used pulsed laser photoysis combined with transient absorption spectroscopy/resonance fluorescence detection techniques and reported I atom quantum yields of \(<0.05\) in the wavelength range 560–580 nm and \(<0.24\) at 532 nm. A study by Gómez Martín et al.\(^5\) contradicts the results from Joseph et al.\(^9\) Ingham et al.\(^8\) and Tuceri et al.\(^11\) Gómez Martín et al.\(^5\) used a tunable pulsed laser photoysis source combined with cavity ring-down spectroscopy detection of OIO and atomic resonance fluorescence detection of I atoms. They report an I atom quantum yield of \((1.07 \pm 0.15)\) over the wavelength range 480–650 nm. In an additional study from the same group, Gómez Martín et al.\(^4\) report the IO quantum yield to be unity at wavelengths <480 nm. No quantum yield recommendation is given.
Table 4H-6. Recommended Absorption Cross Sections of OIO at 295 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>10(^{20}) (\sigma) (cm(^{-2}))</th>
<th>(\lambda) (nm)</th>
<th>10(^{20}) (\sigma) (cm(^{-2}))</th>
<th>(\lambda) (nm)</th>
<th>10(^{20}) (\sigma) (cm(^{-2}))</th>
<th>(\lambda) (nm)</th>
<th>10(^{20}) (\sigma) (cm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>516</td>
<td>833</td>
<td>531</td>
<td>998</td>
<td>546</td>
<td>582</td>
<td>561</td>
<td>476</td>
</tr>
<tr>
<td>517</td>
<td>696</td>
<td>532</td>
<td>1012</td>
<td>547</td>
<td>513</td>
<td>562</td>
<td>769</td>
</tr>
<tr>
<td>518</td>
<td>565</td>
<td>533</td>
<td>779</td>
<td>548</td>
<td>665</td>
<td>563</td>
<td>709</td>
</tr>
<tr>
<td>519</td>
<td>599</td>
<td>534</td>
<td>636</td>
<td>549</td>
<td>1030</td>
<td>564</td>
<td>524</td>
</tr>
<tr>
<td>520</td>
<td>719</td>
<td>535</td>
<td>519</td>
<td>550</td>
<td>582</td>
<td>565</td>
<td>442</td>
</tr>
<tr>
<td>521</td>
<td>626</td>
<td>536</td>
<td>643</td>
<td>551</td>
<td>575</td>
<td>566</td>
<td>384</td>
</tr>
<tr>
<td>522</td>
<td>573</td>
<td>537</td>
<td>709</td>
<td>552</td>
<td>429</td>
<td>567</td>
<td>613</td>
</tr>
<tr>
<td>523</td>
<td>517</td>
<td>538</td>
<td>640</td>
<td>553</td>
<td>377</td>
<td>568</td>
<td>937</td>
</tr>
<tr>
<td>524</td>
<td>496</td>
<td>539</td>
<td>548</td>
<td>554</td>
<td>609</td>
<td>569</td>
<td>699</td>
</tr>
<tr>
<td>525</td>
<td>534</td>
<td>540</td>
<td>470</td>
<td>555</td>
<td>661</td>
<td>570</td>
<td>475</td>
</tr>
<tr>
<td>526</td>
<td>754</td>
<td>541</td>
<td>451</td>
<td>556</td>
<td>604</td>
<td>571</td>
<td>322</td>
</tr>
<tr>
<td>527</td>
<td>840</td>
<td>542</td>
<td>494</td>
<td>557</td>
<td>474</td>
<td>572</td>
<td>224</td>
</tr>
<tr>
<td>528</td>
<td>697</td>
<td>543</td>
<td>715</td>
<td>558</td>
<td>393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>626</td>
<td>544</td>
<td>817</td>
<td>559</td>
<td>373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>651</td>
<td>545</td>
<td>676</td>
<td>560</td>
<td>354</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Bloss et al.,\(^2\) averaged (see text).

HI (hydrogen iodide)

HI + hv → H + I(^3P_{3/2})
→ H + I(^1P_{1/2})

H4.

Absorption Cross Sections: The UV absorption spectrum of HI, hydrogen iodide, at wavelengths >180 nm has a continuous absorption band with a maximum near 222 nm. At wavelengths <180 nm the spectrum shows strong diffuse band structure. The available studies are summarized in Table 4H-7. For wavelengths >180 nm, there is good agreement between the room temperature absorption cross sections reported by Campuzano-Jost and Crowley, Ogilvie, and Huebert and Martin. The data reported by Huebert and Martin and Campuzano-Jost and Crowley are nearly identical around the absorption maximum and out to ~275 nm. The cross sections reported by Ogilvie are slightly greater. At wavelengths >280 nm, the absorption spectra from these three studies diverge somewhat with the cross sections reported by Huebert and Martin being greater and those of Ogilvie being smaller than the cross sections reported by Campuzano-Jost and Crowley. The recommended cross sections listed in Table 4H-8 are average values over 1 nm intervals of the high resolution (0.08 nm) data from Campuzano-Jost and Crowley.

Table 4H-7. Summary of HI Absorption Cross Sections Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength (nm)</th>
<th>10^20 (\sigma(222\text{ nm})) (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodeve and Taylor</td>
<td>1936</td>
<td>298</td>
<td>200–368</td>
<td>69</td>
</tr>
<tr>
<td>Romand</td>
<td>1949</td>
<td>298</td>
<td>149–159, 164–175, 178–244</td>
<td>62</td>
</tr>
<tr>
<td>Huebert and Martin</td>
<td>1968</td>
<td>195, 296</td>
<td>180–200, 180–300</td>
<td>–</td>
</tr>
<tr>
<td>Ogilvie</td>
<td>1971</td>
<td>298</td>
<td>192–313</td>
<td>84</td>
</tr>
<tr>
<td>Roxlo and Mandl</td>
<td>1980</td>
<td>298</td>
<td>170–230</td>
<td>62</td>
</tr>
<tr>
<td>Bridges and White</td>
<td>1973</td>
<td>298</td>
<td>254</td>
<td>–</td>
</tr>
<tr>
<td>Rebbert et al.</td>
<td>1973</td>
<td>298</td>
<td>147</td>
<td>–</td>
</tr>
<tr>
<td>Campuzano-Jost and Crowley</td>
<td>1999</td>
<td>298</td>
<td>198–341</td>
<td>81</td>
</tr>
</tbody>
</table>
Table 4H-8. Recommended Absorption Cross Sections of HI at 298 K

<table>
<thead>
<tr>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>λ</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>199</td>
<td>59.7</td>
<td>235</td>
<td>71.9</td>
<td>271</td>
<td>16.1</td>
<td>307</td>
<td>1.29</td>
</tr>
<tr>
<td>200</td>
<td>61.1</td>
<td>236</td>
<td>70.6</td>
<td>272</td>
<td>15.1</td>
<td>308</td>
<td>1.19</td>
</tr>
<tr>
<td>201</td>
<td>62.4</td>
<td>237</td>
<td>69.2</td>
<td>273</td>
<td>14.2</td>
<td>309</td>
<td>1.10</td>
</tr>
<tr>
<td>202</td>
<td>63.7</td>
<td>238</td>
<td>67.6</td>
<td>274</td>
<td>13.3</td>
<td>310</td>
<td>1.01</td>
</tr>
<tr>
<td>203</td>
<td>65.0</td>
<td>239</td>
<td>66.2</td>
<td>275</td>
<td>12.5</td>
<td>311</td>
<td>0.929</td>
</tr>
<tr>
<td>204</td>
<td>66.4</td>
<td>240</td>
<td>64.6</td>
<td>276</td>
<td>11.7</td>
<td>312</td>
<td>0.852</td>
</tr>
<tr>
<td>205</td>
<td>67.7</td>
<td>241</td>
<td>62.9</td>
<td>277</td>
<td>10.9</td>
<td>313</td>
<td>0.781</td>
</tr>
<tr>
<td>206</td>
<td>69.0</td>
<td>242</td>
<td>61.3</td>
<td>278</td>
<td>10.2</td>
<td>314</td>
<td>0.715</td>
</tr>
<tr>
<td>207</td>
<td>70.3</td>
<td>243</td>
<td>59.6</td>
<td>279</td>
<td>9.57</td>
<td>315</td>
<td>0.653</td>
</tr>
<tr>
<td>208</td>
<td>71.5</td>
<td>244</td>
<td>57.9</td>
<td>280</td>
<td>8.94</td>
<td>316</td>
<td>0.596</td>
</tr>
<tr>
<td>209</td>
<td>72.7</td>
<td>245</td>
<td>56.1</td>
<td>281</td>
<td>8.36</td>
<td>317</td>
<td>0.544</td>
</tr>
<tr>
<td>210</td>
<td>73.8</td>
<td>246</td>
<td>54.2</td>
<td>282</td>
<td>7.81</td>
<td>318</td>
<td>0.495</td>
</tr>
<tr>
<td>211</td>
<td>74.8</td>
<td>247</td>
<td>52.5</td>
<td>283</td>
<td>7.30</td>
<td>319</td>
<td>0.450</td>
</tr>
<tr>
<td>212</td>
<td>75.9</td>
<td>248</td>
<td>50.7</td>
<td>284</td>
<td>6.82</td>
<td>320</td>
<td>0.409</td>
</tr>
<tr>
<td>213</td>
<td>76.9</td>
<td>249</td>
<td>48.8</td>
<td>285</td>
<td>6.37</td>
<td>321</td>
<td>0.371</td>
</tr>
<tr>
<td>214</td>
<td>77.7</td>
<td>250</td>
<td>47.0</td>
<td>286</td>
<td>5.94</td>
<td>322</td>
<td>0.336</td>
</tr>
<tr>
<td>215</td>
<td>78.4</td>
<td>251</td>
<td>45.2</td>
<td>287</td>
<td>5.55</td>
<td>323</td>
<td>0.303</td>
</tr>
<tr>
<td>216</td>
<td>79.1</td>
<td>252</td>
<td>43.5</td>
<td>288</td>
<td>5.18</td>
<td>324</td>
<td>0.274</td>
</tr>
<tr>
<td>217</td>
<td>79.7</td>
<td>253</td>
<td>41.7</td>
<td>289</td>
<td>4.83</td>
<td>325</td>
<td>0.247</td>
</tr>
<tr>
<td>218</td>
<td>80.2</td>
<td>254</td>
<td>39.9</td>
<td>290</td>
<td>4.51</td>
<td>326</td>
<td>0.223</td>
</tr>
<tr>
<td>219</td>
<td>80.5</td>
<td>255</td>
<td>38.2</td>
<td>291</td>
<td>4.21</td>
<td>327</td>
<td>0.200</td>
</tr>
<tr>
<td>220</td>
<td>80.8</td>
<td>256</td>
<td>36.5</td>
<td>292</td>
<td>3.92</td>
<td>328</td>
<td>0.180</td>
</tr>
<tr>
<td>221</td>
<td>80.9</td>
<td>257</td>
<td>34.8</td>
<td>293</td>
<td>3.66</td>
<td>329</td>
<td>0.162</td>
</tr>
<tr>
<td>222</td>
<td>81.0</td>
<td>258</td>
<td>33.2</td>
<td>294</td>
<td>3.41</td>
<td>330</td>
<td>0.145</td>
</tr>
<tr>
<td>223</td>
<td>80.9</td>
<td>259</td>
<td>31.6</td>
<td>295</td>
<td>3.18</td>
<td>331</td>
<td>0.130</td>
</tr>
<tr>
<td>224</td>
<td>80.7</td>
<td>260</td>
<td>30.0</td>
<td>296</td>
<td>2.96</td>
<td>332</td>
<td>0.116</td>
</tr>
<tr>
<td>225</td>
<td>80.4</td>
<td>261</td>
<td>28.5</td>
<td>297</td>
<td>2.76</td>
<td>333</td>
<td>0.104</td>
</tr>
<tr>
<td>226</td>
<td>80.0</td>
<td>262</td>
<td>27.1</td>
<td>298</td>
<td>2.57</td>
<td>334</td>
<td>0.0928</td>
</tr>
<tr>
<td>227</td>
<td>79.5</td>
<td>263</td>
<td>25.7</td>
<td>299</td>
<td>2.40</td>
<td>335</td>
<td>0.0828</td>
</tr>
<tr>
<td>228</td>
<td>78.9</td>
<td>264</td>
<td>24.3</td>
<td>300</td>
<td>2.23</td>
<td>336</td>
<td>0.0740</td>
</tr>
<tr>
<td>229</td>
<td>78.2</td>
<td>265</td>
<td>23.0</td>
<td>301</td>
<td>2.07</td>
<td>337</td>
<td>0.0660</td>
</tr>
<tr>
<td>230</td>
<td>77.4</td>
<td>266</td>
<td>21.7</td>
<td>302</td>
<td>1.92</td>
<td>338</td>
<td>0.0591</td>
</tr>
<tr>
<td>231</td>
<td>76.5</td>
<td>267</td>
<td>20.5</td>
<td>303</td>
<td>1.77</td>
<td>339</td>
<td>0.0528</td>
</tr>
<tr>
<td>232</td>
<td>75.5</td>
<td>268</td>
<td>19.4</td>
<td>304</td>
<td>1.64</td>
<td>340</td>
<td>0.0470</td>
</tr>
<tr>
<td>233</td>
<td>74.4</td>
<td>269</td>
<td>18.3</td>
<td>305</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>73.2</td>
<td>270</td>
<td>17.2</td>
<td>306</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Campuzano-Jost and Crowley;\(^3\) averaged (see text).

Photolysis Quantum Yield and Product Studies: Martin and Willard;\(^8\) measured the quantum yield for H and I atoms in the photolysis of HI at 184.9 and 253.7 nm to be near unity. A quantum yield for the loss of HI of unity is recommended for wavelengths >180 nm. Brewer et al.;\(^1\) reported the relative quantum yield for the formation of I\(^*(\text{P}_\text{1/2})\) to be 0.47 ± 0.03 at 248 nm. Using broadband flash photolysis, Donohue and Wiesenfeld;\(^6\) obtained an I\(^*(\text{P}_\text{1/2})\) yield of 0.10 ± 0.05. Langford et al.;\(^7\) measured the branching ratio I\(^*(\text{P}_\text{1/2})\)/I\(^*(\text{P}_\text{3/2})\) in a detailed study at 24 different wavelengths in the range 200–303 nm. They reported a wavelength dependence of the ratio with a value of 0.2 near 208 nm, a maximum value of 1.7 near 252 nm, and a value of 0.1 at 303 nm. These authors review several similar earlier studies and should be consulted for more detailed information.

H5. **HOI (hypoiiodous acid)**

Back to Index

Absorption Cross Sections: The absorption spectrum of HOI, hypoiiodous acid, has been measured at room temperature by Bauer et al.\(^1\) (280–500 nm) and Rowley et al.\(^2\) (280–450 nm). In these studies HOI was produced by reacting OH, which was generated by pulsed laser photolysis, with I\(_2\). Absorption cross sections were determined assuming iodine mass balance and the measured loss of I\(_2\). Two absorption bands of comparable intensity were observed, one between 280 and ~375 nm with a maximum near 340 nm and the other between ~375 and 500 nm with a maximum near 408 nm. The spectra of Bauer et al.\(^1\) and Rowley et al.\(^2\) are in reasonable agreement with slight differences in the wavelength of the absorption maxima, 2–3 nm, and absolute cross sections, less than ~15% difference. The recommended cross sections listed in Table 4H-9 are the mean of the values reported by Rowley et al.\(^2\) and Bauer et al.\(^1\)

Photolysis Quantum Yield and Product Studies: The OH quantum yield in the photolysis of HOI at 355 nm was measured by Bauer et al. to be close to unity.
Table 4H-9. Recommended Absorption Cross Sections of HOI at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>0.077</td>
<td>332</td>
<td>36.1</td>
<td>384</td>
<td>20.8</td>
<td>436</td>
<td>11.9</td>
</tr>
<tr>
<td>282</td>
<td>0.121</td>
<td>334</td>
<td>37.6</td>
<td>386</td>
<td>22.1</td>
<td>438</td>
<td>10.6</td>
</tr>
<tr>
<td>284</td>
<td>0.186</td>
<td>336</td>
<td>38.5</td>
<td>388</td>
<td>23.4</td>
<td>440</td>
<td>9.30</td>
</tr>
<tr>
<td>286</td>
<td>0.281</td>
<td>338</td>
<td>39.1</td>
<td>390</td>
<td>24.8</td>
<td>442</td>
<td>8.10</td>
</tr>
<tr>
<td>288</td>
<td>0.417</td>
<td>340</td>
<td>39.2</td>
<td>392</td>
<td>26.1</td>
<td>444</td>
<td>7.03</td>
</tr>
<tr>
<td>290</td>
<td>0.608</td>
<td>342</td>
<td>38.9</td>
<td>394</td>
<td>27.3</td>
<td>446</td>
<td>6.05</td>
</tr>
<tr>
<td>292</td>
<td>0.867</td>
<td>344</td>
<td>38.2</td>
<td>396</td>
<td>28.4</td>
<td>448</td>
<td>5.17</td>
</tr>
<tr>
<td>294</td>
<td>1.22</td>
<td>346</td>
<td>37.1</td>
<td>398</td>
<td>29.4</td>
<td>450</td>
<td>4.40</td>
</tr>
<tr>
<td>296</td>
<td>1.68</td>
<td>348</td>
<td>35.6</td>
<td>400</td>
<td>30.1</td>
<td>452</td>
<td>3.72</td>
</tr>
<tr>
<td>298</td>
<td>2.27</td>
<td>350</td>
<td>33.9</td>
<td>402</td>
<td>30.6</td>
<td>454</td>
<td>3.13</td>
</tr>
<tr>
<td>300</td>
<td>3.02</td>
<td>352</td>
<td>32.0</td>
<td>404</td>
<td>30.9</td>
<td>456</td>
<td>2.61</td>
</tr>
<tr>
<td>302</td>
<td>3.95</td>
<td>354</td>
<td>30.1</td>
<td>406</td>
<td>30.9</td>
<td>458</td>
<td>2.17</td>
</tr>
<tr>
<td>304</td>
<td>5.09</td>
<td>356</td>
<td>28.0</td>
<td>408</td>
<td>30.7</td>
<td>460</td>
<td>1.79</td>
</tr>
<tr>
<td>306</td>
<td>6.44</td>
<td>358</td>
<td>26.0</td>
<td>410</td>
<td>30.2</td>
<td>462</td>
<td>1.47</td>
</tr>
<tr>
<td>308</td>
<td>8.03</td>
<td>360</td>
<td>24.1</td>
<td>412</td>
<td>29.5</td>
<td>464</td>
<td>1.20</td>
</tr>
<tr>
<td>310</td>
<td>9.85</td>
<td>362</td>
<td>22.4</td>
<td>414</td>
<td>28.5</td>
<td>466</td>
<td>0.973</td>
</tr>
<tr>
<td>312</td>
<td>11.9</td>
<td>364</td>
<td>20.8</td>
<td>416</td>
<td>27.4</td>
<td>468</td>
<td>0.785</td>
</tr>
<tr>
<td>314</td>
<td>14.2</td>
<td>366</td>
<td>19.5</td>
<td>418</td>
<td>26.1</td>
<td>470</td>
<td>0.632</td>
</tr>
<tr>
<td>316</td>
<td>16.6</td>
<td>368</td>
<td>18.5</td>
<td>420</td>
<td>24.7</td>
<td>472</td>
<td>0.505</td>
</tr>
<tr>
<td>318</td>
<td>19.2</td>
<td>370</td>
<td>17.8</td>
<td>422</td>
<td>23.1</td>
<td>474</td>
<td>0.402</td>
</tr>
<tr>
<td>320</td>
<td>21.9</td>
<td>372</td>
<td>17.4</td>
<td>424</td>
<td>21.5</td>
<td>476</td>
<td>0.318</td>
</tr>
<tr>
<td>322</td>
<td>24.6</td>
<td>374</td>
<td>17.3</td>
<td>426</td>
<td>19.9</td>
<td>478</td>
<td>0.250</td>
</tr>
<tr>
<td>324</td>
<td>27.3</td>
<td>376</td>
<td>17.5</td>
<td>428</td>
<td>18.2</td>
<td>480</td>
<td>0.196</td>
</tr>
<tr>
<td>326</td>
<td>29.9</td>
<td>378</td>
<td>18.0</td>
<td>430</td>
<td>16.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>32.2</td>
<td>380</td>
<td>18.8</td>
<td>432</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>34.3</td>
<td>382</td>
<td>19.7</td>
<td>434</td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

mean of the data from Bauer et al.\(^1\) and Rowley et al.\(^2\)

H6.

ICl (iodine chloride)

\[
\text{ICl} + h\nu \rightarrow I^3P_{3/2} + Cl^3P_{3/2} \quad 210 \text{ kJ mol}^{-1} \quad 569 \text{ nm} \quad (1)
\]

\[
\rightarrow I^3P_{3/2} + Cl^*^3P_{1/2} \quad 221 \text{ kJ mol}^{-1} \quad 542 \text{ nm} \quad (2)
\]

\[
\rightarrow I^3P_{3/2} + Cl^3P_{3/2} \quad 301 \text{ kJ mol}^{-1} \quad 397 \text{ nm} \quad (3)
\]

\[
\rightarrow I^3P_{3/2} + Cl^*^3P_{1/2} \quad 312 \text{ kJ mol}^{-1} \quad 384 \text{ nm} \quad (4)
\]

(Recommendation: 10^-6, Note: 10^-6, Evaluated: 10^-6)

Absorption Cross Sections: The absorption spectrum of ICl, iodine chloride, has been measured at room temperature by Gibson and Ramsperger\(^4\) (380–570 nm), Seery and Britton\(^9\) (220–600 nm), Binder\(^1\) (216.5–310 nm), and Jenkin et al.\(^5\) (216 387, 489, and 685 K). Spectra measured at elevated temperatures have been reported by Binder\(^1\) (293, 387, 489, and 685 K). The spectrum shows two absorption bands of nearly equal peak height, one between 220 and 350 nm with the maximum at ~244 nm and one between 350 and 600 nm with the maximum near 470 nm. The latter band is asymmetric due to the overlap of the \(3^1\Pi_{0+} \leftrightarrow X^1\Sigma_{0+}, \ 1^1\Pi \leftrightarrow X^1\Sigma_{0+}\), and \(A^3\Pi \leftrightarrow X^1\Sigma_{0+}\) transitions, as discussed by Seery and Britton\(^9\) and Mashnin et al.\(^7\) The experimental data of Seery and Britton\(^9\) and Jenkin et al.\(^5\) are in excellent agreement in the region of the visible absorption band but are appreciably higher (by ~35% at the maximum) than the earlier data from Gibson and Ramsperger.\(^4\) The cross section at the 242 nm maximum reported by Jenkin et al.\(^5\) is greater by ~14% than those observed by Gibson and Ramsperger\(^4\) and Seery and Britton.\(^9\) The larger absorption cross sections reported by Seery and Britton\(^9\) over the wavelength range 290–360 nm are most likely due to Cl\(_2\) impurities as argued by Jenkin et al.\(^5\) who subtracted Cl\(_2\) contributions in their spectral analysis. Jenkin et al.\(^5\) report their absorption spectrum in graphical form along with cross section values of \(5.00 \times 10^{-19}\) cm\(^2\) molecule\(^{-1}\) and \(4.20 \times 10^{-19}\) cm\(^2\) molecule\(^{-1}\) at 244 nm and 467 nm, respectively. The recommended cross sections in Table 4H-10 use these values combined with the absorption cross sections read from a figure given in Jenkin et al.\(^5\).\n
Binder\(^1\) report a decrease in the 244 nm peak absorption cross section with increasing temperature from \(4.40 \times 10^{-19}\) cm\(^2\) molecule\(^{-1}\) at 293 K to \(3.53 \times 10^{-19}\) cm\(^2\) molecule\(^{-1}\) at 685 K.

Photolysis Quantum Yield and Product Studies: The ratio of the Cl atom spin-state quantum yields, \(\Phi(\text{Cl}^*)/(\Phi(\text{Cl}^*) + \Phi(\text{Cl}))\), has been reported by several groups. Mashnin et al.\(^7\) showed that for wavelengths in the range 437–532 nm the ratio varied between 0.41 ± 0.02 and 0.79 ± 0.02. The ratio has been reported by Ni and Flynn\(^4\) to be 0.17 ± 0.04 at 237 nm, 0.67 ± 0.05 at 248 nm by Chichinin,\(^2\) and 0.55 ± 0.05 at 530 nm by Chichinin et al.\(^3\) Tonokura et al.\(^10\) reported \(\Phi(I + Cl), \Phi(I + Cl^*),\) and \(\Phi(I^* + Cl)\) to be 0.2, 0.4 and 0.4, respectively, for the wavelength range 235–248 nm. The ratio of \(I^*\) to \(I, I^*/I\), has been reported by Tonokura et al.\(^10\) to be 0.71 ± 0.27 and Jung et al.\(^6\) to be 0.43 at 304 nm.

4-352
Table 4H-10. Recommended Absorption Cross Sections of ICl at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>7.4</td>
</tr>
<tr>
<td>220</td>
<td>21.3</td>
</tr>
<tr>
<td>230</td>
<td>40.0</td>
</tr>
<tr>
<td>240</td>
<td>49.0</td>
</tr>
<tr>
<td>244</td>
<td>50.0</td>
</tr>
<tr>
<td>250</td>
<td>47.8</td>
</tr>
<tr>
<td>260</td>
<td>36.8</td>
</tr>
<tr>
<td>270</td>
<td>24.4</td>
</tr>
<tr>
<td>280</td>
<td>12.9</td>
</tr>
<tr>
<td>290</td>
<td>6.4</td>
</tr>
<tr>
<td>300</td>
<td>3.2</td>
</tr>
<tr>
<td>310</td>
<td><1</td>
</tr>
<tr>
<td>320</td>
<td><1</td>
</tr>
<tr>
<td>330</td>
<td><1</td>
</tr>
<tr>
<td>340</td>
<td><1</td>
</tr>
<tr>
<td>350</td>
<td><1</td>
</tr>
<tr>
<td>360</td>
<td>2.3</td>
</tr>
<tr>
<td>370</td>
<td>4.6</td>
</tr>
<tr>
<td>380</td>
<td>8.74</td>
</tr>
<tr>
<td>390</td>
<td>13.8</td>
</tr>
<tr>
<td>400</td>
<td>19.0</td>
</tr>
<tr>
<td>410</td>
<td>25.0</td>
</tr>
<tr>
<td>420</td>
<td>28.5</td>
</tr>
<tr>
<td>430</td>
<td>32.0</td>
</tr>
<tr>
<td>440</td>
<td>35.4</td>
</tr>
<tr>
<td>450</td>
<td>38.8</td>
</tr>
<tr>
<td>460</td>
<td>41.7</td>
</tr>
<tr>
<td>467</td>
<td>42.0</td>
</tr>
<tr>
<td>470</td>
<td>41.8</td>
</tr>
<tr>
<td>480</td>
<td>40.0</td>
</tr>
<tr>
<td>490</td>
<td>35.4</td>
</tr>
<tr>
<td>500</td>
<td>29.0</td>
</tr>
<tr>
<td>510</td>
<td>21.1</td>
</tr>
<tr>
<td>520</td>
<td>15.6</td>
</tr>
<tr>
<td>530</td>
<td>11.0</td>
</tr>
<tr>
<td>540</td>
<td>7.3</td>
</tr>
<tr>
<td>550</td>
<td>5.5</td>
</tr>
<tr>
<td>560</td>
<td>4.2</td>
</tr>
<tr>
<td>570</td>
<td>3.4</td>
</tr>
<tr>
<td>580</td>
<td>2.9</td>
</tr>
<tr>
<td>590</td>
<td>2.1</td>
</tr>
<tr>
<td>600</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Note:
Jenkin et al.\(^5\)

Absorption Cross Sections: The absorption spectrum of IBr, iodine bromide, has been measured at room temperature by Seery and Britton\(^4\) over the wavelength range 220–600 nm. The spectrum consists of two absorption bands, a weak band between 220 and 350 nm with the maximum at ~270 nm and a stronger band between 350 and 600 nm with the maximum at ~500 nm. The recommended absorption cross sections in Table 4H-11 are taken from Seery and Britton.\(^4\)

Photolysis Quantum Yield and Product Studies: Absolute quantum yields for Br* formation, \(\Phi(\text{Br}^*)\), were measured by Haugen et al.\(^1\) over the wavelength range 450–530 nm. \(\Phi(\text{Br}^*)\) increases from a value of 0.28 at 450 nm to a maximum of 0.73 near 500 nm. Peterson and Smith\(^3\) reported the ratio of the Br atom spin-state quantum yields, \(\Phi(\text{Br}^*)/(\Phi(\text{Br}^*) + \Phi(\text{Br}))\), to vary from ~0.3 at 444 nm to a maximum of unity near 520 nm followed by a decline to ~0.1 at 670 nm. Wrede et al.\(^5\) reported a similar trend over the wavelength range 440–544 nm. Kim et al.\(^2\) measured the relative quantum yields for the photolysis channels \(\Phi(\text{I} + \text{Br})\), \(\Phi(\text{I} + \text{Br}^*)\) and \(\Phi(\text{I}^* + \text{Br})\) to be 0.23, 0.35 and 0.42, respectively, at 267 nm.
Table 4H-11. Recommended Absorption Cross Sections of IBr at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>3.59</td>
</tr>
<tr>
<td>230</td>
<td>5.70</td>
</tr>
<tr>
<td>240</td>
<td>10.2</td>
</tr>
<tr>
<td>250</td>
<td>16.7</td>
</tr>
<tr>
<td>260</td>
<td>21.4</td>
</tr>
<tr>
<td>270</td>
<td>23.1</td>
</tr>
<tr>
<td>280</td>
<td>21.1</td>
</tr>
<tr>
<td>290</td>
<td>16.8</td>
</tr>
<tr>
<td>300</td>
<td>12.4</td>
</tr>
<tr>
<td>310</td>
<td>7.95</td>
</tr>
<tr>
<td>320</td>
<td>5.39</td>
</tr>
<tr>
<td>330</td>
<td>3.36</td>
</tr>
<tr>
<td>340</td>
<td>2.14</td>
</tr>
<tr>
<td>350</td>
<td>1.45</td>
</tr>
<tr>
<td>360</td>
<td>1.52</td>
</tr>
<tr>
<td>370</td>
<td>2.37</td>
</tr>
<tr>
<td>380</td>
<td>4.17</td>
</tr>
<tr>
<td>390</td>
<td>6.96</td>
</tr>
<tr>
<td>400</td>
<td>12.0</td>
</tr>
<tr>
<td>410</td>
<td>20.5</td>
</tr>
<tr>
<td>420</td>
<td>31.7</td>
</tr>
<tr>
<td>430</td>
<td>44.8</td>
</tr>
<tr>
<td>440</td>
<td>58.7</td>
</tr>
<tr>
<td>450</td>
<td>71.9</td>
</tr>
<tr>
<td>460</td>
<td>85.2</td>
</tr>
<tr>
<td>470</td>
<td>98.5</td>
</tr>
<tr>
<td>480</td>
<td>111</td>
</tr>
<tr>
<td>490</td>
<td>120</td>
</tr>
<tr>
<td>500</td>
<td>122</td>
</tr>
<tr>
<td>510</td>
<td>116</td>
</tr>
<tr>
<td>520</td>
<td>103</td>
</tr>
<tr>
<td>530</td>
<td>85.8</td>
</tr>
<tr>
<td>540</td>
<td>67.5</td>
</tr>
<tr>
<td>550</td>
<td>52.3</td>
</tr>
<tr>
<td>560</td>
<td>36.6</td>
</tr>
<tr>
<td>570</td>
<td>27.2</td>
</tr>
<tr>
<td>580</td>
<td>19.9</td>
</tr>
<tr>
<td>590</td>
<td>14.6</td>
</tr>
<tr>
<td>600</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Note:
Seery and Britton\(^4\)

INO (nitrosyl iodide)

INO + hv → I + NO

77 kJ mol\(^{-1}\) 1563 nm \((1)\)

(Recommendation: 06-2, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption cross sections of INO, nitrosyl iodide, have been measured at room temperature by Porter et al.\(^3\) (390–470 nm), van den Bergh and Troe\(^4\) (around 265 and 410 nm), Basco and Hunt\(^1\) (220–460 nm), and Forte et al.\(^2\) (223–300 nm and around 410 nm). The spectrum shows two absorption bands, a strong and asymmetric band in the UV between 220 and 300 nm with the maximum at 238 nm, and a second weaker band, weaker by two orders of magnitude, between 355 and 470 nm with a maximum near 410 nm. The results for the UV band are in good agreement except for the region around 250 nm, where the absorption spectrum reported by Basco and Hunt\(^1\) shows a hump and an absorption cross section larger by a factor of ~1.5 than that reported by Forte et al.\(^2\) The absorption curve in the near UV and visible reported by Porter et al.\(^3\) is shifted to longer wavelengths by ~20 nm and the absorption cross sections are smaller by 50-30% at 400–430 nm compared to the results of Basco and Hunt.\(^1\)

The recommended absorption cross sections in Table 4H-12 are the mean of the data from Basco and Hunt\(^1\) and Forte et al.\(^2\) for the wavelength range 223–290 nm and the data from Basco and Hunt\(^1\) at 300, 310, and 360 nm. For the wavelength range 360<\(\lambda<\)400 nm, the recommended cross sections are smoothed values from Basco and Hunt.\(^1\) For wavelengths >400 nm, the recommendation is based on the data from van den Berg and Troe,\(^4\) Basco and Hunt,\(^1\) and Forte et al.\(^2\)

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield is expected to be unity at wavelengths above the dissociation threshold.

Table 4H-12. Recommended Absorption Cross Sections of INO at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20}\sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>223</td>
<td>225</td>
</tr>
<tr>
<td>230</td>
<td>1690</td>
</tr>
<tr>
<td>235</td>
<td>5640</td>
</tr>
<tr>
<td>238</td>
<td>6850</td>
</tr>
<tr>
<td>245</td>
<td>6000</td>
</tr>
<tr>
<td>251</td>
<td>4880</td>
</tr>
<tr>
<td>260</td>
<td>2270</td>
</tr>
<tr>
<td>270</td>
<td>1040</td>
</tr>
<tr>
<td>280</td>
<td>500</td>
</tr>
<tr>
<td>290</td>
<td>187</td>
</tr>
<tr>
<td>300</td>
<td>92</td>
</tr>
<tr>
<td>310</td>
<td>41</td>
</tr>
<tr>
<td>360</td>
<td>45</td>
</tr>
<tr>
<td>370</td>
<td>59</td>
</tr>
<tr>
<td>380</td>
<td>65</td>
</tr>
<tr>
<td>390</td>
<td>78</td>
</tr>
<tr>
<td>400</td>
<td>92</td>
</tr>
<tr>
<td>410</td>
<td>110</td>
</tr>
<tr>
<td>420</td>
<td>100</td>
</tr>
<tr>
<td>430</td>
<td>94</td>
</tr>
<tr>
<td>440</td>
<td>80</td>
</tr>
<tr>
<td>450</td>
<td>60</td>
</tr>
<tr>
<td>460</td>
<td>40</td>
</tr>
</tbody>
</table>

Note:
223–290 nm: mean of data from Basco and Hunt\(^1\) and Forte et al.\(^2\)
300, 310, 360 nm: Basco and Hunt\(^1\)
370–400 nm: smoothed data from Basco and Hunt\(^1\)
>400 nm: based on the data from van den Berg and Troe,\(^4\) Basco and Hunt,\(^1\) and Forte et al.\(^2\)
H9. **INO$_2$ (nitryl iodide)**

IN$_2$O + hv → I + NO$_2$

(1)

→ IO + NO

(2)

(Recommendation: 15-10, Note: 15-10, Evaluated: 15-10)

Absorption Cross Sections: The UV absorption spectrum of INO$_2$, nitryl iodide, has been measured at room temperature by Bröske2 over the wavelength range 210–390 nm. The spectrum consists of three broad absorption bands with cross sections of 4.2×10^{-18}, 9.6×10^{-19}, and 3.9×10^{-19} cm2 molecule$^{-1}$ at 240, 282, and 342 nm, respectively. These values were obtained assuming the stoichiometric conversion of NO$_2$ to INO$_2$ in the photolysis of I$_2$–NO$_2$ mixtures. The recommended absorption cross section values in Table 4H-13 were taken from the evaluation by Atkinson et al.1 Note the cross section values from Bröske2 quoted in the Mainz spectral atlas3 differ significantly. On the basis of the mass balance uncertainty in the Bröske study an uncertainty factor of 4 (2σ) is recommended.

Photolysis Quantum Yield and Product Studies: No recommendation.
Table 4H-13. Recommended Absorption Cross Sections of INO₂ at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>236</td>
</tr>
<tr>
<td>215</td>
<td>187</td>
</tr>
<tr>
<td>220</td>
<td>196</td>
</tr>
<tr>
<td>225</td>
<td>279</td>
</tr>
<tr>
<td>230</td>
<td>347</td>
</tr>
<tr>
<td>235</td>
<td>399</td>
</tr>
<tr>
<td>240</td>
<td>422</td>
</tr>
<tr>
<td>245</td>
<td>400</td>
</tr>
<tr>
<td>250</td>
<td>330</td>
</tr>
<tr>
<td>255</td>
<td>234</td>
</tr>
<tr>
<td>260</td>
<td>162</td>
</tr>
<tr>
<td>265</td>
<td>99.6</td>
</tr>
<tr>
<td>270</td>
<td>87.1</td>
</tr>
<tr>
<td>275</td>
<td>89.8</td>
</tr>
<tr>
<td>280</td>
<td>99.6</td>
</tr>
<tr>
<td>285</td>
<td>92.2</td>
</tr>
<tr>
<td>290</td>
<td>81.0</td>
</tr>
<tr>
<td>295</td>
<td>62.0</td>
</tr>
<tr>
<td>300</td>
<td>37.3</td>
</tr>
<tr>
<td>305</td>
<td>30.8</td>
</tr>
<tr>
<td>310</td>
<td>24.7</td>
</tr>
<tr>
<td>315</td>
<td>25.1</td>
</tr>
<tr>
<td>320</td>
<td>27.5</td>
</tr>
<tr>
<td>325</td>
<td>32.5</td>
</tr>
<tr>
<td>330</td>
<td>31.2</td>
</tr>
<tr>
<td>335</td>
<td>34.9</td>
</tr>
<tr>
<td>340</td>
<td>37.3</td>
</tr>
<tr>
<td>345</td>
<td>37.3</td>
</tr>
<tr>
<td>350</td>
<td>29.8</td>
</tr>
<tr>
<td>355</td>
<td>29.5</td>
</tr>
<tr>
<td>360</td>
<td>27.1</td>
</tr>
<tr>
<td>365</td>
<td>20.7</td>
</tr>
<tr>
<td>370</td>
<td>14.9</td>
</tr>
<tr>
<td>375</td>
<td>7.40</td>
</tr>
<tr>
<td>380</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Note: Bröske² from Atkinson et al.¹

H10. IONO₂ (iodine nitrate)

\[\text{IONO}_2 + \text{hv} \rightarrow \text{IO} + \text{NO}_2 \quad 118 \text{ kJ mol}^{-1} \quad 1018 \text{ nm} \quad (1) \]

\[\rightarrow \text{I} + \text{NO}_2 \quad 148 \text{ kJ mol}^{-1} \quad 808 \text{ nm} \quad (2) \]

\[\rightarrow \text{I} + \text{NO}_2 + \text{O} \quad 358 \text{ kJ mol}^{-1} \quad 299 \text{ nm} \quad (3) \]

(Recommendation: 06-2, Note: 10-6, Evaluated: JPL10-6)
Absorption Cross Sections: The UV absorption spectrum of IONO₂, iodine nitrate, has been reported by Mössinger et al.² (245–415 nm) and Joseph et al.¹ (240–370 nm) using 351 and 248 nm pulsed laser photolysis of NO₂/CF₃I/N₂ mixtures, respectively, to produce IONO₂ in the gas-phase. The IONO₂ spectrum consists of a broad continuous absorption band over this wavelength range. There are, however, significant discrepancies between the two studies for the wavelength dependence and absolute absorption cross sections. The reason for the discrepancies in these very similar studies is not known. The recommended cross section values given in Table 4H-14 are taken from Mössinger et al.,² however, the uncertainty in the IONO₂ spectrum is large and the lower cross sections reported in the Joseph et al. study can’t be ruled out.

Photolysis Quantum Yield and Product Studies: The photoproducts of IONO₂ are not well characterized. In the only quantum yield study to date, Joseph et al.¹ report IO and NO₃ quantum yields of Φ(IO) ≤0.02 and Φ(NO₃) = 0.21 ± 0.09 at 248 nm, based on a modeled a IONO₂ concentration and their measured cross section at 248 nm. Photolysis is most likely the major daytime loss process for IONO₂ even considering the current large uncertainty in the UV absorption cross sections.

Table 4H-14. Recommended Absorption Cross Sections of IONO₂ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td>1210</td>
</tr>
<tr>
<td>250</td>
<td>1170</td>
</tr>
<tr>
<td>255</td>
<td>1060</td>
</tr>
<tr>
<td>260</td>
<td>946</td>
</tr>
<tr>
<td>265</td>
<td>880</td>
</tr>
<tr>
<td>270</td>
<td>797</td>
</tr>
<tr>
<td>275</td>
<td>772</td>
</tr>
<tr>
<td>280</td>
<td>741</td>
</tr>
<tr>
<td>285</td>
<td>691</td>
</tr>
<tr>
<td>290</td>
<td>631</td>
</tr>
<tr>
<td>295</td>
<td>577</td>
</tr>
<tr>
<td>300</td>
<td>525</td>
</tr>
<tr>
<td>305</td>
<td>495</td>
</tr>
<tr>
<td>310</td>
<td>462</td>
</tr>
<tr>
<td>315</td>
<td>441</td>
</tr>
<tr>
<td>320</td>
<td>404</td>
</tr>
<tr>
<td>325</td>
<td>396</td>
</tr>
<tr>
<td>330</td>
<td>380</td>
</tr>
<tr>
<td>335</td>
<td>374</td>
</tr>
<tr>
<td>340</td>
<td>360</td>
</tr>
<tr>
<td>345</td>
<td>348</td>
</tr>
<tr>
<td>350</td>
<td>334</td>
</tr>
<tr>
<td>355</td>
<td>316</td>
</tr>
<tr>
<td>360</td>
<td>294</td>
</tr>
<tr>
<td>365</td>
<td>270</td>
</tr>
<tr>
<td>370</td>
<td>242</td>
</tr>
<tr>
<td>375</td>
<td>213</td>
</tr>
<tr>
<td>380</td>
<td>184</td>
</tr>
<tr>
<td>385</td>
<td>153</td>
</tr>
<tr>
<td>390</td>
<td>130</td>
</tr>
<tr>
<td>395</td>
<td>103</td>
</tr>
<tr>
<td>400</td>
<td>78.0</td>
</tr>
<tr>
<td>405</td>
<td>60.5</td>
</tr>
<tr>
<td>410</td>
<td>49.6</td>
</tr>
<tr>
<td>415</td>
<td>41.6</td>
</tr>
</tbody>
</table>

Note: Mössinger et al.,² values in the range 335–385 nm were obtained from an interpolation of the experimental data.
CH$_3$I + hv → CH$_3$I*(2P$_{1/2}$) + I*(2P$_{3/2}$)
CH$_3$I + I*(2P$_{1/2}$) → CH$_3$ + I*(2P$_{3/2}$)

Absorption Cross Sections: The UV and VUV absorption spectrum of CH$_3$I, methyl iodide, has been measured at room temperature by Rebbert et al.15 (147 nm), Porret and Goodeve13 (200–360 nm), Baughcum and Leone1 (200–310 nm), Pence et al.12 (180–400 nm), Felps et al.2 (257.7 nm), Jenkin et al.6 (205–335 nm), Man et al.10 (205–360 nm), Kwok and Phillips8 (192–225 nm), Eden et al.3 (115–315 nm), Fahr et al.4 (160–330 nm), Rattigan et al.14 (235–365 nm), and Roehl et al.16 (200–350 nm). Kwok and Phillips8 also measured the CH$_3$I spectrum in cyclohexane solution. Fahr et al.4 also measured the absorption cross sections in the range 330–400 nm in the liquid phase and used a wavelength shift procedure to derive gas-phase cross section values. The temperature dependence of the absorption spectrum has been reported by Fahr et al.4 (223–333 K), Rattigan et al.14 (243–333 K), and Roehl et al.16 (210–298 K). The room temperature cross section data for the wavelength range 210–305 nm are in reasonable to good agreement with Rattigan et al.14 reporting the smallest and Fahr et al.4 the largest values. The agreement is generally better than 15% except for the region around the absorption maximum, where the spread is ~30%. Rattigan et al.14 and Fahr et al.4 report values of 1.07 × 10$^{-18}$ cm2 molecule$^{-1}$ and 1.4 × 10$^{-18}$ cm2 molecule$^{-1}$, respectively, for the maximum at ~260 nm. The peak cross section values from the other studies range from 1.15 × 10$^{-18}$ cm2 molecule$^{-1}$ to 1.22 × 10$^{-18}$ cm2 molecule$^{-1}$. In the wavelength range 305–330 nm, the agreement is within 20%. At wavelengths below 210 nm, the data reported by Jenkin et al.6 Roehl et al.16 and Kwok and Phillips8 fit into the strongly and highly structured band system reported by Fahr et al.4 and Eden et al.3 However, the absorption cross sections reported by Eden et al.3 in this wavelength range are significantly larger, ~×10. The recommended room temperature absorption cross sections for the wavelength range above 210 nm in Table 4H-15 are the mean of the values reported by Jenkin et al.6 Fahr et al.4 and Roehl et al.16 for the range 210–230 nm, the mean of the values reported by Jenkin et al.6 Fahr et al.4 Rattigan et al.14 and Roehl et al.16 for the range 235–330 nm; the mean of the values reported by Fahr et al.4 Rattigan et al.14 and Roehl et al.16 for the range 335–350 nm, and the values of Rattigan et al.14 for the range 355–365 nm.

Studies of the spectrum temperature dependence are in qualitative agreement with an increase in the peak absorption cross section and decrease in the long wavelength tail cross sections with decreasing temperature. Roehl et al.16 and Rattigan et al.14 parameterized the cross section temperature dependence using the empirical expressions

\[\sigma(\lambda, T) = \sigma(298 \text{ K}) \left[1 + a_1(\lambda)(T-298) + a_2(\lambda)(T-298)^2 \right] \] \hspace{1cm} (Roehl et al.16)

\[\ln \sigma(\lambda, T) = \ln \sigma(298 \text{ K}) + B(\lambda)(T-298) \] \hspace{1cm} (Rattigan et al.14)

Both expressions reproduce the experimental data well and the $a_1(\lambda)$, $a_2(\lambda)$, and $B(\lambda)$ parameters are included in Table 4H-15.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for CH$_3$I is expected to be unity for wavelengths above the dissociation threshold. Quantum yields for I*(2P$_{1/2}$) atom formation, $\Phi(I^*)$, have been reported by several groups for photolysis between 222 and 333.5 nm. Uma and Das17-19 reported $\Phi(I^*)$ values of 0.63 ± 0.02, 0.79 ± 0.02, 0.69 ± 0.02, and 0.43 ± 0.02 for 222, 266, 280, and ~305 nm, respectively. Gedanken19 reported $\Phi(I^*)$ = 0.72 ± 0.08 at 248 nm. Pence et al.12 reported $\Phi(I^*)$ = 0.81 ± 0.03 and ~0.05 at 248 and 308 nm, respectively. Kang et al.7 reported $\Phi(I^*) = 0.30$ at 304 nm. Ogorzalek Loo et al.11 reported $\Phi(I^*) = 0.47$, 0.77, and 0.92 at 325.8, 329.4, and 333.5, respectively. Ogorzalek Loo et al.11 and Brewer et al.2 have also reported I^* quantum yields for the photolysis of CD$_3$I. Quantum yields for I*(2P$_{1/2}$) atom formation, $\Phi(I)$, can be derived from $\Phi(I) = 1 - \Phi(I^*)$.

Table 4H-15. Recommended Absorption Cross Sections of CH₃I at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²₀ σ (cm²)</th>
<th>10¹ a₁ (K⁻¹)</th>
<th>10² a₂ (K⁻²)</th>
<th>10³ B (K⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>3.62</td>
<td>3.07</td>
<td>2.42</td>
<td>–</td>
</tr>
<tr>
<td>215</td>
<td>5.08</td>
<td>2.61</td>
<td>2.28</td>
<td>–</td>
</tr>
<tr>
<td>220</td>
<td>6.90</td>
<td>1.06</td>
<td>1.22</td>
<td>–</td>
</tr>
<tr>
<td>225</td>
<td>9.11</td>
<td>1.74</td>
<td>1.96</td>
<td>–</td>
</tr>
<tr>
<td>230</td>
<td>12.6</td>
<td>1.47</td>
<td>1.67</td>
<td>–</td>
</tr>
<tr>
<td>235</td>
<td>20.5</td>
<td>1.91</td>
<td>2.04</td>
<td>0.67</td>
</tr>
<tr>
<td>240</td>
<td>38.1</td>
<td>1.74</td>
<td>2.06</td>
<td>0.61</td>
</tr>
<tr>
<td>245</td>
<td>65.6</td>
<td>1.52</td>
<td>2.15</td>
<td>0.34</td>
</tr>
<tr>
<td>250</td>
<td>96.3</td>
<td>1.20</td>
<td>2.11</td>
<td>0.08</td>
</tr>
<tr>
<td>255</td>
<td>117.7</td>
<td>0.890</td>
<td>1.95</td>
<td>–0.10</td>
</tr>
<tr>
<td>260</td>
<td>119.7</td>
<td>0.882</td>
<td>1.93</td>
<td>–0.12</td>
</tr>
<tr>
<td>265</td>
<td>102.9</td>
<td>1.21</td>
<td>2.00</td>
<td>0.10</td>
</tr>
<tr>
<td>270</td>
<td>75.9</td>
<td>1.77</td>
<td>2.11</td>
<td>0.54</td>
</tr>
<tr>
<td>275</td>
<td>49.6</td>
<td>2.52</td>
<td>2.12</td>
<td>1.33</td>
</tr>
<tr>
<td>280</td>
<td>29.2</td>
<td>3.62</td>
<td>2.24</td>
<td>2.43</td>
</tr>
<tr>
<td>285</td>
<td>15.6</td>
<td>4.84</td>
<td>2.38</td>
<td>3.74</td>
</tr>
<tr>
<td>290</td>
<td>8.04</td>
<td>6.14</td>
<td>2.57</td>
<td>4.98</td>
</tr>
<tr>
<td>295</td>
<td>4.00</td>
<td>7.27</td>
<td>2.91</td>
<td>6.38</td>
</tr>
<tr>
<td>300</td>
<td>2.06</td>
<td>7.82</td>
<td>3.53</td>
<td>6.97</td>
</tr>
<tr>
<td>305</td>
<td>1.10</td>
<td>7.82</td>
<td>3.85</td>
<td>6.84</td>
</tr>
<tr>
<td>310</td>
<td>0.621</td>
<td>7.37</td>
<td>3.71</td>
<td>6.78</td>
</tr>
<tr>
<td>315</td>
<td>0.359</td>
<td>6.98</td>
<td>3.47</td>
<td>6.75</td>
</tr>
<tr>
<td>320</td>
<td>0.221</td>
<td>7.39</td>
<td>3.54</td>
<td>6.53</td>
</tr>
<tr>
<td>325</td>
<td>0.126</td>
<td>7.23</td>
<td>2.82</td>
<td>6.79</td>
</tr>
<tr>
<td>330</td>
<td>0.0684</td>
<td>8.93</td>
<td>3.74</td>
<td>7.82</td>
</tr>
<tr>
<td>335</td>
<td>0.0388</td>
<td>10.88</td>
<td>4.88</td>
<td>9.34</td>
</tr>
<tr>
<td>340</td>
<td>0.0212</td>
<td>11.30</td>
<td>4.46</td>
<td>10.95</td>
</tr>
<tr>
<td>345</td>
<td>0.0114</td>
<td>15.68</td>
<td>8.44</td>
<td>13.58</td>
</tr>
<tr>
<td>350</td>
<td>0.00609</td>
<td>15.94</td>
<td>8.22</td>
<td>16.83</td>
</tr>
<tr>
<td>355</td>
<td>0.00320</td>
<td>–</td>
<td>–</td>
<td>18.91</td>
</tr>
<tr>
<td>360</td>
<td>0.00190</td>
<td>–</td>
<td>–</td>
<td>17.28</td>
</tr>
<tr>
<td>365</td>
<td>0.00090</td>
<td>–</td>
<td>–</td>
<td>23.63</td>
</tr>
</tbody>
</table>

Note:
Absorption cross sections (σ)
210–230 nm: mean of data from Jenkin et al.,⁵ Fahr et al.,⁴ and Roehl et al.¹⁶
235–330 nm: mean of data from Jenkin et al.,⁶ Fahr et al.,⁴ Rattigan et al.,¹⁴ and Roehl et al.¹⁶
335–350 nm: mean of data from Fahr et al.,⁴ Rattigan et al.,¹⁴ and Roehl et al.¹⁶
355–365 nm: Rattigan et al.¹⁴

Temperature coefficients

\[a_1(\lambda), a_2(\lambda): \text{Roehl et al.}^{16} (210–298 K), \sigma(\lambda, T) = \sigma(298 K) \left[1 + a_1(T–298) + a_2(T–298)^2\right] \]

\[B(\lambda): \text{Rattigan et al.}^{14} (243–333 K), \ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 K) + B(\lambda)(T–298) \]

The studies of the spectrum temperature dependence are in good agreement with a slight increase in the peak absorption cross section and decrease in the long wavelength tail cross section with decreasing temperature. Mössinger et al. 3 parameterized the cross section temperature dependence between 273 and 348 K using the expression

\[\sigma(T) = \sigma(298) \times \left(\frac{T}{298} \right)^{-n} \]

where \(\sigma(T) \) is the absorption cross section at temperature \(T \), and \(n \) is a parameter that depends on the specific alkyl iodide. The parameterization allows for a smooth transition between the room temperature absorption cross sections and the lower temperatures, ensuring consistency across the range of interest.

H12. CHI\(_2\) (diiodomethane)

Back to Index

\[
\begin{align*}
\text{CHI}_2 + \text{hv} & \rightarrow \text{CHI} + \text{I}^*(\text{P}_{\frac{3}{2}}) \quad 216 \text{ kJ mol}^{-1} \quad 554 \text{ nm} \\
& \rightarrow \text{CHI} + \text{I}^*(\text{P}_{\frac{1}{2}}) \quad 307 \text{ kJ mol}^{-1} \quad 390 \text{ nm}
\end{align*}
\]

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of CHI\(_2\), diiodomethane, has been measured at room temperature by Pence et al. 3 (180–400 nm), Schmitt and Comes 1 (220–360 nm), Baughcum and Leone 4 (200–360 nm), Koffend and Leone 5 (265–341 nm), Kwok and Phillips 7 (220–400 nm), Roehl et al. 8 (215–385 nm), and Mössinger et al. 9 (215–385 nm). Kwok and Phillips 7 also measured the CHI\(_2\) spectrum in methanol and cyclohexane solvents. The temperature dependence of the absorption spectrum has been reported by Roehl et al. 8 (273 and 298 K) and Mössinger et al. 9 (273, 298, and 348 K).

The absorption spectrum shows clear evidence for multiple transitions in the wavelength range 200–400 nm with absorption maxima at ~215, 250, and 290 nm. The room temperature cross section data from the various groups are in good agreement with the exception of Kwok and Phillips; 7 the reported cross sections are within 5% to 10% between 230 and 380 nm. The data from Schmitt and Comes 1 and Koffend and Leone 5 near the 290 nm peak are higher than those of Roehl et al. 8 and Mössinger et al. 9. The values of Kwok and Phillips 7 are lower by 15–20% near 290 nm. The recommended room temperature absorption cross sections in Table H16 are the values from Roehl et al. 8 for the range 205–215 nm, the mean of the values reported by Roehl et al. 8 and Mössinger et al. 9 for the range 220–380 nm, and the value of Mössinger et al. 9 at 385 nm.

The studies of the spectrum temperature dependence are in good agreement with a slight increase in the peak absorption cross section and decrease in the long wavelength tail cross section with decreasing temperature.
\[\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298K) + B(\lambda)(T-298) \]

The B(\(\lambda\)) coefficients are listed in Table 4H-16. (Note: an erroneous B value at 305 nm was corrected via a personal communication with Dr. Mössinger).

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for CH₂I₂ is expected to be unity for wavelengths above the dissociation threshold. Pence et al.⁵ have reported quantum yields for I*(2P\(_{1/2}\)) atom formation, \(\Phi(I^*)\) at 193, 248, and 308 nm of \(-0.05, 0.46 \pm 0.04, \) and \(0.25 \pm 0.02\), respectively. Quantum yields for I(2P\(_{3/2}\)) atom formation, \(\Phi(I)\), can be derived from \(\Phi(I) = 1 - \Phi(I^*)\).

Table 4H-16. Recommended Absorption Cross Sections of CH₂I₂ at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>10(^{20}) (\sigma) (cm(^2))</th>
<th>10(^3) B (K(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>407.0</td>
<td>–</td>
</tr>
<tr>
<td>210</td>
<td>404.0</td>
<td>–</td>
</tr>
<tr>
<td>215</td>
<td>366.0</td>
<td>0.15</td>
</tr>
<tr>
<td>220</td>
<td>260.0</td>
<td>0.14</td>
</tr>
<tr>
<td>225</td>
<td>197.5</td>
<td>0.19</td>
</tr>
<tr>
<td>230</td>
<td>133.0</td>
<td>0.51</td>
</tr>
<tr>
<td>235</td>
<td>109.0</td>
<td>0.56</td>
</tr>
<tr>
<td>240</td>
<td>122.5</td>
<td>0.15</td>
</tr>
<tr>
<td>245</td>
<td>150.0</td>
<td>0.18</td>
</tr>
<tr>
<td>250</td>
<td>157.0</td>
<td>0.67</td>
</tr>
<tr>
<td>255</td>
<td>139.5</td>
<td>1.58</td>
</tr>
<tr>
<td>260</td>
<td>120.5</td>
<td>2.04</td>
</tr>
<tr>
<td>265</td>
<td>130.0</td>
<td>1.30</td>
</tr>
<tr>
<td>270</td>
<td>178.5</td>
<td>0.00</td>
</tr>
<tr>
<td>275</td>
<td>255.0</td>
<td>–0.71</td>
</tr>
<tr>
<td>280</td>
<td>328.5</td>
<td>–1.24</td>
</tr>
<tr>
<td>285</td>
<td>371.5</td>
<td>–1.21</td>
</tr>
<tr>
<td>290</td>
<td>380.5</td>
<td>–0.94</td>
</tr>
<tr>
<td>295</td>
<td>371.5</td>
<td>–0.58</td>
</tr>
<tr>
<td>300</td>
<td>357.0</td>
<td>–0.37</td>
</tr>
<tr>
<td>305</td>
<td>338.5</td>
<td>–0.16</td>
</tr>
<tr>
<td>310</td>
<td>313.5</td>
<td>0.07</td>
</tr>
<tr>
<td>315</td>
<td>280.0</td>
<td>0.15</td>
</tr>
<tr>
<td>320</td>
<td>244.0</td>
<td>0.27</td>
</tr>
<tr>
<td>325</td>
<td>203.0</td>
<td>0.27</td>
</tr>
<tr>
<td>330</td>
<td>161.5</td>
<td>0.51</td>
</tr>
<tr>
<td>335</td>
<td>120.5</td>
<td>0.55</td>
</tr>
<tr>
<td>340</td>
<td>83.3</td>
<td>1.36</td>
</tr>
<tr>
<td>345</td>
<td>53.7</td>
<td>1.99</td>
</tr>
<tr>
<td>350</td>
<td>32.6</td>
<td>3.19</td>
</tr>
<tr>
<td>355</td>
<td>19.2</td>
<td>4.09</td>
</tr>
<tr>
<td>360</td>
<td>10.9</td>
<td>5.39</td>
</tr>
<tr>
<td>365</td>
<td>6.05</td>
<td>6.77</td>
</tr>
<tr>
<td>370</td>
<td>3.45</td>
<td>8.25</td>
</tr>
<tr>
<td>375</td>
<td>1.93</td>
<td>11.3</td>
</tr>
<tr>
<td>380</td>
<td>1.17</td>
<td>–</td>
</tr>
<tr>
<td>385</td>
<td>0.769</td>
<td>–</td>
</tr>
</tbody>
</table>

Note:

Absorption cross sections
205–215 nm: Roehl et al.⁶
220–380 nm: mean of data from Roehl et al.⁶ and Mössinger et al.⁴
385 nm: Mössinger et al.⁴

Temperature coefficients
B(\(\lambda\)): Mössinger et al.⁴ (273–348 K), \(\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 K) + B(\lambda)(T–298)\)

H13. C₂H₄I (iodoethane)

C₂H₄I + hv → C₂H₄ + I(²P½)
235 kJ mol⁻¹ 509 nm (1)

C₂H₄I + I(²P½) → C₂H₄ + I(²P½)
326 kJ mol⁻¹ 367 nm (2)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of C₂H₄I, iodoethane, has been measured at room temperature by Rebbert et al.⁶ (147 nm, σ = 1.48 × 10⁻¹⁷ cm² molecule⁻¹), Porret and Goodeve⁴ (205–360 nm), Roehl et al.⁵ (205–365 nm), and Rattigan et al.⁵ (235–355 nm). The temperature dependence of the absorption spectrum has been reported by Roehl et al.⁵ (223–298 K), Rattigan et al.⁵ (243–333 K), and Zhang et al.¹¹ (323 K, 220–320 nm). The room temperature data are in good agreement with the values of Roehl et al.⁷ larger than the values of Rattigan et al.⁵ by 5–15% over the wavelength range 235–325 nm and 125% at 355 nm. The Rattigan et al.⁵ values agree to within 10–15% with the values from Porret and Goodeve.⁴ The recommended absorption cross sections in Table 4H-17 are the mean of the values reported by Roehl et al.⁷ and Rattigan et al.⁵ for the wavelength range 235–355 nm and the data from Roehl et al.⁷ in the range 205–230 nm.

Studies of the spectrum temperature dependence by Roehl et al.⁷ and Rattigan et al.⁵ show that the peak absorption cross section increases with decreasing temperature. The absorption cross sections in the long wavelength tail of the spectrum decrease with decreasing temperature. The data reported by Zhang et al.¹¹ for 323 K are 10–40% larger around the absorption maximum and as much as 200% larger in the long wavelength tail than the data for 313 and 333 K reported by Rattigan et al.⁵ Roehl et al.⁷ and Rattigan et al.⁵ parameterized the cross section temperature dependence using the empirical expressions

\[
\sigma(\lambda, T) = \sigma(298\ K) \left[1 + a_1(\lambda)(T-298) + a_2(\lambda)(T-298)^2\right] \quad \text{(Roehl et al.⁷)}
\]

\[
\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298\ K) + B(\lambda)(T-298) \quad \text{(Rattigan et al.⁵)}
\]

Both expressions reproduce the experimental data well and the \(a_1(\lambda)\), \(a_2(\lambda)\), and \(B(\lambda)\) parameters are included in Table 4H-17.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for C₂H₄I is expected to be unity for wavelengths above the dissociation threshold. Uma and Das⁸-¹⁰ have reported quantum yields for I(²P½) atom formation, \(\Phi(I^*)\), at wavelengths between 222 and 305 nm to be 0.57 ± 0.02, 0.72 ± 0.02, 0.60 ± 0.02, and 0.39 ± 0.02 at 222, 266, 280, and ~305 nm, respectively. Gedanken² report \(\Phi(I^*) = 0.78 \pm 0.07\) at 248 nm. Brewer et al.¹ report \(\Phi(I^*) = 0.68 \pm 0.02\) at 248 nm. Kang et al.⁵ report \(\Phi(I^*) = 0.22\) at 304 nm. Quantum yields for I(²P½) atom formation, \(\Phi(I)\), can be derived from \(\Phi(I) = 1 - \Phi(I^*)\). Rebbert et al.⁵ report that the quantum yield at 147 nm for the overall process C₂H₄I + hv → C₂H₄ + H + I to be 0.75.
Table 4H-17. Recommended Absorption Cross Sections of C\textsubscript{2}H\textsubscript{5}I at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^{-2}))</th>
<th>(10^3 a_1) (K(^{-1}))</th>
<th>(10^3 a_2) (K(^{-2}))</th>
<th>(10^3 B) (K(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>11.9</td>
<td>6.38</td>
<td>3.15</td>
<td>–</td>
</tr>
<tr>
<td>210</td>
<td>4.22</td>
<td>4.07</td>
<td>6.28</td>
<td>–</td>
</tr>
<tr>
<td>215</td>
<td>4.56</td>
<td>4.93</td>
<td>6.57</td>
<td>–</td>
</tr>
<tr>
<td>220</td>
<td>6.18</td>
<td>4.06</td>
<td>5.70</td>
<td>–</td>
</tr>
<tr>
<td>225</td>
<td>9.09</td>
<td>2.81</td>
<td>3.81</td>
<td>–</td>
</tr>
<tr>
<td>230</td>
<td>14.3</td>
<td>2.62</td>
<td>3.83</td>
<td>–</td>
</tr>
<tr>
<td>235</td>
<td>23.2</td>
<td>1.28</td>
<td>2.17</td>
<td>–0.27</td>
</tr>
<tr>
<td>240</td>
<td>41.7</td>
<td>0.876</td>
<td>1.96</td>
<td>–0.40</td>
</tr>
<tr>
<td>245</td>
<td>69.3</td>
<td>0.233</td>
<td>1.62</td>
<td>–0.62</td>
</tr>
<tr>
<td>250</td>
<td>99.3</td>
<td>–0.111</td>
<td>1.58</td>
<td>–0.79</td>
</tr>
<tr>
<td>255</td>
<td>119.7</td>
<td>–1.03</td>
<td>0.606</td>
<td>–0.82</td>
</tr>
<tr>
<td>260</td>
<td>121.8</td>
<td>–1.48</td>
<td>–0.0332</td>
<td>–0.75</td>
</tr>
<tr>
<td>265</td>
<td>105.9</td>
<td>–1.09</td>
<td>1.2 \times 10^{-6}</td>
<td>–0.44</td>
</tr>
<tr>
<td>270</td>
<td>80.6</td>
<td>–0.538</td>
<td>–0.257</td>
<td>0.36</td>
</tr>
<tr>
<td>275</td>
<td>54.4</td>
<td>0.770</td>
<td>0.0299</td>
<td>1.23</td>
</tr>
<tr>
<td>280</td>
<td>33.5</td>
<td>2.01</td>
<td>0.110</td>
<td>2.36</td>
</tr>
<tr>
<td>285</td>
<td>19.1</td>
<td>3.85</td>
<td>0.962</td>
<td>3.61</td>
</tr>
<tr>
<td>290</td>
<td>10.3</td>
<td>5.47</td>
<td>1.65</td>
<td>4.83</td>
</tr>
<tr>
<td>295</td>
<td>5.38</td>
<td>7.00</td>
<td>2.52</td>
<td>6.33</td>
</tr>
<tr>
<td>300</td>
<td>2.78</td>
<td>8.56</td>
<td>4.11</td>
<td>7.48</td>
</tr>
<tr>
<td>305</td>
<td>1.44</td>
<td>9.31</td>
<td>4.89</td>
<td>8.08</td>
</tr>
<tr>
<td>310</td>
<td>0.777</td>
<td>10.56</td>
<td>6.87</td>
<td>7.55</td>
</tr>
<tr>
<td>315</td>
<td>0.416</td>
<td>10.83</td>
<td>6.81</td>
<td>7.92</td>
</tr>
<tr>
<td>320</td>
<td>0.227</td>
<td>11.98</td>
<td>9.76</td>
<td>8.27</td>
</tr>
<tr>
<td>325</td>
<td>0.127</td>
<td>12.98</td>
<td>11.3</td>
<td>8.81</td>
</tr>
<tr>
<td>330</td>
<td>0.0743</td>
<td>14.56</td>
<td>17.5</td>
<td>9.30</td>
</tr>
<tr>
<td>335</td>
<td>0.0403</td>
<td>18.81</td>
<td>24.6</td>
<td>10.20</td>
</tr>
<tr>
<td>340</td>
<td>0.0246</td>
<td>13.90</td>
<td>9.08</td>
<td>11.16</td>
</tr>
<tr>
<td>345</td>
<td>0.0133</td>
<td>18.86</td>
<td>22.1</td>
<td>12.41</td>
</tr>
<tr>
<td>350</td>
<td>0.00840</td>
<td>20.19</td>
<td>20.1</td>
<td>11.28</td>
</tr>
<tr>
<td>355</td>
<td>0.00488</td>
<td>–7.04</td>
<td>–40.5</td>
<td>12.20</td>
</tr>
</tbody>
</table>

Note:

Absorption cross sections
205–230 nm: Roehl et al.\(^7\)
235–355 nm: mean of data from Roehl et al.\(^7\) and Rattigan et al.\(^5\)

Temperature coefficients

\[a_1(\lambda) \text{ and } a_2(\lambda): \text{ Roehl et al.}\(^7\) (223–298 K), \sigma(\lambda, T) = \sigma(298 K) [1 + a_1(\lambda)(T–298) + a_2(\lambda)(T–298)^2] \]

B(\lambda): Rattigan et al.\(^5\) (243–333 K), \ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 K) + B(\lambda)(T–298)

H14. CH$_3$CHI$_2$ (1,1-diiodoethane)

CH$_3$CHI$_2$ + hν → Products

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of CH$_3$CHI$_2$, 1,1-diiodoethane, has been measured at 298 K by Schmitt and Comes1 over the wavelength range 220–360 nm. The continuous spectrum consists of several overlapping transitions with maxima at <220 nm and peaks at 250 and 290 nm. A weaker band appears as a shoulder in the spectrum near 320 nm. The recommended cross sections in Table 4H-18 are taken from Schmitt and Comes.1

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for CH$_3$CHI$_2$ is expected to be unity for wavelengths above the dissociation threshold.

Table 4H-18. Recommended Absorption Cross Sections of CH$_3$CHI$_2$ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>1020 σ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>304</td>
</tr>
<tr>
<td>225</td>
<td>240</td>
</tr>
<tr>
<td>230</td>
<td>181</td>
</tr>
<tr>
<td>235</td>
<td>144</td>
</tr>
<tr>
<td>240</td>
<td>138</td>
</tr>
<tr>
<td>245</td>
<td>151</td>
</tr>
<tr>
<td>250</td>
<td>157</td>
</tr>
<tr>
<td>255</td>
<td>143</td>
</tr>
<tr>
<td>260</td>
<td>133</td>
</tr>
<tr>
<td>265</td>
<td>145</td>
</tr>
<tr>
<td>270</td>
<td>183</td>
</tr>
<tr>
<td>275</td>
<td>243</td>
</tr>
<tr>
<td>280</td>
<td>304</td>
</tr>
<tr>
<td>285</td>
<td>352</td>
</tr>
<tr>
<td>290</td>
<td>374</td>
</tr>
<tr>
<td>295</td>
<td>366</td>
</tr>
<tr>
<td>300</td>
<td>339</td>
</tr>
<tr>
<td>305</td>
<td>305</td>
</tr>
<tr>
<td>310</td>
<td>273</td>
</tr>
<tr>
<td>315</td>
<td>247</td>
</tr>
<tr>
<td>320</td>
<td>222</td>
</tr>
<tr>
<td>325</td>
<td>201</td>
</tr>
<tr>
<td>330</td>
<td>175</td>
</tr>
<tr>
<td>335</td>
<td>138</td>
</tr>
<tr>
<td>340</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>345</td>
<td>75.7</td>
</tr>
<tr>
<td>350</td>
<td>49.3</td>
</tr>
<tr>
<td>355</td>
<td>31.7</td>
</tr>
<tr>
<td>360</td>
<td>19.1</td>
</tr>
</tbody>
</table>

Note: Schmitt and Comes

H15. CH₃CH₂CH₂I (1-iodopropane)

Back to Index

CH₃CH₂CH₂I + hv → C₃H₇ + I(²P₃/₂)

(1)

CH₃CH₂CH₂I + hv → C₃H₇ + I*(²P₁/₂)

(2)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of 1-C₃H₇I, 1-iodopropane, has been measured over the wavelength range 205–335 nm by Roehl et al.⁴ for temperatures between 223 and 298 K. The continuous absorption spectrum peaks at 255 nm with evidence for another absorption band at wavelengths <205 nm. A VUV absorption cross section of 7 × 10⁻¹⁸ cm² molecule⁻¹ at 147 nm has been reported by Rebbert et al.³ The recommended room temperature cross sections for 1-C₃H₇I in Table 4H-19 are taken from Roehl et al.⁴

The absorption cross section near the peak increases with decreasing temperature. The cross sections in the long wavelength tail decrease with decreasing temperature. Roehl et al.⁴ parameterized the temperature dependence using the empirical expression

\[
\sigma(\lambda, T) = \sigma(298 \text{ K}) [1 + a₁(\lambda)(T−298) + a₂(\lambda)(T−298)²]
\]

The a₁(λ) and a₂(λ) parameters are included in Table 4H-19.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for 1-C₃H₇I is expected to be unity for wavelengths above the dissociation threshold. Uma and Das⁵,⁶ report quantum yields for I*(²P₁/₂) atom formation, Φ(I*), at several photolysis wavelengths to be 0.54 ± 0.02, 0.66 ± 002, 0.56 ± 0.02, and 0.35 ± 0.02 at 222, 266, 280, and ~305 nm, respectively. Brewer et al.¹ report Φ(I*) = 0.60 ± 0.02 at 248 nm. Kang et al.² report Φ(I*) = 0.20 at 304 nm. Quantum yields for I(²P₃/₂) atom formation, Φ(I), can be derived from Φ(I) = 1−Φ(I*). At 147 nm, Rebbert et al.³ report quantum yields for the overall processes 1-C₃H₇I + hv → C₃H₆ + H + I and 1-C₃H₇I + hv → CH₃ + C₂H₄ + I to be 0.38 and 0.47, respectively.
Table 4H-19. Recommended Absorption Cross Sections of C$_3$H$_7$I at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>1-C$_3$H$_7$I</th>
<th>2-C$_3$H$_7$I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$10^{20} \sigma$ (cm2)</td>
<td>$10^3 a_1$ (K$^{-1}$)</td>
</tr>
<tr>
<td>205</td>
<td>15.6</td>
<td>7.60</td>
</tr>
<tr>
<td>210</td>
<td>5.05</td>
<td>0.283</td>
</tr>
<tr>
<td>215</td>
<td>5.14</td>
<td>-1.49</td>
</tr>
<tr>
<td>220</td>
<td>6.84</td>
<td>-1.59</td>
</tr>
<tr>
<td>225</td>
<td>10.4</td>
<td>-0.891</td>
</tr>
<tr>
<td>230</td>
<td>17.7</td>
<td>-0.375</td>
</tr>
<tr>
<td>235</td>
<td>32.8</td>
<td>-0.311</td>
</tr>
<tr>
<td>240</td>
<td>58.1</td>
<td>-0.611</td>
</tr>
<tr>
<td>245</td>
<td>91.9</td>
<td>-0.849</td>
</tr>
<tr>
<td>250</td>
<td>124</td>
<td>-1.22</td>
</tr>
<tr>
<td>255</td>
<td>141</td>
<td>-1.55</td>
</tr>
<tr>
<td>260</td>
<td>136</td>
<td>-1.44</td>
</tr>
<tr>
<td>265</td>
<td>113</td>
<td>-1.02</td>
</tr>
<tr>
<td>270</td>
<td>82.2</td>
<td>-0.306</td>
</tr>
<tr>
<td>275</td>
<td>53.4</td>
<td>0.524</td>
</tr>
<tr>
<td>280</td>
<td>32.0</td>
<td>1.68</td>
</tr>
<tr>
<td>285</td>
<td>18.1</td>
<td>3.08</td>
</tr>
<tr>
<td>290</td>
<td>9.96</td>
<td>5.56</td>
</tr>
<tr>
<td>295</td>
<td>5.42</td>
<td>6.76</td>
</tr>
<tr>
<td>300</td>
<td>2.96</td>
<td>7.16</td>
</tr>
<tr>
<td>305</td>
<td>1.63</td>
<td>6.90</td>
</tr>
<tr>
<td>310</td>
<td>0.945</td>
<td>7.10</td>
</tr>
<tr>
<td>315</td>
<td>0.532</td>
<td>5.59</td>
</tr>
<tr>
<td>320</td>
<td>0.301</td>
<td>3.68</td>
</tr>
<tr>
<td>325</td>
<td>0.177</td>
<td>4.23</td>
</tr>
<tr>
<td>330</td>
<td>0.110</td>
<td>11.40</td>
</tr>
<tr>
<td>335</td>
<td>0.0627</td>
<td>15.76</td>
</tr>
<tr>
<td>340</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>345</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>350</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>360</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>365</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>370</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>375</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>380</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Note:
Roehl et al.4

H16. CH₃CHICH₃ (2-iodopropane)

- CH₃CHICH₃ + hv → C₂H₇ + I(2P_{1/2})
- CH₃CH₇ + I*(2P_{1/2})

(1)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of 2-C₃H₇I, 2-iodopropane, has been measured by Roehl et al.⁴ (223–298 K and 205–380 nm) and Phillips et al.² (298 K, 235–305 nm). Phillips et al.² also report an absorption spectrum of 2-C₃H₇I in a cyclohexane solution. The continuous absorption spectrum peaks at 260 nm with evidence for another absorption band at wavelengths ~205 nm. The gas-phase data reported by Phillips et al.² are larger by 30–70% over the entire absorption band than the data from Roehl et al.⁴. A room temperature cross section of 7.59 × 10⁻¹⁷ cm² molecule⁻¹ at 147 nm has been reported by Rebbert et al.⁵. The recommended room temperature values for 2-C₃H₇I in Table 4H-19 are taken from Roehl et al.⁴

The absorption cross section near the peak increases with decreasing temperature. The cross sections in the long-wavelength tail decrease with decreasing temperature. Roehl et al.⁴ parameterized the temperature dependence using the empirical expression

\[
\sigma(\lambda, T) = \sigma(298 \text{ K}) \left[1 + a_1(\lambda)(T-298) + a_2(\lambda)(T-298)^2 \right]
\]

The \(a_1(\lambda)\) and \(a_2(\lambda)\) parameters are included in Table 4H-19.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for 2-C₃H₇I is expected to be unity for wavelengths above the dissociation threshold. Uma and Das⁵ report quantum yields for I*(2P_{1/2}) atom formation, \(\Phi(I*)\), at several wavelengths to be 0.40 ± 0.02, 0.44 ± 0.03, and 0.19 ± 0.02 at 222, 266, and ~305 nm, respectively. Brewer et al.¹ report \(\Phi(I*) = 0.26 ± 0.02\) at 248 nm. Quantum yields for I(2P_{3/2}) atom formation, \(\Phi(I)\), can be derived from \(\Phi = 1 - \Phi(I*)\). At 147 nm, Rebbert et al.⁵ report quantum yields for the overall processes 2-C₃H₇I + hv → C₃H₆ + H + I and 2-C₃H₇I + hv → CH₃ + C₂H₄ + I to be 0.80 and 0.07.

H17. n-C₄H₉I (n-butyl iodide)

- n-C₄H₉I + hv → C₄H₈ + I(2P_{1/2})
- n-C₄H₈ + I*(2P_{1/2})

(1)

(2)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Absorption cross sections for n-C₄H₉I, n-butyl iodide, are not available.

Photolysis Quantum Yield and Product Studies: The quantum yield of n-C₄H₉I for UV photolysis is expected to be unity. Quantum yields for I*(2P_{1/2}) atom formation has been reported by Uma and Das¹⁴ to be 0.51 ± 0.02, 0.64 ± 0.03, 0.50 ± 0.03, and 0.30 ± 0.02 at 222, 266, 280, and ~305 nm, respectively. Brewer et al.¹ and Kang et al.² have reported quantum yields for I*(2P_{1/2}) of 0.53 ± 0.03 and = 0.14 at 248 nm and 304 nm, respectively.

4-369

H18. (CH$_3$)$_2$CHCH$_2$I (iso-butyl iodide)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Absorption cross sections for iso-C$_4$H$_8$I, iso-butyl iodide, are not available.

Photolysis Quantum Yield and Product Studies: The quantum yield of iso-C$_4$H$_8$I for UV photolysis is expected to be unity. The I($^3P_{1/2}$) atom quantum yield, $\Phi(I^3P_{1/2})$, has been shown to be wavelength dependent with lower yields at longer photolysis wavelengths. Uma and Das1 reported $\Phi(I^3P_{1/2})$ values of 0.71 ± 0.01, 0.56 ± 0.03, and 0.35 ± 0.02, at 266, 280, and ~305 nm, respectively. Brewer et al.1, however, reported a significantly lower value of $\Phi(I^3P_{1/2})$ at 248 nm, 0.20 ± 0.02.

H19. (CH$_3$)$_3$Cl (tert-butyl iodide)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of tert-C$_4$H$_8$I, tert-butyl iodide, at 323 K has been reported by Phillips et al.5 (230–310 nm). The spectrum is continuous and shows a single absorption band with a peak cross section of ~2.1 × 10$^{-18}$ cm2 molecule$^{-1}$ at ~268 nm. The recommended absorption cross sections in Table 4H-20 were taken from a figure given in Phillips et al.5 as reported in the Mainz spectral atlas.3

Photolysis Quantum Yield and Product Studies: Quantum yields for I atom formation in the photolysis of tert-C$_4$H$_8$I have been reported by Kim et al.4 to be $\Phi(I^3P_{1/2}) = 0.93$ and 0.92 at 277 and 304 nm, respectively. On the basis of this study a tert-C$_4$H$_8$I photolysis quantum yield of unity is recommended for wavelengths <310 nm. The I($^3P_{1/2}$) atom quantum yield, $\Phi(I^3P_{1/2})$, has been shown to be wavelength dependent with lower yields for photolysis at the longer wavelengths. Uma and Das5 reported values for $\Phi(I^3P_{1/2})$ of 0.33 ± 0.03, 0.20 ± 0.03, and 0.12 ± 0.03 at 222, 266, and ~305 nm, respectively. Gedanken2 reported $\Phi(I^3P_{1/2}) = 0.41 ± 0.10$ for 248 nm photolysis. Brewer et al.1 reported a much lower value, 0.03 ± 0.02, for photolysis at 248 nm in disagreement with the other studies.
Table 4H-20. Recommended Absorption Cross Sections of \((\text{CH}_3)_3\text{Cl}\) at 323 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>28.5</td>
</tr>
<tr>
<td>240</td>
<td>42.5</td>
</tr>
<tr>
<td>245</td>
<td>64.8</td>
</tr>
<tr>
<td>250</td>
<td>98.0</td>
</tr>
<tr>
<td>255</td>
<td>140</td>
</tr>
<tr>
<td>260</td>
<td>180</td>
</tr>
<tr>
<td>265</td>
<td>209</td>
</tr>
<tr>
<td>270</td>
<td>211</td>
</tr>
<tr>
<td>275</td>
<td>186</td>
</tr>
<tr>
<td>280</td>
<td>150</td>
</tr>
<tr>
<td>285</td>
<td>116</td>
</tr>
<tr>
<td>290</td>
<td>83.0</td>
</tr>
<tr>
<td>295</td>
<td>54.0</td>
</tr>
<tr>
<td>300</td>
<td>34.0</td>
</tr>
<tr>
<td>305</td>
<td>21.5</td>
</tr>
<tr>
<td>310</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Note:
Phillips et al.\(^5\)

(2) Gedanken, A. The magnetic circular dichroism of the \(A\) band in \(\text{CF}_3\text{I}, \text{C}_2\text{H}_5\text{I}\) and \(-\text{BuI}. *Chem. Phys. Lett. 1987, 137, 462-466.

H20. \(n\)-C\(_5\)H\(_{11}\)I (1-iodopentane)

\(n\)-C\(_5\)H\(_{11}\)I + hv \(\rightarrow\) C\(_5\)H\(_{11}\) + I(\(2P_{1/2}\)) (1)

\(\rightarrow\) C\(_5\)H\(_{11}\) + I(\(2P_{3/2}\)) (2)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Absorption cross sections for \(n\)-C\(_5\)H\(_{11}\)I, 1-iodopentane, are not available.

Photolysis Quantum Yield and Product Studies: By analogy with other alkyl iodides the photolysis quantum yield of \(n\)-C\(_5\)H\(_{11}\)I in the UV is expected to be unity. A quantum yield for I(\(^*\)(\(2P_{1/2}\)) atom formation in the photolysis of \(n\)-C\(_5\)H\(_{11}\)I at 222 nm, \(\Phi(I(2P_{1/2}))\) of 0.50 \(\pm\) 0.03 has been reported by Uma and Das.\(^1\)

H21. CF\(_3\)I (trifluoriodomethane)

CF\(_3\)I + hv \(\rightarrow\) CF\(_3\) + I(\(2P_{3/2}\)) 227 kJ mol\(^{-1}\) 527 nm (1)

\(\rightarrow\) CF\(_3\) + I(\(2P_{1/2}\)) 318 kJ mol\(^{-1}\) 376 nm (2)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)
Absorption Cross Sections: The UV absorption spectrum of CF₃I, trifluoriodomethane, has been reported in a number of studies as summarized in Table 4H-21. The spectrum is continuous between 180 and 400 nm with a strong band centered at 267 nm with a long wavelength tail and a strong band evident at wavelengths <200 nm. The agreement among the room temperature cross section values at wavelengths >200 nm is better than 20% near the absorption maximum. At wavelengths <255 nm and in the range 280–350 nm the agreement is better than 15%. Fahr et al.⁶ report the largest peak cross section and Rattigan et al.¹⁴ the smallest. The cross section data from Solomon et al.¹⁶ become increasingly greater than those of Rattigan et al.¹⁴ at the longer wavelengths. The cross section data from Limão-Vieira et al.¹³ lie between the data of Solomon et al.¹⁶ and Fahr et al.⁶ For wavelengths <230 nm and >310 nm the Limão-Vieira et al.¹³ data shows systematic deviations from the other studies. The recommended absorption cross sections in Table 4H-22 are taken from the data of Fahr et al.⁶ in the range 180–215 nm, the mean of the values reported by Brouwer and Troe,⁵ Solomon et al.¹⁶ and Fahr et al.⁶ in the range 220–230 nm, the mean of the values reported by Brouwer and Troe,⁵ Solomon et al.¹⁶, Fahr et al.⁶ and Rattigan et al.¹⁴ in the range 235–310 nm, the mean of the values reported by Solomon et al.¹⁶, Fahr et al.⁶ and Rattigan et al.¹⁴ in the range 315–350 nm, and the values from Rattigan et al.¹⁴ in the range 355–385 nm.

Table 4H-21. Summary of CF₃I Absorption Cross Section Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Temperature (K)</th>
<th>Wavelength (nm)</th>
<th>10⁻²⁰σ(267 nm) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roxlo and Mandl¹⁵</td>
<td>1980</td>
<td>298</td>
<td>170–230</td>
<td>~</td>
</tr>
<tr>
<td>Brouwer and Troe⁵</td>
<td>1981</td>
<td>298, 625, 1050</td>
<td>220–360</td>
<td>~60.5</td>
</tr>
<tr>
<td>Bagratishvili et al.³ and Abel et al.¹²</td>
<td>1985</td>
<td>~4000 *</td>
<td>450</td>
<td>~</td>
</tr>
<tr>
<td>Solomon et al.¹⁶</td>
<td>1994</td>
<td>200–298</td>
<td>216–370</td>
<td>64.4</td>
</tr>
<tr>
<td>Fahr et al.⁶</td>
<td>1995</td>
<td>218–333</td>
<td>160–350</td>
<td>~70</td>
</tr>
<tr>
<td>Limão-Vieira et al.¹³</td>
<td>2003</td>
<td>298</td>
<td>205–325</td>
<td>66.9</td>
</tr>
</tbody>
</table>

* CF₃I molecules excited by infrared laser absorption

Fahr et al.⁶ (160–350 nm) and Limão-Vieira et al.¹³ (113–181 nm) reported spectra with pronounced band structure and large absorption cross sections in the short wavelength region. The maximum absorption cross section reported was ~1 × 10⁻¹⁶ cm² molecule⁻¹ at ~160 nm. The spectrum reported by Roxlo and Mandl¹⁵ (170–230 nm) is in poor agreement with the results of Fahr et al.⁶ and Limão-Vieira et al.¹³.

Studies of the spectrum temperature dependence by Solomon et al.,¹⁶ Fahr et al.,⁶ and Rattigan et al.¹⁴ are in qualitative agreement with an increase in the peak absorption cross section and decrease in the long wavelength tail cross sections (>280 nm) with decreasing temperature. The ratio σ(298 K)/σ(333 K) at 267 nm is ~0.9 and the ratio σ(333 K)/σ(298 K) is ~1. Solomon et al.¹⁶ report a further increase of the peak cross section down to 200 K, whereas Fahr at al.⁶ report a slight decrease between 253 and 218 K. The ratio σ(298 K)/σ(240 K) increases from ~1.0 to ~1.9 between 280 and 340 nm and the ratio σ(333 K)/σ(298 K) is nearly constant at ~1.3. In the wavelength region 160–180 nm, Fahr et al.⁶ report a decrease in the absorption cross sections with decreasing temperature. Solomon et al.¹⁶ and Rattigan et al.¹⁴ parameterized the cross section temperature dependence using the empirical expression

\[\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 K) + B(\lambda)(T–298) \]

which reproduces the experimental data reasonably well. Fahr et al.⁶ parameterized their measured cross section wavelength dependence using the empirical expression

\[\sigma(\lambda) = \sigma_0(\lambda) \exp \left(-L/\lambda\right) \text{ for } \lambda > 320 \text{ nm} \]

and the temperature dependence at 300, 310, 320, 330, 340, and 350 nm using

\[\sigma(T) = \sigma_0(T) \exp(-0/T) \]

Their paper should be consulted for the optimized \(\sigma_0(\lambda) \), \(L \), \(\sigma_0(T) \) and 0 parameters. There are some systematic differences in the B(\(\lambda \)) coefficients reported by Solomon et al.¹⁶ and Rattigan et al.¹⁴. The B(\(\lambda \)) coefficients reported by Rattigan et al.¹⁴ are recommended and listed in Table 4H-22.
Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for CF$_3$I is expected to be unity for wavelengths above the dissociation threshold. CF$_3$I serves as a model system for the study of the photodynamics of I($^2P_{1/2}$) atom production following UV photolysis of iodine containing molecules. There are a number of studies reporting iodine spin-state quantum yields, $\Phi(I(^2P_{1/2}))$ and $\Phi(I(^2P_{3/2}))$. A summary of the quantum yield studies for photolysis in the wavelength range 248–308 nm is given in Table 4H-23. Quantum yields for I($^2P_{3/2}$) atom formation, $\Phi(I)$, can be derived from $\Phi(I) = 1 - \Phi(I^*)$.

Table 4H-22. Recommended Absorption Cross Sections of CF$_3$I at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^3 B$ (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>3.11</td>
<td>–</td>
</tr>
<tr>
<td>185</td>
<td>0.75</td>
<td>–</td>
</tr>
<tr>
<td>190</td>
<td>0.28</td>
<td>–</td>
</tr>
<tr>
<td>195</td>
<td>0.16</td>
<td>–</td>
</tr>
<tr>
<td>200</td>
<td>0.15</td>
<td>–</td>
</tr>
<tr>
<td>205</td>
<td>0.19</td>
<td>–</td>
</tr>
<tr>
<td>210</td>
<td>0.34</td>
<td>–</td>
</tr>
<tr>
<td>215</td>
<td>0.68</td>
<td>–</td>
</tr>
<tr>
<td>220</td>
<td>1.52</td>
<td>–</td>
</tr>
<tr>
<td>225</td>
<td>2.88</td>
<td>–</td>
</tr>
<tr>
<td>230</td>
<td>5.03</td>
<td>–</td>
</tr>
<tr>
<td>235</td>
<td>8.21</td>
<td>0.16</td>
</tr>
<tr>
<td>240</td>
<td>13.6</td>
<td>–0.16</td>
</tr>
<tr>
<td>245</td>
<td>21.8</td>
<td>–0.52</td>
</tr>
<tr>
<td>250</td>
<td>32.4</td>
<td>–0.86</td>
</tr>
<tr>
<td>255</td>
<td>45.2</td>
<td>–1.17</td>
</tr>
<tr>
<td>260</td>
<td>56.9</td>
<td>–1.37</td>
</tr>
<tr>
<td>265</td>
<td>63.4</td>
<td>–1.43</td>
</tr>
<tr>
<td>270</td>
<td>63.1</td>
<td>–1.30</td>
</tr>
<tr>
<td>275</td>
<td>56.1</td>
<td>–0.94</td>
</tr>
<tr>
<td>280</td>
<td>45.1</td>
<td>–0.62</td>
</tr>
<tr>
<td>285</td>
<td>33.4</td>
<td>0.55</td>
</tr>
<tr>
<td>290</td>
<td>22.7</td>
<td>1.65</td>
</tr>
<tr>
<td>295</td>
<td>14.3</td>
<td>2.98</td>
</tr>
<tr>
<td>300</td>
<td>8.6</td>
<td>4.22</td>
</tr>
<tr>
<td>305</td>
<td>5.06</td>
<td>5.61</td>
</tr>
<tr>
<td>310</td>
<td>2.82</td>
<td>6.84</td>
</tr>
<tr>
<td>315</td>
<td>1.62</td>
<td>7.68</td>
</tr>
<tr>
<td>320</td>
<td>0.905</td>
<td>8.27</td>
</tr>
<tr>
<td>325</td>
<td>0.485</td>
<td>8.74</td>
</tr>
<tr>
<td>330</td>
<td>0.262</td>
<td>9.25</td>
</tr>
<tr>
<td>335</td>
<td>0.142</td>
<td>9.92</td>
</tr>
<tr>
<td>340</td>
<td>0.0750</td>
<td>10.27</td>
</tr>
<tr>
<td>345</td>
<td>0.0407</td>
<td>11.71</td>
</tr>
<tr>
<td>350</td>
<td>0.0210</td>
<td>12.85</td>
</tr>
<tr>
<td>355</td>
<td>0.0115</td>
<td>13.26</td>
</tr>
<tr>
<td>360</td>
<td>0.0064</td>
<td>14.65</td>
</tr>
<tr>
<td>365</td>
<td>0.0036</td>
<td>14.63</td>
</tr>
<tr>
<td>370</td>
<td>0.002</td>
<td>15.49</td>
</tr>
<tr>
<td>375</td>
<td>0.0011</td>
<td>17.14</td>
</tr>
<tr>
<td>380</td>
<td>0.0007</td>
<td>17.66</td>
</tr>
<tr>
<td>385</td>
<td>0.0004</td>
<td>19.71</td>
</tr>
</tbody>
</table>

Note:
Absorption cross sections
180–215 nm: Fahr et al.6
220–230 nm: mean of data from Brouwer and Troe,5 Solomon et al.16 and Fahr et al.6
Temperature coefficients

$B(\lambda) = \text{Rattigan et al.}^{14} (243–333 \text{ K}); \ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298)$

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Wavelength (nm)</th>
<th>$\Phi(I^*(3P_{1/2}))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brewer et al. 4</td>
<td>1983</td>
<td>248</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td>Gedanken et al. 10</td>
<td>1987</td>
<td>248</td>
<td>0.87 ± 0.04</td>
</tr>
<tr>
<td>Felder7</td>
<td>1991</td>
<td>248</td>
<td>0.88</td>
</tr>
<tr>
<td>Furlan et al.9</td>
<td>1996</td>
<td>275</td>
<td>0.99 ± 0.01</td>
</tr>
<tr>
<td>Kim et al.13</td>
<td>1996</td>
<td>277</td>
<td>0.87</td>
</tr>
<tr>
<td>Furlan et al.9</td>
<td>1996</td>
<td>279</td>
<td>0.91 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>283</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>290</td>
<td>0.84 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>293</td>
<td>0.81 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>295</td>
<td>0.69 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>296</td>
<td>0.68 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>297</td>
<td>0.63 ± 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>298</td>
<td>0.61 ± 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>0.47 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>302</td>
<td>0.41 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>303</td>
<td>0.37 ± 0.01</td>
</tr>
<tr>
<td>Kang et al.11</td>
<td>1996</td>
<td>304</td>
<td>0.69</td>
</tr>
<tr>
<td>Felder8</td>
<td>1992</td>
<td>308</td>
<td>0.21</td>
</tr>
</tbody>
</table>

H22. **CF$_2$I$_2$ (difluorodiiodomethane)**

\[
\text{CF}_2\text{I}_2 + \text{hv} \rightarrow \text{CF}_2\text{I} + \text{I}(^2\text{P}_{3/2}) \quad (1)
\]

\[
\text{CF}_2\text{I} + \text{I}*(^2\text{P}_{1/2}) \quad (2)
\]

\[
\rightarrow \text{CF}_2 + \text{I}(^2\text{P}_{3/2}) + \text{I}(^2\text{P}_{3/2}) \quad 297 \text{ kJ mol}^{-1} \quad 402 \text{ nm} \quad (3)
\]

\[
\rightarrow \text{CF}_2 + \text{I}(^2\text{P}_{3/2}) + \text{I}*(^2\text{P}_{1/2}) \quad 388 \text{ kJ mol}^{-1} \quad 308 \text{ nm} \quad (4)
\]

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The room temperature UV absorption spectrum of CF$_2$I$_2$, difluorodiiodomethane, has been measured by Wannenmacher et al.\(^3\) and Baum et al.\(^1\) over the wavelength range 190–420 nm. The spectrum consists of a strong band that peaks at ~195 nm and several weaker overlapping absorption bands between 230 and 400 nm. The overlapping bands suggest transitions corresponding to the different dissociation processes. Numerical cross section data was obtained from the Mainz spectral atlas.\(^2\) The recommended absorption cross sections in Table 4H-24 are from Wannenmacher et al.\(^3\) and were normalized to a peak value of 2.929 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1} at 300 nm. The peak cross section was derived from five different spectra and has an uncertainty of ±16%.

Photolysis Quantum Yield and Product Studies: The photodissociation of CF$_2$I$_2$ has been studied at room temperature and wavelengths 248, 308, 337, and 351 nm by Wannenmacher et al.\(^3\) and Baum et al.\(^1\) These studies report a competition between the radical channel, CF$_2$I + I, and a three body dissociation channel to form CF$_2$ + I + I. The spin-orbit branching ratio, I*($^2\text{P}_{1/2}$)/ I($^2\text{P}_{3/2}$) was observed to increase at shorter photolysis wavelengths.
Table 4H-24. Recommended Absorption Cross Sections of CF$_2$I$_2$ at 294 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20}\sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>3163</td>
</tr>
<tr>
<td>195</td>
<td>4616</td>
</tr>
<tr>
<td>200</td>
<td>4070</td>
</tr>
<tr>
<td>205</td>
<td>2285</td>
</tr>
<tr>
<td>210</td>
<td>837.0</td>
</tr>
<tr>
<td>215</td>
<td>238.1</td>
</tr>
<tr>
<td>220</td>
<td>75.78</td>
</tr>
<tr>
<td>225</td>
<td>36.39</td>
</tr>
<tr>
<td>230</td>
<td>29.50</td>
</tr>
<tr>
<td>235</td>
<td>35.51</td>
</tr>
<tr>
<td>240</td>
<td>47.34</td>
</tr>
<tr>
<td>245</td>
<td>66.07</td>
</tr>
<tr>
<td>250</td>
<td>89.21</td>
</tr>
<tr>
<td>255</td>
<td>118.0</td>
</tr>
<tr>
<td>260</td>
<td>150.1</td>
</tr>
<tr>
<td>265</td>
<td>180.5</td>
</tr>
<tr>
<td>270</td>
<td>203.1</td>
</tr>
<tr>
<td>275</td>
<td>215.7</td>
</tr>
<tr>
<td>280</td>
<td>224.3</td>
</tr>
<tr>
<td>285</td>
<td>236.4</td>
</tr>
<tr>
<td>290</td>
<td>259.5</td>
</tr>
<tr>
<td>295</td>
<td>281.9</td>
</tr>
<tr>
<td>300</td>
<td>292.9</td>
</tr>
<tr>
<td>305</td>
<td>288.5</td>
</tr>
<tr>
<td>310</td>
<td>266.7</td>
</tr>
<tr>
<td>315</td>
<td>235.6</td>
</tr>
<tr>
<td>320</td>
<td>198.6</td>
</tr>
<tr>
<td>325</td>
<td>163.9</td>
</tr>
<tr>
<td>330</td>
<td>135.5</td>
</tr>
<tr>
<td>335</td>
<td>111.6</td>
</tr>
<tr>
<td>340</td>
<td>91.33</td>
</tr>
<tr>
<td>345</td>
<td>78.25</td>
</tr>
<tr>
<td>350</td>
<td>66.24</td>
</tr>
<tr>
<td>355</td>
<td>57.76</td>
</tr>
<tr>
<td>360</td>
<td>49.81</td>
</tr>
<tr>
<td>365</td>
<td>41.51</td>
</tr>
<tr>
<td>370</td>
<td>33.92</td>
</tr>
<tr>
<td>375</td>
<td>26.85</td>
</tr>
<tr>
<td>380</td>
<td>18.90</td>
</tr>
<tr>
<td>385</td>
<td>13.60</td>
</tr>
<tr>
<td>390</td>
<td>9.892</td>
</tr>
<tr>
<td>395</td>
<td>6.713</td>
</tr>
<tr>
<td>400</td>
<td>4.240</td>
</tr>
<tr>
<td>405</td>
<td>3.356</td>
</tr>
<tr>
<td>410</td>
<td>1.943</td>
</tr>
<tr>
<td>415</td>
<td>1.413</td>
</tr>
<tr>
<td>420</td>
<td>0.7066</td>
</tr>
</tbody>
</table>

Note:
Wannenmacher et al.,3 taken from the Mainz spectral atlas.2
H23. C$_2$F$_5$I (pentafluoriodoethane)

C$_2$F$_5$I + hν → C$_2$F$_5$ + I(3P$_{1/2}$)
207 kJ mol$^{-1}$
578 nm

C$_2$F$_5$I + hν → C$_2$F$_5$ + I(3P$_{3/2}$)
298 kJ mol$^{-1}$
402 nm

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of C$_2$F$_5$I, pentafluoriodoethane, was measured at 323 K by Zhang et al.4 over the wavelength range 220–320 nm. The continuous absorption band has a maximum at ~269 nm with a cross section of ~6.7×10^{-19} cm2 molecule$^{-1}$. Pence et al.3 report a slightly smaller cross section of 6.39×10^{-19} cm2 molecule$^{-1}$ at 268 nm and 295 K. The recommended values in Table 4H-25 were obtained from a figure in Zhang et al.4, as reported in the Mainz spectral atlas.2

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for C$_2$H$_5$I is expected to be unity for wavelengths above the dissociation threshold. Kavita and Das1 reported quantum yields for I(3P$_{1/2}$) atom formation, Φ(I*), at 266, 288, and ~305 nm to be 0.97 ± 0.03, 0.75 ± 0.03, and 0.83 ± 0.05, respectively. Quantum yields for I(3P$_{3/2}$) atom formation, Φ(I), can be derived from Φ(I) = 1−Φ(I*).

Table 4H-25. Recommended Absorption Cross Sections of C$_2$F$_5$I at 323 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>1.95</td>
</tr>
<tr>
<td>225</td>
<td>3.27</td>
</tr>
<tr>
<td>230</td>
<td>5.60</td>
</tr>
<tr>
<td>235</td>
<td>9.40</td>
</tr>
<tr>
<td>240</td>
<td>16.0</td>
</tr>
<tr>
<td>245</td>
<td>25.3</td>
</tr>
<tr>
<td>250</td>
<td>37.5</td>
</tr>
<tr>
<td>255</td>
<td>49.8</td>
</tr>
<tr>
<td>260</td>
<td>60.0</td>
</tr>
<tr>
<td>265</td>
<td>65.5</td>
</tr>
<tr>
<td>270</td>
<td>66.8</td>
</tr>
<tr>
<td>275</td>
<td>63.2</td>
</tr>
<tr>
<td>280</td>
<td>56.1</td>
</tr>
<tr>
<td>285</td>
<td>46.5</td>
</tr>
<tr>
<td>290</td>
<td>35.3</td>
</tr>
<tr>
<td>295</td>
<td>25.0</td>
</tr>
<tr>
<td>300</td>
<td>16.3</td>
</tr>
<tr>
<td>305</td>
<td>10.4</td>
</tr>
<tr>
<td>310</td>
<td>6.4</td>
</tr>
<tr>
<td>315</td>
<td>3.9</td>
</tr>
<tr>
<td>320</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Note:
Zhang et al.4, taken from the Mainz spectral atlas.2

H24. n-C_3F_7I (n-heptafluoropropyl iodide)

n-C_3F_7I + hv → C_3F_7 + I(2P_{3/2}) (1)
→ C_3F_7 + I*(2P_{1/2}) (2)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of n-C_3F_7I, n-heptafluoropropyl iodide, has been measured at room temperature by Koffend and Leone (265–341 nm) and Pence et al. (180–400 nm). Pence et al. report a plot (in arbitrary units) that shows an absorption band between ~220 and 340 nm with the maximum at ~268 nm. They report absolute absorption cross sections at 248, 268, and 308 nm. The data for 268 and 308 nm are in good agreement with the corresponding data reported by Koffend and Leone. The recommended absorption cross sections in Table 4H-26 include the value at 248 nm reported by Pence et al., the mean of the values from Pence et al. and Koffend and Leone at 268 nm, and values from Koffend and Leone for the wavelength range 270–340 nm (values obtained by interpolation and extrapolation).

Photolysis Quantum Yield and Product Studies: The quantum yield for n-C_3F_7I at wavelengths above the dissociation threshold is expected to be unity. Kavita and Das reported quantum yields for I*(2P_{1/2}) atom formation, Φ(I*), of 0.83 ± 0.02, 0.89 ± 0.03, and 0.90 ± 0.05 at 266, 288, and ~305 nm, respectively. They also report Φ(I*) = 0.83 ± 0.01, 0.80 ± 0.03, and 0.89 ± 0.02 for 2-C_3F_7I at 266, 288, and ~305 nm, respectively. Quantum yields for I(2P_{3/2}) atom formation, Φ(I), can be derived from Φ(I) = 1–Φ(I*).

Table 4H-26. Recommended Absorption Cross Sections of n-C_3F_7I at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^{20} σ (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>31.0</td>
</tr>
<tr>
<td>268</td>
<td>77.3</td>
</tr>
<tr>
<td>270</td>
<td>77.0</td>
</tr>
<tr>
<td>275</td>
<td>74.0</td>
</tr>
<tr>
<td>280</td>
<td>66.5</td>
</tr>
<tr>
<td>285</td>
<td>56.2</td>
</tr>
<tr>
<td>290</td>
<td>43.7</td>
</tr>
<tr>
<td>295</td>
<td>31.8</td>
</tr>
<tr>
<td>300</td>
<td>21.3</td>
</tr>
<tr>
<td>305</td>
<td>14.2</td>
</tr>
<tr>
<td>310</td>
<td>9.2</td>
</tr>
<tr>
<td>315</td>
<td>5.5</td>
</tr>
<tr>
<td>320</td>
<td>3.3</td>
</tr>
<tr>
<td>325</td>
<td>2.0</td>
</tr>
<tr>
<td>330</td>
<td>1.2</td>
</tr>
<tr>
<td>335</td>
<td>0.70</td>
</tr>
<tr>
<td>340</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Note:
248 nm: Pence et al.
268 nm: mean of data from Pence et al. and Koffend and Leone
270–340 nm: Koffend and Leone (interpolation and extrapolation)

H25. n-C6F13I (perfluorohexyl iodide)
\[
\begin{align*}
n-C_6F_{13}I + h\nu & \rightarrow C_6F_6 + I^3P_{1/2} \quad (1) \\
& \rightarrow C_6F_6 + I^3P_{3/2} \quad (2)
\end{align*}
\]
(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Absorption cross sections for n-C6F13I, perfluorohexyl iodide, are not available.

Photolysis Quantum Yield and Product Studies: The quantum yield for n-C6F13I at wavelengths above the dissociation threshold is expected to be unity. Kavita and Das\(^1\) report quantum yields for I\(^3P_{1/2}\) atom formation, \(\Phi(I^3)\), of 0.75 \pm 0.03, 0.80 \pm 0.03, and 0.87 \pm 0.02 at 266, 288, and \(\sim305\) nm, respectively. Quantum yields for I\(^3P_{3/2}\) atom formation, \(\Phi(I)\), can be derived from \(\Phi(I) = 1 - \Phi(I^3)\).

H26. n-C6F13I (perfluorohexyl iodide)
\[
\begin{align*}
n-C_6F_{13}I + h\nu & \rightarrow C_6F_6 + I^3P_{1/2} \quad (1) \\
& \rightarrow C_6F_6 + I^3P_{3/2} \quad (2)
\end{align*}
\]
(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Absorption cross sections for n-C6F13I, perfluorohexyl iodide, are not available.

Photolysis Quantum Yield and Product Studies: The quantum yield for n-C6F13I at wavelengths above the dissociation threshold is expected to be unity. Kavita and Das\(^1\) report quantum yields for I\(^3P_{1/2}\) atom formation, \(\Phi(I^3)\), of 0.82 \pm 0.02, 0.74 \pm 0.03, and 0.82 \pm 0.01 at 266, 288, and \(\sim305\) nm, respectively. Quantum yields for I\(^3P_{3/2}\) atom formation, \(\Phi(I)\), can be derived from \(\Phi(I) = 1 - \Phi(I^3)\).

H27. CH3ICl (chloroiodomethane)
\[
\begin{align*}
CH_3ICl + h\nu & \rightarrow CH_2Cl + I \quad 213 \text{ kJ mol}^{-1} \quad 562 \text{ nm} \quad (1) \\
& \rightarrow CH_2I + Cl \quad 327 \text{ kJ mol}^{-1} \quad 366 \text{ nm} \quad (2)
\end{align*}
\]
(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of CH3ICl, chloroiodomethane, at room temperature has been reported by Schmitt and Comes\(^4\) (205–330 nm), Kwok and Phillips\(^1,2\) (192–225 nm and 215–400 nm), Roehl et al.\(^5\) (205–355 nm), and Rattigan et al.\(^3\) (235–390 nm). Kwok and Phillips also measured the CH3ICl spectrum in cyclohexane solution. Schmitt and Comes\(^5\) and Kwok and Phillips\(^1,2\) have only given their data as plots and are not considered further in this evaluation. Roehl et al.\(^5\) (223–298 K) and Rattigan et al.\(^3\) (243–333 K) have also reported cross section data over a range of temperatures. The room temperature data of Roehl et al. and Rattigan et al. are in good agreement with the values from Rattigan et al. being lower by \(\pm10\%\) between 240 and 345 nm. The recommended absorption cross sections in Table 4H-27 are from Roehl et al. for the wavelength range 205–230 nm, the mean of the values reported by Roehl et al. and Rattigan et al. for the range 235–355 nm, and from Rattigan et al.\(^3\) for the range 360–390 nm.

The cross section data from Roehl et al. and Rattigan et al. show an increase in absorption cross sections around the absorption peak (~250–285 nm) with decreasing temperature. An opposite effect was reported for wavelengths >285 nm. The peak cross section at ~250 K reported in the two studies agree to within 15%. Roehl et al. and Rattigan et al. parameterized the cross section temperature dependence using different empirical expressions

\[
\sigma(\lambda, T) = \sigma(298 \text{ K}) \left[1 + a_1(\lambda)(T-298) + a_2(\lambda)(T-298)^2 \right] \quad (\text{Roehl et al.})
\]
\[
\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298) \quad (\text{Rattigan et al.})
\]
Both expressions reproduce the experimental data well and the $a_1(\lambda)$, $a_2(\lambda)$, and $B(\lambda)$ coefficients are given in Table 4H-27.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for CH$_2$ICl is expected to be unity for wavelengths above the dissociation threshold. The quantum yield branching ratio $I^*(\Sigma^+(3P_{3/2}))/(I(\Sigma^+(3P_{3/2}) + I^*(\Sigma^+(3P_{1/2})))$ has been reported by Senapati et al.7 at 5 wavelengths to be 0.47 ± 0.02 at 222 nm, 0.51 ± 0.01 at 236 nm, 0.51 ± 0.02 at 266 nm, 0.55 ± 0.03 at 280 nm, and 0.38 ± 0.01 at 304 nm. The quantum yield branching ratio $Cl^*(\Sigma^+(3P_{3/2}))/(Cl(\Sigma^+(3P_{3/2}) + Cl^*(\Sigma^+(3P_{1/2})))$ was reported by Senapati and Das6 at 4 wavelengths to be 0.44 at 222 nm, 0.44 at 266 nm, 0.30 at 280 nm, and 0.22 at 304 nm.

Table 4H-27. Recommended Absorption Cross Sections of CH$_2$ICl at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm2)</th>
<th>(10^3 a_1) (K$^{-1}$)</th>
<th>(10^3 a_2) (K$^{-2}$)</th>
<th>(10^3 B) (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>132</td>
<td>−1.59</td>
<td>−3.83</td>
<td>−</td>
</tr>
<tr>
<td>210</td>
<td>42.1</td>
<td>8.47</td>
<td>3.76</td>
<td>−</td>
</tr>
<tr>
<td>215</td>
<td>11.1</td>
<td>6.12</td>
<td>4.30</td>
<td>−</td>
</tr>
<tr>
<td>220</td>
<td>7.50</td>
<td>0.232</td>
<td>0.129</td>
<td>−</td>
</tr>
<tr>
<td>225</td>
<td>9.76</td>
<td>−0.0938</td>
<td>0.660</td>
<td>−</td>
</tr>
<tr>
<td>230</td>
<td>14.9</td>
<td>−0.268</td>
<td>−1.4×10$^{-6}$</td>
<td>−</td>
</tr>
<tr>
<td>235</td>
<td>21.2</td>
<td>−0.512</td>
<td>−0.388</td>
<td>0.24</td>
</tr>
<tr>
<td>240</td>
<td>32.1</td>
<td>−0.793</td>
<td>−0.664</td>
<td>0.12</td>
</tr>
<tr>
<td>245</td>
<td>45.9</td>
<td>−0.929</td>
<td>−0.758</td>
<td>−0.02</td>
</tr>
<tr>
<td>250</td>
<td>63.3</td>
<td>−1.22</td>
<td>−1.13</td>
<td>−0.11</td>
</tr>
<tr>
<td>255</td>
<td>84.5</td>
<td>−1.25</td>
<td>−0.998</td>
<td>−0.28</td>
</tr>
<tr>
<td>260</td>
<td>106</td>
<td>−1.56</td>
<td>−1.14</td>
<td>−0.44</td>
</tr>
<tr>
<td>265</td>
<td>122</td>
<td>−1.05</td>
<td>−0.294</td>
<td>−0.55</td>
</tr>
<tr>
<td>270</td>
<td>128</td>
<td>−1.33</td>
<td>−0.593</td>
<td>−0.59</td>
</tr>
<tr>
<td>275</td>
<td>121</td>
<td>−1.07</td>
<td>−0.298</td>
<td>−0.47</td>
</tr>
<tr>
<td>280</td>
<td>104</td>
<td>−0.618</td>
<td>−0.309</td>
<td>−0.18</td>
</tr>
<tr>
<td>285</td>
<td>81.1</td>
<td>−0.326</td>
<td>−0.554</td>
<td>0.32</td>
</tr>
<tr>
<td>290</td>
<td>58.5</td>
<td>0.300</td>
<td>−0.711</td>
<td>0.99</td>
</tr>
<tr>
<td>295</td>
<td>39.9</td>
<td>1.55</td>
<td>−0.245</td>
<td>1.73</td>
</tr>
<tr>
<td>300</td>
<td>25.9</td>
<td>2.38</td>
<td>−0.0473</td>
<td>2.56</td>
</tr>
<tr>
<td>305</td>
<td>16.7</td>
<td>3.13</td>
<td>0.394</td>
<td>3.08</td>
</tr>
<tr>
<td>310</td>
<td>10.9</td>
<td>3.13</td>
<td>0.303</td>
<td>3.50</td>
</tr>
<tr>
<td>315</td>
<td>7.16</td>
<td>2.74</td>
<td>−0.317</td>
<td>3.56</td>
</tr>
<tr>
<td>320</td>
<td>4.79</td>
<td>2.44</td>
<td>−0.533</td>
<td>3.46</td>
</tr>
<tr>
<td>325</td>
<td>3.23</td>
<td>2.87</td>
<td>0.140</td>
<td>3.44</td>
</tr>
<tr>
<td>330</td>
<td>2.14</td>
<td>8.52</td>
<td>−4.21</td>
<td>3.72</td>
</tr>
<tr>
<td>335</td>
<td>1.40</td>
<td>2.02</td>
<td>−2.25</td>
<td>4.09</td>
</tr>
<tr>
<td>340</td>
<td>0.906</td>
<td>5.20</td>
<td>4.54</td>
<td>4.87</td>
</tr>
<tr>
<td>345</td>
<td>0.569</td>
<td>7.05</td>
<td>6.88</td>
<td>5.69</td>
</tr>
<tr>
<td>350</td>
<td>0.350</td>
<td>9.12</td>
<td>11.7</td>
<td>6.88</td>
</tr>
<tr>
<td>355</td>
<td>0.225</td>
<td>12.27</td>
<td>18.9</td>
<td>8.16</td>
</tr>
<tr>
<td>360</td>
<td>0.133</td>
<td>−</td>
<td>−</td>
<td>9.01</td>
</tr>
<tr>
<td>365</td>
<td>0.081</td>
<td>−</td>
<td>−</td>
<td>11.06</td>
</tr>
<tr>
<td>370</td>
<td>0.048</td>
<td>−</td>
<td>−</td>
<td>11.47</td>
</tr>
<tr>
<td>375</td>
<td>0.027</td>
<td>−</td>
<td>−</td>
<td>12.77</td>
</tr>
<tr>
<td>380</td>
<td>0.017</td>
<td>−</td>
<td>−</td>
<td>15.14</td>
</tr>
<tr>
<td>385</td>
<td>0.008</td>
<td>−</td>
<td>−</td>
<td>19.12</td>
</tr>
<tr>
<td>390</td>
<td>0.006</td>
<td>−</td>
<td>−</td>
<td>20.48</td>
</tr>
</tbody>
</table>

Note:
Absorption cross sections (σ)
205–230 nm: Roehl et al.4
235–355 nm: mean of data from Roehl et al.4 and Rattigan et al.3
360–390 nm: Rattigan et al.3
Temperature coefficients

\[a_1(\lambda) \text{ and } a_2(\lambda): \text{Roehl et al.}^4 (223–298 K); \sigma(\lambda, T) = \sigma(298 K) [1 + a_1(\lambda)(T–298)+ a_2(\lambda)(T–298)^2] \]

\[B(\lambda): \text{Rattigan et al.}^3 (243–333 K); \ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 K) + B(\lambda)(T–298) \]

H28. CH₂BrI (bromoiodomethane)

CH₂BrI + hv → CH₂Br + I
224 kJ mol⁻¹ 534 nm (1)

→ CH₂I + Br
274 kJ mol⁻¹ 437 nm (2)

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption cross sections of CH₂BrI, bromoiodomethane, have been measured at room temperature by Man et al.¹ (180–360 nm) and at 273, 298, and 348 K by Mössinger et al.² (215–390 nm). The spectrum exhibits two absorption bands with maxima near 210 and 267 nm that can be assigned to electronic transitions to repulsive states anti-bonding in C–Br and C–I, respectively. The results from the two studies are not in quantitative agreement. Mössinger et al. report room temperature absorption cross sections of 5.7 × 10⁻¹⁸ and 2.3 × 10⁻¹⁸ cm² molecule⁻¹ at 215 and 270 nm, whereas Man et al. give larger values of ~1 × 10⁻¹⁷ and 3.5 × 10⁻¹⁸ cm² molecule⁻¹ at these wavelengths (values extracted from a figure in their paper), respectively. The recommended room temperature cross sections in Table 4H-28 are taken from Mössinger et al. The absorption cross sections increase with decreasing temperature around the band maxima and decrease in the long wavelength tail, in the region 220–240 nm, and above 290 nm. Mössinger et al. parameterized the temperature dependence using the empirical relation

\[\ln \sigma(\lambda, T) = \ln \sigma(\lambda, 298 K) + B(\lambda)(T–298) \]

The B(\lambda) coefficients are listed in Table 4H-28 (an erroneous B value at 280 nm has been corrected).

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for wavelengths above the dissociation threshold is expected to be unity.
Table 4H-28. Recommended Absorption Cross Sections of CH₂BrI at 298 K and Temperature Coefficients

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm²)</th>
<th>$10^3 B$ (K⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td>567</td>
<td>-2.16</td>
</tr>
<tr>
<td>220</td>
<td>423</td>
<td>-0.12</td>
</tr>
<tr>
<td>225</td>
<td>269</td>
<td>1.34</td>
</tr>
<tr>
<td>230</td>
<td>155</td>
<td>2.06</td>
</tr>
<tr>
<td>235</td>
<td>97.9</td>
<td>2.05</td>
</tr>
<tr>
<td>240</td>
<td>80.9</td>
<td>1.01</td>
</tr>
<tr>
<td>245</td>
<td>93.7</td>
<td>0.00</td>
</tr>
<tr>
<td>250</td>
<td>125</td>
<td>-0.58</td>
</tr>
<tr>
<td>255</td>
<td>170</td>
<td>-1.16</td>
</tr>
<tr>
<td>260</td>
<td>207</td>
<td>-1.29</td>
</tr>
<tr>
<td>265</td>
<td>228</td>
<td>-1.45</td>
</tr>
<tr>
<td>270</td>
<td>229</td>
<td>-1.73</td>
</tr>
<tr>
<td>275</td>
<td>214</td>
<td>-1.22</td>
</tr>
<tr>
<td>280</td>
<td>184</td>
<td>-0.94</td>
</tr>
<tr>
<td>285</td>
<td>150</td>
<td>-0.53</td>
</tr>
<tr>
<td>290</td>
<td>110</td>
<td>0.10</td>
</tr>
<tr>
<td>295</td>
<td>82.5</td>
<td>0.63</td>
</tr>
<tr>
<td>300</td>
<td>60.6</td>
<td>1.03</td>
</tr>
<tr>
<td>305</td>
<td>42.9</td>
<td>1.13</td>
</tr>
<tr>
<td>310</td>
<td>31.4</td>
<td>1.41</td>
</tr>
<tr>
<td>315</td>
<td>23.1</td>
<td>1.52</td>
</tr>
<tr>
<td>320</td>
<td>16.8</td>
<td>1.71</td>
</tr>
<tr>
<td>325</td>
<td>11.5</td>
<td>2.36</td>
</tr>
<tr>
<td>330</td>
<td>8.02</td>
<td>2.99</td>
</tr>
<tr>
<td>335</td>
<td>5.52</td>
<td>3.89</td>
</tr>
<tr>
<td>340</td>
<td>3.50</td>
<td>4.79</td>
</tr>
<tr>
<td>345</td>
<td>2.24</td>
<td>5.74</td>
</tr>
<tr>
<td>350</td>
<td>1.41</td>
<td>6.73</td>
</tr>
<tr>
<td>355</td>
<td>0.817</td>
<td>9.47</td>
</tr>
<tr>
<td>360</td>
<td>0.498</td>
<td>11.5</td>
</tr>
<tr>
<td>365</td>
<td>0.303</td>
<td>11.6</td>
</tr>
<tr>
<td>370</td>
<td>0.165</td>
<td>14.3</td>
</tr>
<tr>
<td>375</td>
<td>0.098</td>
<td>17.4</td>
</tr>
<tr>
<td>380</td>
<td>0.070</td>
<td>–</td>
</tr>
<tr>
<td>385</td>
<td>0.039</td>
<td>–</td>
</tr>
<tr>
<td>390</td>
<td>0.025</td>
<td>–</td>
</tr>
</tbody>
</table>

Note:
Mössinger et al.²
B(λ) values valid for the range 273–348 K; ln $\sigma(\lambda, T) = \ln \sigma(\lambda, 298 \text{ K}) + B(\lambda)(T-298)$

H29. CF₂BrCF₂I (1,1,2,2-tetrafluoro-1,2-bromoiodoethane)

\[\text{CF}_2\text{BrCF}_2\text{I} \rightarrow \text{CF}_2\text{BrCF}_2 + \text{I} \]

\[\rightarrow \text{CF}_2\text{ICF}_2 + \text{Br} \]

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The absorption spectrum of CF₂BrCF₂I, 1,1,2,2-tetrafluoro-1,2-bromoiodoethane, has been measured at room temperature over the wavelength range 190–350 nm by Pence et al.¹ The absorption spectrum shows two distinct bands with a maxima near 268 nm that corresponds to excitation in the C–I bond and below 193 nm that corresponds to excitation in the C–Br bond. An absorption cross section of \(2.36 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1} \) at 193 nm was reported. The recommended cross sections in Table 4H-29 were taken from a figure in Pence et al.¹ and normalized to the quoted 193 nm cross section value.

Photolysis Quantum Yield and Product Studies: The quantum yield for CF₂BrCF₂I photolysis is assumed to be unity for wavelengths <350 nm. A quantum yield for Br atom formation in the excited \(\Psi P_{1/2} \) spin state of 0.07 ± 0.05 at 193 nm was reported by Pence et al.¹

Table 4H-29. Recommended Absorption Cross Sections of CF₂BrCF₂I at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>256</td>
</tr>
<tr>
<td>195</td>
<td>219</td>
</tr>
<tr>
<td>200</td>
<td>181</td>
</tr>
<tr>
<td>205</td>
<td>138</td>
</tr>
<tr>
<td>210</td>
<td>105</td>
</tr>
<tr>
<td>215</td>
<td>72.7</td>
</tr>
<tr>
<td>220</td>
<td>53.4</td>
</tr>
<tr>
<td>225</td>
<td>42.5</td>
</tr>
<tr>
<td>230</td>
<td>37.3</td>
</tr>
<tr>
<td>235</td>
<td>37.3</td>
</tr>
<tr>
<td>240</td>
<td>42.9</td>
</tr>
<tr>
<td>245</td>
<td>50.2</td>
</tr>
<tr>
<td>250</td>
<td>63.2</td>
</tr>
<tr>
<td>255</td>
<td>80.3</td>
</tr>
<tr>
<td>260</td>
<td>98.0</td>
</tr>
<tr>
<td>265</td>
<td>114</td>
</tr>
<tr>
<td>270</td>
<td>119</td>
</tr>
<tr>
<td>275</td>
<td>117</td>
</tr>
<tr>
<td>280</td>
<td>107</td>
</tr>
<tr>
<td>285</td>
<td>92.0</td>
</tr>
<tr>
<td>290</td>
<td>73.0</td>
</tr>
<tr>
<td>295</td>
<td>54.6</td>
</tr>
<tr>
<td>300</td>
<td>39.5</td>
</tr>
<tr>
<td>305</td>
<td>27.8</td>
</tr>
<tr>
<td>310</td>
<td>18.4</td>
</tr>
<tr>
<td>315</td>
<td>11.4</td>
</tr>
<tr>
<td>320</td>
<td>5.77</td>
</tr>
<tr>
<td>325</td>
<td>3.61</td>
</tr>
<tr>
<td>330</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Note: Pence et al.¹

4.11 Bibliography – IOx Photochemistry

Petersen, A. B.; Smith, I. W. M. Yields of Br*($^4P_{1/2}$) as a function of wavelength in the photodissociation of Br$_2$ and IBr. Chem. Phys. 1978, 30, 407-413.

SECTION 4I. SO\textsubscript{x} PHOTOCHEMISTRY

\subsection*{II. SO\textsubscript{2} (sulfur dioxide)}

\begin{equation}
\text{SO}_2 + \text{hv} \rightarrow \text{SO} + \text{O}_2(3\text{P}) \quad 552.3 \text{ kJ mol}^{-1} \quad 217 \text{ nm} \quad (1)
\end{equation}

(Nota: 10-6, Evaluated: 10-6)

\textit{Absorption Cross Sections:} The UV absorption spectrum of sulfur dioxide, SO\textsubscript{2}, is highly structured with a very weak absorption band in the 340–390 nm region, an absorption band in the 260–340 nm region, and a strong absorption band extending from 180 to 235 nm. For the wavelength region commonly used for atmospheric monitoring, 300–324 nm, there are numerous reports of room temperature absorption cross sections. Manatt and Lane4 have compiled and evaluated SO\textsubscript{2} cross section measurements prior to 1993 that cover the wavelength range 106–403 nm. Since 1993 there have been additional studies including Bogumil et al.1 (239–395 nm), Feng et al.3 (7.7–248 nm), Hermans et al.5 (227–416 nm), Prahald and Kumar10 (188–219 nm), Rufus et al.11 (220–325 nm), Sprague and Joens12 (352–396 nm), Vattulainen et al.14 (250–333 nm), Vattulainen et al.14 (195–350 nm), and Wu et al.15 (170–297 nm). The temperature dependence of the absorption spectrum has been measured by McGee and Burris9 (295 and 210 K), Bogumil et al.1 (203–293 K), Hicks6 (199–300 K), Hermans et al.5 (298–358 K), Leroy7 (218–296 K), Prahald and Kumar10 (220–300 K), Vattulainen et al.14 (293–1073 K), and Wu et al.15 (200–400 K). Absorption cross sections are not recommended due to the highly structured nature of the spectrum and should be obtained from the original literature.

\textit{Photolysis Quantum Yield and Product Studies:} The atmospheric photochemistry of SO\textsubscript{2} has been reviewed by Heicklen et al.4 and Calvert and Stockwell.2 Photo-oxidation at \(\lambda > \sim 300 \text{ nm} \) by way of the electronically excited states of SO\textsubscript{2} appears to be relatively unimportant.

4-389

II. SO₃ (sulfur trioxide)

Absorption Cross Sections: The VUV/UV absorption spectrum of sulfur trioxide, SO₃, is continuous between 140 and 330 nm with weak vibrational band structure superimposed between 222 and 285 nm. Absorption cross sections have been reported by Leroy et al.¹ (240–264 nm), Burkholder and McKeen¹ (196–330 nm), and Hintze et al.² (140–194 nm). The cross section values are in good agreement in the regions of overlap and the recommended cross sections between 180 and 330 nm in Table 4I-1 are taken from Burkholder et al.¹ and Hintze et al.²

Photolysis Quantum Yield and Product Studies: No recommendation.

Table 4I-1. Recommended Absorption Cross Sections of SO₃ at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>114</td>
<td>220</td>
<td>19.1</td>
<td>256</td>
<td>1.16</td>
<td>296</td>
<td>0.0574</td>
</tr>
<tr>
<td>182</td>
<td>108</td>
<td>218</td>
<td>23.3</td>
<td>258</td>
<td>1</td>
<td>298</td>
<td>0.0496</td>
</tr>
<tr>
<td>184</td>
<td>102</td>
<td>220</td>
<td>19.1</td>
<td>260</td>
<td>0.867</td>
<td>300</td>
<td>0.0424</td>
</tr>
<tr>
<td>186</td>
<td>97.3</td>
<td>222</td>
<td>15.6</td>
<td>262</td>
<td>0.75</td>
<td>302</td>
<td>0.0361</td>
</tr>
<tr>
<td>188</td>
<td>91.4</td>
<td>224</td>
<td>12.8</td>
<td>264</td>
<td>0.648</td>
<td>304</td>
<td>0.0308</td>
</tr>
<tr>
<td>190</td>
<td>87.8</td>
<td>226</td>
<td>10.6</td>
<td>266</td>
<td>0.559</td>
<td>306</td>
<td>0.0263</td>
</tr>
<tr>
<td>192</td>
<td>85 *</td>
<td>228</td>
<td>8.88</td>
<td>268</td>
<td>0.482</td>
<td>308</td>
<td>0.0224</td>
</tr>
<tr>
<td>194</td>
<td>82 *</td>
<td>230</td>
<td>7.49</td>
<td>270</td>
<td>0.416</td>
<td>310</td>
<td>0.0192</td>
</tr>
<tr>
<td>196</td>
<td>79.4</td>
<td>232</td>
<td>6.51</td>
<td>272</td>
<td>0.358</td>
<td>312</td>
<td>0.0163</td>
</tr>
<tr>
<td>198</td>
<td>76.8</td>
<td>234</td>
<td>5.62</td>
<td>274</td>
<td>0.308</td>
<td>314</td>
<td>0.014</td>
</tr>
<tr>
<td>200</td>
<td>73.2</td>
<td>236</td>
<td>4.87</td>
<td>276</td>
<td>0.265</td>
<td>316</td>
<td>0.0119</td>
</tr>
<tr>
<td>202</td>
<td>69.1</td>
<td>238</td>
<td>4.24</td>
<td>278</td>
<td>0.228</td>
<td>318</td>
<td>0.00976</td>
</tr>
<tr>
<td>204</td>
<td>64.5</td>
<td>240</td>
<td>3.69</td>
<td>280</td>
<td>0.195</td>
<td>320</td>
<td>0.00809</td>
</tr>
<tr>
<td>206</td>
<td>58.8</td>
<td>242</td>
<td>3.21</td>
<td>282</td>
<td>0.167</td>
<td>322</td>
<td>0.00693</td>
</tr>
<tr>
<td>208</td>
<td>52.6</td>
<td>244</td>
<td>2.79</td>
<td>284</td>
<td>0.143</td>
<td>324</td>
<td>0.0059</td>
</tr>
<tr>
<td>210</td>
<td>46.4</td>
<td>246</td>
<td>2.41</td>
<td>286</td>
<td>0.123</td>
<td>326</td>
<td>0.00502</td>
</tr>
<tr>
<td>212</td>
<td>40</td>
<td>248</td>
<td>2.09</td>
<td>288</td>
<td>0.106</td>
<td>328</td>
<td>0.00427</td>
</tr>
<tr>
<td>214</td>
<td>33.9</td>
<td>250</td>
<td>1.8</td>
<td>290</td>
<td>0.0907</td>
<td>330</td>
<td>0.00363</td>
</tr>
<tr>
<td>216</td>
<td>28.3</td>
<td>252</td>
<td>1.56</td>
<td>292</td>
<td>0.0774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>23.3</td>
<td>254</td>
<td>1.34</td>
<td>294</td>
<td>0.0664</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
140–190 nm: Hintze et al.²
* 192–194 nm: Values adjusted for smooth interpolation.
196–330 nm: Burkholder et al.¹

I3. H$_2$S (hydrogen sulfide)

\[\text{H}_2\text{S} + \text{hv} \rightarrow \text{H}_2 + \text{S}(^3\text{P}) \]
\[297.5 \text{ kJ mol}^{-1} \]
\[401.7 \text{ nm} \]

(Recommendation: 02-25, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of hydrogen sulfide, H$_2$S, is weak at wavelengths >250 nm. H$_2$S has a strong absorption band with diffuse structure centered near 200 nm and a broad VUV spectrum. The H$_2$S absorption cross section at 184.9 nm has been measured by Wine et al.\(^3\) to be 3.82×10^{-18} cm2 molecule$^{-1}$ and at 121.6 nm by Watanabe and Jursa\(^2\) and Vatsa and Volpp\(^1\) to be 2.65×10^{-17} cm2 molecule$^{-1}$ (average value). The recommended absorption cross sections in Table 4I-2 are taken from Wu and Chen.\(^4\) Note that the values given here do not reproduce the full detail of the diffuse band structure.

Photolysis Quantum Yield and Product Studies: Photolysis is a minor atmospheric loss process for H$_2$S throughout the troposphere and stratosphere.

Table 4I-2. Recommended Absorption Cross Sections of H$_2$S at 298 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2 molecule$^{-1}$)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2 molecule$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>189</td>
<td>216</td>
<td>187</td>
</tr>
<tr>
<td>182</td>
<td>242</td>
<td>218</td>
<td>155</td>
</tr>
<tr>
<td>184</td>
<td>302</td>
<td>220</td>
<td>129</td>
</tr>
<tr>
<td>186</td>
<td>382</td>
<td>222</td>
<td>106</td>
</tr>
<tr>
<td>188</td>
<td>452</td>
<td>224</td>
<td>86.4</td>
</tr>
<tr>
<td>190</td>
<td>534</td>
<td>226</td>
<td>69.6</td>
</tr>
<tr>
<td>192</td>
<td>616</td>
<td>228</td>
<td>55.3</td>
</tr>
<tr>
<td>194</td>
<td>636</td>
<td>230</td>
<td>43.2</td>
</tr>
<tr>
<td>196</td>
<td>724</td>
<td>232</td>
<td>33.3</td>
</tr>
<tr>
<td>198</td>
<td>667</td>
<td>234</td>
<td>25.5</td>
</tr>
<tr>
<td>200</td>
<td>670</td>
<td>236</td>
<td>19.3</td>
</tr>
<tr>
<td>202</td>
<td>623</td>
<td>238</td>
<td>14.3</td>
</tr>
<tr>
<td>204</td>
<td>512</td>
<td>240</td>
<td>10.4</td>
</tr>
<tr>
<td>206</td>
<td>423</td>
<td>242</td>
<td>7.55</td>
</tr>
<tr>
<td>208</td>
<td>359</td>
<td>244</td>
<td>5.38</td>
</tr>
<tr>
<td>210</td>
<td>307</td>
<td>246</td>
<td>3.75</td>
</tr>
<tr>
<td>212</td>
<td>260</td>
<td>248</td>
<td>2.55</td>
</tr>
<tr>
<td>214</td>
<td>223</td>
<td>250</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Note:
Wu and Chen\(^4\)

I4. H$_2$SO$_4$ (sulfuric acid)

\[\text{H}_2\text{SO}_4 + \text{hv} \rightarrow \text{OH} + \text{HSO}_3 \]
\[397.1 \text{ kJ mol}^{-1} \]
\[301 \text{ nm} \]

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The gas–phase absorption spectrum of sulfuric acid, H$_2$SO$_4$, was reported by Burkholder et al.\(^1\) (195–330 nm) at 473 K, using diode array spectroscopy, to have cross sections $<1 \times 10^{-21}$ cm2 molecule$^{-1}$. Hintze et al.\(^2\) studied the spectrum of H$_2$SO$_4$ vapor at 403–423 K and reported an upper limit
of 1×10^{18} cm2 molecule$^{-1}$ for the absorption cross sections between 140 and 170 nm and an upper limit of 1×10^{19} cm2 molecule$^{-1}$ in the wavelength range 170-195 nm.

Photolysis Quantum Yield and Product Studies: No recommendation.

I5. CS$_2$ (carbon disulfide)

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>0.017</td>
<td>276</td>
<td>0.020</td>
<td>277</td>
<td>0.027</td>
<td>278</td>
</tr>
<tr>
<td>323</td>
<td>5.180</td>
<td>324</td>
<td>3.517</td>
<td>325</td>
<td>8.628</td>
<td>326</td>
</tr>
<tr>
<td>347</td>
<td>0.328</td>
<td>348</td>
<td>0.109</td>
<td>349</td>
<td>0.368</td>
<td>350</td>
</tr>
<tr>
<td>356</td>
<td>0.052</td>
<td>357</td>
<td>0.133</td>
<td>358</td>
<td>0.055</td>
<td>359</td>
</tr>
<tr>
<td>365</td>
<td>0.012</td>
<td>366</td>
<td>0.036</td>
<td>367</td>
<td>0.023</td>
<td>368</td>
</tr>
</tbody>
</table>

Note: Hearn and Joens’ average values

Table I4I-3. Recommended Absorption Cross Sections of CS$_2$ at 298 K

Absorption Cross Sections: The UV absorption spectrum of carbon disulfide, CS$_2$, has two distinct highly structured bands with a strong absorption extending from 185 to 230 nm and a weaker band in the 290–380 nm range. The absorption cross sections have been measured in a number of studies (Cook and Ogawa 4 (60–96.5 nm, 298 K), Carnovale et al. 2 (31–248 nm, 298 K), Leroy et al. 8 (314–330 nm, 294 K), Leroy et al. 9 (314–330 nm, 197–288 K), Wine et al. 12 (280–360 nm, 298 K), Wu and Judge 13 (319–330 nm, 294 K), Dove et al. 5 (190–500 nm, 300–4000 K), Hearn and Joens’ 7 (296–334 nm, 300 K), Ahmed and Kumar 1 (188–340 nm, 300 K), Xu and Joens 14 (187–220 nm, 300 K), Chen and Wu 6 (180–228 nm, 295 K), Grosch et al. 6 (195–370 nm, 295–773 K), and Sunanda et al. 11 (105–226 nm, 298 K), which are in reasonable agreement. Due to the high degree of structure in the absorption spectrum, absorption cross sections at specific wavelengths should be obtained from the original literature. The absorption cross sections in Table I4I-3 were obtained by averaging the data from Hearn and Joens’ over 1 nm intervals.

Photolysis Quantum Yield and Product Studies: The photochemistry of CS$_2$ has been reviewed by Okabe 10 and discussed by Wine et al. 12 Wine et al. report that electronically excited CS$_2$ may react with O$_2$ to yield OCS.

I6. **OCS (carbonyl sulfide)**

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Sticking Coefficient</th>
<th>Wavelength (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCS + hv → CO + S(1P)</td>
<td>30.84 kJ mol⁻¹</td>
<td>388 nm</td>
<td>(1)</td>
</tr>
<tr>
<td>→ CO + S(1D)</td>
<td>418.4 kJ mol⁻¹</td>
<td>285 nm</td>
<td>(2)</td>
</tr>
<tr>
<td>→ CO + S(1S)</td>
<td>573.2 kJ mol⁻¹</td>
<td>209 nm</td>
<td>(3)</td>
</tr>
</tbody>
</table>

(Recommendation: 82-57, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of carbonyl sulfide, OCS, peaks near 222 nm with weak diffuse structure near the peak and in the long wavelength tail that is superimposed on a stronger continuum. The absorption cross sections of OCS have been measured at room temperature by Breckenridge and Taube¹ (200–260 nm), Rudolph and Inn² (200–270 nm), Leroy et al.³ (210–260 nm), Ferro and Ruben⁴ (210–250 nm), Wu⁵ (200–252 nm), and Molina et al.⁶ (185–300 nm). The reported peak absorption cross sections agree to within 15%. The absorption spectrum temperature dependence has been measured by Wu⁵ (170–370 K), Rudolph and Inn² (195 K), and Molina et al.⁶ (225 K). The OCS spectrum shows a decrease in absolute cross section with decreasing temperature at all wavelengths between 210–300 nm. The recommended cross sections in Table I6-4 are the values averaged over the wavelength intervals used in solar photoysis calculations taken from Molina et al.⁶

Photolysis Quantum Yield and Product Studies: Rudolph and Inn² measured the CO quantum yield following the photolysis of OCS at 220, 225.8, 230, 253.7 nm (Hg lines) and 214 nm (Zn line). The CO quantum yield was found to be independent of the photolysis wavelength, within the precision of the measurement, with an average value of 0.72 ± 0.08. In a more direct CO quantum yield study, Zhao et al.⁷ reported a CO quantum yield of >0.95 at 248 nm. A unity CO quantum yield is recommended over the wavelength range 220–254 nm.
Table 4I-4. Recommended Absorption Cross Sections of OCS at 225 and 295 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^20 σ (cm^2 molecule^-1)</th>
<th>λ (nm)</th>
<th>10^20 σ (cm^2 molecule^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>225 K</td>
<td></td>
<td>295 K</td>
</tr>
<tr>
<td>186.1</td>
<td>18.9</td>
<td>231.2</td>
<td>22.1</td>
</tr>
<tr>
<td>187.8</td>
<td>8.33</td>
<td>233.9</td>
<td>17.1</td>
</tr>
<tr>
<td>189.6</td>
<td>3.75</td>
<td>236.7</td>
<td>12.5</td>
</tr>
<tr>
<td>191.4</td>
<td>2.21</td>
<td>239.5</td>
<td>8.54</td>
</tr>
<tr>
<td>193.2</td>
<td>1.79</td>
<td>242.5</td>
<td>5.61</td>
</tr>
<tr>
<td>195.1</td>
<td>1.94</td>
<td>245.4</td>
<td>3.51</td>
</tr>
<tr>
<td>197.0</td>
<td>2.48</td>
<td>248.5</td>
<td>2.11</td>
</tr>
<tr>
<td>199.0</td>
<td>3.30</td>
<td>251.6</td>
<td>1.21</td>
</tr>
<tr>
<td>201.0</td>
<td>4.48</td>
<td>254.6</td>
<td>0.674</td>
</tr>
<tr>
<td>203.1</td>
<td>6.12</td>
<td>258.1</td>
<td>0.361</td>
</tr>
<tr>
<td>205.1</td>
<td>8.19</td>
<td>261.4</td>
<td>0.193</td>
</tr>
<tr>
<td>207.3</td>
<td>10.8</td>
<td>264.9</td>
<td>0.0941</td>
</tr>
<tr>
<td>209.4</td>
<td>14.1</td>
<td>268.5</td>
<td>0.0486</td>
</tr>
<tr>
<td>211.6</td>
<td>17.6</td>
<td>272.1</td>
<td>0.0248</td>
</tr>
<tr>
<td>213.9</td>
<td>21.8</td>
<td>275.9</td>
<td>0.0119</td>
</tr>
<tr>
<td>216.2</td>
<td>25.5</td>
<td>279.7</td>
<td>0.0584</td>
</tr>
<tr>
<td>218.6</td>
<td>28.2</td>
<td>283.7</td>
<td>0.0264</td>
</tr>
<tr>
<td>221.5</td>
<td>30.5</td>
<td>287.8</td>
<td>0.0012</td>
</tr>
<tr>
<td>223.5</td>
<td>31.9</td>
<td>292.0</td>
<td>0.0005</td>
</tr>
<tr>
<td>226.0</td>
<td>30.2</td>
<td>296.3</td>
<td>0.0002</td>
</tr>
<tr>
<td>228.6</td>
<td>26.8</td>
<td></td>
<td>23.7</td>
</tr>
</tbody>
</table>

Note:
Molina et al.\(^4\)

I7. SF\(_6\) (sulfur hexafluoride)

| SF\(_6\) + hv | SF\(_5\) + F | 391.6 kJ mol\(^{-1}\) | 305 nm | (1) |
| SF\(_4\) + F\(_2\) | 458.1 kJ mol\(^{-1}\) | 261 nm | (2) |

(Recommendation: 90-1, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Sulfur hexafluoride, SF\(_6\), has weak absorption at wavelengths $>$130 nm and its atmospheric photolysis occurs primarily at Lyman-α (121.567 nm). The absorption cross section at Lyman-α has been reported by Ravishankara et al.\(^1\) Bertrand et al.\(^1\) Hitchcock and Van der Weil\(^2\) and Zetzsch\(^4\) have reported cross sections near Lyman-α that are within a factor of two of the Ravishankara et al. value. The recommended Lyman-α cross section of 1.76 \times 10\(^{18}\) cm\(^2\) molecule\(^{-1}\) is taken from Ravishankara et al.\(^3\)

Photolysis Quantum Yield and Product Studies: No recommendation.

I8. SF$_3$CF$_3$ (trifluoromethyl sulfur pentafluoride)

SF$_3$CF$_3$ + hv → SF$_2$ + CF$_3$ 347.3 kJ mol$^{-1}$ 344 nm (1)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: Trifluoromethyl sulfur pentafluoride, SF$_3$CF$_3$, does not absorb significantly at wavelengths < 160 nm. The VUV absorption cross sections have been measured in several studies,$^{1-5}$ and photodissociation at Lyman-α (121.6 nm) accounts for the majority of the SF$_3$CF$_3$ atmospheric photolysis rate. Chim et al.1 reported σ(121.6 nm) = 1.3 x 10$^{-21}$ cm2 molecule$^{-1}$. The absorption cross sections reported by Takahashi et al.3 and Limão-Vieira et al.3,4 are significantly smaller, but agree to within 20% with each other. An average of the Takahashi et al. and Limão-Vieira et al. cross section values, 7.1 x 10$^{-18}$ cm2 molecule$^{-1}$, is recommended.

Photolysis Quantum Yield and Product Studies: No recommendation.

I9. SO$_2$F$_2$ (sulfuryl fluoride)

SO$_2$F$_2$ + hv → SO$_2$ + F 452.7 kJ mol$^{-1}$ 264 nm (1)

SO$_2$F$_2$ + hv → SO$_2$ + F$_2$ 462.3 kJ mol$^{-1}$ 258 nm (2)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV and VUV absorption spectrum of sulfuryl fluoride, SO$_2$F$_2$, has been measured at room temperature by Pradinyor et al.2 over the wavelength range 120–210 nm and by Papadimitriou et al.4 at 184.9, 193, and 213.9 nm, Table 4I-5. The agreement between these two studies is ~10% at 184.9 nm, but large deviations exist at longer wavelengths. Due to the large discrepancy between these studies at wavelengths > 185 nm no cross section recommendation is given.

Photolysis Quantum Yield and Product Studies: Papadimitriou et al.4 reported the photodissociation quantum yield of SO$_2$F$_2$ at 193 nm to be <0.02. This upper limit is recommended for wavelengths >193 nm. No photolysis product studies are currently available.

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>184.9</td>
<td>0.717</td>
</tr>
<tr>
<td>193</td>
<td>0.40</td>
</tr>
<tr>
<td>213.9</td>
<td>0.0208</td>
</tr>
</tbody>
</table>

Note: Papadimitriou et al.4

Bibliography – SO\textsubscript{x} Photochemistry

Burkholder, J. B.; Mills, M.; McKeen, S. Upper limit for the UV absorption cross sections of H\textsubscript{2}SO\textsubscript{4}. *Geophys. Res. Lett.* 2000, 27, 2493-2496.

Leroy, B.; Rigaud, P.; Jourdain, J. L.; Le Bras, G. Spectres d'absorption dans le proche ultraviolet de CS\textsubscript{2} et SO\textsubscript{2} entre 200 et 300 K. *Moon Planets* 1983, 29, 177-183.

Zhao, Z.; Stickel, R. E.; Wine, P. H. Quantum yield for carbon monoxide production in the
Zet

Xu, H.; Joens, J. A. CS

Wu, C. Y. R.; Judge, D. L. SO

Temperature

Wine, P. H.; Kreutter, N. M.; Gump, C. A.; Ravishankara, A. R. Kinetics of OH reactions with the atmospheric
Wine, P. H.; Chameides, J. Ph

SECTION 4J. METAL PHOTOCHEMISTRY

J1. NaOH (sodium hydroxide)

NaOH + hv → Na(2S) + OH \(345.6 \text{ kJ mol}^{-1}\) 346 nm (1)
→ NaO + H \(518.8 \text{ kJ mol}^{-1}\) 230 nm (2)
→ Na(2P) + OH \(548.1 \text{ kJ mol}^{-1}\) 218 nm (3)

(Recommendation: 10^-6, Note: 10^-6, Evaluated: 10^-6)

Absorption Cross Sections: The spectrum of NaOH, sodium hydroxide, has been reported by Rowland and Makide \(^2\) (200–400 nm) and Self and Plane \(^3\) (193–395 nm). Rowland and Makide inferred absorption cross section values and the average solar photodissociation rate from the flame measurements of Daidoji. \(^1\) Self and Plane \(^3\) used laser photofragment spectroscopy to measure absorption cross sections at 200 and 300 K from the production of Na atoms. The reported cross sections at the lower temperature are systematically smaller at all wavelengths, but fall within the limits of the measurement precision for the room temperature values. The results from the Rowland and Makide \(^2\) and Self and Plane \(^3\) studies are in reasonable agreement. The recommended cross sections in Table 4J-1 are taken from Self and Plane. \(^3\)

Photolysis Quantum Yield and Product Studies: The quantum yield for photodissociation at wavelengths <346 nm is expected to be unity.

Table 4J-1. Recommended Absorption Cross Sections of NaOH at 298 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>193.4</td>
<td>551</td>
</tr>
<tr>
<td>205.7</td>
<td>867</td>
</tr>
<tr>
<td>205.9</td>
<td>563</td>
</tr>
<tr>
<td>210.3</td>
<td>185</td>
</tr>
<tr>
<td>216.3</td>
<td>489</td>
</tr>
<tr>
<td>218.7</td>
<td>696</td>
</tr>
<tr>
<td>225.2</td>
<td>1430</td>
</tr>
<tr>
<td>230.6</td>
<td>1820</td>
</tr>
<tr>
<td>234.0</td>
<td>1680</td>
</tr>
<tr>
<td>248.4</td>
<td>173</td>
</tr>
<tr>
<td>254.8</td>
<td>115</td>
</tr>
<tr>
<td>265.9</td>
<td>48</td>
</tr>
<tr>
<td>268.3</td>
<td>41.8</td>
</tr>
<tr>
<td>277.0</td>
<td>19.1</td>
</tr>
<tr>
<td>285.0</td>
<td>7.1</td>
</tr>
<tr>
<td>291.8</td>
<td>43.8</td>
</tr>
<tr>
<td>313.0</td>
<td>585</td>
</tr>
<tr>
<td>319.6</td>
<td>510</td>
</tr>
<tr>
<td>353.4</td>
<td>53.9</td>
</tr>
<tr>
<td>354.6</td>
<td>57</td>
</tr>
<tr>
<td>359.8</td>
<td>41.4</td>
</tr>
<tr>
<td>395.2</td>
<td>51.2</td>
</tr>
</tbody>
</table>

Note:
Self and Plane \(^3\) reported negative values are not included

J2. NaCl (sodium chloride)

\[\text{NaCl} + h\nu \rightarrow \text{Na} + \text{Cl} \]

410 kJ mol\(^{-1}\) 292 nm \((1)\)

(Recommendation: 87-41; Note: 10-6; Evaluated: 10-6)

Absorption Cross Sections: There are several studies of the UV absorption spectra of NaCl, sodium chloride vapor. For a review of work prior to 1982, which was carried out at high temperatures, see Rowland and Rogers. The study of Davidovitz and Brodhead is particularly noteworthy. They report a NaCl absorption spectrum over the wavelength range 200–300 nm for temperatures between 1123–1223 K with a cross section of \((3.5 \pm 0.3) \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}\) at 238 nm. The recommended cross sections in Table 4J-2 are taken from the work of Silver et al., who measured a spectrum of gas-phase NaCl at room temperature over the wavelength range 189–360 nm by directly monitoring Na atoms produced in the photolysis of NaCl.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for NaCl is expected to be unity for absorption above the dissociation threshold.

Table 4J-2. Recommended Absorption Cross Sections of NaCl at 300 K

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{20} \sigma) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>189.7</td>
<td>612</td>
</tr>
<tr>
<td>193.4</td>
<td>556</td>
</tr>
<tr>
<td>203.1</td>
<td>148</td>
</tr>
<tr>
<td>205.3</td>
<td>90.6</td>
</tr>
<tr>
<td>205.9</td>
<td>89.6</td>
</tr>
<tr>
<td>210.3</td>
<td>73.6</td>
</tr>
<tr>
<td>216.3</td>
<td>151</td>
</tr>
<tr>
<td>218.7</td>
<td>46.3</td>
</tr>
<tr>
<td>225.2</td>
<td>146</td>
</tr>
<tr>
<td>230.4</td>
<td>512</td>
</tr>
<tr>
<td>231.2</td>
<td>947</td>
</tr>
<tr>
<td>234.0</td>
<td>1300</td>
</tr>
<tr>
<td>237.6</td>
<td>638</td>
</tr>
<tr>
<td>241.4</td>
<td>674</td>
</tr>
<tr>
<td>248.4</td>
<td>129</td>
</tr>
<tr>
<td>251.6</td>
<td>251</td>
</tr>
<tr>
<td>254.8</td>
<td>424</td>
</tr>
<tr>
<td>260.2</td>
<td>433</td>
</tr>
<tr>
<td>268.3</td>
<td>174</td>
</tr>
<tr>
<td>277.0</td>
<td>40</td>
</tr>
<tr>
<td>291.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Note: Silver et al.

J3. NaO (sodium oxide)

\[\text{NaO} + h\nu \rightarrow \text{Na} + \text{O} \]

266.5 kJ mol\(^{-1}\) 449 nm \((1)\)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of NaO, sodium oxide, has been reported by Self and Plane at 200 and 300 K at wavelengths between 193 and 423 nm. Absorption cross sections were determined using pulsed laser photolysis of NaO combined with detection of Na atoms using laser induced fluorescence. A systematic decrease in absorption cross section at lower temperature was reported for all
wavelengths included in their study. The recommended absorption cross sections in Table 4J-3 are taken from Self and Plane, which is the only study available.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for NaO is expected to be unity for absorption above the dissociation threshold.

Table 4J-3. Recommended Absorption Cross Sections of NaO at 200 and 300 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10^20 σ (cm²)</th>
<th>10^20 σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 K</td>
<td>200 K</td>
</tr>
<tr>
<td>193.4</td>
<td>501</td>
<td>–</td>
</tr>
<tr>
<td>216.3</td>
<td>1490</td>
<td>515</td>
</tr>
<tr>
<td>225.2</td>
<td>1100</td>
<td>–</td>
</tr>
<tr>
<td>231.2</td>
<td>1170</td>
<td>353</td>
</tr>
<tr>
<td>248.4</td>
<td>206</td>
<td>93.7</td>
</tr>
<tr>
<td>265.9</td>
<td>180</td>
<td>–</td>
</tr>
<tr>
<td>268.3</td>
<td>160</td>
<td>24.6</td>
</tr>
<tr>
<td>277.0</td>
<td>46.3</td>
<td>–</td>
</tr>
<tr>
<td>291.8</td>
<td>102</td>
<td>95.5</td>
</tr>
<tr>
<td>313.0</td>
<td>1250</td>
<td>–</td>
</tr>
<tr>
<td>319.6</td>
<td>1070</td>
<td>703</td>
</tr>
<tr>
<td>353.4</td>
<td>276</td>
<td>119</td>
</tr>
<tr>
<td>354.6</td>
<td>280</td>
<td>–</td>
</tr>
<tr>
<td>359.8</td>
<td>174</td>
<td>–</td>
</tr>
<tr>
<td>395.2</td>
<td>244</td>
<td>155</td>
</tr>
<tr>
<td>423.0</td>
<td>52.2</td>
<td>–</td>
</tr>
</tbody>
</table>

Note:
Self and Plane\(^1\)

J4. **NaO\(_2\) (sodium superoxide)**

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Reaction</th>
<th>E [kJ mol(^-1)]</th>
<th>λ [nm]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaO(_2) + hν</td>
<td>→ Na + O(_2) ((^3)Σ)</td>
<td>155</td>
<td>771</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>→ Na + O(_2) ((^1)Δ)</td>
<td>249.4</td>
<td>480</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>→ NaO + O</td>
<td>387.4</td>
<td>309</td>
<td>(3)</td>
</tr>
</tbody>
</table>

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of NaO\(_2\), sodium superoxide, has been reported by Rajasekhar et al.\(^1\) at 193, 248, and 308 nm (230 K) and Self and Plane\(^2\) at wavelengths between 193 and 423 nm (200, 230, and 300 K). Absorption cross sections were determined using pulsed laser photolysis of NaO\(_2\) combined with detection of Na atoms using laser induced fluorescence. The results from these studies are in good agreement. At most wavelengths, the temperature dependence of the NaO\(_2\) absorption cross sections falls within the estimated measurement uncertainty. The recommended absorption cross sections in Table 4J-4 are taken from Self and Plane.\(^2\)

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for NaO\(_2\) is expected to be unity for absorption above the dissociation threshold.
Table 4J-4. Recommended Absorption Cross Sections of NaO₂ at 300 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>193.4</td>
<td>383</td>
</tr>
<tr>
<td>205.9</td>
<td>146</td>
</tr>
<tr>
<td>210.3</td>
<td>542</td>
</tr>
<tr>
<td>216.3</td>
<td>511</td>
</tr>
<tr>
<td>225.2</td>
<td>235</td>
</tr>
<tr>
<td>230.8</td>
<td>935</td>
</tr>
<tr>
<td>248.4</td>
<td>414</td>
</tr>
<tr>
<td>254.8</td>
<td>550</td>
</tr>
<tr>
<td>268.3</td>
<td>458</td>
</tr>
<tr>
<td>277.0</td>
<td>181</td>
</tr>
<tr>
<td>285.0</td>
<td>73.4</td>
</tr>
<tr>
<td>291.8</td>
<td>168</td>
</tr>
<tr>
<td>313.0</td>
<td>127</td>
</tr>
<tr>
<td>319.6</td>
<td>12.1</td>
</tr>
<tr>
<td>353.4</td>
<td>16.2</td>
</tr>
<tr>
<td>354.6</td>
<td>35</td>
</tr>
<tr>
<td>359.8</td>
<td>61</td>
</tr>
<tr>
<td>395.2</td>
<td>108</td>
</tr>
<tr>
<td>423.0</td>
<td>42.8</td>
</tr>
</tbody>
</table>

Note: Self and Plane²

J5. NaO₃ (sodium trioxide)

NaO₃ + hv → NaO + O₂ 141 kJ mol⁻¹ 849 nm (1)
NaO₂ + O → NaO₂ + O 252 kJ mol⁻¹ 474 nm (2)

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of NaO₃, sodium trioxide, at 300 K has been reported by Self and Plane¹ for wavelengths between 216 and 396 nm. The recommended absorption cross sections in Table 4J-5 are taken from Self and Plane,¹ which is the only study available.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for NaO₃ is expected to be unity for absorption above the dissociation threshold.

Table 4J-5. Recommended Absorption Cross Sections of NaO₃ at 300 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>10²σ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>216.3</td>
<td>1310</td>
</tr>
<tr>
<td>231.2</td>
<td>228</td>
</tr>
<tr>
<td>248.4</td>
<td>119</td>
</tr>
<tr>
<td>268.3</td>
<td>94.9</td>
</tr>
<tr>
<td>291.8</td>
<td>145</td>
</tr>
<tr>
<td>319.6</td>
<td>345</td>
</tr>
<tr>
<td>353.4</td>
<td>55.6</td>
</tr>
<tr>
<td>395.2</td>
<td>71.7</td>
</tr>
</tbody>
</table>

Note: Self and Plane¹

J6. NaHCO$_3$ (sodium bicarbonate)

NaHCO$_3$ + hν → Products

(Recommendation: 10-6, Note: 10-6, Evaluated: 10-6)

Absorption Cross Sections: The UV absorption spectrum of NaHCO$_3$, sodium bicarbonate, at 200 and 300 K has been reported by Self and Plane1 for wavelengths between 193 and 277 nm. Absorption cross sections were determined using pulsed laser photolysis of NaHCO$_3$ combined with detection of Na atoms using laser induced fluorescence. No significant difference in absorption cross section with temperature was reported. The recommended absorption cross sections in Table 4J-6 are taken from Self and Plane,1 which is the only study available.

Photolysis Quantum Yield and Product Studies: The photolysis quantum yield for NaHCO$_3$ is expected to be unity for absorption above the dissociation threshold.

Table 4J-6. Recommended Absorption Cross Sections of NaHCO$_3$ at 200 and 300 K

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$10^{20} \sigma$ (cm2)</th>
<th>$10^{20} \sigma$ (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 K</td>
<td>200 K</td>
</tr>
<tr>
<td>193.4</td>
<td>113</td>
<td>73.5</td>
</tr>
<tr>
<td>205.9</td>
<td>48.7</td>
<td>–</td>
</tr>
<tr>
<td>210.3</td>
<td>116</td>
<td>94.7</td>
</tr>
<tr>
<td>216.3</td>
<td>120</td>
<td>–</td>
</tr>
<tr>
<td>225.2</td>
<td>77.3</td>
<td>98.7</td>
</tr>
<tr>
<td>230.9</td>
<td>54.7</td>
<td>57.8</td>
</tr>
<tr>
<td>248.4</td>
<td>4.01</td>
<td>3.55</td>
</tr>
<tr>
<td>268.3</td>
<td>0.95</td>
<td>–</td>
</tr>
<tr>
<td>277.0</td>
<td>1.09</td>
<td>5.49</td>
</tr>
</tbody>
</table>

Note:
Self and Plane,1 reported negative values are not included

4.13 Bibliography – Metal Photochemistry

SECTION 5. HETEROGENEOUS CHEMISTRY

Table of Contents

SECTION 5. HETEROGENEOUS CHEMISTRY ... 5-1
5.1 Introduction ... 5-2
5.2 Surface Types—Acid/Water, Liquids and Solids ... 5-2
5.3 Surface Types—Soot and Alumina ... 5-3
5.4 Surface Types—Solid Alkali Halide Salts and Aqueous Salt Solutions 5-5
5.5 Surface Composition and Morphology ... 5-6
5.6 Surface Porosity ... 5-6
5.7 Temperature Dependences of Parameters ... 5-7
5.8 Solubility Limitations ... 5-8
5.9 Data Organization ... 5-8
5.10 Parameter Definitions .. 5-8
5.11 Bibliography – Heterogeneous Introduction .. 5-15
5.12 Notes to Table 5-1 .. 5-21
5.13 Bibliography – Table 5-1 ... 5-51
5.14 Notes to Table 5-2 .. 5-67
5.15 Bibliography – Table 5-2 ... 5-129
5.16 Notes to Table 5-3 .. 5-144
5.17 Bibliography – Table 5-3 ... 5-150
5.18 Notes to Table 5-4 .. 5-158
5.19 Bibliography – Table 5-4 ... 5-181
5.20 Notes to Table 5-6 .. 5-189
5.21 Bibliography – Table 5-6 ... 5-197
5.22 Notes to Table 5-7 .. 5-201
5.23 Bibliography – Table 5-7 ... 5-206

Figures

Figure 5-1. Recommended reactive uptake coefficients as a function of temperature for key stratospheric heterogeneous processes on sulfuric acid aerosols. .. 5-13

Tables

Table 5-1. Mass Accommodation Coefficients (α) and Reversible Uptake Data for Surfaces Other Than Soot .. 5-18
Table 5-2. Gas/Surface Reaction Probabilities (γ) for Surfaces Other Than Soot 5-60
Table 5-3. Soot Surface Uptake Coefficients .. 5-60
Table 5-4. Henry’s Law Constants for Pure Water .. 5-144
Table 5-5. Ion-Specific Schumpe Parameters ... 5-153
Table 5-6. Henry’s Law Constants for Acids .. 5-187
Table 5-7. Henry’s Law Values for Gas Solubility into Sea Water 5-200
5.1 Introduction

Historically this section has presented evaluated and tabulated published information on stratospheric heterogeneous processes. However, in recent evaluations, its scope has been expanded to include tropospheric processes, initially due to community interest in tropospheric processes that affect the fluxes of reactive species into the stratosphere, as well as heterogeneous contrail and cloud processing of exhaust species from aircraft. In addition, to support NASA’s expanded interest in the climate impact of tropospheric heterogeneous processes that influence greenhouse gas concentrations and the formation and chemical evolution of tropospheric fine aerosol particles, we have included kinetic data for selected heterogeneous interactions relevant to modeling cloud droplet and aqueous aerosol chemistry in the free troposphere. For instance, recent evaluations have built on reviews1,2 of relevant inorganic and volatile organic species (VOCs) uptake on water ice surfaces relevant to aircraft contrails and cirrus clouds.

It should be noted, however, that both stratospheric and tropospheric heterogeneous chemistry are relatively new and evolving fields, and future results can be expected to change our quantitative and even our qualitative understanding on a regular basis. Their complexity is compounded by the difficulty of characterizing the chemical and physical properties of atmospheric heterogeneous surfaces and then reproducing suitable simulations in the laboratory.3,4

In this evaluation, selected uptake processes occurring on alumina, liquid water, water ice, solid salt, and salt solutions have been added or updated. The compilation of Henry’s law parameters for pure water has been extended to include a large number of additional oxygenated organic, halo-organic, organic amine, and organic sulfide compounds. The compilation of Henry’s law parameters in sulfuric acid solutions have also been expanded/updated for a few oxygenated organic species. A new compilation of Henry’s Law constants for uptake into seawater (or into NaCl solutions at about 35‰ salinity) has been added, with a particular emphasis on halogenated organics.

\begin{enumerate}
\end{enumerate}

5.2 Surface Types—Acid/Water, Liquids and Solids

To a first approximation there are three major types of water containing surfaces believed to be present at significant levels in the stratosphere. They are: (1) Type I polar stratospheric clouds (PSCs), nominally composed of nitric acid trihydrate (NAT, HNO\textsubscript{3}•3H\textsubscript{2}O); (2) crystals of relatively pure water ice, designated as Type II PSCs because they form at lower temperatures than Type I and are believed to be nucleated by Type I (similar surfaces may form as contrails behind high-altitude aircraft under some stratospheric conditions); and (3) sulfuric acid aerosol, which is nominally a liquid phase surface generally composed of 60–80 weight percent H\textsubscript{2}SO\textsubscript{4} and, concomitantly, 40–20 weight percent H\textsubscript{2}O. While PSCs, as their name suggests, are formed primarily in the cold winter stratosphere at high latitudes, sulfuric acid aerosol is present year round at all latitudes and may influence stratospheric chemistry on a global basis, particularly after large injections of volcanic sulfur episodically increase their abundance and surface area. There is also evidence that ternary H\textsubscript{2}SO\textsubscript{4}/HNO\textsubscript{3}/H\textsubscript{2}O liquid solutions may play a significant role in PSC formation.

In addition to the major stratospheric surface types noted above, several other types of heterogeneous surfaces are found in the stratosphere and may play a significant role in some stratospheric processes. For instance, laboratory work has indicated that nitric acid dihydrate (NAD) may play an important role in the nucleation of Type I PSCs (Worsnop et al.,7 Fox et al.,1) and that mixtures of solid nitric acid hydrates and sulfuric acid tetrahydrate (SAT) (Molina et al.,4 Zhang et al.,8) and/or a more complex sulfuric acid/nitric acid hydrate (Fox et al.,1) may also be key to understanding Type I PSC nucleation and evolution. Analyses of the range of atmospheric conditions possible in the polar stratosphere have also led to interest in solid SAT surfaces and possibly other forms of frozen sulfuric acid aerosols (Toon et al.,3 Middlebrook et al.,1), as well as liquid sulfuric
acid aerosols significantly more dilute than the 60–80 weight percent normally present at lower latitudes (Wolff and Mulvaney,6 Hofmann and Oltmans;7 Toon et al.5).

In the free troposphere the heterogeneous surfaces of interest include liquid or solid water (cloud droplets and crystals, contrails), and sulfate particles. Uptake data are compiled for liquid water for several reasons. First this surface is one asymptote of the aqueous acid aerosol continuum; second, the interactions of some trace species with liquid water and water ice (Type II PSC) surfaces are often similar, and third, the uptake of some trace species by liquid water surfaces in the troposphere can play a key role in understanding their tropospheric chemical lifetimes and thus, the fraction that may be transported into the stratosphere. The nature of the sulfate-bearing aerosol is complex. Field measurements by single-particle mass spectrometry show that the particles contain organic species to some degree. The chemical nature of the organics has not been quantified, although it is likely that they are highly oxidized having had long residence times in the atmosphere. Similarly, the inorganic composition is not clear. Most particles of continental origin are neutralized with ammonium, and there is some evidence from the free troposphere that this remains true far above the ground. However, in regions away from ammonia sources, there is the potential for the aerosol to be acidic. The phase of the particles may be either solid, or supercooled liquid. Low relative humidities and full neutralization with ammonia promotes crystallization, whereas higher relative humidities and acidic content are more frequently associated with liquid particles. The phase of the organics is not known but is unlikely to be crystalline and more likely to be an amorphous liquid or solid.

(8) Zhang, R.; Woolridge, P. J.; Molina, M. J. Vapor pressure measurements for the H\textsubscript{2}SO\textsubscript{4}/HNO\textsubscript{3}/H\textsubscript{2}O and H\textsubscript{2}SO\textsubscript{4}/HCl/H\textsubscript{2}O systems: Incorporation of stratospheric acids into background sulfate aerosols. \textit{J. Phys. Chem.} \textbf{1993}, \textit{97}, 8541-8548.

5.3 Surface Types—Soot and Aluminia

Aircraft at cruise altitudes and rocket exhausts contribute small but measurable amounts of carbonaceous “soot” (Pueschel et al.14) and aluminized solid propellant rocket exhausts and spacecraft debris produce increasing levels of alumina (Al\textsubscript{2}O\textsubscript{3}) and similar metal oxide particles (Zolensky et al.15) in the stratosphere and upper troposphere. Soot lofted above from surface combustion sources may also be present in the upper troposphere, and to a lesser extent in the lower stratosphere. Alumina from rocket exhausts is generally emitted as liquid droplets from the rocket nozzle and crystalizes as the alpha or metastable gamma phases as it solidifies in the exhaust plume. “Soot” refers to a material that is a combination of elemental and organic carbon, with proportions varying depending on the source material and the combustion conditions. In studies of soot directed to understanding the interaction with atmospheric gases, two types of soot have been used: carbon blacks having relatively small hydrogen and oxygen contents (e.g. Degussa FW2, Cabot Monarch 1000, ground charcoal and spark-generated soot) and organic combustion soots having higher hydrogen, oxygen and nitrogen content (e.g. soot from the combustion of n-hexane, methane, propane, decane, ethylene, acetylene, toluene and stearic candles). In the case of organic combustion soot, even different fuels used to generate the soot have been reported to affect the chemistry; for example, the yields of HONO from the reaction of NO\textsubscript{2} with acetylene, toluene, ethylene and decane soot were observed to vary with the fuel used.4,10
Polycyclic aromatic hydrocarbons (PAH) and oxygenated polycyclic aromatic compounds (O-PAC) are major constituents of soot formed from the combustion of liquid fuels. The bulk composition of soot can have varying amounts of C, H, and O. For example, Chuhtai et al. report that the composition (in weight %) of n-hexane soot varies from 87 to 92 % C, 1.2 to 1.6 % H, and 11 to 6% oxygen. Stadler and Rossi showed that the elemental composition of the soot as well as its surface area depended on whether the flame was rich or lean; in the case of the rich flame giving a grey-colored soot, the composition (weight %) was 97.3% C, 0.83% H, 1.65% O, and 0.20% N while the lean flame produced a black soot comprised of 96.4% C, 0.19% H, 3.2% O, and 0.27% N.

The functional groups on the soot surface are expected to be important in terms of the uptake and reaction of gases on the surface. X-ray photoelectron spectroscopy (XPS) studies of n-hexane soot show surface carbon and oxygen, although the specific nature of the bonding could not be determined (Akhter et al.). The surface functional groups on soot vary, depending on the fuel composition, method of generation, and the post-treatment of the soot. For example, Degussa FW2 carbon black, which has been used in a number of studies of uptake and reactions of gases on soot, is post-treated with NO₂ by the manufacturer and Cabot Monarch 1000 is post-treated with aqueous HNO₃. There may be sufficient NO and NO₂ concentrations generated under some conditions during the formation of soot by spark generators that these may also have been reacted with these gases prior to collection and uptake studies. Studies of a number of gases interacting with soot surfaces suggest there are at least two and likely more, types of reactive surface sites; one type reacts very rapidly, e.g. with O₃, while others react more slowly. The first type may be most relevant to the reactions of soot particles in exhaust plumes from combustion sources, while the latter is most relevant to soot diluted in air.

Fourier transform infrared (FTIR), Raman and electron paramagnetic resonance (EPR) spectroscopic studies of n-hexane soot show C–O functionalities assigned to anhydrides and aryl ethers, alkyl ketones; they also detected -C=C=O, highly substituted aromatics and conjugated carbonyl-aromatic groups. Kirchner et al. measured the FTIR spectra of soot from the combustion of diesel fuel and n-hexane (described as “flame deposited”) and soot collected from a commercial spark generator in Ar, and from the emissions of a diesel automobile as well as Degussa FW2 soot (described as “filter deposited”). In all cases, absorption peaks characteristic of -C=O, aromatic –C=O and carboxylic –C=O groups (both aromatic and aliphatic) were observed. However, the flame-deposited soot showed bands due to substituted aromatics while the filter-collected samples did not. The filter-deposited samples had bands due to aliphatic –C–H groups that were not observed for the flame-deposited soot. Only the spark-generated soot showed bands due to both –C=C=O and to –O=H.

For soot formed from the combustion of liquid fuels, the location in the flame at which the soot is collected also changes the surface enough to alter its reactions. For example, Akhter et al. showed that the functional groups as well as particle size depend on the height of collection of soot from the base of the flame. Such changes appear to also alter the reactions of soot; for example, Gerecke et al. measured HONO and NO yields from the reaction of NO₂ with ethylene soot and found that the HONO yield decreased with distance from the bottom of the flame that the soot was collected from, while the yield of NO increased. Kirchner et al. reported much stronger infrared absorption bands due to substituted aromatics in soot samples collected from the combustion of n-hexane near the bottom of the flame compared to the top; in addition, absorption bands due to the –O–H group were only observed in samples collected at the bottom of the flame.

Not only can the surface groups directly affect its interaction with gases, but they determine the hygroscopic properties of the soot surface. Chuhtai et al. have shown that the hydration of soot surfaces depends on the fuel composition (particularly sulfur and trace metal content) and combustion conditions, as well as the extent of surface oxidation. A highly hygroscopic surface holding significant amounts of water may behave differently than a “dry” surface with respect to the interaction with gases; for example, black carbon suspended in aqueous solutions with ozone and irradiated to generate OH has been shown to help assist in the initiation of bulk solution phase OH chemistry. There are also free radical sites on soot surfaces whose EPR signals are strongly affected by the adsorption of paramagnetic species such as NO₂ (e.g. see Chuhtai et al.). These unpaired electrons in soot may contribute to the surface reactivity.

The International Steering Committee for Black Carbon Reference Materials (http://www.du.edu/~dwsmith/bcsteer.html) has issued preliminary recommendations for representative black carbon reference materials. They recommend that soot formed from the combustion of saturated hydrocarbons, preferably n-hexane, be used for soot black carbon. For aerosol black carbon, they recommend the use of Urban Dust Reference Material (SRM) 1649a, which is a sample collected in Washington, D.C. in a baghouse in 1976–
1977. However, for studies of the uptake and reactions of gases in the atmosphere with combustion-generated soots, organic combustion generated soots, particularly n-hexane soot, appear to be the most reasonable surrogate.

5.4 Surface Types—Solid Alkali Halide Salts and Aqueous Salt Solutions

Some modeling studies also suggest that certain types of major volcanic eruptions transport significant levels of sodium chloride and associated alkali halide salts into the stratosphere (Michelangelo et al.³), so studies of stratospheric trace species interacting with solid NaCl or similar alkali halide salts, as well as salt solutions, have also been included. Sea salt aerosols are, of course, much more abundant in the troposphere, and have their largest influence on the chemistry of the marine boundary layer.

The heterogeneous chemistry of salt surfaces is very complex. For example; the uptake and reaction of gases with NaCl and NaBr have been shown to be very sensitive to the presence of small amounts of strongly adsorbed water (SAW) on the salt surface. Because water is not taken up on the 100 crystal surface of NaCl at room temperature, the SAW is thought to be concentrated at steps and edges where one water molecule can interact with two ions, resulting in a larger enthalpy of adsorption. This means that powders of salt, which have a larger surface-to-volume than single crystals, also have more SAW because of the relatively larger numbers of steps and edges. In addition, the amount of SAW on sprayed films is affected by the solvent used, with more SAW when water is used as the solvent. This SAW plays a key role in facilitating the reorganization of the
surface during the reaction; thus, it appears to mobilize the product ions and allow them to recrystallize into 3-D microcrystallites of product on the surface, exposing fresh salt and allowing the reaction to continue well beyond the point that the surface would normally passivate. While the overall features of this process are reasonably well understood, the exact nature of the SAW and the molecular level interactions and processes are not. The overall effect, however, is time-dependent trace gas uptake coefficients.

Salt particles may also exist as aqueous solutions, if the relative humidities are sufficiently high. Chemistry may then occur both on the surface of the liquid droplets and in the bulk. The surface composition is not necessarily the same as the bulk. In particular, it is believed that the more polarizable anions (such as bromide and iodide) partition to the surface of such particles, perhaps affecting their reactivity. When salt aerosols freeze, the resulting particle will be composed of ice and the vast majority of the solutes will be excluded into a brine that will exist on the surface of the particles and at any grain boundaries and crystal-crystal interfaces that exist. At sufficiently low temperatures, the sodium chloride component will crystallize but other components, such as bromide, are expected to remain in an increasingly concentrated brine.1 It is also likely that marine organics are mixed with sea-salt inorganics, via the bubble bursting mechanism occurring at the sea surface when an organic microlayer exists on the sea surface. These organics may affect the surface reactivity of salt particles.

5.5 Surface Composition and Morphology

The detailed composition and morphology of each surface type are uncertain and probably subject to a significant range of natural variability. Certain chemical and physical properties of these surfaces, such as their ability to absorb and/or solvate HCl and HNO₃, are known to be strongly dependent on their detailed chemical composition. Moreover, most heterogeneous processes studied under laboratory conditions (and in some cases proceeding under atmospheric conditions) can change the chemical composition of the surface in ways that significantly affect the kinetic or thermodynamic processes of interest. Thus, a careful analysis of the time-dependent nature of the active surface is required in the evaluation of measured uptake kinetics experiments. Experimental techniques which allow the measurement of mass accommodation or surface reaction kinetics with high time resolution and/or with low trace gas fluxes are often more credible in establishing that measured kinetic parameters are not seriously compromised by surface saturation or changing surface chemical composition.

The relevant kinetic uptake parameters: mass accommodation coefficients and surface reaction probabilities, are separately documented for relevant atmospheric trace gas species for the major and, where available, the minor stratospheric and upper tropospheric surfaces noted above. Since these parameters can vary significantly with surface composition (e.g., the H₂SO₄/H₂O ratio for sulfate aerosol or the HNO₃/H₂O ratio for Type I PSC) the dependence of these parameters on surface composition is reviewed where sufficient data are available. In addition, in the notes to Table 5.1, we summarize the thermodynamic information that is now available to describe the non-reactive partitioning of species to a variety of surfaces, especially ice. Due to its chemical and morphological complexity, uptake values for soot are documented in a separate table.

5.6 Surface Porosity

The experimental techniques utilized to measure mass accommodation, heterogeneous reaction, and other uptake coefficients generally require knowledge of the surface area under study. For solid surfaces, and most particularly for water and acid ice surfaces formed in situ, the determination of how the molecular scale ice surface differs from the geometrical surface of the supporting substrate is not easy. Keyser, Leu, and coworkers have investigated the structure of water and nitric acid ice films prepared under conditions similar to those used in their flow reactor for uptake studies.6 7 9 They have demonstrated that ice films grown in situ from the vapor can have a considerably larger available surface than that represented by the geometry of the substrate; they have also developed a simple model to attempt to correct measured uptake rates for this effect.8 9 This model predicts that correction factors are largest for small uptake coefficients and thick films. The application of the model to experimental uptake data remains controversial (Keyser et al.,8 Hanson and Ravishakara,4 Kolb et al.10). Some experimenters prefer to attempt growing ice surfaces as smooth as possible and to demonstrate that their measured uptake coefficients are only weakly dependent on surface thickness (Hanson and Ravishankara4). For the case of
ice surfaces, it has been demonstrated that freezing thin films of liquid water leads to ice films that are smooth at the molecular level.1

Similar issues arise for uptake experiments performed on powered, fused and single crystal salt or oxide surfaces (Fenter et al.,2 Hanning-Lee et al.3). There are two issues here. First, the molecular level Brunauer, Emmett, Teller (BET) surface area that is commonly measured by determining the mass of a gas such as N$_2$ adsorbed by a given sample mass is, for many atmospheric solids, larger than the geometric surface area. However, determining the BET surface area of porous materials does not necessarily reflect the available surface area for molecules larger than that used in the BET measurement. Second, many experimental studies have used samples consisting of multiple layers of particles in order to increase the amount of gas that is taken up and hence improve the accuracy of the measurement. However, there is considerable uncertainty in how to accurately assess the fraction of the total sample that is available for reaction. When recommendations are made for uptake coefficients on solid alkali salts in this assessment, the values have generally been obtained using at least two different sample types (e.g., powders, single crystals and spray-deposited films) and/or two different techniques (e.g., flow tubes and Knudsen cells).

The issue of surface area available for uptake is also important for interpreting uptake measurements on soot and soot surrogate surfaces. The degree to which measured uptake parameters must be corrected for porosity effects will remain in some doubt until a method is devised for accurately determining the effective surface area for the surfaces actually used in uptake studies.

Some studies evaluated in this review assume that the effective ice or salt surface area is the geometrical area, but more recent studies on solid surfaces generally attempt to assess the available surface area by employing BET measurements and porosity models. However, uncertainty in true reactive surface area for heterogeneous uptake on solids is often the dominate systematic error in reporting uptake coefficient values for these systems and makes evaluation of these data across laboratories and techniques difficult.

(4) Hanson, D. R.; Ravishankara, A. R. Reaction of ClONO$_2$ with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N$_2$O$_5$ and ClONO$_2$ on frozen sulfuric acid. J. Geophys. Res. 1993, 98, 22931-22936.
(5) Hanson, D. R.; Ravishankara, A. R. Response to "Comment on porosities of ice films used to simulate stratospheric cloud surfaces". J. Phys. Chem. 1993, 97, 2802-2803.

5.7 Temperature Dependencies of Parameters

A number of laboratory studies have shown that mass accommodation coefficients and, to some extent, surface reaction probabilities can be temperature dependent. While these dependencies have not been characterized for many systems of interest, temperature effects on kinetic data are noted where available. More work that fully separates heterogeneous kinetic temperature effects from temperature controlled surface composition is obviously needed.
5.8 Solubility Limitations

The uptake of certain trace gases by atmospherically relevant surfaces is often governed by solubility limitations rather than kinetic processes. In these cases properly analyzed data can yield measurements of trace gas solubility parameters relevant to stratospheric conditions. In general, such parameters can be strongly dependent on both condensed phase composition and temperature. Such parameters may be very important in stratospheric models, since they can govern the availability of a reactant for a bimolecular heterogeneous process (e.g., the concentration of HCl available for the HCl + ClONO₂ reaction on sulfuric acid aerosols) or the gas/condensed phase partitioning of a heterogeneous reaction product (e.g., the HNO₃ formed by the reaction of N₂O₅ on sulfuric acid aerosols). Surface saturation limitations have also been observed in experimental uptake studies on solid surfaces, including liquid water and water/acid ice surfaces.

5.9 Data Organization

Data for trace-gas heterogeneous interactions with relevant condensed-phase surfaces are tabulated in Tables 5-1 through 5-7. These are organized into:

- Table 5–1—Mass Accommodation Coefficients and Reversible Uptake Data for Surfaces Other than Soot
- Table 5–2—Surface Reaction Probabilities (γ) for Surfaces Other Than Soot
- Table 5–3—Soot-Surface Uptake Coefficients
- Table 5–4—Solubility Data for Pure Water
- Table 5–5—Ion Specific Schumpe Parameters
- Table 5–6—Solubility Data for Acids
- Table 5–7—Solubility Data for Sea Water

5.10 Parameter Definitions

Mass accommodation coefficients (α), represent the probability of reversible uptake of a gaseous species colliding with the condensed surface of interest. For liquid surfaces this process is associated with interfacial (gas-to-liquid) transport and is generally followed by bulk liquid phase solvation. Examples include: simple surface absorption, absorption followed by ionic dissociation and solvation (e.g., HCl + nH₂O ↔ H⁺(aq) + Cl⁻(aq)), and absorption followed by a reversible chemical reaction with a condensed phase substituent (e.g., SO₂ + H₂O ↔ H⁺ + HSO₄⁻ or CH₂O + H₂O ↔ CH₂(OH)₂).

The term “sticking coefficient” is often used for mass accommodation on solid surfaces where physisorption or chemisorption takes the place of true interfacial mass transport.

Processes involving liquid surfaces are subject to Henry’s law, which limits the fractional uptake of a gas phase species into a liquid. The distribution of a substance between the gas and liquid phase is controlled, at equilibrium, by the Henry’s Law constant for that substance, which relates the concentration of the substance in solution to the partial pressure of the substance in the gas phase. In these tables, we present the Henry’s Law constants as solubility values:

\[H = [\text{solution}]/P(\text{gas}) \]

The units are molar (M) for solution concentration and atmosphere (atm) for the partial pressure in the gas phase. In many studies and other compilations, volatility values are presented, which are the inverse of solubility values. Often, other concentration units are used, sometimes the same unit for both phases. This leads to a dimensionless value, with no indication from the units if it pertains to solubility or to volatility.

Henry’s Law is a limiting law, strictly valid only at the limit of zero concentration. For most gasses at concentrations of interest, deviations from this law are not significant. The value of the Henry’s Law constant, \(H \), depends strongly upon temperature. For a typical gas, it decreases with increasing temperature at lower temperatures, at least down to 0°C. At higher temperatures, typically well above 298 K, the value will increase with temperature. Over limited temperature ranges, the value is well represented by a linear relationship between the logarithm of \(H \) and the reciprocal of temperature:

\[\ln(H) = A + B/T \]
For a number of gasses, the experimental data are sufficient to display the expected curvature in a plot of \(\ln H \) vs. \(1/T \). In this review, we have represented these results by the three-parameter equation:

\[
\ln(H) = A + B/T + C \ln(T)
\]

Below 0°C, measurements in strong acid solutions have suggested that the Henry’s Law constant for a substrate would continue to increase as the temperature is lowered. A study on the solubility of benzene, alkyl benzenes, and methyl and ethyl tert-butyl ethers, however, indicate that this is not the case.\(^{11}\) In this study, the values were found to decrease with temperature in supercooled water. Indeed, the results from 25°C to –25°C are almost symmetrical around 0°C. Additional studies on this phenomenon are clearly needed, particularly for smaller solutes.

If the gas phase species is simply solvated, a physical Henry’s law constraint holds; if the gas phase species reacts with a condensed phase substituent, as in the sulfur dioxide or formaldehyde hydrolysis cases noted above, a “chemically modified” or “effective” Henry’s law constraint holds (Clegg and Brimblecombe,\(^1\) Schwartz,\(^9\) Watson et al.\(^{12}\)). This value will typically involve an equilibrium constant for the chemical process, along with the physical Henry’s law constant.

The solubility of a gas also depends upon the presence of other substances in the solution. The best known effect is that of an added salt. In most cases, the addition of a salt to the solution results in a lowering of the solubility of the gas. This effect is usually described by the Sechenov equation:

\[
\log(c^o/c) = \log(H^o/H) = K_S c_s
\]

which relates the ratio of the concentrations of gas dissolved for a given pressure in the absence, \(c^o \), and presence, \(c \), of a given concentration of salt, \(c_s \). The proportionality constant is the Sechenov coefficient, \(K_S \). The Sechenov coefficient is specific to both the gas and the specific salt. Thus, in general, one needs a new value for any particular gas–salt combination, a tremendous amount of data. For this reason, models have been developed to extend measurements of \(K_S \) to systems for which no measurements have been made. Schumpe and co-workers\(^9,^{13}\) developed the particular procedure adopted in this review. It assumes that \(K_S \) is composed of ion- and gas-specific constants:

\[
K_S = \sum (h_i + h_G) n_i
\]

where \(h_i \) is the ion-specific constant, \(h_G \) is the gas-specific constant, and \(n_i \) is the ion index. For a mixed electrolyte solution,

\[
\log(H^o/H) = \sum (h_i + h_G) c_i
\]

The small temperature dependence of \(K_S \) is assumed to lie completely in \(h_G \). Thus,

\[
h_G = h_{G,0} + h_T (T - 298.15 \text{ K})
\]

Weisenberger and Schumpe\(^{13}\) analyzed 892 Sechenov constants for various gases in salt solutions over the temperature range 273 K to 363 K. They derived an optimum set of \(h_i \), \(h_{G,0} \), and \(h_T \) parameters for a diverse set of ions and gases. Values for \(O_2 \) and \(H^+ \) were set to zero to make the set unique. The standard deviation in the predicted Sechenov constants is 0.026. We have included their values for the ion-specific parameters in Table 5-5.

Available gas-specific constants, \(h_{G,0} \) and \(h_T \), are included in Table 5-4, along with the Henry’s law constants for pure water. In Table 5-4, we present those “salting out” parameters included in the optimum set derived by Weisenberger and Schumpe, along with some parameters derived from other studies. In the latter cases, the ion parameters are considered fixed and we solve for the gas-specific parameters.

Available Henry’s law parameters for sulfuric acid/water, and in a few cases, sulfuric acid/nitric acid/water solutions are presented in Table 5-6. Effective Henry’s law constants are designated \(H^* \), while simple physical Henry’s law constants are represented by \(H \). Effective Henry’s law constants are also employed to represent decreased trace gas solubilities in moderate ionic strength acid solutions via a Sechenov coefficient formulation which relates \(H^* \) to the concentration of the acid.\(^4\) Available Henry’s law constants for reactive upper tropospheric/stratospheric species in binary sulfuric acid/water solutions, and for a few cases of ternary sulfuric acid/nitric acid/water solutions, are tabulated as a function of acid weight percent and temperature. It is presently unclear whether “surface solubility” effects govern the uptake on nominally solid water ice or \(\text{HNO}_3/\text{H}_2\text{O} \) ice surfaces in a manner analogous to bulk solubility effects for liquid substrates and no solubility parameters for these “ice” systems are presented; the reader is referred to the ice uptake studies in Table 5.1.
In Table 5-7, Henry's Law parameters are presented for uptake into seawater, or into water with a salinity of 35‰. The major focus is on halogenated organic compounds, due to the possibility that this could have an impact on their atmospheric lifetimes. Due to the limited temperature ranges of these studies, only a two-parameter fit was utilized.

For some trace species on some surfaces, experimental data suggest that mass accommodation coefficients untainted by experimental saturation limitations have been obtained. These are tabulated in Table 5-1. In other cases experimental data can be shown to be subject to Henry's law constraints, and Henry's law constants, or at least their upper limits, can be determined. Some experimental data sets are insufficient to determine if measured “uptake” coefficients are true mass accommodation coefficients or if the measurement values are lower limits compromised by saturation effects. These are currently tabulated, with suitable caveats, in Table 5-1.

Also included in the specific notes in Table 5-1 are parameters relating to the non-reactive uptake of gases to solid atmospheric surfaces, such as ice. These quantities are useful for determining the likelihood that gas-phase species will be scavenged to the condensed phase, and to interpret the rates of surface-phase reactions. Many experimental approaches that can measure reactive uptake or mass accommodation coefficients can also assess the degree of non-reactive uptake, so these data are reported in the same Table. Experimental studies usually measure a total uptake (i.e. molecules or moles of adsorbate per unit surface area) at a specific temperature and gas-phase partial pressure or concentration.

By varying the gas-phase amounts, an adsorption isotherm is measured. For surfaces such as ice, simple isotherms such as the Langmuir form have been utilized. While this isotherm neglects adsorbate-adsorbate interactions and assumes that all adsorption sites are equivalent, these may be reasonable assumptions for ice surfaces, which are highly dynamic and where adsorbate molecules are likely to be strongly hydrated. From the isotherm, the saturated surface coverage at high gas-phase concentrations and the gas-surface partition coefficient can be assessed:

$$\theta = \frac{\text{fractional surface coverage}}{K_{\text{conc}} [\text{gas}] / (1 + K_{\text{conc}} [\text{gas}])} = \frac{K_P}{P_{\text{gas}} / (1 + K_P P_{\text{gas}})}$$

where K_{conc} and K_P are the adsorption coefficients, depending on whether concentration or pressure units are used for the gas phase. For consistency with the rest of the evaluation and to match the approach typically used in the literature, surface uptakes will be reported in units of molecules/cm2. Correspondingly, adsorption coefficients will be converted into K_{conc} units, i.e. cm3 molecules$^{-1}$. Note that a partitioning coefficient (K_{part}, units molecules cm$^{-2}$/molecules cm$^{-1}$) can also be derived by taking the slope of a plot of uptake to gas-phase concentration in the surface-unsaturated regime. The relationship between a K_{conc} value derived from a Langmuir adsorption isotherm to a partition coefficient (K_{part}) is:

$$K_{\text{part}} = K_{\text{conc}} N_{\text{sat}}$$

where N_{sat} is the saturated surface coverage in units of molecules cm$^{-2}$.

By varying the temperature in uptake studies, the heat of adsorption can be derived in a van’t Hoff analysis from the temperature dependence of the partition or adsorption coefficients. This approach is most accurate at low surface coverages where adsorbate-adsorbate interactions are likely to be fewest. While we report such values from the literature, care should be taken in their interpretation because an assumption of this approach is that the surface structure and the strength of the adsorbate-surface interactions remain constant as a function of temperature. Also, as the temperature changes, the degree of adsorbate-adsorbate interactions may change as well. Surface reaction probabilities (γ) are kinetic values for generally irreversible reactive uptake of trace gas species on condensed surfaces. The rates of such processes may not be limited by Henry's law constraints; however, the fate of the uptake reaction products may be subject to saturation limitations. For example, N$_2$O$_3$ has been shown to react with sulfuric acid aerosol surfaces. However, if the H$_2$SO$_4$/H$_2$O ratio is too high, the product HNO$_3$ will be insoluble, and a large fraction will be expelled back into the gas phase. Surface reaction probabilities for substantially irreversible processes are presented in Table 5-2. Reaction products are identified where known.

Surface reaction probabilities on crystalline and non-ice amorphous solid surfaces, such as alumina and alkali salts are particularly susceptible to surface saturation effects, especially when exposed to the relatively high trace gas concentrations sometimes employed in laboratory experiments. In the case of gaseous HNO$_3$ reacting with NaCl for example, there is a rapid initial uptake of HNO$_3$ and formation of nitrate on the surface, followed by a decrease to a relatively constant (but slowly declining) value. When they are available, we tabulate the initial uptake coefficient, γ_0, in Table 5-2, since that value often sets the upper limit for atmospheric uptake. In the
corresponding note we may also cite the reactive uptake coefficient appropriate to longer time exposure when the uptake appears to have reached an approximate steady-state, γ_{ss}.

The total experimental uptake coefficient measured in laboratory heterogeneous kinetic experiments are also often represented by the symbol γ. In those cases where surface and/or bulk reaction dominate the uptake, the total uptake coefficient (γ_{total}) and reactive uptake coefficient (γ_{rxn}) may well be identical. More formally, for cases where bulk liquid phase reaction is facile and there are no gas phase diffusion constraints, the total uptake coefficient for aerosol or cloud droplets can be approximated in terms of γ_{rxn} and γ_{sol} as:

$$\frac{1}{\gamma_{total}} = \frac{1}{\alpha} + \frac{1}{\gamma_{sol} + \gamma_{rxn}}$$

where

$$\gamma_{sol} = \frac{8RRT}{\pi^{1/2} \bar{c}} \left(\frac{D}{t} \right)^{1/2}$$

and

$$\gamma_{rxn} = \frac{4RRT}{\bar{c}} (Dk_{rxn})^{1/2}$$

where t is the time integrated exposure of the trace gas to the liquid surface, R is the gas constant, D is the liquid phase diffusion coefficient, and \bar{c} is the mean trace gas molecular speed. In the limit of low solubility or long exposure time γ_{sol} becomes negligible and

$$\frac{1}{\gamma_{total}} = \frac{1}{\alpha} + \frac{1}{\gamma_{rxn}}$$

Discussion of how to use this approach to model chemical reactions in liquid stratospheric aerosols can be found in Hanson et al.2 and Kolb et al.6 Note that these formulations are approximate. In cases where separate terms are competitive, more rigorous solution of the kinetic differential equations may be appropriate.

For solid surfaces, bulk diffusion is generally too slow to allow bulk solubility or bulk kinetic processes to dominate uptake. For solids, reactive uptake is driven by chemisorption/chemical reaction at the interface, a process that can also influence trace gas uptake on liquids. For liquids, surface reaction (γ_{surf}) occurs in parallel, rather than in series with mass accommodation, thus:

$$\gamma_{total} = \gamma_{surf} + \left[\frac{1}{\alpha} + \frac{1}{\gamma_{sol} + \gamma_{rxn}} \right]^{-1}$$

Examples where this more complex situation holds for liquid surfaces can be found in Hu et al.3 and Jayne et al.5 In such cases γ may be significantly larger than α.

Uptake of gases on soot may occur due to three different processes: (1) physisorption (e.g. SO$_2$ or HNO$_3$ at room temperature and low nitric acid pressures); (2) reaction with the surface (e.g. NO$_2$), and (3) catalytic decomposition/reactions of the gas on the surface. All three processes may occur in parallel, and the relative contributions of each of these three may vary during the course of the reaction as the surface “ages.” As discussed above, there are different types of reactive sites on soot, leading in some cases to a rapid initial uptake followed by a slower uptake; these are often characterized as reactions on “fresh” and “aged” surfaces respectively. Another complexity is that in some cases the geometric surface areas were used to calculate the uptake coefficients from the experimental data while in others, the available reactive surface area was estimated and used.

Because of these complexities with soot heterogeneous chemistry, uptake coefficients for soot interactions with gases have been broken out into a separate Table 5-3 rather than being included with the other surfaces in Tables 5-1 and 5-2. When the uncertainty is more than an order of magnitude, a recommendation is not given in Table 5-3 and the range of reported values is given in the Notes. In most cases, the available reactive surface area rather than the geometric areas have been used in obtaining the uptake coefficients; in those cases where the geometric area was used but a higher available surface area was involved in the measured uptake, the uptake coefficient is given as an upper limit. Data are most commonly available for room temperature or there are very limited data at lower temperatures characteristic of the upper troposphere.
The data in Tables 5-1 and 5-2 for uptake on non-soot surfaces are organized by trace gas species, since some systematic variation may be expected for surface accommodation or reaction as the surface composition and/or phase is varied. Data presented for one surface may be judged for “reasonableness” by comparing with data for a “similar” surface. In some cases it is not yet clear if surface uptake is truly reversible (accommodation) or irreversibly reactive in nature. In such cases the available uptake coefficients are generally tabulated in Table 5-1 as mass accommodation coefficients, a judgment that will be subject to change if more definitive data become available.

Where a specific evaluated value for an accommodation coefficient or reaction probability has been obtained, an estimated uncertainty factor is also tabulated. However, when the data evaluation yielded only a lower or upper limit, no uncertainty factor can be reliably estimated and none is presented.

Description of and reference citations to many of the laboratory techniques used to obtain the data in the following tables can be found in Kolb et al. Reactions of N₂O₅, ClONO₂, HOCl and BrONO₂ on/in sulfuric acid are generally dependent on the species’ Henry's law solubility and liquid phase diffusion coefficient in the liquid acid as well as the surface and/or liquid phase reaction rate parameters. All of these processes are generally functions of the acid composition and temperature (Hanson et al., Robinson et al., Shi et al.). Thus, these reactions’ reactive uptake coefficients must be represented by a complex phenomenological or empirical models that defy simple entry into Table 5-2. The notes in Table 5-2 for these reactions discuss and present the models adopted.

To aid in visualizing the resulting reactive uptake parameters the results for several reactions have been plotted in Figure 5.1 as a function of temperature for a background pressure of 50 mbar and background water vapor and HCl mixing ratios of 5 ppmv and 2 ppbv, respectively. These calculations are presented for monodisperse background sulfate aerosol particles with a radius of 1 × 10⁻⁵ cm (0.1 μm).
Figure 5-1. Recommended reactive uptake coefficients as a function of temperature for key stratospheric heterogeneous processes on sulfuric acid aerosols. For ClONO$_2$ and HOCl species, the aerosol radius used in the calculation is 10^{-5} cm, a typical value in the stratosphere. Because the current uptake models for N$_2$O$_5$ and BrONO$_2$ hydrolysis do not provide the information about the reacto-diffusive length (ℓ), the aerosol radius used in the calculation is assumed to be much larger than their reacto-diffusive length (i.e. ℓ for N$_2$O$_5$ and BrONO$_2$ are set to zero.)

(10) Shi, Q.; Davidovits, P.; Jayne, J. T.; Kolb, C. E.; Worsnop, D. R. Kinetic model for reaction of \(\text{ClONO}_2 \) with \(\text{H}_2\text{O} \) and \(\text{HCl} \) and \(\text{HOCl} \) with \(\text{HCl} \) in sulfuric acid solutions. *J. Geophys. Res.* **2001**, *106*, 24259-24274.

5.11 Bibliography – Heterogeneous Introduction

Table 5-1. Mass Accommodation Coefficients (α) and Reversible Uptake Data for Surfaces Other Than Soot

<table>
<thead>
<tr>
<th>Gaseous Species</th>
<th>Surface Type</th>
<th>Surface Composition</th>
<th>T(K)</th>
<th>α</th>
<th>Uncertainty Factor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>298</td>
<td>See Note</td>
<td>See Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (97 wt% H$_2$SO$_4$)</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>298</td>
<td>>0.04</td>
<td>1×10^{-2}</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>298</td>
<td>2.5 x 10^{-4}</td>
<td>See Note</td>
<td>5</td>
</tr>
<tr>
<td>O$_3$</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>195–262</td>
<td>>0.1</td>
<td>1×10^{-2}</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>275–300</td>
<td>≥10^{-4}</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO$_2$•3H$_2$O(s)</td>
<td>195</td>
<td>2.5 x 10^{-4}</td>
<td>See Note</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (50–98 wt% H$_2$SO$_4$)</td>
<td>193–295</td>
<td>2.5 x 10^{-4}</td>
<td>See Note</td>
<td>3</td>
</tr>
<tr>
<td>OH</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>205–253</td>
<td>>0.02</td>
<td>1×10^{-2}</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>275–300</td>
<td>>0.02</td>
<td>1×10^{-2}</td>
<td>8</td>
</tr>
<tr>
<td>HO$_2$</td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>275–300</td>
<td>>0.02</td>
<td>1×10^{-2}</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Aqueous Salts and Sodium Chloride</td>
<td>NH$_4$HSO$_4$(aq), LiNO$_3$(aq), H$_2$SO$_4$•nH$_2$O, NaCl (aq), (NH$_4$)$_2$SO$_4$(aq), KCl(aq)</td>
<td>293–298</td>
<td>>0.02</td>
<td>1×10^{-2}</td>
<td>8</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>213–238</td>
<td>>0.2</td>
<td>1×10^{-2}</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>273</td>
<td>0.18*</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (96 wt% H$_2$SO$_4$)</td>
<td>298</td>
<td>> 8 x 10^{-4}</td>
<td>See Note</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>298</td>
<td>> 8 x 10^{-4}</td>
<td>See Note</td>
<td>18</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>195</td>
<td>See Note</td>
<td>See Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>273</td>
<td>0.18*</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (96 wt% H$_2$SO$_4$)</td>
<td>298</td>
<td>> 8 x 10^{-4}</td>
<td>See Note</td>
<td>18</td>
</tr>
<tr>
<td>NO</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>195</td>
<td>See Note</td>
<td>See Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (96 wt% H$_2$SO$_4$)</td>
<td>195</td>
<td>See Note</td>
<td>See Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>298</td>
<td>> 8 x 10^{-4}</td>
<td>See Note</td>
<td>18</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>273–293</td>
<td>≥ 2 x 10^{-3}</td>
<td>See Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>273</td>
<td>0.18*</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (96 wt% H$_2$SO$_4$)</td>
<td>298</td>
<td>> 8 x 10^{-4}</td>
<td>See Note</td>
<td>18</td>
</tr>
<tr>
<td>HONO</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>200</td>
<td>0.1‡</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>298</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (97 wt% H$_2$SO$_4$)</td>
<td>298</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>200</td>
<td>0.1‡</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>298</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO$_2$•3H$_2$O(s)</td>
<td>191–200</td>
<td>0.4</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Liquid Nitric Acid</td>
<td>HNO$_2$•nH$_2$O(l)</td>
<td>278</td>
<td>0.6</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (57.7 wt% H$_2$SO$_4$)</td>
<td>191–200</td>
<td>0.4</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>283</td>
<td>0.1</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>230</td>
<td>>2 x 10^{-3}</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>295</td>
<td>>2.4 x 10^{-3}</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~192</td>
<td>>0.02‡</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>HNO$_2$NO$_2$</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>200</td>
<td>0.1‡</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>298</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>190</td>
<td></td>
<td>≥0.05‡</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>260–300</td>
<td></td>
<td>≥0.05‡</td>
<td>32</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>209–263</td>
<td></td>
<td>>5 x 10^{-2}</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>290–300</td>
<td></td>
<td>>5 x 10^{-2}</td>
<td>34</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>150–213</td>
<td></td>
<td>0.12–0.02‡</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>260–291</td>
<td></td>
<td>0.12–0.02‡</td>
<td>35</td>
</tr>
<tr>
<td>CH$_3$CH$_2$OH</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>193–243</td>
<td></td>
<td>0.12–0.02‡</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>260–291</td>
<td></td>
<td>0.12–0.02‡</td>
<td>35</td>
</tr>
<tr>
<td>CH$_3$COOH</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>228</td>
<td></td>
<td>0.08–0.02‡</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>260–291</td>
<td></td>
<td>0.08–0.02‡</td>
<td>40</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>260–291</td>
<td></td>
<td>0.13–0.04‡</td>
<td>41</td>
</tr>
<tr>
<td>CH$_3$OOH</td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>260–291</td>
<td></td>
<td>0.13–0.04‡</td>
<td>41</td>
</tr>
<tr>
<td>CH$_3$O$_2$</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>296</td>
<td>≥4 x 10^{-3}</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>260–282</td>
<td></td>
<td>7 x 10^{-3}</td>
<td>43</td>
</tr>
<tr>
<td>Gaseous Species</td>
<td>Surface Type</td>
<td>Surface Composition</td>
<td>T(K)</td>
<td>α</td>
<td>Uncertainty Factor</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>CH₃O</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>198-268</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-270</td>
<td>0.04</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H₂OₙₙHNO₃ₙH₂O(l)</td>
<td>235-300</td>
<td>0.04</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>CH₃CHO</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>120-233</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>267</td>
<td>>0.03*</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>CH(OH)CH(O)</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-285</td>
<td>1×10⁻²⁴</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)CH₃</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>217-243</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-292</td>
<td>2×10⁻²⁴</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>CH₂(OH)C(O)CH₃</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>233-253</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂C(O)CHO</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-293</td>
<td>1×10⁻⁴⁴</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>CH₃OC(O)CH₃</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>270-278</td>
<td>2×10⁻²⁴</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>HC(O)OH</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>187-221</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-291</td>
<td>0.10-0.02*</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)OH</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>193-245</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>258-292</td>
<td>2×10⁻²⁴</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>CH₃CO(NO)O₂</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>80-250</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>200</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OClO</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>100,189</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td><205</td>
<td>>0.1</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-295</td>
<td>≥0.05*</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Nitric Acid Ice</td>
<td>HNO₃•3H₂O(s)</td>
<td>191-211</td>
<td>≥0.3</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)</td>
<td>(n≥8, ≤40 wt% H₂SO₄)</td>
<td>284</td>
<td>0.15*</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>H₂SO₄•4H₂O(s)</td>
<td><243</td>
<td>>0.1</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahydrate</td>
<td>H₂SO₄•4H₂O(s)</td>
<td>192-201</td>
<td>See Note</td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>ClONO₂</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-280</td>
<td>≥0.05*</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>CCl₃CHO</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>208-228</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₂O</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-290</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₂CClO</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-290</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBr</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>200</td>
<td>>0.2</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-295</td>
<td>≥0.05*</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Nitric Acid Ice</td>
<td>HNO₃•3H₂O(s)</td>
<td>200</td>
<td>≥0.3</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)(55-70 wt% H₂SO₄)</td>
<td>213</td>
<td>≥0.1</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOB₉</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>190-239</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>298</td>
<td>0.6</td>
<td>1.5 72</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)(55-70 wt% H₂SO₄)</td>
<td>228</td>
<td>≥0.05‡</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrONO₂</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-280</td>
<td>≥0.03†</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)(58 wt% H₂SO₄)</td>
<td>230-300</td>
<td>≥0.8</td>
<td>1.5 76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHBr₃</td>
<td>Water Ice</td>
<td>H₂O(l)</td>
<td>220</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)(87 wt% H₂SO₄)</td>
<td>220</td>
<td>>3×10⁻¹⁶</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrCl</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>270-285</td>
<td>≥0.15*</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>I₂</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>270-293</td>
<td>≥0.01*</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>HI</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>188-233</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260-280</td>
<td>≥0.05*</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>HOI</td>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)</td>
<td>195</td>
<td>0.07</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(40 wt% H₂SO₄)</td>
<td>205</td>
<td>0.03</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(40 wt% H₂SO₄)</td>
<td>212</td>
<td>0.04</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(50 wt% H₂SO₄)</td>
<td>222-224</td>
<td>0.02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(70 wt% H₂SO₄)</td>
<td>230-232</td>
<td>0.02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(70 wt% H₂SO₄)</td>
<td>252</td>
<td>0.02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>200</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitric Acid Ice</td>
<td>HNO₃•3H₂O(s)</td>
<td>200</td>
<td>See Note</td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>CF₃CH₂OH</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>208-228</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃CF₂CH₂OH</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>203-223</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃CF₂CF₂CH₂OH</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>203-223</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃CHO</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>208-228</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaseous Species</td>
<td>Surface Type</td>
<td>Surface Composition</td>
<td>T(K)</td>
<td>α</td>
<td>Uncertainty Factor</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------</td>
<td>------</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>CF₃O</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>192</td>
<td></td>
<td>See Note</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260–290</td>
<td></td>
<td>See Note</td>
<td>68</td>
</tr>
<tr>
<td>Nitric Acid Ice</td>
<td>HNO₃•3H₂O(s)</td>
<td>192</td>
<td></td>
<td></td>
<td>See Note</td>
<td>88</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)</td>
<td>215–230</td>
<td></td>
<td></td>
<td>>3 × 10⁻⁴ ‡</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>(40 wt% H₂SO₄)</td>
<td></td>
<td></td>
<td></td>
<td>>6 × 10⁻⁵ ‡</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>(60 wt% H₂SO₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃CFO</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260–290</td>
<td></td>
<td>See Note</td>
<td>68</td>
</tr>
<tr>
<td>CF₃C(O)OH</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>208–238</td>
<td></td>
<td>See Note</td>
<td>89</td>
</tr>
<tr>
<td>CF₃COOH</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>263–288</td>
<td></td>
<td>0.2–0.1*</td>
<td>90</td>
</tr>
<tr>
<td>CF₃CClO</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260–290</td>
<td></td>
<td>See Note</td>
<td>68</td>
</tr>
<tr>
<td>SO₂</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>190–238</td>
<td></td>
<td>See Note</td>
<td>91</td>
</tr>
<tr>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260–298</td>
<td></td>
<td></td>
<td>≥0.12*</td>
<td>92</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l) (97 wt% H₂SO₄)</td>
<td>298</td>
<td></td>
<td>See Note</td>
<td>≥0.12*</td>
<td>93</td>
</tr>
<tr>
<td>H₂S</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260–298</td>
<td></td>
<td>≥0.05*</td>
<td>94</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l) (50–98 wt% H₂SO₄)</td>
<td>200–300</td>
<td>0.7</td>
<td>1.4</td>
<td>95</td>
</tr>
<tr>
<td>CH₃S(O)CH₃</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>262–281</td>
<td>0.16–0.08*</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>CH₃S(O₂)CH₃</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>262–281</td>
<td>0.27–0.08*</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>CH₃S(O₂)OH</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>260–283</td>
<td>≥0.1*</td>
<td></td>
<td>96</td>
</tr>
</tbody>
</table>

* Varies with T, see Notes
‡ May be affected by surface saturation
5.12 Notes to Table 5-1

1. **O on H₂O(s).** Murray and Plane\(^1\) measured the uptake of O atoms on water ice at temperatures relevant to the upper mesosphere (112–151 K), where noctilucent clouds are present. Their results indicate that in the absence of oxygen molecules the uptake coefficient \(\alpha\) is small \((7 \times 10^{-6})\). They recommend the following expression: \(\alpha = 7 \times 10^{-6} + 1.5 \times 10^{-10} \exp (11.4 \text{ kJ/mol/RT})\), with an uncertainty of \(\pm 24\%\).

2. **O on H₂SO₄•nH₂O.** Knudsen cell experiment of Baldwin and Golden\(^1\) measured an uptake coefficient limit of \(<10^{-6}\), this result probably cannot be equated with an accommodation coefficient due to surface saturation.

3. **O₃ on H₂O(s) and HNO₃•nH₂O.** Undoped ice surfaces saturate too quickly for reliable measurements. When ice is doped with Na₂SO₄ to chemically remove absorbed O₃ the apparent \(\alpha\) increases to \(1 \times 10^{-2}\) (0.1 M) or up to \(4 \times 10^{-2}\) (1 M) (Dlugokencky and Ravishankara\(^2\)). Limit of \(\gamma < 10^{-6}\) for undoped ice is consistent with earlier measurement by Leu\(^3\) of \(\geq 1 \times 10^{-4}\) and with \(<6 \times 10^{-5}\) obtained by Kenner et al.\(^2\). Dlugokencky and Ravishankara also measured the tabulated value of an uptake coefficient for O₃ on a NAT “like” surface, but the data were difficult to reproduce and the surfaces were not well characterized. Kenner et al. also measured a lower limit for an uptake coefficient of \(8 \times 10^{-5}\) on NAT at 183 K, but this measurement is also certainly limited by surface saturation.

4. **O₃ on H₂O(l).** Utter et al.\(^9\) used a wetted wall flow tube technique with various chemical scavengers to measure a lower limit for \(\alpha\) of \(2 \times 10^{-3}\). The stopped flow measurement technique using an SO₂:\(^2\) scavenger (Tang and Lee\(^9\)) is subject to saturation effects, so their quoted \(\alpha\) of \(5.3 \times 10^{-4}\) is also taken as a lower limit. Using a droplet train flow reactor Hu et al.\(^1\) measured a value of \(-0.1\) at 277 K with I\(^-\) as a reactive scavenger, consistent with a more extensive droplet train flow reactor measurement by Magi et al.\(^2\) yielding a value of \(\geq 0.1\) also using I\(^-\) as a reactive scavenger and with the aerosol flow tube work of Rouviere at al.\(^5\) that also obtained a value of \(>0.1\) at room temperature. Schurath et al.\(^6\) used a coaxial flow liquid jet to obtain a value of \(4.5 \times 10^{-4}\) at 298 K, probably limited by surface saturation although they also used I\(^-\) as a reactive scavenger. Müller and Heal\(^3\) obtained a value of \(4 \times 10^{-2}\) at 293 K in a wetted wall flow tube with S₂O₅:\(^2\) as a reactive scavenger. Schütze and Herrmann\(^7\) measured a lower limit of \(2 \times 10^{-2}\) at 298 K using a suspended droplet flow reactor method that also employed I\(^-\) as a reactive scavenger. It is highly likely that the mass accommodation coefficient for ozone on liquid water is \(\geq 0.01\) between \(\sim 275\) and \(300\) K and may be significantly higher, although it is possible that interfacial reactions with near surface I\(^-\) bias some mass accommodation evaluations high because surface reactive uptake occurs in parallel with mass accommodation. Molecular dynamic simulations of O₃ uptake on water by Roeselová et al.\(^4\) indicate a mass accommodation coefficient of order 0.1.

5-21

5. **O$_3$ on H$_2$SO$_4$•nH$_2$O**. Flow tube measurements (Dlugokencky and Ravishankara2) of an uptake coefficient limit of <10$^{-6}$ on both 50 and 97 wt% H$_2$SO$_4$ surfaces are consistent with earlier, but probably less quantitative, static systems measurements of Olszyna et al.5 and aerosol chamber measurements of Harker and Ho.3 who report uptake coefficients of the order 10$^{-8}$ or less for a variety of sulfuric acid concentrations and temperatures. In these earlier experiments, doping the H$_2$SO$_4$ with Ni$^{2+}$, Cr$^{2+}$, Al$^{3+}$, Fe$^{3+}$, and NH$_4^+$ (Olszyna et al.5) or Al$_2$O$_3$ or Fe$_2$O$_3$ (Harker and Ho3) did not significantly increase measured O$_3$ loss. An upper limit of 1 × 10$^{-6}$ was also reported by Baldwin and Golden1 for 97 wt% H$_2$SO$_4$ at 295 K. Il’In et al.4 performed static tube reactor measurements on 98 wt. % sulfuric acid at 239, 258, 273 K measuring uptake coefficients between 1.2 and 1.75 × 10$^{-6}$. Although these measurements are slightly larger than the limits in the other studies, uptake values this small are extremely hard to quantify and these measurements are not seen to be in serious disagreement with other studies finding slightly lower upper limits. All measurements are subject to solubility limitations and probably do not reflect true limits on mass accommodation.

Back to Table

6. **OH on H$_2$O(s)**. Cooper and Abbatt1 analyzed uptake rates in a wall-coated flow tube to determine an initial $\gamma \sim 0.1$ over the temperature range of 205–230 K. Uptake coefficients decreased at longer exposure times, indicating surface saturation. These data indicate that α is at least 0.1 and possibly much larger. This is confirmed by an earlier experiment using a coated insert/flow tube technique by Gershenson et al.,2 which yielded $\alpha > 0.4$ at 253 K.

Back to Table

7. OH on H$_2$O(l). A lower limit of α on pure water of 3.5×10^{-3} at 275 K was determined by Hanson et al.1 using a liquid-wall flow tube. Takami et al.2 using a gas/liquid impinging flow technique obtained a pure water value near pH 7 at 293 K of $(4.2 \pm 2.8) \times 10^{-3}$ while values 2 to 3 times higher where obtained for acid (pH=1) and basic (pH=10–13) aqueous solutions; a value of $(1.1 \pm 0.4) \times 10^{-2}$ was obtained when benzoic acid was added as a radical scavenger. Takami et al. also observed that uptake for pure water solutions decreased with gas/liquid contact times, indicating a saturation limitation and explaining the higher uptake values observed for solutions with H$^+$, OH$^-$, or benzoic acid reactive scavengers. Based on these experimental results a value of $\alpha \geq 0.1$ is suggested. This recommendation is consistent with molecular dynamics calculations by Roeselová et al.3,4 who first published simulation values at room temperature 0.2 to 0.3, but later reported a value of 0.83 at 300 K using revised intermolecular potentials.

8. HO$_2$ on H$_2$O(l), aqueous salt solutions and H$_2$SO$_4$·nH$_2$O. Determination of α in liquid-wall flow tube (Hanson et al.5) is dependent on gas-phase diffusion corrections; measured limit ($\alpha > 0.02$) is consistent with $\alpha = 1$. In the aqueous salt aerosol measurements of Mozurkewich et al.5 HO$_2$ was chemically scavenged by Cu$^{++}$ from added CuSO$_4$ to avoid Henry’s law constraints; the measured limit of > 0.2 is also consistent with $\alpha = 1$. Thornton and Abbatt6 and Taketani et al.4,5 have raised the upper limit to the mass accommodation coefficient to > 0.4 for Cu$^{++}$ doped aqueous particles composed of sulfuric acid, ammonium sulfate, sodium chloride and potassium chloride, for relative humidities between 35 and 75% at room temperature. George et al.1 report a value of > 0.1 for copper-doped salt solutions as measured at low HO$_2$ gas phase concentrations in an aerosol flow tube reactor. This is consistent with the mass accommodation coefficient inferred by prior studies.

9. H$_2$O on H$_2$O(s). Uptake coefficient measurements are available from Leu5 $(0.3 (+0.7, -0.1))$ at 200 K, Haynes et al.4 $(1.06 \pm 0.1$ to 0.65 ± 0.08 from 20 to 185 K), Brown et al.1 $(0.99 \pm 0.05$ between 85 and 150 K and 0.97 ± 0.10 between 97 and 145 K), Fluckiger et al.3 $(0.43$ at 200 K using D$_2$O5), and Magee et al.6 $(0.006$ at 223 K using levitated particles, in a wind tunnel). Uptake coefficients measured by Delval et al.2 and Pratte et al.8 that should be viewed as lower limits to the mass accommodation coefficient, show a strong negative temperature dependence consistent with a precursor adsorption model; values are about 0.1
at 200 K. The sticking coefficient of D$_2$O on ice at a translational energy of 69 kJ/mole has been measured under ultrahigh vacuum conditions to be close to unity, consistent with other measurements (Hundt et al.7). At higher temperatures, Skrotzki et al.9 have measured the growth of ice particles formed by deposition nucleation from 190 to 235 K in a large, cooled cloud chamber where supersaturations are generated by pressure expansion. Ice crystal number density and size, and ice water content are monitored. By comparing microphysical models to measured ice properties, the mass accommodation coefficient has been inferred to be 0.7(+0.3/–0.5), independent of temperature and particle size indicating that there is not a significant kinetic barrier to the uptake of water over these temperatures. The lower value measured by Magee et al. at elevated temperatures is not consistent with this report.

Back to Table

10. H$_2$O on H$_2$O(l). Because the uptake of water vapor on and evaporation of water from liquid water are fundamental processes that are linked by microscopic reversibility and play extremely important roles in cloud physics, they have been the subject of over 75 published experimental studies spanning over eight decades. Many of these studies were reviewed by Marek and Staub,7 who note values of α deduced from these experiments range from ~0.001 to 1.0, with experiments involving growing water drops tending to higher values. Recently published experiments support values near the higher end of the range. Shaw and Lamb9 used an electrodynamic droplet levitation cell to make simultaneous ice nucleation/water droplet evaporation rate observations to deduce a range of 0.04 < α < 0.1 at 237 K. Li et al.3 used a droplet train flow reactor to measure the uptake of small excesses of H$_2$O on water droplets that were in equilibrium with the surrounding normal water vapor, deducing a value of 0.17 ± 0.03 at 280 K that increased to 0.32 ± 0.04 at 258 K. Winkler et al.11 used Mie scattering analyses of the growth of freshly nucleated droplets in an expansion chamber to deduce 0.4 < α < 1.0 over a temperature range of 270 to 290 K and 0.8 < α < 1.0 for 250–270 K. Voigtländer et al.10 analyzed droplet growth in a laminar diffusion flow reactor to estimate 0.3 < α < 1.0 at 275–277 K. Saykally, Cohen, and co-workers1,3,9 performed a series of evaporation experiments from liquid jets and jet breakup droplet trains in very low-pressure reactors that approximate free evaporation conditions. Their studies of H/D isotope fraction in vapor from D$_2$O doped water jets yielded estimates of 0.15 < α < 0.3 for the temperature range of 255–295 K.3 Further experiments with jet breakup droplet trains produced an estimate of α = 0.62 ± 0.09 for H$_2$O between 245 and 298 K9 and α = 0.57 ± 0.06 for D$_2$O between 255 and 295 K.9 Maerefat and coworkers used a unique shock tube
method to study the time resolved evolution of water film thickness on a window surface to estimate that \(\alpha = 0.35 \) over the temperature range 297.1–299.1 K.\(^6\) Jakubczyz and co-workers applied an atmospheric pressure single droplet evaporation electrodynamic trap technique\(^3,13,14\) and a continuum vapor diffusion and heat transfer model, which they argue is more complete than that employed by Winkler et al.\(^12\) and Voigtländer et al.\(^10\) When applied to temperature dependant data Jakubczyz and co-workers report \(\alpha = 0.13 \pm 0.01 \) at 293.1 K increasing to \(0.18 \pm 0.05 \) at 273.1 K,\(^15\) in close agreement with magnitude and temperature dependence reported by Li et al.\(^5\) Given the results from this wide range of experiments, it seems clear that mass accommodation values of water vapor on liquid water for temperatures below 295 K must exceed 0.1. The Li et al. and Winkler et al. experiments are further discussed in Davidovits et al.,\(^2\) which notes that reasons for the differences in their deduced values are not yet understood.

Back to Table

11. H$_2$O on HNO$_3$/H$_2$O(l). Rudolf and Wagner\(^1\) used aerosol expansion chamber techniques to illustrate that \(\alpha \) on liquid water/nitric acid aerosols is greater than 0.3 and is consistent with 1.0 at 278 K. Experiments are similar to those at Winkler et al.\(^12\) supersaturated vapor may lead to a larger value of \(\alpha \) than found for near equilibrium conditions.

Back to Table
12. **H₂O on HNO₃•nH₂O(s).** Middlebrook et al.¹ measured an uptake coefficient of 0.002 for water vapor co-depositing with nitric acid over NAT at 197 K.

13. **H₂O on H₂SO₄•nH₂O.** Baldwin and Golden¹ using a Knudsen cell measured ~2 × 10⁻³ at 96 wt%, which is strongly affected by surface saturation (see Note for H₂O₂ on H₂SO₄•nH₂O). Gershenzon et al.² used a droplet train flow reactor to measure the uptake of H₂¹⁵O on 50 wt% sulfuric acid from 250 to 278 K, on 70 wt% from 250 to 295 K, and on 82 wt% from 272 to 298 K. Measured mass accommodation coefficients range from 0.4 to 0.9, increasing with acid wt% and decreasing temperature.

14. **H₂O on NaCl(s).** Fenter et al.³ used Knudsen cell/mass spectrometry methods to measure γ <2 × 10⁴ for H₂O(g) uptake on NaCl powders, an observation confirmed by Beichert and Finlayson-Pitts,¹ who found γ <1 × 10⁻⁵. However, Dai et al.² used FTIR spectroscopy on NaCl crystallite films at 240 and 296 K to determine that a water adlayer does adhere to dry salt and that a small fraction of surface sites (<1%) cause H₂O dissociation. It is likely that the measurements of Fenter et al. and Beichert and Finlayson-Pitts were affected by surface saturation.
(1) Beichert, P.; Finlayson-Pitts, B. J. Knudson cell studies of the uptake of gaseous HNO₃ and other oxides of nitrogen on solid NaCl. The role of surface absorbed water. *J. Phys. Chem. 1996, 100, 15218-15228.*

15. **H₂O on NaCl(aq).** Fung et al.¹ used Mie resonance scattering techniques to quantify aqueous NaCl droplet growth (5.8 to 7.8 µm), yielding fitted values of α >0.5 and consistent with 1.0. Such droplet growth measurements require modeling of heat and mass transfer and may not correspond to atmospheric conditions near vapor/liquid equilibrium.

16. **H₂O₂ on H₂O(s).** The uptake of H₂O₂ on ice surfaces has been studied by Clegg and Abbatt¹ who measured relatively small, reversible uptake between 213 and 238 K in a coated-wall flow tube experiment. The uptake scaled linearly with partial pressure and there was a weak temperature dependence, increasing with increasing temperature. By contrast, using the same flow tube technique but with a more direct H₂O₂ detection technique, values reported by Crowley and co-workers² are several orders of magnitude higher. A value of Kₚₚₐₜ = 2.1 × 10⁻⁵ exp(3800/T) cm is reported. Although the source of discrepancy between

these studies is not clear, the later study by Crowley and co-workers is preferred by virtue of the more direct detection technique.

Back to Table

17. **H₂O₂ on H₂O(l).** Measured accommodation coefficient (Worsnop et al.¹) has a strong negative temperature dependence over the measured range of 260–292 K, with α = 0.3 at 260 K decreasing to 0.1 at 292 K.

Back to Table

18. **H₂O₂ on H₂SO₄•nH₂O.** Knudsen cell uptake measurements are subject to surface saturation, thus uptake coefficient value of 7.8 × 10⁻⁴ quoted by Baldwin and Golden¹ is almost certainly a lower limit for α. This effect is probably also responsible for the lack of measured uptake (γ <10⁻⁶) for NO, NO₂, SO₂, Cl₂, and other species reported in this reference and Baldwin and Golden.²

Back to Table

19. **NO on H₂O(s).** NO data (Leu² and Saastad et al.³) are subject to the same concerns as NO₂. See Note for NO₃ on H₂O(s). Using a radioactive tracer in a chromatographic technique, the adsorption enthalpy has been measured to be −20 kJ/mole by Bartels-Rausch et al.¹

Back to Table

20. **NO on H₂SO₄•nH₂O.** See Notes for H₂O₂ on H₂SO₄•nH₂SO₄ and NO₂ on H₂SO₄•nH₂O. NO is subject to the same concerns as NO₂ for both reported measurements (Saastad et al.² and Baldwin and Golden¹).

Back to Table

21. **NO₂ on H₂O(s).** In the absence of a chemical sink, Leu² measured no sustained uptake of NO₂ on ice yielding an apparent α <1 × 10⁻⁴. Saastad et al.³ measured a lower limit of 5 × 10⁻⁵ for temperatures between 193 and 243 K. However these values are probably influenced by surface saturation. Using a radioactive tracer in a chromatographic technique, the adsorption enthalpy has been measured to be −22 kJ/mole by Bartels-Rausch et al.¹.
22. NO$_3$ on H$_2$O(l). Rudich et al.2 analyzed uptake on KI solutions as a function of [I$^{-}$] at 273 K. This work suggested that $\alpha > 0.04$, but this result may be biased due to reactive uptake by interfacial I$^{-}$. Potentially smaller estimates of α were suggested by the work of Thomas et al. as quoted in Mihelcic et al.1 at 293 K on pure water and Thomas et al.4 on 293 K 0.1 M NaCl solutions, which reported uptake coefficients of 2.5×10^{-3} and 2×10^{-3}, respectively. Schütze and Herrman3 used a single suspended droplet flow reactor technique and the resistor model to analyze uptake data on aqueous Alizarin Red S dye and NaCl solutions to estimate a 293 K value of $\alpha = 4.2 (\pm 2.2, -1.7) \times 10^{-3}$, consistent with the limits suggested by Thomas and co-workers. However, their data do not rule out possible surface reactions with either interfacial Cl$^{-}$ or Alizarin Red S. A lower limit of 2×10^{-3} for 273–293 K is recommended.

23. HONO on H$_2$O(s). Fenter and Rossi3 measured reversible uptake on water ice between 180 and 200 K using a Knudsen cell technique. An initial uptake coefficient of 1×10^{-3} suggests that α equals or exceeds this value. Chu et al.2 used a cylindrical flow reactor to measure the uptake coefficient as a function of temperature, obtaining values ranging from 3.7×10^{-3} at 178 K to 6.4×10^{-4} at 200 K, in good agreement with the results of Fenter and Rossi. On the other hand, Chu et al. report significantly lower values after correction for the effects of surface porosity, i.e. 1.4×10^{-4} at 178 K and 1.3×10^{-5} at 200 K (see Keyser et al.6). The adsorption enthalpy has been measured to be -32 kJ/mole by Bartels-Rausch et al.1 Using radioactively labeled HONO uptake on ice was studied in a packed ice bed between 213 and 253 K by Kerbrat et al.5 who attempted to disentangle surface adsorption and bulk diffusion. A partition coefficient to the ice surface is reported ($K_{\text{part}} = 7.4 \times 10^{-9} \exp(5.4 \times 10^{3}/T)$ cm) with an enthalpy of adsorption of -45 ± 20 kJ/mole. The kinetics of the diffusion into the bulk ice were studied. In another study from the same group, nitrous acid and acetic acid simultaneous uptake measurements to packed ice beds were found to be well described by a competitive Langmuir adsorption isotherm between 213 and 243 K. Labeled nitrous acid was monitored by radioactivity methods, and acetic acid by CIMS (Keyser et al.4).

Reference:

24. **HNO₃ on H₂O(s).** Leu¹ report a lower limit of 0.2 at 195 K. Hanson⁵ measured an uptake coefficient of greater than 0.3 at 191.5 and 200 K, and Aguzzi and Rossi² measured an uptake coefficient of 0.3 over the temperature range from 180 to 190 K with the value decreasing at T >195 with an exponential temperature dependence of \(-\frac{3400 \pm 500}{T}\). Aguzzi and Rossi attributed this change to an increasing evaporation rate, concluding that the accommodation coefficient most likely remains large. In a higher temperature regime, Hynes et al.⁶ measured uptake coefficients as a function of temperature decreasing from 0.03 at 215 K to 0.006 at 235 K and Hudson et al.⁷ report initial uptake coefficients ranging from 0.007 at 209 K to 0.003 at 220 K. On the other hand, Ullerstam et al.¹⁵ report a temperature independent lower limit to the uptake coefficient of 0.1 from 200 K up to 239 K. It is unclear the extent to which the work of Aguzzi and Rossi, Hudson et al., and Hynes et al. are affected by outgassing of nitric acid from wall surfaces during uptake experiments at high temperatures, which would lead to apparently low uptake coefficients. Also, uptakes on surfaces that have already been exposed to nitric acid are smaller than on those that are freshly exposed. Additional uncertainty is introduced by the effective ice surface area in the older fast-flow measurements (see Keyser et al.⁹) but these effects should be absent in the work of Hynes et al. and Ullerstam et al., which used smooth ice surfaces.

For low partial pressure experiments and temperatures above about 190 K, the uptake of nitric acid displays both reversible and irreversible components in amounts that do not exceed monolayer coverage.¹,¹⁵,¹⁶ For high partial pressures and/or low temperatures, a different uptake regime is encountered where much larger uptakes can occur that are not necessarily atmospherically relevant. In particular, the ice surfaces may melt to form a thermodynamically stable nitric acid solution on the surface, or nitric acid hydrate layers may form. Focusing only on the sub-monolayer, atmospherically-relevant uptake regime, it is believed that the uptake proceeds initially via adsorption to the ice surface, with some degree of diffusion along grain boundaries and into the underlying ice bulk then proceeding. The relative fractions of adsorbed molecular nitric acid and dissociated nitric acid are not fully known, although it is likely that nitrate is present to a large degree.¹⁶ Indeed, XPS and NEXAFS spectra of ice at 230 K which contains surface nitrate, formed from NO₃ hydrolysis, indicate that the nitrate is similar in character to that of ions present in a concentrated solution (Krepelova et al.¹⁰). The implication is that the chemical environment on the surface of ice of adsorbed nitric acid is similar to that of pure ice and concentrated nitrate solutions. For initial exposures, uptakes are saturated at between 1 to 3 × 10¹⁴ molecules cm⁻² at 211 K. On the other hand, Ullerstam et al.¹⁵ have measured the adsorption enthalpy to be -31 kJ/mole. Using a radioactive tracer, chromatographic technique Bartels-Rausch et al.¹³ have measured the adsorption enthalpy to be -44 kJ/mole, and Hynes et al.⁷ report a value of -54 kJ/mole from a Van’t Hoff analysis.

Note that uptake may be affected by co-adsorbed species. Studies by Hynes et al.⁷ and Sokolov and Abbatt¹² involving co-adsorption of HCl indicate that HNO₃ binds more strongly than HCl, but that the presence of HCl does lead to suppressed HNO₃ uptake relative to behavior on bare ice surfaces. Also, enhanced uptake is observed if the ice surfaces are growing and not at equilibrium,¹⁴ probably arising through the formation of a metastable solution of HNO₃ in ice. The uptakes are larger under burial conditions than the amounts of nitric acid that are thermodynamically stable.¹³

Back to Table

25. **HNO$_3$ on H$_2$O(l).** Measurements using a droplet train flow reactor show that α has a strong negative temperature dependence varying from 0.19 ± 0.02 at 268 K to 0.07 ± 0.02 at 293 K (Van Doren et al.3). Ponche et al.1 measured a very consistent mass accommodation coefficient of 0.05 ± 0.01 at 297 K using the same technique. Schütze and Herrmann2 measured a lower limit of 3 × 10$^{-2}$ at 298 K using a suspended droplet flow reactor method, consistent with the droplet train flow reactor measurements.

Back to Table

26. **HNO$_3$ on HNO$_2$·nH$_2$O(s).** Hanson1 measured uptake coefficients of >0.3 and >0.2 on NAT surfaces at 191 K and 200 K, respectively. Middlebrook et al.2 measured an uptake coefficient of 0.7 on NAT at 197 K under conditions where both nitric acid and water vapor were co-depositing.

Back to Table

27. HNO₃ on HNO₃+nH₂O(l). Rudolf and Wagner¹ used an aerosol expansion chamber techniques to deduce that α for HNO₃ on 278 K H₂O/HNO₃ droplets is >0.3 and probably close to 1. The consistency of this value with smaller (~0.2) values measured for uptake on pure water by Van Doren et al.⁵ is unclear, since the mechanism of co-condensation is unknown and the composition of the surface in the aerosol expansion chamber experiments may be kinetically controlled and has not been well determined.

Back to Table

28. HNO₃ on H₂SO₄+nH₂O and H₂SO₄+nH₂O(s). Initial uptake at 73 wt% H₂SO₄ allows a measurement of α = 0.11 ± 0.01 at 283 K (Van Doren et al.⁷). This value is expected to increase at lower temperatures, in a manner similar to H₂O(1) uptake (Van Doren et al.⁶). Total HNO₃ uptake is subject to Henry’s law solubility constraints, even at stratospheric temperatures (Reihs et al.⁵). Solubility limitations also affected the earlier “sticking coefficient” measurements of Tolbert et al.⁵ for 75 wt% H₂SO₄ at 230 K. Hanson² measured an uptake coefficient of >0.3 for frozen 57.7 wt% sulfuric acid at 191.5 and 200 K. Baldwin and Golden¹ reported a lower limit of 2.4 × 10⁻⁴ on 97 wt% H₂SO₄ at 295 K, also reflecting solubility limits. Iraci et al.⁷ monitored nitric acid trihydrate growth on sulfuric acid tetrahydrate with infrared techniques, measuring HNO₃ uptake coefficient limits of >0.03 at 192.5 K and >0.08 at 192 K. These measurements involved co-deposition of water vapor.

Back to Table

29. HO₂NO₃ on H₂O(s). Li et al.¹ measured an uptake coefficient of 0.15 ± 0.10 at 200 K, where the uptake may be limited by surface saturation and appears to be reversible with no decomposition. Consistent with this, adsorption of HOONO₂ to ice was studied in a coated wall flow tube using CIMS for gas phase detection (Ulrich et al.⁷) at temperatures between 230 and 253 K. Only reversible uptake was observed, with a partition coefficient, KPartition, of 3.74 × 10⁻¹² × exp(7098/T) cm. Uptake is much smaller than for stronger acids, such as HNO₃.

Back to Table

30. **HO$_2$NO$_3$ on H$_2$SO$_4$$\cdotnH_2$O(l).** Baldwin and Golden1 measured $\gamma = 2.7 \times 10^{-5}$, which is probably solubility limited; see Note for H$_2$O$_2$ on H$_2$SO$_4$$\cdotnH_2$O.

31. **NH$_3$ on H$_2$O(s).** NH$_3$ interacts somewhat efficiently with ice surfaces according to the coated-wall flow tube results of Jin and Chu1 at 190 K. The porosity-corrected uptake coefficients are 4×10^{-2}, with no evidence for surface saturation when partial pressures of 10^{-6} Torr are used over hours of exposure time. This suggests that the surface is being substantially modified by the NH$_3$ exposure.

32. **NH$_3$ on H$_2$O(l).** Ponche et al.2 used a droplet train technique to obtain $\alpha = (9.7 \pm 0.9) \times 10^{-2}$ at 290 K, and Bongartz et al.1 used a liquid jet technique to obtain $\alpha = 4.0 \pm (3.0, -0.05) \times 10^{-2}$ at the same temperature. These experiments where extended to other temperatures by Carstens et al.2, demonstrating a negative temperature dependence. Ammonia uptake on liquid water as a function of both pH and temperature was investigated by Shi et al.4 using a droplet train apparatus, yielding values that also demonstrated negative temperature dependence, varying between 0.08 at 290 K to 0.35 at 260 K. The data from these four studies are all in reasonable agreement and a temperature dependent data plot with a non-linear least squares fit to all of these measurements has been published by Worsnop et al.6 Earlier levitated droplet evaporation experiments5 on NH$_4$Cl obtained a larger evaporation coefficient of $\alpha = 0.29 \pm 0.03$, which is discounted because of the indirect nature of the experiment.

33. **CO$_2$ on H$_2$O(s).** The uptake of carbon dioxide on ice has been studied in a classical BET adsorption experiment from 209 to 263 K by Ocampo and Klinger.1 The system is unusual in that the measured uptakes are higher at higher temperatures, unlike the behavior displayed by most gases that physically adsorb to ice surfaces. Similar to SO$_2$, the uptake may occur via formation and decomposition of H$_2$CO$_3$ in which case the ice surfaces may be somewhat acidified by this process.

34. **CO$_2$ on H$_2$O(l).** Noyes et al.2 used a dynamic stirring technique to monitor pressure decreases in a closed cylinder. They inferred $\alpha = (5.5 \pm 0.5) \times 10^{-8}$ at 293 K. This technique is uncalibrated against more widely used procedures and probably suffers from severe surface saturation effects. Schurath et al.3 employed a coaxial jet flow technique to measure a 298 K value of α of $1-2 \times 10^{-4}$, noting that its low Henry’s law solubility in water made the measurement very difficult. For this reason the measurement probably also suffered from surface saturation even at their shortest gas/liquid contact times, so this value is most likely a lower limit. Boniface et al.1 used a bubble train reactor to study the uptake by water as a
function of pH. At high pH the reaction of CO$_2$ with OH$^-$ partially relieves surface saturation allowing
determination that the uptake coefficient, and therefore α, is $\geq 1 \times 10^{-5}$, consistent with the value measured
by Schurath et al. and completely inconsistent with the much lower value obtained by Noyes et al.2

Back to Table

35. CH$_3$OH on H$_2$O(s). The uptake of methanol on ice has been measured in a coated-wall flow tube from 198 to 213 K2,3 and in a Knudsen cell from 150 to 180 K1. Reversible uptakes are observed. Winkler et al. fit their data to a Langmuir adsorption isotherm and report $K_{\text{part}} = 6.24 \times 10^{-12}$ cm3/molecule at 213 K and $N_{\text{sat}} = 3.2 \times 10^{14}$ molecules/cm2. Hudson et al. measure the initial uptake coefficient and find it to be strongly temperature dependent, decreasing with increasing temperature to less than 0.01 at 180 K.

Back to Table

36. CH$_3$OH on H$_2$O(l). Jayne et al.1 measured uptake from 260–291 K and derived accommodation coefficients fitting $\alpha/(1-\alpha) = \exp(-\Delta G_{\text{obs}}/RT)$, where $\Delta G_{\text{obs}} = -8.0$ kcal/mol + 34.9 cal mol$^{-1}$ K$^{-1}$ T(K).

Back to Table

37. CH$_3$CH$_2$OH on H$_2$O(s). The uptake of ethanol on ice has been measured in coated-wall flow tubes by Sokolov and Abbatt3 from 217 to 236 K, by Peybernes et al.2 from 193 to 223 K, by Kerbrat et al.1 from 213 to 243 K, and by Symington et al.4 from 208 to 228 K. In all cases, either BET or Langmuir adsorption isotherms are obeyed and saturated surface coverage is observed at 2 to 3 \times 1014 molecules/cm2, with reversible adsorption and desorption of ethanol displayed. Similar adsorption enthalpies are reported: −62 kJ/mole (Sokolov and Abbatt), −57 kJ/mole (Peybernes et al.), −68 kJ/mole (Kerbrat et al.), and −54 kJ/mole (Symington et al.). Symington et al. report a partition coefficient, K_{part}, of 1.36 \times 10$^{-11}$ exp(5573/T) cm$^{-1}$.

Back to Table

38. CH₃CH₂OH on H₂O(l). Jayne et al.¹ measured uptake from 260–291 K with a droplet train flow reactor and derived mass accommodation coefficients fitting \(\alpha/(1-\alpha) = \exp(-\Delta G_{\text{obs}}/RT) \), where \(\Delta G_{\text{obs}} = -11.0 \) kcal/mol + 46.2 cal mol⁻¹ K⁻¹ T(K). Similar, but somewhat larger values were reported for chloro-, bromo-, and iodo-ethanols. Shi et al.³ used the same technique to measure the uptake of both normal and deuterated ethanol over the temperature range of 263–291 K as a function of pH. Normal ethanol uptake was not dependent on pH, while the uptake of the deuterated species was enhanced by surface isotopic exchange, especially at high and low pH. The mass accommodation values obtained for normal ethanol obtained by Shi et al. ranged from 0.128 ± 0.023 at 263 K to 0.057 ± 0.005 are consistent, within experimental error, with the lowest temperature value measured by Jayne et al., but are significantly higher above ~275 K. Katrib et al.² also used the droplet train technique to measure the ethanol mass accommodation coefficient between ~266 and 281 K, obtaining lower values than those measured by Shi et al.,³ but agreeing with the higher temperature data of Jayne et al.¹ Katrib et al. obtained mass accommodation coefficients fitting \(\alpha/(1-\alpha) = \exp(-\Delta G_{\text{obs}}/RT) \), where \(\Delta G_{\text{obs}} = -(5.6 \pm 1.5) \) kcal/mol + (27.4 ± 5.5) cal mol⁻¹ K⁻¹ T(K). While the data of Shi et al. and Katrib et al. are off-set by about a factor of three, the negative temperature dependencies measure by the two groups are very similar. The differences among the three data sets are difficult to explain, given that all three used essentially the experimental same technique; the recommended lower limit is consistent with the lower values measured by Katrib et al.²

Back to Table

39. CH₃CH₂CH₂OH on H₂O(s). The uptake of propanol by ice surfaces was studied in a coated-wall flow tube by Sokolov and Abbatt.¹ Uptake was well described by a Langmuir adsorption isotherm at 228 K, with a saturated surface coverage of \(3.1 \times 10^{14} \) molecules/cm² and an adsorption coefficient \(K_{\text{conc}} = 8.3 \times 10^{-14} \) cm³/molecule.

Back to Table

40. CH₃CH₂CH₂OH and CH₃CH(OH)CH₃ on H₂O(l). Jayne et al.¹ measured uptake coefficients between 260 and 291 K and derived accommodation coefficients fitting \(\alpha/(1-\alpha) = \exp(-\Delta G_{\text{obs}}/RT) \), where \(\Delta G_{\text{obs}} = -9.2 \) kcal mol⁻¹ + 40.9 cal mol⁻¹ K⁻¹ T(K) for 1-propanol and \(-9.1 \) kcal mol⁻¹ + 43.0 cal mol⁻¹ K⁻¹ T(K) for 2-propanol. Similar data for t-butanol were also reported.

Back to Table

41. HOCH₂CH₂OH on H₂O(l). Jayne et al.¹ measured uptake coefficients for ethylene glycol between 260 and 291 K and derived accommodation coefficients fitting \(\alpha/(1-\alpha) = \exp(-\Delta G_{\text{obs}}/RT) \), where \(\Delta G_{\text{obs}} = -5.3 \) kcal mol⁻¹ + 24.5 cal mol⁻¹ K⁻¹ T(K).

Back to Table
42. CH$_3$O$_2$ on NaCl(s). Gershenzon et al.1 measured the uptake of CH$_3$O$_2$ on crystalline NaCl(s) in a central rod flow apparatus. They determined a value of $\gamma = (4 \pm 1) \times 10^{-3}$ at 296 K, suggesting that $\alpha \geq 4 \times 10^{-3}$.

43. CH$_3$OOH on H$_2$O(l). Magi et al.3 used a droplet train flow reactor to measure α over a temperature range of 261–281 K, showing a negative temperature dependence with values ranging from 9.2 \times 10^{-3} to 281 to 20.8 \times 10^{-3} at 261 K. Allowing for measurement uncertainty produces a recommendation that $\alpha \geq 7 \times 10^{-3}$ from 260 to 282 K.

44. CH$_2$O on H$_2$O(s). The uptake of formaldehyde on ice in a coated-wall flow tube has been measured by Winkler et al.2 They report reversible uptake behavior with a partition coefficient of $K_{\text{pan}} = 0.7$ cm, temperature independent between 198 and 208 K. At much higher temperatures (238 to 268 K), the partitioning to ice was studied by Burkhart et al.1 using artificial snow. It was found that the partitioning increased at lower temperatures, in accord with Winkler et al. Although there is also likely to be a significant surface component, the partition coefficients in this work are expressed in bulk solubility format, ranging from 56 to 245 M/atm from 268 to 238 K.

45. CH$_3$O on H$_2$O(l) and H$_2$SO$_4$•mHNO$_3$•nH$_2$O(l). Jayne et al.4 report uptake measurements for 0–85 wt% H$_2$SO$_4$ and 0–54 wt% HNO$_3$ over a temperature range of 241–300 K. Measured uptake coefficients vary from 0.0027–0.027, increasing with H$^+$ activity (Jayne et al.4 and Tolbert et al.5), and with increasing pH above 7 (Jayne et al.4). Reversible uptake is solubility limited through reactions to form H$_2$C(OH)$_2$ and CH$_3$O$^+$. A model of uptake kinetics (Jayne et al.4) is consistent with $\gamma = 0.04 \pm 0.01$ for all compositions. A chemisorbed surface complex dominates uptake at 10–20 wt% H$_2$SO$_4$, and CH$_3$O$^+$ formation dominates above 20 wt% (Tolbert et al.5, Jayne et al.4 and Iraci and Tolbert3). Low temperature (197–214 K) uptake studies by Iraci and Tolbert3 confirm that uptake is solubility limited for uptake coefficients in the 10$^{-3}$ to 10$^{-2}$ range even at low temperatures. These chemical mechanisms allow γ to greatly exceed α for strong acidic and basic solutions. A full uptake model for acid solutions is presented in Jayne et al.4 and for basic solutions in Jayne et al.3. XPS surface analysis by Fairbrother and Somorjai1 failed to see CH$_3$O$^+$ surface species reported by Jayne et al.; however, their sensitivity of 1% of surface coverage is too poor to see the predicted amounts of the surface species.

5-35
46. CH$_3$CHO on H$_2$O(s). The uptake of acetaldehyde to ice surfaces was measured in a Knudsen cell from 120 to 160 K by Hudson et al.1 finding the uptake to decrease with increasing temperature. Fitting the results to a Langmuir adsorption model and extrapolating to 210 K, the authors conclude that there will be low surface coverages under upper tropospheric conditions of $<5 \times 10^8$ molecules/cm2. Hudson et al. report the initial uptake coefficient and find it to be strongly temperature dependent, decreasing with increasing temperature to less than 0.01 at 160 K. Petitjean et al.2 have used a coated-wall flow tube to measure relatively small reversible uptakes. They report saturated surface coverages of between 1 and 2 $\times 10^{14}$ molecules/cm2 and a heat of adsorption of -16 kJ/mole from 203 to 233 K. A higher heat of adsorption is calculated if the entropy of adsorption is fixed according to Trouton’s rule. Larger uptakes are observed on mixed ice and nitric acid solution surfaces.

Back to Table

47. CH$_3$CHO on H$_2$O(l). Jayne et al.1 measured a lower accommodation coefficient limit of >0.03 at 267 K. Uptake can be limited by Henry's law and hydrolysis kinetics effects—see reference.

Back to Table

48. CH(O)CH(O) on H$_2$O(l). Schweitzer et al.1 used a droplet train flow reactor to investigate the uptake of glyoxyl by water droplets over a temperature range of 263–283 K; measured uptake was near their detection limit. They reported an average α over their experimental temperature range of $2.3 (±1.1/-0.7) \times 10^{-2}$.

Back to Table

49. CH$_3$C(O)CH$_3$ on H$_2$O(s). The uptake of acetone to ice surfaces has been measured in both coated-wall flow tubes$^{1,2,4-6}$ and in a Knudsen cell.3 Reversible uptake that is described by the simple Langmuir adsorption isotherm is demonstrated. Winkler et al. report a partition coefficient $K_{\text{part}} = 1.25 \times 10^{-10}$ exp(5575/T) cm, an enthalpy of adsorption of -46 kJ/mole, and a saturated surface coverage of 3×10^{14} molecules/cm2, for temperatures between 198 and 218 K. Symington et al.5 report a partition coefficient $K_{\text{part}} = 3.04 \times 10^{-9}$ exp(4625/T) cm, an enthalpy of adsorption of -39 kJ/mole, and a saturated surface coverage of 3×10^{14} molecules/cm2, for temperatures between 208 and 228 K. Between 193 to 223 K, Peybernes et al.4 report an adsorption enthalpy of -49 kJ/mole with a smaller saturated surface coverage of 1.3×10^{14} molecules/cm2. By fitting observed adsorption and desorption profiles at 190 to 220 K, Behr et al. conclude that a two-site model best represents their observations. Total adsorbed species are close to 3×10^{14} molecules/cm2 at saturation but the modeling suggests the presence of two crystallographic surfaces, one which binds acetone more strongly than the other. The relative proportion of the sites changes with ice film age, and adsorption energies are between -32 and -49 kJ/mole. Bartels-Rausch et al. report very similar adsorption enthalpies ($-51 ± 2$ kJ/mole) on a range of ice surfaces, including single and polycrystalline laboratory crystal ice, and snow from the field, at 198 to 223 K. Hudson et al. report somewhat smaller adsorption enthalpies at low temperatures (140 to 170 K) ranging from -28 to -39.
They also measure the initial uptake coefficient and find it to be strongly temperature dependent, decreasing with increasing temperature to less than 0.1 at 170 K.

Back to Table

50. CH₃C(O)CH₃ on H₂O(l). Duan et al.¹ measured uptake between 260 and 285 K, deriving α = 0.066 at the lower temperature and 0.013 at the higher, with several values measured in between. Measured values fit α/(1−α) = exp(−ΔG°obs/RT), where ΔG°obs = −12.7 kcal/mol + 53.6 cal mol⁻¹ K⁻¹ T(K). Schütze and Herrmann² used a single suspended droplet flow reactor to measure the uptake of acetone and several larger carbonyl compounds at 293 K; their value for acetone of α = 5.4(4.5/−2.6) × 10⁻³ agrees well with the values of Duan et al. extrapolated to 293 K.

Back to Table

51. CH₂OH(CO)CH₂ + H₂O(s). The uptake of hydroxyacetone was studied by Petitjean et al.¹ in a coated wall flow tube from 233 to 253 K. The uptake was reversible and obeyed a Langmuir adsorption isotherm. Heat of adsorption was reported to be ~62 kJ/mole.

Back to Table

52. CH₃C(O)CHO on H₂O(l). Schütze and Herrmann¹ used a single suspended droplet flow reactor to measure the uptake of 2-oxopropanal at 293 K, their value of α = (1.5 ± 0.5) × 10⁻⁴ is lower than those measured for acetone and acetaldehyde.

Back to Table

53. CH₂OC(O)OCH₃ on H₂O(l). Katrib et al.¹ measured the uptake of dimethyl carbonate on pure water and 0.1 M aqueous NaOH over a temperature range of 270–278 K using a droplet train flow reactor. Uptake was not obviously dependent on [OH⁻] and displayed a negative temperature dependence with individual measurements varying from (11 ± 2) × 10⁻² at 270 K to (1.2 ± 0.9) × 10⁻² at 276 K. Although the data are fairly noisy the authors derived a mass accommodation coefficient fitting of α/(1−α) = exp(−ΔG°obs/RT),
where \(\Delta G^\circ_{\text{obs}} = -(26 \pm 9) \text{ kcal mol}^{-1} + (99 \pm 35) \text{ cal mol}^{-1} \text{ K}^{-1} \text{ T(K)} \). Similar mass accommodation data for diethyl carbonate are also presented.

54. \textit{HC(O)OH} on \(\text{H}_2\text{O(s)} \). The uptake of formic acid on ice has been measured in coated-wall flow tube from 187 to 221 K by Von Hessberg et al.3 and Jedlovsky et al.1 Reversible uptakes are observed. Von Hessberg et al. fit their data to the Langmuir adsorption isotherm and report the adsorption constant to be \(\kappa_{\text{corr}} = 1.54 \times 10^{-24} \exp(6150/T) \text{ cm}^2\text{molecule}^{-1} \), for a saturated surface coverage of 2.2 \(\times 10^{14} \) molecules/cm\(^2\). Using a coated-wall flow tube coupled to a mass spectrometer, Symington et al.2 report partition coefficients from 208 to 238 K. The uptake was reversible with partition coefficients, \(\kappa_{\text{part}} \), of 1.5 \(\times 10^8 \exp(5143/T) \) cm.

55. \textit{HC(O)OH} on \(\text{H}_2\text{O(l)} \). Jayne et al.1 measured uptake coefficients for formic acid between 260 and 291 K and derived accommodation coefficients fitting \(\alpha/(1-\alpha) = \exp(-\Delta G^\circ_{\text{obs}}/RT) \), where \(\Delta G^\circ_{\text{obs}} = -7.9 \) kcal mol\(^{-1} \) + 34.9 cal mol\(^{-1} \) K\(^{-1} \) T(K).

56. \textit{CH}_3\textit{C(O)OH} on \(\text{H}_2\text{O(s)} \). The uptake of acetic acid on ice has been measured in coated-wall flow tubes by Sokolov and Abbatt1 from 222 to 245 K, by Picaud et al.2 from 193 to 223 K, by von Hessberg et al.3 from 197 to 227 K, and Symington et al.4 from 208 to 238 K. In all cases, either BET or Langmuir adsorption isotherms are demonstrated and saturated surface coverage is observed with between 2 to 3 \(\times 10^{14} \) molecules/cm\(^2\). The values of the partition coefficients between the Sokolov and Abbatt, von Hessberg et al. and Symington et al. studies agree to within roughly a factor of two, whereas the Picaud et al. results are one to two orders of magnitude smaller at low temperatures. The overall adsorption coefficient expressions from the Sokolov and Abbatt data, von Hessberg et al. and Symington et al. are \(\kappa_{\text{corr}} = 8.3 \times 10^{-28} \exp(7825/T), 6.55 \times 10^{-25} \exp(6610/T), \) and 2.2 \(\times 10^{-23} \exp(5703/T) \) cm\(^2\)molecule\(^{-1} \), respectively. Nitrous acid and acetic acid simultaneous uptake measurements to packed ice beds were found to be well described by a competitive Langmuir adsorption isotherm between 213 and 243 K. Labeled nitrous acid was monitored by radioactive methods, and acetic acid by CIMS (Kebrat et al.1).

57. **CH\(_3\)C(O)OH on H\(_2\)O(l).** Jayne et al.\(^1\) using a droplet train flow reactor measured uptake coefficients for acetic acid between 260 and 291 K and derived a mass accommodation coefficient fitting \(\alpha/(1-\alpha) = \exp(-\Delta G^\text{obs}/RT)\), where \(\Delta G^\text{obs} = -8.1 \text{ kcal mol}^{-1} + 34.9 \text{ cal mol}^{-1} \text{ K}^{-1} T(\text{K})\). Shi et al.\(^2\) used the same technique to measure the uptake of both normal and deuterated acetic acid at 258 K and pH = 7. They obtained \(\alpha = 0.19 (± 0.03)\) for normal acetic acid, while the uptake coefficient of the deuterated species was enhanced by surface isotopic exchange, equaling 0.96 (± 0.21).

Back to Table

58. **CH\(_3\)CO(O\(_2\))NO\(_2\) on H\(_2\)O(s).** The adsorption enthalpy has been measured to be −30 kJ/mole by Bartels-Rausch et al.\(^1\)

Back to Table

59. **Cl\(_2\) on H\(_2\)O(s).** Measurement of Leu\(^2\) yielded a limit of <1 × 10\(^{-4}\) for Cl\(_2\) and is subject to same concern as NO\(_2\) (see note). A similar limit of <5 × 10\(^{-5}\) has been measured by Kenner et al.,\(^4\) which is also probably limited by surface saturation.

Back to Table

60. **OCIO + H\(_2\)O(s).** Brown et al.\(^1\) and Graham et al.\(^2\) used complementary ultra high-vacuum (UHV) and coated-wall flow tube techniques to show sub-monolayer reversible absorption of OCIO on water ice at 100 K (UHV) and 189 and 200 K (flow tube). No kinetic data are available at stratospheric temperatures but the mass accommodation coefficient for 100 K ice surfaces is near unity, with values of 0.8 ± 0.2 reported for amorphous ice and 0.6 ± 0.2 for crystalline ice.\(^2\)

Back to Table

61. **HCl on H\(_2\)O(s).** The uptake coefficients of Leu\(^16\) (0.4; +0.6, −0.2) and Hanson and Ravishankara\(^16\) (≥0.3) are in reasonable agreement at stratospheric ice temperatures. At somewhat higher temperatures (205 K), Hynes et al.\(^13\) measured slightly lower values (0.1) which decreased at higher temperatures. At very low temperatures (80 to 120 K), Rieley et al.\(^21\) measured \(\alpha = 0.95 ± 0.05\).
A great deal of experimental effort (Abbatt et al.; Barone et al.; Koehler et al.; Chu et al.; Foster et al.; Graham and Roberts; Graham and Roberts; Hanson and Ravishankara; Hynes et al.; Leu et al.; Marti et al.; McNeil et al.; McNeil et al.) has gone into understanding the magnitude and nature of the uptake of HCl by ice surfaces under stratospheric and upper tropospheric conditions. A general observation is that water ice at stratospheric temperatures can take up a significant, but sub-monolayer, amount of HCl even at HCl partial pressures typical of the stratosphere. However, quantitative agreement in the size of the uptake is lacking, with a range of close to three orders of magnitude for partial pressures of 10^{-7} Torr at roughly 200 K. One issue is that the specific surface area of the ice was not measured in a number of early studies. Because the ice surface may have some roughness, depending on how it is prepared, a number of these uptakes may be biased high, if the surfaces were assumed to be smooth. Another issue is the partial pressure dependence of the uptake. In accord with a number of uptake measurements of other species on ice, saturated surface coverages are observed at about 2 to 3×10^{14} molecules/cm2 in experiments where the specific surface area of the ice is well known (e.g. Henson et al.; Hynes et al. and McNeil et al.). The drop-off into the unsaturated part of the adsorption isotherm appears to vary from experiment to experiment, as the HCl partial pressure is lowered. For example, Hanson and Ravishankara do not observe a drop off down to partial pressures well below 10^{-7} Torr, whereas others (e.g. Henson et al. and McNeil et al.) see a significant drop-off at higher partial pressures. And so, at the very low partial pressures of the upper troposphere, the surface coverage may be quite unsaturated; even in the stratospheric regime, there may not exist a full monolayer coverage. Some of the most thorough studies have been performed recently. For example, in a coated-wall flow tube study on a variety of ice surfaces at close to 200 K McNeil et al. show that uptakes obeyed conventional Langmuir adsorption isotherms, and that they did not scale as well with the dissociative Langmuir isotherm. A weak adsorption enthalpy of -15 kJ/mole was derived, but the accuracy of this value may be impacted by measurements made at three relatively close temperatures; the true value is likely much higher. Langmuir adsorption constants, $K_{\text{corr}} = 3.1 \times 10^{-13}$, 8.4×10^{-11}, and 3.9×10^{-11} cm2/molecule, were obtained at 213, 203, and 196 K, respectively. By contrast the work of Henson et al. using a static adsorption technique yields a much lower (one to two orders of magnitude) surface coverage for the same HCl partial pressures and temperatures.

Note that for the same experimental conditions, the uptake may be affected by co-adsorbed species. Studies by Hynes et al. and Sokolov and Abbatt involving co-adsorption of HNO$_3$ indicate that HNO$_3$ binds more strongly than HCl, but that the presence of HCl does lead to suppressed HNO$_3$ uptake relative to bare ice surfaces. Fernandez et al. also show that HCl uptake is significantly suppressed on a surface that has been exposed to HNO$_3$.

Both the thermodynamic and spectroscopic properties of adsorbed HCl suggest that a large fraction dissociates to ions, forms ionic hydrates (especially at low temperatures), and is highly reactive (with ClONO$_2$, HOBr and HOCl). Also, adsorption and desorption profiles in flow tubes suggest that uptake occurs via both reversible and irreversible processes, probably related to partitioning to different surface sites such as the ice faces or grain boundaries. These experimental results contrast with initial theoretical calculations that predicted undissociated HCl hydrogen bonded to the ice surface and a very small adsorption probability at stratospheric temperatures (Kroes and Clary); more recent simulations result in higher adsorption energies and theoretical accommodation coefficients of one for 190-K surfaces (Wang and Clary). Molecular dynamics calculations by Gertner and Hynes also show that ionic absorption is thermodynamically favorable by about 5 kcal/mole, facilitated by the role of mobile water molecules on the ice surface that can hydrate the ions. Using ellipsometry McNeil et al. have experimentally shown the presence of a disordered layer on the ice surface, sometimes referred to as the quasi liquid layer, arising from HCl adsorption at low temperatures and partial pressures. By contrast, at HCl partial pressures significantly above those typical of the stratosphere, a thermodynamically stable liquid surface layer forms on the ice, greatly enhancing the total amount of HCl that the surface can absorb (Abbatt et al.). These conditions should be avoided for lab studies as they are not atmospherically appropriate.

Koehler, B. G.; McNeill, L. S.; Middlebrook, A. M.; Tolbert, M. A. Fourier transform infrared studies of adsorbed and absorbed states.

62. HCl on H$_2$O(1). Recommendation is based on Van Doren et al. and Schweitzer et al. Using a droplet train flow reactor, Van Doren et al. measured α’s decrease from 0.18 ± 0.02 at 274 K to 0.064 ± 0.01 at 294 K, demonstrating strong negative temperature dependence. Schweitzer et al. used the same technique over a temperature range of 262 to 281 K obtaining values decreasing from 0.24 to 0.13 that agree very well with the Van Doren et al. data. Tang and Munkelwitz have measured a larger (0.45 ± 0.4) HCl evaporation coefficient for an aqueous NH$_4$Cl droplet at 299 K.

63. HCl on HNO3•nH2O. There was previously severe disagreement between Hanson and Ravishankara (α ≥0.3) for NAT (54 wt% HNO3), and Leu and coworkers (Moore et al. and Leu et al.). However, subsequent experiments at lower HCl concentrations by Leu and coworkers as well as Abbatt and Molina are generally consistent with Hanson and Ravishankara. The measurements of Hanson and Ravishankara are consistent with α = 1. The experiments at stratospherically representative HCl concentrations show that HNO3-rich NAT surfaces adsorb significantly less HCl than H2O-rich surfaces, with the uptake at a fixed temperature determined by the partial pressure of water.

64. HCl on H2SO4•nH2O. Measurements by Watson et al. at 284 K show α = 0.15 ± 0.01 independent of n for n ≥8. Experimental uptake and, therefore, apparent α falls off for n ≤8 (≥40 wt% H2SO4). This behavior is also observed at a stratospheric temperature (218 K) by Hanson and Ravishankara. Hanson and Lovejoy reported a value of 0.75 ± 0.2 for 26 wt% H2SO4 at 272 K. More extensive measurements performed by Robinson et al. at lower temperatures, also yielded higher values, reaching 1.03 ± 0.10 for 39 wt% H2SO4 at 230 K; they also observed enhanced uptake for 69 wt% H2SO4 that was attributed to the formation of chlorosulfonic acid. Solubility constraints also controlled earlier low temperature uptake measurements of Tolbert et al. A review of the most recent solubility data is presented in Table 5-6. Molecular beam measurements of HCl impingement on liquid deuterated sulfuric acid surfaces determine the fraction of HCl scattered with no reaction and the fraction that is reactively converted and emitted as DCl. The fraction converted to DCl is assumed to have undergone interfacial transport, representing a lower limit to the mass accommodation coefficient, which varies from ~0.7 at 53–55 wt% D2SO4 to ~0.1 near 70 wt% Behr et al. More recent measurements indicate that the conversion fraction is relatively insensitive to HCl kinetic energy over the range of 6 to 140 kJ mol⁻¹, and that the conversion fraction for 72 wt% D2SO4 varies less dramatically, from ~0.33 at 213 K to ~0.47 at 243 K Behr et al. The basic technique and analysis rationale are reviewed by Nathanson. The impact of organic surfactants on mass accommodation sulfuric acid, including the surprising fact that a surface layer of butanol actually significantly enhances HCl uptake in 213 K, 56–68 wt% D2SO4 is reviewed in Park et al. These studies strongly indicate that the mass accommodation coefficient for 50–72 wt% sulfuric acid surfaces for temperatures below 243 K is >0.1.

65. HCl on H2SO4•4H2O(s). Uptake is a strong function of temperature and water vapor partial pressure (relative humidity) (Zhang et al.\(^1\)), both of which affect adsorbed surface water.

Back to Table

66. ClONO2 on H2O(l). Dieber et al.\(^1\) used a droplet train apparatus to measure the uptake of ClONO2 on NaBr aqueous solutions to deduce the mass accommodation coefficient of 0.108 ± 0.011 at 274.5 K. This value may be affected by the reaction with interfacial Br\(^-\).

Back to Table

67. CCl3CHO + H2O(s). The uptake of CCl3CHO to ice was studied by Symington et al.\(^1\) from 208 to 228 K in a coated-wall flow reactor coupled to a mass spectrometer. There was an irreversible component to the uptake, which was attributed to hydrolysis. The partition coefficient is reported to be 7.52 × 10\(^{-4}\) exp(2069/T) cm.

Back to Table

68. Halocarbons on H2O(l). Uptake is limited by Henry's law solubility and hydrolysis rate constants (De Bruyn et al.\(^1,2\) and George et al.\(^3,4\)).

Back to Table (CCl3O) Back to Table (CCl3CClO) Back to Table (CF2O) Back to Table (CF3CFO) Back to Table (CF3CCIO)

5-43
69. HBr on H₂O(s) and HNO₃·nH₂O. Hanson and Ravishankara³⁶ have reported large uptake coefficients for HBr on 200-K ice and NAT. Lower limits of >0.3 and >0.2 for ice are reported in the two referenced publications, respectively, and a limit of >0.5 is reported for NAT. No surface saturation was observed, leading to the supposition that HBr, like HCl, dissociates to ions on ice surfaces at stratospheric temperatures. Abbatt⁴ measured an uptake coefficient lower limit of >0.03 on water ice at 228 K consistent with Hanson and Ravishankara. Rieley et al.⁹ measured an α of 1.0 ± 0.05 for water ice at 80–120 K. Flückiger et al.⁴ report α values of ~0.2 at 210 K, increasing to ~0.3 at 190 K, while Percival et al.⁸ measured an α of 0.03 ± 0.005 for water ice at T >212 K, and α > 0.1 at T <212 K, attributing the apparent increase in the uptake coefficient to an increase in the surface area of the ice. Hudson et al.⁷ report α = 0.61 ± 0.06 at 140 K, and α = 0.24 ± 0.05 at 100 K, for HBr pressures ranging from 3 × 10⁻⁸ to 1.4 × 10⁻⁷ Torr. Equilibrium HBr coverages for ice are reported by Chu and Heron² at 188 and 195 K, and by Chu and Chu² at 180–220 K. The latter authors also report the formation of various solid HBr hydrates. Given that no surface saturation is observed in the kinetics experiments leads to the supposition that HBr, like HCl, dissociates to ions. In addition to hydrate formation, it is likely that bulk melting of the ice surfaces may occur at stratospheric temperatures and the partial pressures used in the lab, to form thermodynamically stable HBr·H₂O solutions. Such behavior may not occur in the atmosphere where partial pressures of HBr are typically much lower than those used in the lab.

Back to Table

70. HBr on H₂O(1). Schweitzer et al.² used the droplet train flow reactor technique over a temperature range of 262 to 281 K obtaining values decreasing from 0.16 to 0.068. Li et al.¹ and Zhang et al.³ used the same technique to measure higher values of 0.14 ± 0.02 at 283 K and 0.21 ± 0.3 at 273 K, respectively. Given the good agreement between the two groups for HCl mass accommodation coefficients on water, there is no obvious reason for the discrepancy of a factor of 2-3 for HBr.

Back to Table

71. **HBr on H$_2$SO$_4$•nH$_2$O.** Molecular beam measurements of HBr impingement on liquid deuterated sulfuric acid surfaces determine the fraction of HBr scattered with no reaction and the fraction that reacts, exchanging H for D, and is emitted as DBr. The fraction converted to DBr is assumed to have undergone interfacial transport, representing a lower limit to the mass accommodation coefficient, which varies from ~0.7 at 55 wt% D$_2$SO$_4$ to ~0.2 near 70 wt% Behr et al. This strongly indicates that the mass accommodation coefficient for HBr is >0.1 for 55–72 wt% H$_2$SO$_4$ at 213 K.

Back to Table

72. **HOBr on H$_2$(s).** Abbatt1 measured an uptake coefficient for water ice of 2 × 10$^{-3}$ at 228 K. Chu and Chu2 report an uptake coefficient corrected for porosity effects in the range 0.11 to 0.007 at 190–218 K, with an exponential temperature dependence of (3809 ± 76)/T, and in the range 2 × 10$^{-3}$ to 6 × 10$^{-4}$ at 223–239 K, with an exponential temperature dependence of (4658 ± 456)/T. Chaix et al.2 measured the uptake coefficient as a function of temperature on three different types of water-ice, obtaining values ranging from ~0.3 at 185 K to ~0.03 at 205 K, with an exponential temperature dependence of (4900 ± 500)/T. Mössinger et al.5 report an uptake coefficient value of 0.003 at 227 K increasing to 0.040 at 205 K. The four sets of results are in reasonable agreement with each other, and the temperature dependence of the uptake coefficient is attributed predominantly to changes in the evaporation rate. The results indicate that the uptake of HOBr on ice cannot be explained with Langmuir-type adsorption isotherms and that the process is not reversible, probably proceeding via the self-reaction of HOBr to form Br$_2$O, or possibly by formation of hydrates. Using a common precursor model, Flückiger and Rossi4 have estimated accommodation coefficients α which are considerably larger than the measured uptake coefficients, with α values ranging from 0.18 at 215 K to 0.46 at 190 K.

Back to Table

73. **HOBr on H$_2$(l).** See Note on HOBr + KBr and NaBr in reactive uptake table.

Back to Table

74. **HOBr on H$_2$SO$_4$•nH$_2$O(l).** Abbatt1 measured an uptake coefficient of 0.06 ± 0.02 by measuring HOBr gas phase loss at 228 K. This result may well be a lower limit due to surface saturation effects and the uptake may have been due to Br$_2$O formation.

Back to Table

75. **BrONO$_2$ on H$_2$(O).** Dieber et al.1 used a droplet train apparatus to measure the uptake of BrONO$_2$ on NaBr aqueous solutions to deduce the mass accommodation coefficient of 0.063 ± 0.021 at 274.5 K. This value may be affected by the reaction with interfacial Br$^-$.

Back to Table
76. BrONO₂ on H₂SO₄•nH₂O. Hansen¹ modeled wetted-wall flow reactor data and aerosol flow reactor data to estimate $\alpha = 0.80$ over a wide range of temperatures and acid concentrations.

77. CHBr₃ on H₂O(s) and H₂SO₄•nH₂O(l). Hanson and Ravishankara¹ investigated the uptake of bromoform on ice and 58 wt% sulfuric acid at 220 K. No uptake on ice was observed, with a measured uptake coefficient of $<6 \times 10^{-5}$. Reversible uptake by the sulfuric acid surface was observed with an initial uptake coefficient of $>3 \times 10^{-3}$; both measurements are probably limited by surface saturation.

78. BrCl on H₂O(1). Katrib et al.¹ used a droplet train flow reactor to measure the uptake of BrCl as a function of NaOH concentration over the temperature range of 270–285 K. Data were too noisy to assign a clear temperature dependence, but an average over measurements at 270, 274, 280, and 285 K for higher [NaOH] where reactive scavenging relieved solubility constraints yielded $\alpha = 0.33 \pm 0.18$. The recommended lower limit is consistent with this value.

79. I₂ on H₂O(1). Takami et al.¹ used the impinging flow technique to investigate the uptake of I₂ at 293 K as a function of pH. While solubility constraints prevented a clear measure of mass accommodation, they modeled high pH data where solubility constraints were relaxed by reactive scavenging by OH⁻ to determine that $\alpha \geq 0.1$.

80. HI on H₂O(s). The uptake of HI has been studied by Chu and Chu¹ in a coated-wall flow tube to be large between 188 and 195 K, in the multi-layer coverage regime. Under their experimental conditions, it is likely that the surface is melting to form a bulk solution and/or hydrates are forming. Percival et al.² also report efficient uptake with the same technique between 200 and 233 K, with the uptake coefficient of 0.02 ± 0.004 above 212 K and larger than 0.1 for temperatures below 212 K.

81. HI on H₂O(1). Schweitzer et al.¹ used the droplet train flow reactor technique over a temperature range of 262 to 281 K, obtaining values decreasing from 0.19 to 0.079. Zhang et al.² used the same technique to obtain a value of 0.17 ± 0.02 at 273 K, which is a little less than a factor of two higher than indicated by the Schweitzer et al. measurements for that temperature.

82. **HOI on H$_2$SO$_4$$\cdotnH_2$O.** Knudsen cell studies by Allanic and Rossi1 measured uptake at several temperatures for 40, 50, and 70 acid wt%. Time dependent studies show no sign of saturation, so uptake coefficients should correspond to mass accommodation coefficients. Some acid concentration data in the table have been averaged for similar temperatures and rounded to one significant figure. An uncertainty factor of three has been assigned due to the relatively small number of temperature/concentration points studied and a lack of confirming studies from other laboratories. The authors note evidence of HOI disproportionation to form I$_2$, however, this second order reaction is unlikely to occur under atmospheric conditions.

Back to Table

83. **HF on H$_2$O(s) and HNO$_3$$\cdotnH_2$O(s).** Hanson and Ravishankara1 attempted to measure the uptake of HF by 200 K water ice and NAT surfaces but were unable to observe measurable adsorption. They surmise that, unlike HCl and HBr, HF does not dissociate to ions on ice or NAT surfaces at 200 K. Lack of measurable uptake is probably due to surface saturation.

Back to Table

84. **CF$_3$CH$_2$OH + H$_2$O(s).** The uptake of 1,1,1-trifluoroethanol to ice was studied by Symington et al.1 from 208 to 228 K in a coated-wall flow reactor coupled to a mass spectrometer. Uptakes were observed to be reversible and exhibited Langmuir-type behavior. The partition coefficient is reported to be 3.74×10^{-12} exp(6427/T) cm.

Back to Table

85. **CF$_3$CF$_2$CH$_2$OH + H$_2$O(s).** The uptake of CF$_3$CF$_2$CH$_2$OH was studied in a coated wall flow tube from 203 to 223 K by Moreno et al.1 The uptakes were reversible and obeyed a Langmuir adsorption isotherm. Heat of adsorption was reported to be −45 kJ/mole.

Back to Table

86. **CF$_3$CF$_2$CF$_2$CH$_2$OH + H$_2$O(s).** The uptake of CF$_3$CF$_2$CF$_2$CH$_2$OH was studied in a coated wall flow tube from 203 to 223 K.1 The uptakes were reversible and obeyed a Langmuir adsorption isotherm. Heat of adsorption was reported to be −46 kJ/mole.

Back to Table

87. **CF$_3$CHO + H$_2$O(s).** The uptake of CF$_3$CHO to ice was studied by Symington et al.1 from 208 to 228 K in a coated-wall flow reactor coupled to a mass spectrometer. There was an irreversible component to the uptake which was attributed to hydrolysis. The partition coefficient is reported to be 1.06×10^{-2} exp(904/T) cm.

88. **CF$_2$O on H$_2$O(s), HNO$_2$•nH$_2$O and H$_2$SO$_4$•nH$_2$O.** Uptake coefficient measurements by Hanson and Ravishankara1 on stratospheric surfaces are probably subject to surface and/or bulk saturation effects and may not represent accommodation coefficient measurements, particularly the lower limits of $>3 \times 10^{-6}$ reported for water and nitric acid ices.

89. **CF$_3$C(O)OH + H$_2$O(s).** Using a coated-wall flow tube coupled to a mass spectrometer, Symington et al.1 measured the uptake to ice of CF$_3$COOH from 208 to 238 K. There is some evidence for non-reversible uptake due to hydrate formation. The partition coefficient is reported to be $5.12 \times 10^{-6} \exp(309/T)$ cm.

90. **CF$_3$C(O)OH on H$_2$O(l).** Hu et al.1 measured mass accommodation coefficients for five haloacetic acids, including trifluoroacetic acid (TFA); the others were mono-, di-, trichloro-, and chlorodifluoro-acetic acids. All displayed negative temperature dependence and values for α of about 0.1 at 273 K.

91. **SO$_2$ on H$_2$O(s).** Uptake experiments in coated-wall flow tubes have been conducted by Chu et al.1 and by Clegg and Abbatt3 who observe sub-monolayer reversible uptakes for temperatures between 190–211 K and 213–233 K, respectively. Chu et al. report an uptake coefficient of 1×10^{-5} at 191 K. Earlier studies from Clappsaddle and Lamb2 using chromatographic-like uptake experiments with small ice spheres packed into a column, are in good quantitative agreement with those of Clegg and Abbatt. Both studies report that uptake increases with increasing temperature, unlike most other species that demonstrate more adsorption at lower temperatures. From the partial pressure dependence of the uptake and from the behavior on basic and acidic surfaces, Clegg and Abbatt infer the uptake occurs by formation of bisulfite on the surface, in the quasi-liquid layer on the surface of ice.

92. **SO$_2$ on H$_2$O(1).** Using a droplet train flow reactor Worsnop et al.7 measured an α of 0.11 ± 0.02 with no significant temperature variation over a temperature range of 260–292 K. Ponche et al.4 measured 0.13 ± 0.01 at 298 K, in agreement with the earlier measurement. Shimon and Koda6 estimated an α of 0.2 at 293.5 K from analysis of pH-dependent uptake coefficients in a liquid impingement technique. Schurath et al.5 used a coaxial flow liquid jet to obtain a value of 0.1 at 298 K. Boniface et al.1 performed more extensive droplet train flow reactor measurements at high pH to relieve solubility constraints, obtaining a negative temperature dependence with α values ranging from 0.43 ± 0.4 at 264 K to 0.175 ± 0.015 at 291 K, their data can be fit to $\alpha/(1-\alpha) = \exp(-\Delta G_{\text{idw}}/RT)$, where $\Delta G_{\text{idw}} = -(7.6 \pm 0.6)$ kcal/mol + (29.2 ± 2.1)
cal mol$^{-1}$ K$^{-1}$ T(K). Donaldson et al.2 have used second harmonic generation spectroscopy to detect a chemisorbed SO$_3$ surface species which was predicted from earlier uptake measurements by Jayne et al.;3 this surface complex may play a role in SO$_2$ heterogeneous reactions on aqueous surfaces.

Back to Table

93. SO$_2$ on H$_2$SO$_4$•nH$_2$O. See Note for H$_2$O$_2$ on H$_2$SO$_4$•nH$_2$O.

Back to Table

94. H$_2$S on H$_2$O(l). Boniface et al.1 performed droplet train flow reactor measurements over at 260–298 K at high pH to relieve solubility constraints, measured uptake coefficients were consistent with $\alpha \geq 0.05$.

Back to Table

95. H$_2$SO$_4$ on H$_2$SO$_4$•nH$_2$O. Poschl et al.2 measured 0.43 $< \alpha < 1.0$ for 73–98 wt% H$_2$SO$_4$ at 303 K in a wetted wall flow tube. Lower temperatures and acid concentrations would be expected to lead to larger values of α. As discussed in Poschl et al.2 this contradicts an indirect measurement of 0.02 $< \alpha < 0.09$ at 42.5 wt% at 298 K by Van Dingenen and Raes3 in a photochemical aerosol reactor. The Poschl et al.2 result is consistent with room temperature α values very near that measured for (NH$_4$)$_2$SO$_4$ particles in an aerosol flow reactor by Jefferson et al.1

Back to Table

96. CH$_3$Si(O)CH$_3$, CH$_3$Si(O$_2$)CH$_3$ and CH$_3$Si(O$_2$)OH on H$_2$O(l). De Bruyn et al.1 measured uptake over the temperature range \sim262–281 K and derived accommodation coefficients fitting $\alpha / (1 - \alpha) = \exp(-\Delta G_{\text{obs}}/RT)$, where $\Delta G_{\text{obs}} =$

- -0.12 kcal mole$^{-1}$ + 23.1 cal mole$^{-1}$ K$^{-1}$ T(K) for dimethylsulfoxide
-10.7 kcal mole\(^{-1}\) + 43.0 cal mole\(^{-1}\) K\(^{-1}\) T(K) for dimethylsulfone
-3.50 kcal mole\(^{-1}\) + 16.7 cal mole\(^{-1}\) K\(^{-1}\) T(K) for methanesulfonic acid.

Schweitzer et al.\(^2\) used a droplet train flow reactor to investigate the uptake of CH\(_3\)S(O\(_2\))OH by water over a temperature range of 262–281 K, obtaining mass accommodation coefficient values decreasing from 0.17 to 0.11, in excellent agreement with those obtained by De Bruyn et al.\(^1\)

5.13 Bibliography – Table 5-1

Chai, L.; Allanic, A.; Rossi, M. J. Heterogeneous chemistry of HOBr on different types of ice and on ice doped with HC1, HBr, and HNO$_3$ at 175 K < T < 125 K. *J. Phys. Chem. A* 2000, 104, 7268-7277, doi:10.1021/jp001018z.

Clegg, S. M.; Abbatt, J. P. D. Kinetics of ClONO2 reactive uptake on ice surfaces at temperatures

Table 5-2. Gas/Surface Reaction Probabilities (γ) for Surfaces Other Than Soot

<table>
<thead>
<tr>
<th>Gaseous Species</th>
<th>Surface Type</th>
<th>Surface Composition</th>
<th>T (K)</th>
<th>γ</th>
<th>Uncertainty Factor</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ + Surface → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>223–258</td>
<td><10⁻⁸</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Alumina</td>
<td>α-Al₂O₃(s), γ-Al₂O₃(s)</td>
<td>210–300</td>
<td><2×10⁻⁴</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>223–300</td>
<td><10⁻⁴</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaCl(aq)</td>
<td>298</td>
<td><10⁻⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(s)</td>
<td>300</td>
<td><10⁻⁴</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaBr(aq)</td>
<td>298</td>
<td><10⁻⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>300</td>
<td><10⁻⁴</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Potassium Iodide</td>
<td>KI(s)</td>
<td>~298</td>
<td>≥0.1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sea Salt</td>
<td>See Note</td>
<td>300</td>
<td>γ<2×10⁻²</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Organic Surfaces</td>
<td>See Note</td>
<td>298</td>
<td>γ>0.1</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>OH + Surface → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>205–230</td>
<td>>0.01</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Hydrochloric Acid</td>
<td>HCl+nH₂O(l)</td>
<td>220</td>
<td>>0.2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO₂+3H₂O(s)</td>
<td>200–228</td>
<td>>0.2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)</td>
<td>200–298</td>
<td>>0.2</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>245–300</td>
<td>γ<10⁻²</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaCl(aq)</td>
<td>298</td>
<td>≥0.1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Alumina</td>
<td>Al₂O₃(s)</td>
<td>250–300</td>
<td>γ<0.1</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Organic Surfaces</td>
<td>See Note</td>
<td>298</td>
<td>γ>0.1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>HO₂ + Surface → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO₂</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>223</td>
<td>0.025</td>
<td>See Note</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O(l)</td>
<td>275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(28 wt%)</td>
<td>293</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(47–50 wt%)</td>
<td>223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(55 wt%)</td>
<td>243</td>
<td>≤0.1</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Aqueous Salt</td>
<td>(NH₄)₂SO₄(aq) and NaCl(aq)</td>
<td>298</td>
<td>See Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>245–300</td>
<td>See Note</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Potassium Chloride</td>
<td>KCl(s)</td>
<td>295</td>
<td>See Note</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Ammonium Sulfate</td>
<td>(NH₄)₂SO₄(s)</td>
<td>298</td>
<td>See Note</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>H₂O + Surface → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>Alumina</td>
<td>α-Al₂O₃(s)</td>
<td>295–300</td>
<td>γ<0.2</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>H₂O₂ + Surface → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Alumina</td>
<td>α-Al₂O₃(s), γ-Al₂O₃(s)</td>
<td>268–320</td>
<td>γ<5×10⁻³</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2NO₂ + H₂O(l) → HONO + HNO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>270–295</td>
<td><1×10⁻²</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H₂SO₄•nH₂O (40–98 wt %)</td>
<td>250–325</td>
<td>5×10⁻⁷</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Alumina</td>
<td>γ-Al₂O₃(s)</td>
<td>298</td>
<td>γ<1×10⁻⁷</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Al₂O₃(s)</td>
<td>298</td>
<td>γ<5×10⁻⁵</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>2NO₂ (N₂O₄) + MX → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂/N₂O₄</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td>γ<1×10⁻⁴</td>
<td>See Note</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(s)</td>
<td>298</td>
<td>γ<1×10⁻⁴</td>
<td>See Note</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Sea Salt</td>
<td>See Note for O₃ + Sea Salt</td>
<td>298</td>
<td>See Note</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>NO₂ + H₂O → HNO₃ + OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>170–200</td>
<td><10⁻³</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>273</td>
<td>≥2×10⁻³</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Gaseous Species</td>
<td>Surface Type</td>
<td>Surface Composition</td>
<td>T (K)</td>
<td>(\gamma)</td>
<td>Uncertainty Factor</td>
<td>Note</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>NO(_3) + NaX (\rightarrow) Products</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>293</td>
<td>(\gamma <6\times10^{-2})</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(s)</td>
<td>293</td>
<td>(\gamma =0.2\pm0.1)</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Sodium Iodide</td>
<td>NaI(aq)</td>
<td>273</td>
<td>See Note</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>NO(_3)</td>
<td>Organic Surfaces</td>
<td>See Note</td>
<td>298</td>
<td>See Note</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>N(_2)O(_5) + H(_2)O (\rightarrow) 2HNO(_2)</td>
<td>Water Ice</td>
<td>H(_2)O(s)</td>
<td>188–195</td>
<td>0.02</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Liquid Water/Solutions</td>
<td>H(_2)O(l)/NH(_4):SO(_4)(aq)</td>
<td>260–295</td>
<td>See Note</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO(_3):3H(_2)O(s)</td>
<td>200</td>
<td>(4\times10^{-4})</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H(_2)SO(_4):nH(_2)O(l)</td>
<td>195–300</td>
<td>See Note</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid Monohydrate</td>
<td>H(_2)SO(_4):H(_2)O(s)</td>
<td>200–300</td>
<td>See Note</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid Tetrahydrate</td>
<td>H(_2)SO(_4):4H(_2)O(s)</td>
<td>195–207</td>
<td>0.006</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Ternary Acid</td>
<td>H(_2)SO(_4):nHNO(_2):nH(_2)O(l)</td>
<td>195–218</td>
<td>See Note</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>N(_2)O(_5) + HCl (\rightarrow) ClNO (\rightarrow) HNO(_2)</td>
<td>Water Ice</td>
<td>H(_2)O(s):HCl(s)</td>
<td>190–220</td>
<td>0.03</td>
<td>See Note</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO(_3):3H(_2)O(s):HCl(s)</td>
<td>200</td>
<td>0.003</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid Monohydrate</td>
<td>H(_2)SO(_4):H(_2)O(s)</td>
<td>195</td>
<td>(<1\times10^{-4})</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>N(_2)O(_5) + HBr (\rightarrow) BrNO (\rightarrow) HNO(_2)</td>
<td>Water Ice</td>
<td>H(_2)O(s)</td>
<td>180–200</td>
<td>0.005</td>
<td>10</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO(_3):3H(_2)O(s)</td>
<td>200</td>
<td>See Note</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>N(_2)O(_5) + MX (\rightarrow) Products</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>295</td>
<td>(\gamma <5\times10^{-3})</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>298</td>
<td>(\gamma <0.05)</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(aq)</td>
<td>270–277</td>
<td>(\gamma <5\times10^{-3})</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Sodium Iodide</td>
<td>NaI(aq)</td>
<td>262–278</td>
<td>(\gamma <0.05)</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Sea Salt</td>
<td>See Note for O(_3) + Sea Salt</td>
<td>295</td>
<td>See Note</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>HONO + H(_2)O (\rightarrow) Products</td>
<td>Liquid Water</td>
<td>H(_2)O(l)</td>
<td>245–295</td>
<td>0.03</td>
<td>5</td>
<td>46</td>
</tr>
<tr>
<td>HONO + H(_2)SO(_4) (\rightarrow) Products</td>
<td>Sulfuric Acid</td>
<td>H(_2)SO(_4):nH(_2)O(l)</td>
<td>180–200</td>
<td>See Note</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>HONO + HCl (\rightarrow) ClNO + H(_2)O</td>
<td>Water Ice</td>
<td>H(_2)O(s)</td>
<td>180–200</td>
<td>0.05</td>
<td>See Note</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H(_2)SO(_4):nH(_2)O(l)</td>
<td>See Note</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>HONO + HBr (\rightarrow) BrNO + H(_2)O</td>
<td>Water Ice</td>
<td>H(_2)O(s)</td>
<td>180–200</td>
<td>See Note</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>HONO + NaCl (\rightarrow) Products</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>(\approx 300)</td>
<td>(<1\times10^{-4})</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>HONO + Al(_2)O(_3) (\rightarrow) Products</td>
<td>Alumina</td>
<td>(\gamma)-Al(_2)O(_3)(s)</td>
<td>274–320</td>
<td>See Note</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>HONO (\rightarrow) Products</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>295–298</td>
<td>(\gamma =2\times10^{-3})</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>298</td>
<td>(\gamma >0.2)</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Sea Salt</td>
<td>See Note for O(_3) + Sea Salt</td>
<td>298</td>
<td>(\gamma <3\times10^{-2})</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(s)</td>
<td>298</td>
<td>(\gamma <3\times10^{-2})</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Sodium Iodide</td>
<td>NaI(aq)</td>
<td>298</td>
<td>(\gamma =0.5)</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Gaseous Species</td>
<td>Surface Type</td>
<td>Surface Composition</td>
<td>T (K)</td>
<td>(\gamma)</td>
<td>Uncertainty Factor</td>
<td>Note</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>(\text{HNO}_3 + \text{Al}_2\text{O}_3(s) \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\alpha-\text{Al}_2\text{O}_3(s))</td>
<td>295–300</td>
<td>(\gamma_o < 0.2)</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>(\text{HO}_2\text{NO}_2 + \text{HCl} \rightarrow \text{Products})</td>
<td>Sulfuric Acid</td>
<td>(\text{H}_2\text{SO}_4\text{mH}_2\text{O}) (50–75 wt%)</td>
<td>200–225</td>
<td>(\text{<1}\times\text{10}^{-4})</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>(\text{NH}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{NH}_4\text{HSO}_4)</td>
<td>Sulfuric Acid</td>
<td>(\text{H}_2\text{SO}_4\text{mH}_2\text{O}) <50 wt% 50-70 wt%</td>
<td>260–300 260–300</td>
<td>See Note 1.0 1.2</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>(\text{CO}_2 + \text{Al}_2\text{O}_3(s) \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>290–300</td>
<td>See Note 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{H}_2\text{CO} + \text{Al}_2\text{O}_3 \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s)), (\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>270–300</td>
<td>(\gamma_o < 5\times\text{10}^{-4})</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_2\text{OH} + \text{H}_2\text{SO}_4 \text{ and } \text{H}_2\text{SO}_4 + \text{HNO}_3 \rightarrow \text{Products})</td>
<td>Sulfuric Acid Ternary Acid</td>
<td>(\text{H}_2\text{SO}_4\text{mH}_2\text{O})</td>
<td>293 283–329</td>
<td>See Note See Note</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{OH} + \text{Al}_2\text{O}_3 \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>290–300</td>
<td>(\gamma_o < 3\times\text{10}^{-4})</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>(\text{HC(O)}\text{OH} + \text{Al}_2\text{O}_3 \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>240–298 298</td>
<td>(\gamma_o < 0.01)</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{CH}_2\text{OH} + \text{H}_2\text{SO}_4\text{mH}_2\text{O} \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>193–273</td>
<td>See Note 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_4\text{C(O)}\text{OH} + \text{Al}_2\text{O}_3 \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>290–310</td>
<td>(\gamma_o < 0.02)</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{CHO} + \text{H}_2\text{SO}_4 \text{mH}_2\text{O} \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>211–298</td>
<td>See Note 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{CHO} + \text{Al}_2\text{O}_3 \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>290–300</td>
<td>(\gamma_o > 1.5\times\text{10}^{-5})</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{CH}_2\text{CHO} + \text{Al}_2\text{O}_3 \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>290–300</td>
<td>(\gamma_o > 2.5\times\text{10}^{-5})</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{C(O)}\text{CH}_3 + \text{H}_2\text{SO}_4\text{mH}_2\text{O} \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>198–298</td>
<td>See Note 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{C(O)}\text{CH}_3 + \text{Al}_2\text{O}_3 \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>290–300</td>
<td>(\gamma_o > 1.5\times\text{10}^{-5})</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{C(O)}\text{O}_2 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{C(O)}\text{OH} + \text{HO}_2)</td>
<td>Sulfuric Acid</td>
<td>(\text{H}_2\text{SO}_4\text{mH}_2\text{O}) (84 wt% (\text{H}_2\text{SO}_4)) 246 3\times\text{10}^{-3} 3</td>
<td>225 4\times\text{10}^{-3} 3</td>
<td>(\text{69}), (\text{69})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{H}_2\text{C}(=\text{C})(\text{CH}_3)\text{CHO}) and (\text{H}_2\text{C}(=\text{C})(\text{OH})(\text{CH}_3) + \text{Al}_2\text{O}_3 \rightarrow \text{Products})</td>
<td>Alumina</td>
<td>(\gamma-\text{Al}_2\text{O}_3(s))</td>
<td>290–300</td>
<td>See Note 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{C(O)}\text{OH} + \text{H}_2\text{SO}_4 \text{ and } \text{H}_2\text{SO}_4 + \text{HNO}_3 \rightarrow \text{Products})</td>
<td>Sulfuric Acid</td>
<td>(\text{H}_2\text{SO}_4\text{mH}_2\text{O}) (40–70 wt%)</td>
<td>200–225</td>
<td>(\text{<1}\times\text{10}^{-4})</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Gaseous Species</td>
<td>Surface Type</td>
<td>Surface Composition</td>
<td>T (K)</td>
<td>γ</td>
<td>Uncertainty Factor</td>
<td>Note</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>Cl + Surface \rightarrow Products</td>
<td>Cl</td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l)</td>
<td>221–296</td>
<td>2×10^{-4}</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td>See Note</td>
<td>73</td>
</tr>
<tr>
<td>Cl$_2$ + HBr \rightarrow BrCl + HCl</td>
<td>Cl$_2$HBr</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>200</td>
<td>>0.2</td>
<td>74</td>
</tr>
<tr>
<td>Cl$_2$ + MX \rightarrow Products</td>
<td>Cl$_2$</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td>$\gamma_o < 1 \times 10^{-3}$</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(s)</td>
<td>298</td>
<td>0.02 < $\gamma_o < 0.2$</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Iodide</td>
<td>NaI(aq)</td>
<td>263–293</td>
<td>$\gamma_o < 0.3$</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>298</td>
<td>$\gamma_o < 0.3$</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sea Salt</td>
<td>See Note for O$_3$ + Sea Salt</td>
<td>298</td>
<td>See Note</td>
<td>76</td>
</tr>
<tr>
<td>ClO + Surface \rightarrow Products</td>
<td>ClO</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>183–213</td>
<td>$< 10^{-4}$</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO$_2$•3H$_2$O(s)</td>
<td>183</td>
<td>See Note</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l) (60 to 95 wt% H$_2$SO$_4$)</td>
<td>221–296</td>
<td>See Note</td>
<td>80</td>
</tr>
<tr>
<td>HCl + HNO$_3$ \rightarrow Products</td>
<td>HCl + HNO$_3$</td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nHNO$_2$•nH$_2$O(l)</td>
<td>See Note</td>
<td>See Note</td>
<td>81</td>
</tr>
<tr>
<td>HOCl + HCl \rightarrow Cl$_2$ + H$_2$O</td>
<td>HOCl/HCl</td>
<td>Water Ice</td>
<td>H$_2$O(s)+HCl(s)</td>
<td>195–200</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO$_2$•3H$_2$O(s)+HCl(s)</td>
<td>195–200</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l)</td>
<td>198–209</td>
<td>See Note</td>
<td>83</td>
</tr>
<tr>
<td>HOCl/HBr</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>189–220</td>
<td>See Note</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l)</td>
<td>228</td>
<td>See Note</td>
<td>85</td>
</tr>
<tr>
<td>HOCl + NaBr and KBr \rightarrow Products</td>
<td>HOCl</td>
<td>Sodium Bromide</td>
<td>NaBr(aq) Ice</td>
<td>233</td>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>300</td>
<td>$\gamma_o > 5 \times 10^{-3}$</td>
<td>86</td>
</tr>
<tr>
<td>CINO + Surface \rightarrow Products</td>
<td>CINO</td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>270–295</td>
<td>$\geq 4 \times 10^{-9}$*</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td><1\times10$^{-6}$</td>
<td>88</td>
</tr>
<tr>
<td>CINO$_2$ + H$_2$O \rightarrow Products</td>
<td>CINO$_2$</td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>275–295</td>
<td>4\times10$^{-6}$</td>
<td>2</td>
</tr>
<tr>
<td>CINO$_2$ + MX \rightarrow Products</td>
<td>CINO$_2$</td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>300</td>
<td>1×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(aq)</td>
<td>291</td>
<td>See Note</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(aq)</td>
<td>275–293</td>
<td>See Note</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Iodide</td>
<td>NaI(aq)</td>
<td>275–293</td>
<td>See Note</td>
<td>90</td>
</tr>
<tr>
<td>CIONO$_2$ + H$_2$O \rightarrow HOCl + HNO$_3$</td>
<td>CIONO$_2$</td>
<td>Water Ice</td>
<td>H$_2$O(l)</td>
<td>180–200</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid Water</td>
<td>H$_2$O(l)</td>
<td>270–290</td>
<td>2.5×10^{-2}</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO$_2$•3H$_2$O(s)</td>
<td>200–202</td>
<td>0.004</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$•nH$_2$O(l)</td>
<td>200–202</td>
<td>See Note*</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid Monohydrate</td>
<td>H$_2$SO$_4$•H$_2$O(s)</td>
<td>195</td>
<td>$< 1 \times 10^{-3}$</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid Tetrahydrate</td>
<td>H$_2$SO$_4$•4H$_2$O(s)</td>
<td>196–206</td>
<td>See Note*</td>
<td>95</td>
</tr>
<tr>
<td>Gaseous Species</td>
<td>Surface Type</td>
<td>Surface Composition</td>
<td>T (K)</td>
<td>γ</td>
<td>Uncertainty Factor</td>
<td>Note</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------</td>
<td>---------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>ClONO$_2$ + HCl \rightarrow O$_2$ + HNO$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClONO$_2$/HCl</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>180–200</td>
<td>0.3</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO$_3$+3H$_2$O+HCl</td>
<td>185–210</td>
<td>0.2</td>
<td>2</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$+H$_2$O(l)+HCl(l)</td>
<td>195–235</td>
<td></td>
<td>See Note</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid Monohydrate</td>
<td>H$_2$SO$_4$+H$_2$O(s)</td>
<td>195</td>
<td>$<1\times10^{-4}$</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid Tetrahydrate</td>
<td>H$_2$SO$_4$+4H$_2$O(s)</td>
<td>195–206</td>
<td>See Note</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alumina</td>
<td>α-Al$_2$O$_3$(s)</td>
<td>195–230</td>
<td>0.02</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>ClONO$_2$ + MX \rightarrow Products</td>
<td>ClONO$_2$</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>295</td>
<td>0.005$<\gamma_0<$0.2</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>295</td>
<td>>0.1</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(s)</td>
<td>272–280</td>
<td>See Note</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sea Salt</td>
<td>See Note for O$_3$ + Sea Salt</td>
<td>298</td>
<td>>0.1</td>
<td>103</td>
</tr>
<tr>
<td>ClONO$_2$ + HBr \rightarrow BrCl + HNO$_3$</td>
<td>ClONO$_2$/HBr</td>
<td>Water Ice</td>
<td>H$_2$O(s)+HBr(s)</td>
<td>200</td>
<td>>0.3</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO$_3$+3H$_2$O(s)+HBr(s)</td>
<td>200</td>
<td>>0.3</td>
<td>104</td>
</tr>
<tr>
<td>ClONO$_2$ + HF \rightarrow Products</td>
<td>ClONO$_2$/HF</td>
<td>Water Ice</td>
<td>H$_2$O(s)+HF(s)</td>
<td>200</td>
<td>See Note</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitric Acid Ice</td>
<td>H$_2$O(s)+HNO$_3$(s)+HF(s)</td>
<td>200</td>
<td>See Note</td>
<td>105</td>
</tr>
<tr>
<td>CF$_3$Cl + Al$_2$O$_3$ \rightarrow Products</td>
<td>CF$_3$Cl</td>
<td>Alumina</td>
<td>γ-Al$_2$O$_3$(s)</td>
<td>120–300</td>
<td>1×10^{-5}</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alumina</td>
<td>γ-Al$_2$O$_3$(s)</td>
<td>120–300</td>
<td>1×10^{-5}</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alumina</td>
<td>α-Al$_2$O$_3$(s), γ-Al$_2$O$_3$(s)</td>
<td>120–300</td>
<td>1×10^{-5}</td>
<td>10</td>
</tr>
<tr>
<td>BrCl + MX \rightarrow Products</td>
<td>BrCl</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td>See Note</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>298</td>
<td>See Note</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Iodide</td>
<td>NaI(aq)</td>
<td>273–288</td>
<td>See Note</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alkali Bromides</td>
<td>MBr(aq) Ice</td>
<td>233</td>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td>Br$_2$ + MX \rightarrow Products</td>
<td>Br$_2$</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td>See Note</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>298</td>
<td>See Note</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Iodide</td>
<td>NaI(aq)</td>
<td>263–293</td>
<td>$\gamma_0<$0.5</td>
<td>108</td>
</tr>
<tr>
<td>2BrO \rightarrow Br$_2$ + O$_2$</td>
<td>BrO</td>
<td>Water Ice</td>
<td>H$_2$O(s)</td>
<td>213</td>
<td>$<1\times10^{-3}$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$+H$_2$O (60 wt% H$_2$SO$_4$)</td>
<td>213</td>
<td>7×10^{-4}</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H$_2$SO$_4$+H$_2$O (70 wt% H$_2$SO$_4$)</td>
<td>213</td>
<td>5×10^{-4}</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aqueous Sodium Chloride</td>
<td>NaCl(aq) (23 wt% NaCl)</td>
<td>253</td>
<td>$<10^{-3}$</td>
</tr>
<tr>
<td>HOBBr + H$_2$SO$_4$ + nH$_2$O \rightarrow Products</td>
<td>HOBBr</td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$+nH$_2$O</td>
<td>201–270</td>
<td>See Note</td>
<td>110</td>
</tr>
<tr>
<td>HOBBr + HCl \rightarrow BrCl + H$_2$O</td>
<td>HOBBr/HCl</td>
<td>Water Ice</td>
<td>H$_2$O(s)+HCl(s)</td>
<td>180–228</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$+nH$_2$O (60–69 wt% H$_2$SO$_4$)</td>
<td>198–218</td>
<td>See Note</td>
<td>112</td>
</tr>
<tr>
<td>HOBBr + HBr \rightarrow Br$_2$ + H$_2$O</td>
<td>HOBBr/HBr</td>
<td>Water Ice</td>
<td>H$_2$O(s)+HBr(s)</td>
<td>180–228</td>
<td>>0.1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H$_2$SO$_4$+HBr(s)</td>
<td>180–228</td>
<td>See Note</td>
<td>113</td>
</tr>
<tr>
<td>Gaseous Species</td>
<td>Surface Type</td>
<td>Surface Composition</td>
<td>T (K)</td>
<td>γ</td>
<td>Uncertainty Factor</td>
<td>Note</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------</td>
<td>---</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>HOBr + MX → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOBr</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td>γ < 10^{-2}</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaCl(aq)</td>
<td>298</td>
<td>γ > 0.2</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alkali Bromides</td>
<td>NaCl → NaCl(aq) Ice</td>
<td>~238</td>
<td>See Note</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KBr(s)</td>
<td>298</td>
<td>γ ≤ 0.2</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaBr(s)</td>
<td>250</td>
<td>See Note</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaBr(aq)</td>
<td>298</td>
<td>γ = 0.6</td>
<td>1.5</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaBr → NaBr(aq) Ice</td>
<td>~233</td>
<td>See Note</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>BrNO₂ + H₂O → Products</td>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>275–300</td>
<td>2 × 10^{-6}</td>
<td>2</td>
</tr>
<tr>
<td>BrNO₂ + MX → Products</td>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>See Note</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaCl(aq)</td>
<td>277–293</td>
<td>γ > 10^{-6}</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>298</td>
<td>γ > 0.1</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(aq)</td>
<td>277–293</td>
<td>See Note</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Iodide</td>
<td>NaI(aq)</td>
<td>262–278</td>
<td>See Note</td>
<td>118</td>
</tr>
<tr>
<td>BrONO₂ + H₂O → HOBr + HNO₃</td>
<td></td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>190–200</td>
<td>> 0.2</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid Water</td>
<td>H₂O(l)</td>
<td>270–280</td>
<td>3 × 10^{-2}</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H₂SO₄+nH₂O</td>
<td>210–300</td>
<td>See Note</td>
<td>121</td>
</tr>
<tr>
<td>BrONO₂/HCl → BrCl + HNO₃</td>
<td></td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>200</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H₂SO₄+nH₂O</td>
<td>229</td>
<td>See Note</td>
<td>121</td>
</tr>
<tr>
<td>BrONO₂ + HBr</td>
<td></td>
<td>Water Ice</td>
<td>H₂O(s)</td>
<td>180–210</td>
<td>γ > 0.1</td>
<td>122</td>
</tr>
<tr>
<td>BrONO₂ + MX → Products</td>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td>γ > 0.2</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaCl(aq)</td>
<td>278–280</td>
<td>See Note</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium Bromide</td>
<td>KBr(s)</td>
<td>298</td>
<td>γ > 0.2</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(aq)</td>
<td>272–280</td>
<td>See Note</td>
<td>124</td>
</tr>
<tr>
<td>ICl + NaCl and NaBr → Products</td>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(aq)</td>
<td>274–298</td>
<td>See Note</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(aq)</td>
<td>274–298</td>
<td>See Note</td>
<td>125</td>
</tr>
<tr>
<td>HOI + NaCl and NaBr → Products</td>
<td></td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>243–298</td>
<td>> 0.01</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaCl(aq)</td>
<td>274</td>
<td>2 × 10^{-3}</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Bromide</td>
<td>NaBr(s)</td>
<td>243–298</td>
<td>> 0.01</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NaBr(aq)</td>
<td>274</td>
<td>2 × 10^{-3}</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>CF₃Br₂ + Al₂O₃ → Products</td>
<td></td>
<td>Alumina</td>
<td>α-Al₂O₃(s)</td>
<td>210, 315</td>
<td>2 × 10^{-5}</td>
<td>10</td>
</tr>
<tr>
<td>CF₃OH + H₂O → Products</td>
<td></td>
<td>Water Ice</td>
<td>H₂O(l)</td>
<td>274</td>
<td>> 0.01</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfuric Acid</td>
<td>H₂SO₄+nH₂O</td>
<td>210–250</td>
<td>0.07</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(40 wt% H₂SO₄)</td>
<td>210–250</td>
<td>0.04</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(50 wt% H₂SO₄)</td>
<td>210–250</td>
<td>0.01</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(50 wt% H₂SO₄)</td>
<td>210–250</td>
<td>0.001</td>
<td>3</td>
</tr>
<tr>
<td>SO₂ + O₃ → Products</td>
<td></td>
<td>α-Al₂O₃(s), Al₂O₃(s)</td>
<td>See Note</td>
<td>See Note</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Gaseous Species</td>
<td>Surface Type</td>
<td>Surface Composition</td>
<td>T (K)</td>
<td>γ</td>
<td>Uncertainty Factor</td>
<td>Note</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------</td>
<td>---</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>SO₂ + H₂O(s) → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>Water Ice</td>
<td>HOOH/H₂O(s)</td>
<td>200–228</td>
<td></td>
<td>See Note</td>
<td>129</td>
</tr>
<tr>
<td>SO₂ + H₂O₂, O₃, HONO, NO₂ and HNO₃ → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂/H₂O₂, etc.</td>
<td>Sulfuric Acid</td>
<td>H₂SO₄+nH₂O (20–60 wt% H₂SO₄)</td>
<td>293</td>
<td></td>
<td>See Note</td>
<td>130</td>
</tr>
<tr>
<td>SO₂ + Al₂O₃ → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>Alumina</td>
<td>α-Al₂O₃(s), γ-Al₂O₃(s)</td>
<td>295–300</td>
<td>γ₀ > 5×10⁻⁵ (α-alumina)</td>
<td>γ₀ > 1×10⁻³ (γ-alumina)</td>
<td>131</td>
</tr>
<tr>
<td>SO₂ + MX → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>Sodium Chloride</td>
<td>NaCl(s)</td>
<td>298</td>
<td>γ₀ < 1×10⁻⁴</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Sea Salt</td>
<td>See Note for O₃ + Sea Salt</td>
<td>298</td>
<td>γ₀ < 0.1</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>SO₃ + H₂O → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₃</td>
<td>Sulfuric Acid</td>
<td>H₂SO₄+nH₂O (78–92 wt% H₂SO₄)</td>
<td>300</td>
<td>1.0</td>
<td>+0.0, –0.3</td>
<td>133</td>
</tr>
<tr>
<td>OCS + Al₂O₃ → Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCS</td>
<td>Alumina</td>
<td>α-Al₂O₃(s), γ-Al₂O₃(s)</td>
<td>298</td>
<td></td>
<td>See Note</td>
<td>134</td>
</tr>
</tbody>
</table>

*γ is temperature dependent
5.14 Notes to Table 5-2

1. **O$_3$ on H$_2$O(s).** Ozone loss on pure ice is highly inefficient, with uptake coefficients in the range of 10$^{-8}$ to 10$^{-9}$ for partial pressures between 2 × 10$^{-4}$ and 10$^{-6}$ atm at 223 and 258 K, as measured in an ice-coated column. The uptake coefficients are dependent on the ozone partial pressure, increasing at low partial pressures Langenberg et al.\(^1\)

Back to Table

2. **O$_3$ + Al$_2$O$_3$ (s).** Very low ozone decomposition efficiencies for reaction on coarse (3 µm dia.) and fine (0.1 µm dia., partially hydroxylated) γ-alumina and coarse (3 µm dia.) α-alumina were measured in flowing and static systems by Hanning-Lee et al.\(^3\) at temperatures ranging between 212 and 473 K. Based on measured BET surface areas, γ$_s$ ranged from 2 × 10$^{-11}$ to 4 × 10$^{-10}$ over the 212 to 298 K temperature range. γ$_s$ for γ-alumina at lower temperatures exceeded those for α-alumina. Results are roughly consistent with earlier, unpublished flow tube data from L. F. Keyser and from fluidized bed reactor studies of Alebić-Juretić et al.\(^1\). Note that γ$_s$ based on geometric surface particle surface areas would be significantly (104–105) larger. Additional fluidized bed reactor studies by Alebić-Juretić et al.\(^2\) demonstrated that room temperature uptake are initially first order in O$_3$, but change to a slower second order reaction at longer exposure times. Klimovskii et al.\(^4\) reported an initial uptake coefficient (γ$_o$) of 1 × 10$^{-4}$ on a γ-alumina surface at 293 K assuming a geometric surface area, BET surface correction presumably would have yielded a lower value. Michel et al.\(^5\) reported Knudsen cell uptake studies at 296 K on α-alumina particles that yielded γ$_o$ values of (8 ± 5) × 10$^{-5}$ and (1.4 ± 0.3) × 10$^{-4}$ after BET surface area corrections. Sullivan et al.\(^9\) used a coated wall flow reactor to obtain 298 K γ$_s$ values of 7 × 10$^{-6}$ to 1.6 × 10$^{-5}$ for α-alumina powder films exposed to no more than [O$_3$] of 1013 cm$^{-3}$ after BET surface area correction. Higher [O$_3$] yielded lower apparent γ$_s$. Usher et al.\(^10\) demonstrated that pretreatment of α-alumina with HNO$_3$ vapor reduced O$_3$ Knudsen cell γ$_o$ values by ~70%. Mogili et al.\(^7\) measured O$_3$ uptake on α-alumina particles in a room temperature environmental chamber obtaining an uptake coefficient of (3.5 ± 0.9) × 10$^{-8}$ for dry (RH ≤1%) particles that fell to (4.5 ± 1.1) × 10$^{-9}$ for measurements at 19% RH. Roscoe and Abbatt\(^8\) demonstrated spectrosopiically that there is a competition for surface sites when gas phase ozone and water vapor are exposed to the alumina surface.

Back to Table

3. **O$_3$ + NaCl.** The reaction of O$_3$ with NaCl is slow. Il’in et al.\(^3\) measured the loss of O$_3$ in a coated reactor over the temperature range 223–305 K, and found the same uptake coefficients, γ ~10$^{-6}$, independent of
temperature, for NaCl and NH₄NO₃ and (NH₄)₂SO₄, suggesting that even the small uptake is not due to reaction with the chloride. Alebić-Juretić didn't observe any uptake on NaCl powders using a fluidized bed reactor but did not report an upper limit to the uptake coefficient. Akimoto and coworkers reported an upper limit of γ₀ < 1 × 10⁻⁵ on NaCl. When the NaCl was mixed with 0.5–1% w:w FeCl₃, γ₀ increased to 3 × 10⁻² and production of gaseous Cl₂ was observed with yields from 25–50% of the ozone taken up. With 0.1% FeCl₃, no production of Cl₂ was observed but the initial uptake coefficient was still 3 × 10⁻². These experiments were carried out with a Knudsen cell using multiple salt layers and the measured initial uptake coefficients were converted to the reported values using the pore diffusion model of Keyser et al.

Abbatt and Waschewsky followed O₃ in a flow tube containing deliquesced 1–5 μm NaCl particles (75% RH); no significant loss was observed on unbuffered particles or particles buffered at pH of 7.2. An upper limit of γ₀ < 1 × 10⁻⁴ was derived from these measurements.

4. O₃ + NaBr and KBr. Mochida et al. did not observe any uptake of O₃ on NaBr or KBr powders, from which they derived an upper limit of γ < 1 × 10⁻⁵. Hirokawa et al. reported production of gas phase Br₂ from the reaction of O₃ with NaBr only when water vapor was added so that the salt was near deliquesce.

Uptake of O₃ and production of gas phase Br₂ has been observed for deliquesced NaBr salt on a glass surface. Production of Br₂ has also been measured by Hunt et al. in the reaction of O₃ with deliquesced NaBr particles in the dark in an aerosol chamber; the production of Br₂ exceeded that from known aqueous phase chemistry by about an order of magnitude, suggesting that a surface reaction of O₃ with bromide at the air-solution interface was occurring with a reaction probability of γ₀ = (1.9 ± 0.8) × 10⁻⁵ (2φ).

The uptakes of O₃ by frozen salt solutions and cold liquid solutions containing bromide have been studied in a coated wall flow tube from 233 to 273 K by Oldridge and Abbatt. Br₂ was the sole product formed. Reaction kinetics were well described by a combination of a bulk reaction in the associated solution and a surface reaction component, so that the overall ozone uptake coefficients increased with decreasing ozone concentrations. The similarity between the results on both liquid solutions and frozen solutions implied the reaction was occurring only with the liquid component of the substrates. Using glancing angle LIF and Raman spectroscopy, Wren et al. have studied the reactions of ozone with both frozen and unfrozen bromide solutions with sea water concentrations. They demonstrate that the kinetics proceed one to two orders of magnitude faster on the frozen substrates than on the corresponding unfrozen solutions.

(3) Hunt, S. W.; Roeslová, M.; Wang, W.; Wingen, L. M.; Knipping, E. M.; Tobias, D. J.; Dabdub, D.; Finlayson-Pitts, B. J. Formation of molecular bromine from the reaction of ozone with deliquesced
5. \(\text{O}_3 + \text{KI} \). Brown et al.\(^{1,2}\) report that KIO\(_3\) forms on single crystal, water-free KI surfaces with a reaction probability of \(1.4 \times 10^{-4} \). On room temperature KI solutions, Sakamoto et al.\(^3\) report that ozone exposure yields gas-phase I\(_2\) and small amounts of IO (ratio of I\(_2\) to IO \(>100 \)). The reaction kinetics are indicative of a Langmuir-Hinshelwood mechanism, exhibiting saturation in the gas-phase yields as both ozone and iodide concentrations are increased. The reaction forming I\(_2\) proceeds more rapidly with increasing acidity for pH <4, but there is a pH-independent pathway operative to pH 11.

Complex chemistry for ozone reacting at the surface of solutions containing iodide and other reactants is illustrated from studies of solution microdroplet analysis by electrospray ionization (Pillar et al.,\(^4\) Enami et al.,\(^5\) and Hayase et al.\(^6\)). In particular, a number of researchers have shown that surfactants and/or dissolved organic species can affect the rate of iodide oxidation by ozone (Hayase et al.,\(^4\) Shaw and Carpenter,\(^7\) Reeser et al.,\(^5\) and Rouviere et al.).

Back to Table

(6) Reeser, D. I.; Donaldson, D. J. Influence of water surface properties on the heterogeneous reaction between O\(_3\)(g) and I\(_{-}\)(aq). \(\text{Atmos. Environ.} \ 2011, 45, \ 6116-6120, \) doi:10.1016/j.atmosenv.2011.08.042.

(7) Rouvière, A.; Ammann, M. The effect of fatty acid surfactants on the uptake of ozone to aqueous halogenide particles. \(\text{Atmos. Chem. Phys.} \ 2010, 10, \ 11489-11500, \) doi:10.5194/acp-10-11489-2010.

6. \(\text{O}_3 + \text{sea salt} \). Akimoto and coworkers\(^{11,14}\) reported uptake coefficients for O\(_3\) on synthetic and natural sea salt powders of \(\sim 1 \times 10^{-3} \) using a Knudsen cell with multiple salt layers. Similar uptake coefficients were reported for the hydrates of MgBr\(_2\) and CaBr\(_2\). These are the initial uptake coefficients after correction for the available surface area using the pore diffusion model of Keyser et al.\(^8,10\) The measured values before this correction was applied were about a factor of 20 larger. Given the uncertainty associated with these corrections, the final values derived have a large uncertainty associated with them as well. When FeCl\(_3\) was added to synthetic sea salt (Fe/Na weight ratio of 1%), the uptake coefficient increased by an order of magnitude to \((3.2 \pm 1.1) \times 10^{-2} \). Br\(_2\) was the gas phase product, with variable yields up to 100% of the O\(_3\).
lost. The enhanced reactivity of sea salt compared to NaCl and NaBr is due to the significant amounts of surface-adsorbed water (SAW) present on sea salt; the component of sea salt present in the second highest concentration is magnesium chloride which forms a stable hydrate and is quite hygroscopic. Reactions with powders of MgCl₂·6H₂O and sea salt are often observed to be similar to reaction with aqueous salt solutions (see note on SO₂ uptake). The formation of Br₂ is favored over Cl₂ by a number of factors: (1) surface segregation of bromide ions³,⁴,¹⁵ in mixed solid crystals of NaCl and NaBr, (2) higher solubility of NaBr which increases its concentration in the surface layer as a mixture of NaCl and NaBr crystallizes, (3) faster oxidation of Br⁻ compared to Cl⁻²,⁵,⁶,¹³ (4) solution phase chemistry of chloride and bromide ion mixtures that favors the production of gas phase bromine compounds,²,¹³ (5) enhanced interfacial bromide ion concentrations compared to chloride ions at the air-water interface of aqueous solutions of mixed salts.⁷,⁸ The yields of I₂ from exposure of sea water to ozone have been studied by Carpenter et al.¹ under ambient ozone concentrations. I₂ was quantified by conversion to small particles, which were sized and counted. On frozen sea-salt solutions, gas phase Br₂ was formed by exposure of O₃ (44 ppbv to 2.9 ppmv) to frozen sea salt solutions, at temperatures below 272 K.¹² No other products were reported and the production of Br₂ scaled with increasing O₃.

Back to Table

7. **O₃ + organic surfaces.** Reactive initial uptake of ozone occurs on organic substrates that contain unsaturated carbon-carbon bonds, whereas uptake to substrates that are fully saturated is minimal. This reaction occurs not only with simple alkenes, but with electron-rich conjugated systems such as PAHs as well. Ozone adds across carbon-carbon double bonds forming an ozonide, which then falls apart into more reactive intermediates. The product distributions are complex. Initial uptake coefficients are highly dependent upon the chemical nature of the substrate, ranging from values of roughly 10⁻³ on pure alkene
aerosol particles such as oleic acid, to much lower values of 10^{-6} or below with PAH-coated particles. A more detailed discussion of this complex chemistry is given in two review articles: Kolb et al.\(^1\) and Abbatt et al.\(^1\)

Back to Table

8. **OH + H\(_2\)O(s)**. Cooper and Abbatt\(^1\) measured initial irreversible OH uptake coefficients of ~0.1 for water ice between 205–230 K; these decayed to $\gamma = 0.03 \pm 0.02$ after repeated exposure to OH. Self-reaction to form H\(_2\)O or H\(_2\)O\(_2\) was indicated by the lack of observable gas phase products despite observation of first-order OH loss. It can not be ruled out that contamination of the ice surface drove the initial reactivity.

Back to Table

9. **OH + HCl+nH\(_2\)O**. Cooper and Abbatt\(^1\) demonstrated significant enhancement of OH uptake (to $\gamma > 0.2$) after HCl doping of 220 K ice surfaces sufficient to melt the surface layer. It is unclear whether OH is lost to self-reaction or reaction with hydrated Cl\(^-\) ions.

Back to Table

10. **OH + HNO\(_3\)+3H\(_2\)O**. Cooper and Abbatt\(^1\) measured $\gamma > 0.2$ for nitric acid-doped ice surfaces under conditions suitable for NAT formation at 200 and 228 K. Increase over pure ice uptake rates is probably due to HNO\(_3\) + OH \rightarrow H\(_2\)O + NO\(_3\) reaction.

Back to Table

11. **OH + H\(_2\)SO\(_4\)+nH\(_2\)O**. Lower limits of 0.2 for uptake coefficients on 45–65 wt% H\(_2\)SO\(_4\) between 220 and 230 K and for 96 wt% H\(_2\)SO\(_4\) at 230 and 298 K by Cooper and Abbatt\(^2\) are consistent with a lower limit of 0.07 on 28 wt% H\(_2\)SO\(_4\) at 275 K in similar experiments by Hanson et al.\(^3\) and a probable surface saturated value of (4.9 ± 0.5) \times 10\(^{-4}\) from Knudsen cell measurements by Baldwin and Golden\(^1\) and an estimate of $\gamma = 1$ on ~96 wt% H\(_2\)SO\(_4\) at 298 K by Gerhenson et al.\(^3\) using a coated insert flow tube technique. Uptake is probably reactive with OH + HSO\(_4\) \rightarrow H\(_2\)O + SO\(_4\)\(^2-\) the hypothesized process.

Back to Table

12. **OH + NaCl.** Ivanov et al.\(^2\) measured the uptake of OH on solid NaCl and on NH\(_4\)NO\(_3\) over the temperature range from 245–340 K using a fast flow discharge reactor with a coated rod along the axis and EPR detection of OH. The initial values of the uptake coefficient approached 10\(^{-2}\). The OH was generated from the reaction of H atoms with excess NO\(_2\); it is not clear whether NO\(_2\) might have also reacted with the salt surface. Given that the uptake coefficients were similar for NaCl and NH\(_4\)NO\(_3\), the uptake likely does not reflect oxidation of the chloride. The pseudo-steady state value, \(\gamma_{ss}\), was measured to be \(4 \times 10^{-3}\) at 298 K and the temperature dependence was described by \(\gamma_{ss} = (1.2 \pm 0.7) \times 10^{-5} \exp[(1750 \pm 200)/T]\). This value is quite close to later measurements by Park et al.\(^6\) who see little dependence of the uptake coefficient on relative humidity, up to 38% at room temperature. Product studies have been performed by Sjostedt and Abbatt\(^8\) who have exposed dessicated NaCl salts to gas-phase OH in a coated-wall flow tube at 298 and 253 K. Gas-phase Br\(_2\) is formed with a yield of 0.6, relative to the loss of OH. The source of the Br\(_2\) is the trace Br\(^-\) impurity in commercial, high purity NaCl\(_{99}\). BrCl was formed at a considerably smaller yield, 0.008. Humidification of the salt surface led to more sustained production but somewhat smaller yields. Aerosol chamber studies by Finlayson-Pitts and coworkers showed that there was no Cl\(_2\) production from NaCl particles when OH was generated by reaction of O(\(^1\)D) from photolysis of O\(_3\) at relative humidities below the deliquescence point of NaCl; above the deliquescence point, however, a rapid reaction of OH with Cl\(^-\) at the interface to generate gas phase Cl\(_2\) is observed.\(^3,5\) Because the mechanism is uncertain, and clearly must involve multiple steps, a unique value of the reaction probability for this interface reaction could not be obtained. At 269 K Frinak and Abbatt\(^1\) have exposed acidic solutions containing molar levels of NaCl to gas-phase OH. The gas-phase product observed is Br\(_2\), unless considerable OH exposure has reduced Br\(^-\) levels in the solution, in which case the product is Cl\(_2\). The source of the Br\(_2\) is the trace Br\(^-\) impurity in commercial, high purity NaCl\(_{99}\). At neutral pH, the products were below detection limit. Shaka et al.\(^7\) and Laskin et al.\(^4\) have both exposed chloride solutions to gas-phase OH, observing changes in solution alkalinity and chloride concentrations, respectively. This is another indication that chloride ions in solution are readily heterogeneous oxidized by OH. Laskin et al. report an uptake coefficient of \(\leq 0.1\) at room temperature. However, the OH concentrations were not measured which may lead to uncertainty in this value.

Back to Table

13. **OH + Al\(_2\)O\(_3\)(s)**. Measured value is from flow tube experiment with native oxide on aluminum as the active surface. An uptake coefficient of 0.04 ± 0.02 independent of temperature over the range of 253–348 K was recommended by (Gershenzon et al.\(^1\) based on three measured values ranging unsystematically from 0.02 to 0.06 at 253, 298 and 348 K).
14. **OH + organic surfaces.** It has been shown through a large number of studies that the OH radical is efficiently lost on organic surfaces via condensed phase reactions that add oxygenated functional groups to the organics, and lead to some carbon-carbon bond breakage as well. The uptake coefficient for OH loss has been studied at room temperature on both chemically reduced and oxidized surfaces, and found to be larger than 0.1, as determined both by monitoring loss of OH directly and by monitoring loss of specific organics within the aerosol. A more detailed discussion of this complex chemistry is given in three review articles: Kolb et al.,^3^ George and Abbatt,^2^ and Abbatt et al.^1^

15. **HO₂ + H₂O(s) and H₂SO₄+nH₂O(l).** Uptake of HO₂ on ice and super–cooled 55 wt.% sulfuric acid at 223 K has been demonstrated to be limited by HO₂ surface saturation by Cooper and Abbatt. They argue that self-reaction, presumably 2HO₂ → H₂O₂ + O₂, is controlling measured uptake coefficients of 0.025 ± 0.005 for ice and 0.055 ± 0.020 for 55 wt.% H₂SO₄. Thornton and Abbatt report room temperature aerosol flow reactor submicron droplet measurements on 47–50 wt% H₂SO₄, without HO₂ scavenger species, yielding γ < 0.01. Gershenzon et al. measured γ > 0.2 for 80 and 96 wt.% H₂SO₄ at 243 K and Hansen et al. measured a lower limit for 28 wt.% H₂SO₄ at 275 K of 0.07. However, large gas phase diffusion corrections mean these values are consistent with γ = 1. Thornton et al. have used available experimental data to develop a parameterized HO₂ self-reaction uptake model valid for pH < 6 aqueous droplets and gas phase HO₂ generation rates exceeding 1 × 10⁵ cm⁻³ s⁻¹. They also assess the relative role of Cu⁺ catalyzed oxidation of HO₂ in aqueous aerosols.

16. **HO₂ + (NH₄)₂SO₄(aq) and NaCl(aq).** HO₂ uptake on aerosol particles has been studied in aerosol flow tubes. At high HO₂ concentrations detected by CIMS, Thornton and Abbatt observed loss of HO₂ on aqueous ammonium sulfate particles, buffered to pH 5.1 at RH 42% and room temperature. An uptake coefficient of 0.1 could describe the kinetics, but the HO₂ decays were best fit by second-order kinetics consistent with a bulk–phase reaction between dissolved HO₂ species, when using literature HO₂ solubility and bulk liquid-phase rate constants. Because of the second-order kinetics, it was inferred that the uptake...
The uptake coefficient would be substantially smaller at lower (atmospheric) HO₂ gas-phase concentrations. This prediction is confirmed by the detailed study of George et al., which examined HO₂ uptake at gas phase concentrations between 10⁸ and 10⁹ molecules/cm³ in an aerosol flow tube using LIF detection methods. The uptake coefficients measured were between 0.003 and 0.02 on deliquesced particles of (NH₄)₂SO₄, NaCl and NH₄NO₃. These results are not in agreement with the work performed using LIF by Taketani et al. who reported uptake coefficients on ammonium sulphate (0.11 to 0.19, 45 to 75% RH), sodium chloride (0.1, 50 to 75% RH) and sea salt (0.1, 35 to 75% RH) at atmospheric HO₂ concentrations about two orders of magnitude lower (<10⁴ molecules/cm³) than those of Thornton and Abbatt, but similar to those of George et al. George et al. observed much more efficient loss when transition metals were present in solution, highlighting the importance of working with clean aerosol samples. As well, there are complex dependencies of the kinetics on HO₂ concentration and on reaction time. However, these dependencies do not appear to explain the large discrepancy between the results from the Taketani et al. and George et al. experiments, performed under nominally similar conditions. In the absence of transition metal impurities such as iron or copper ions, there is no known reactive chemistry that will deplete HO₂ as rapidly as observed in the Taketani et al. experiments.

17. **HO₂ + NaCl(s) and KCl(s).** Gershenzon and coworkers used a combination of matrix isolation EPR and gas phase EPR with a fast flow tube to measure the uptake of HO₂ on NaCl from 245–335 K. Early studies by Gershenzon et al. measured values of γ = 1.8 × 10⁻² for KCl and 1.6 × 10⁻² for NaCl, both at 295 K, supplementing an even earlier value of γ ~8 × 10⁻¹ measured by Gershenzon and Purmal. In later studies on NaCl the uptake was reported to remain constant for at least 30 min, so this is likely to be a steady-state value, γₛ = 1.2 × 10⁻² at 295 K. The temperature dependence is given by γₛ = (5.7 ± 3.6) × 10⁻⁵ exp[(1560 ± 140)/T]. Above 330 K, the uptake coefficient was significantly smaller than expected from this temperature dependence. The data are indistinguishable, within experimental error, from the uptake of HO₂ on NH₄NO₃, suggesting that the uptake of HO₂ likely involves recombination on the surface rather than oxidation of the chloride. The surface recombination was interpreted in terms of a combined Eley-Rideal and Langmuir-Hinshelwood mechanism. The addition of small amounts of water vapor decreased the uptake coefficient for HO₂; the authors attributed this to water adsorption on the active sites. Another possibility is formation of HO₂-H₂O complexes whose uptake and recombination on the surface is not as fast as for uncomplexed HO₂. A study by Loukhovitskaya et al. using a coated-wall flow tube finds temperature dependent uptake coefficients on salt surfaces, reporting uptake coefficient between 10⁻³ and 10⁻² at room temperature. They report that gas-phase H₂O₂ was observed as a product, indicative of self-reaction. George et al. and Taketani et al. report uptake coefficients of less than 0.0004 and 0.01, respectively, on dry NaCl aerosol in aerosol flow tubes using HO₂ concentrations of 10⁸ to 10⁹ molecules/cm³. The small upper limit for this process from George et al., measured at low concentrations of HO₂, suggests that the earlier measurements may have been dominated by radical recombination on salt surfaces.

18. HO$_2$ + (NH$_4$)$_2$SO$_4$(s). George et al.\(^1\) report uptake coefficients of less than 0.0004 on dry (NH$_4$)$_2$SO$_4$ aerosol in an aerosol flow tube using HO$_2$ concentrations of 10^5–10^6 molecules/cm3. Taketani et al.\(^2\) report a considerably larger value, 0.04, measured with the same experimental approach. The discrepancy between these measurements is mirrored by an equivalent disagreement between these groups' measurements of HO$_2$ loss on aqueous salt solutions. The source of the disagreement is not clear but trace metal impurities have the potential to drive very efficient uptake and might be the cause of the higher values by Taketani et al.\(^2\)

19. H$_2$O (g) + Al$_2$O$_3$ (s). Isotopic thermal programmed desorption studies at 300 K by Elam et al.\(^2\) show that H$_2$O dissociatively absorbs on α-alumina surfaces and that initial uptake coefficient (γ_0) is \approx0.1. Pre-hydroxylation or long term exposure to water vapor decreases the H$_2$O uptake coefficient nearly exponentially. Al-Abadleh et al.\(^3\) used FTIR techniques to study water vapor uptake at 296 K on α-alumina crystal 0001 surfaces as a function of relative humidity (RH). Below 10% RH uptake is dissociative, but molecular absorption dominates uptake between 10 and 70% RH. FTIR spectra of water absorbed on both α-alumina and γ-alumina powder surfaces are similar to those on 0001 crystal surfaces. Goodman et al.\(^3\) used FTIR to show that α-alumina surfaces saturated with HNO$_3$ vapor has the same water absorption isotherm as untreated samples at 296 K.

20. H$_2$O$_2$ + Al$_2$O$_3$(s). Zhao et al.\(^3\) measured H$_2$O$_2$ uptake on a bed of \approx35nm α-alumina particles in a solid sample flow reactor as a function of relative humidity at room temperature and ambient pressure. BET surface area was used in analyzing uptake coefficients. Uptake was RH dependent, which was varied over a wide range (2–76%). Gas phase hydrogen peroxide leaving the reactor was scrubbed and quantified using liquid chromatography. Uptake was largely irreversible with reactive uptake \approx75% at low RH rising to \approx85% at high RH. Reported uptake coefficients (γ) were lower at higher RHs: γ(RH-2%) = $(1.21 \pm 0.04) \times 10^{-7}$; γ(RH-21%) = $(0.84 \pm 0.07) \times 10^{-7}$ and γ(RH \geq42%) = $(0.72 \pm 0.04) \times 10^{-7}$. Use of BET surface areas

5-75
probably led to underestimated γ values. Uptake experiments were performed for 30 minutes; larger uptake coefficients may have characterized shorter uptake times. The authors also reported largely reversible H$_2$O$_2$ uptake coefficients on SiO$_2$ submicron particles that were about an order of magnitude lower than those measured for alumina.3

Wang et al.2 report Knudsen cell studies, also on α-alumina and other mineral oxide surfaces at room temperature and very low RH. For α-alumina the measured gas phase products also indicate catalytic decomposition. Measured γ_{o} values using BET surface areas were $(1.00 \pm 0.11) \times 10^{-4}$ for α-Al$_2$O$_3$, $(1.66 \pm 0.23) \times 10^{-4}$ for MgO, $(9.70 \pm 1.05) \times 10^{-5}$ for Fe$_2$O$_3$ and $(5.22 \pm 0.9) \times 10^{-5}$ for SiO$_2$. Their γ_{o} value for α-Al$_2$O$_3$ is roughly a factor of a thousand higher than the steady-state γ values reported by Zhao et al.3

Romanias et al.1 used a coated wall flow reactor with solid films of ~20 nm γ-α-alumina particles to measure H$_2$O$_2$ uptake coefficients over a RH range of 0.003 to 73% and a temperature range of 268–329 K. Near ultraviolet (315-400 nm) illumination had no effect on uptake. BET surface area measurements were also used to calculate uptake coefficients. They observed that longer exposure times lead to saturated surfaces, so initial γ_{o} uptake coefficients as well as steady-state γ values were reported. Desorption measurements showed reversible H$_2$O$_2$ uptake was 5% or less of total uptake. Initial uptake values were dependent on both RH and T; for instance, γ_{o} (for 0.003% RH and 300 K) = $(9.0 \pm 2.7) \times 10^{-4}$, is nearly constant for (0.003–0.02% RH) then falls off to $\sim 2 \times 10^{-5}$ at 73% RH. The steady-state uptake coefficient also decreases at higher RH values, γ (280 K) falls from about 2.5×10^{-5} at about 0.005% RH to $\sim 5 \times 10^{-7}$ at RH of 73%. Clearly adsorbed water vapor competes with irreversible H$_2$O$_2$ chemisorption. At fixed RH the initial uptake of H$_2$O$_2$ increases with falling temperature. γ_{o}(0.03% RH) = $8.7 \times 10^{-4} (1 + 5.0 \times 10^{13} \text{exp}(-9700/T))$ rising from 2.0×10^{-4} at 320 K to 8.8×10^{-4} at 268 K.4 Note that the low RH γ_{o} values reported in this work are the same order of magnitude as the dry γ_{o} value reported by Wang et al.2

Given that there is little reason to expect that α-alumina and γ-alumina have the same initial uptake coefficients, not to mention similar RH or temperature dependencies, the available data will support only a conservative upper limit estimate of $\gamma_{o} < 5 \times 10^{-3}$.

Back to Table

21. NO$_2$ + H$_2$O(l). Value for γ of $(6.3 \pm 0.7) \times 10^{-4}$ at 273 K (Tang and Lee6) was achieved by chemical consumption of NO$_2$ by SO$_2$; their stopped-flow measurement was probably still affected by surface saturation, leading to the measurement of a lower limit. Ponche et al.7 measured an uptake coefficient of $(1.5 \pm 0.6) \times 10^{-3}$ at 298 K, which was also probably subject to saturation limitations. Mertes and Wahner4 used a liquid jet technique to measure a lower limit of $\gamma \geq 2 \times 10^{-4}$ at 278 K, and they observed partial conversion of the absorbed NO$_2$ to HONO. Msibi et al.6 used a cylindrical/annular flow reactor to derive γ = $(8.7 \pm 0.6) \times 10^{-5}$ on pH = 7 deionized water surfaces and $(4.2 \pm 0.9) \times 10^{-4}$ on pH = 9.3 wet ascorbate surfaces; it seems likely that these results are also subject to surface saturation given the gas/surface interaction times involved in the experiment. Harrison and Collins5 performed aerosol flow reactor experiments on deliquescent sodium chloride and ammonium sulfate droplets at 279 K obtaining reactive uptake coefficients in the range of $(2.8-10) \times 10^{-4}$, probably with some surface saturation constraints. Cheung et al.4 used a droplet train flow reactor to show that the reactive uptake coefficient for NO$_2$ at number densities between 10^{13} and 10^{15} on pure water at 273 K is $< 5 \times 10^{-4}$, contradicting many of the earlier experiments. Cheung et al. also used a bubble train reactor to demonstrate that the reactive uptake of NO$_2$ is second order, so that experimental uptake coefficients will be dependent on gas phase NO$_2$ concentrations.

Colussi and co-workers2,4,10 measured the adsorption/reaction of gaseous NO$_2$ on ~293 K aqueous microstreams by measuring the nitrate ion content by electrospray mass spectrometry after the microstreams break up into small charged droplets. In Yabusita et al.10 the aqueous microstreams were doped with alkali salts (NaCl, NaBr and NaI), in Kinugawa et al.4 doping agents were cationic and anionic
surfactants (tetrabutylammonium bromide, tetra decyltrimethylammonium bromide and potassium perfluorooctanesulfonate) as well as NaBr, and in Colussi et al.⁵ the additives were dicarboxylic acids representing components of secondary organic aerosol (SOA) including malonic, glutaric and glutamic acids with low enough pK1 values to dissociate to monoanions. The nitrate detected is assumed to be produced by the surface reaction: 2 NO₂ + H₂O → HONO + HNO₃. This experimental process is semi-quantitative, Colussi et al. estimate that the non-detectable nitrate levels in undoped water microstreams indicate a γo < 2 × 10⁻² for pure water. However, when the aqueous microstreams are doped with gas/liquid interface active anions or cations, the apparent NO₂ γo values increase nonmonotonically with electrolyte concentrations peaking at γo ~ 10⁻⁸ for [NaX] concentrations of ~1 mM.¹⁰ Colussi et al. also present theoretical models of NO₂ interactions with water clusters containing Cl⁻ in a aqueous interfacial environment that identify electrostatic interactions strong enough to potentially enhance the reactivity of adsorbed NO₂.

Sosedova et al.⁸ measured the uptake of radioactive ¹³NO₂ (half life 10 min.), which can be detected at extremely low concentrations, by deliquesced sodium salts of hydroquinone (1,4-dihydroxybenzene) and gentisic acid (2,5-dihydroxybenzoic acid) in a flow tube reactor at 296 K and 40% RH. Reactant ¹³NO₂ and product HO¹³NO are trapped on chemically selective denuder surfaces and quantified by counting ¹³N decay gamma rays. Observed reactive uptake coefficients (γ) ranged from ~5 × 10⁻⁴ to ~6 × 10⁻³. The measured time dependence of NO₂ reactive uptake was fitted to a kinetic model of reactant consumption in the droplet phase using the NO₂ mass accommodation coefficient and the rate constants for dissolved NO₂ with the deprotonated phenolic compounds as variables, yielding an estimated room temperature bulk liquid mass accommodation coefficient: α = 0.024 (+0.018/-0.003). If accurate for pure water, it indicates that the lower reactive uptake coefficients measurements above are subject to some degree of surface saturation.

Data are consistent with a reactive uptake coefficients less than 1 × 10⁻² for 270–295 K and a liquid-phase second-order hydrolysis of NO₂ to HONO and HNO₃ which depends on temperature and pH. However, the interplay between mass accommodation, possible surface reaction, and bulk reaction may be complex.

Back to Table

22. NO₂ + H₂SO₄+nH₂O. Kleffman et al.² performed bubble tube reactor uptake measurements for 0–98 wt% acid at 298 K and for 44.6 and 56.1 wt% from 250–325 K. At 298 K, measured uptake coefficients varied between 6 and 3 × 10⁻⁷ with a minimum near 70 wt%. Most measurements at 44.6 and 56.1 wt%
overlapped within their error limits and showed little temperature dependence although there is evidence that uptake increases at the lowest temperatures. The data can all be captured with a recommended value of 5×10^{-7} with an uncertainty factor of three.

This recommendation is consistent with earlier upper limits of 1×10^{-6} by Baldwin and Golden\(^1\) for 96 wt% at 295 K and 5×10^{-6} for 70 wt% between 193 and 243 K by Saastad et al.\(^3\) Kleffman et al.\(^2\) conclude that their uptake measurements are mass accommodation limited; however, it is not clear that their values are not influenced by bulk or surface reaction of two NO\(_2\) with H\(_2\)O to form HONO and HNO\(_3\) at lower acid wt% values and the formation of nitrosyl sulfuric acid at higher acid concentrations. Kleffman et al.\(^2\) did perform separate static wetted wall reactor studies showing the formation of gas phase HONO at acid concentrations below 60 wt%. It is more likely that reactive uptake is a controlling factor and the measured uptakes are solubility and/or reaction rate limited. Thus, the mass accommodation coefficient may be much larger than the recommended uptake values.

Back to Table

23. NO\(_2\) + Al\(_2\)O\(_3\). Miller and Grassian\(^5\) observed NO\(_2\) adsorbed reactively on γ-alumina using FTIR and UV spectroscopy to observe surface nitrite and nitrate. Szanyi et al.\(^7\) used FTIR and thermal programmed desorption/mass spectrometry to determine products formed on γ-alumina surfaces at 300 K, observing nitrites and nitrates (at higher NO\(_2\) only nitrate). Exposure to water vapor converted most bridging nitrates to bidentate and monodentate nitrates. Baltrusaitis et al.\(^1\) also used FTIR to observe monodentate, bidentate and bridging nitrates products on both α-alumina and γ-alumina particles at 296 K. They also observed that co-adsorbed water solvates surface nitrates. Underwood et al.\(^8\)\(^-\)\(^10\) reported Knudsen cell studies measuring γ\(_o\) values on γ-alumina particles of 2×10^{-8}, 2.0×10^{-8}, and 2.2×10^{-8} at 298 K based on BET surface area corrections and either Keyser, Moore, Leu (KLM) formulation or linear mass dependent (LMD) corrections for porosity, with the KML and LMD corrections leading to very similar values.\(^8\) They also report larger γ\(_o\) values for α-alumina of 9.3 × 10\(^{-6}\) and 9.1 × 10\(^{-6}\)\(^-\)\(^10\). Underwood et al.\(^10\) also suggest a final “multiple collision” that would raise the γ\(_o\) values for γ-alumina by factor of 1.1 and α-alumina by 9.4. This proposed correction is not included in the recommended upper limits. Börensen et al.\(^2\) report diffuse reflectance FTIR measurements of uptake on γ-alumina showing that the reaction order is 1.86 ± 0.1 in NO\(_2\). They report BET corrected γ\(_o\) values varying linearly from 7.3×10^{-10} to 1.3×10^{-8} as [NO\(_2\)] was increased from 2.5×10^{11} to 8.5×10^{14}. Rubasinghe and Grassian\(^6\) irradiated nitrate absorbed on γ-alumina particles with broad band light (>300 nm) as a function of RH (at ~1, 20, 45 and 80% and with and without gas phase O\(_2\)) observing photolytic production of gas phase NO (primary product), NO\(_2\) and N\(_2\)O. Guan et al.\(^3\) report α-Al\(_2\)O\(_3\) BET uptake coefficients at 298 K for both dark measurements (9.9 ± 4.8 × 10\(^{-10}\)) and simulated sunlight (350–700 nm) conditions ranging from 2.55 to 3.33 × 10\(^{-9}\) for light fluxes of 0.45–2.25 mW/cm\(^2\). They also showed that NO\(_2\) uptake was independent of its gas phase concentration between 2.7 and 53.8 × 10\(^{14}\) molecules/cm\(^3\), so surface saturation was probably not an issue.\(^9\) However, they assumed that all NO\(_2\) uptake resulted in surface NO\(_3^-\) production and integrated the observed nitrate bands to estimate nitrate surface concentrations. For gaseous mixtures of NO\(_2\) and O\(_2\) they determined that the nitrate production rate reaction order was 0.960 ± 0.111 for NO\(_2\) and 0.620 ± 0.083 for O\(_2\).\(^3\) Note, that they cite Börensen et al. (2000), but do not report the fact that Zellner’s group measured a NO\(_2\) uptake order on γ-alumina of 1.86 ± 0.1. Wu et al.\(^11\) report the effect of temperature (250–318 K) on “dry air” NO\(_2\) uptake and nitrate production on γ-alumina surfaces using a DRIFTS set-up. They obtained geometrical γ\(_o\) values increasing from (7.42 ± 0.77) × 10\(^{-8}\) at 318 K to (23.0 ± 2.58) × 10\(^{-4}\) at 250 K, corresponding to γ\(_o\)(BET) values of (2.58 ± 0.27) × 10\(^{-10}\) and (8.17 ± 0.92) × 10\(^{-10}\). There is no discussion of the very large (>10\(^5\)) differences between γ\(_o\)(BET) and γ\(_o\)(GEO).

Given the currently available data and the extremely low uptake coefficients reported for BET estimated surface areas, only upper limits for γ\(_o\)’s on α-alumina and γ-alumina are listed.

Back to Table
24. NO$_2$/N$_2$O$_4$ + NaCl. Schroeder and Urone reported that NO$_2$ at Torr concentrations reacted with NaCl to form ClNO$_2$. Subsequently, Finlayson-Pitts showed that the reaction continued at ppm concentrations of NO$_2$ and estimated a lower limit to the uptake coefficient for NO$_2$ of 5×10^{-6}, assuming the reaction was first order in NO$_2$. Winkler et al. used XPS to follow the increase in nitrate during the reaction of NO$_2$ with NaCl and reported that the rate was proportional to the square of the NaCl surface sites and the square root of NO$_2$. Vogt and Finlayson-Pitts used diffuse reflectance Fourier transform infrared spectrometry (DRIFTS) to follow the formation of nitrate and showed that the reaction was second order in NO$_2$; assuming that N$_2$O$_4$ was the reactant, the uptake coefficient was measured to be $(1.3 \pm 0.6) \times 10^{-4}$ (1σ). Peters and Ewing followed the formation of nitrate on single crystal NaCl(100) and also found the reaction was second order in NO$_2$. Assuming that N$_2$O$_4$ is the reactant, the uptake coefficient was $(1.3 \pm 0.3) \times 10^{-6}$, two orders of magnitude less than reported by Vogt and Finlayson-Pitts. However, in the presence of 9.5 mbar water vapor, the uptake coefficient increased by a factor of about 100. It is likely that the difference is that their single crystals did not hold significant amounts of surface adsorbed water, whereas the powders used by Vogt and Finlayson-Pitts are known to hold significant amounts of SAW which enhances the reactivity through mobilization of the nitrate ions and exposure of fresh NaCl during the reaction. Caloz et al. measured using a Knudsen cell an upper limit of $<10^{-7}$ for uptake of NO$_2$ on NaCl and $<2 \times 10^{-7}$ for uptake on KBr, with the reaction being first order in NO$_2$. Yoshitake also used DRIFTS to study this reaction and reported that for “dry” NaCl, the reaction was second order in NO$_2$ with an uptake coefficient assuming the reactant is N$_2$O$_4$ of $(4 \pm 2) \times 10^{-5}$. However, if the NaCl had been pretreated with water vapor, the uptake was first order in NO$_2$ with $\gamma = (1.5 \pm 0.2) \times 10^{-8}$. Karlsson and Ljungstrom generated NaCl particles and measured the loss of chloride and formation of nitrate using ion chromatography on particles collected on filters; they obtained a lower limit for the reaction probability of 3×10^{-4}. Surprisingly, the conversion of NO$_2$ to nitrate decreased as the relative humidity increased from 9 to 79%. These reactions are sufficiently slow that they are unlikely to be important in the atmosphere.

Abbatt and Waschewsky measured the loss of NO$_2$ in a flow tube containing deliquesced 1–5 µm NaCl particles (75% RH); no significant loss was observed on unbuffered particles or particles buffered at pH of 7.2 or having pH of 0.3 using HCl. An upper limit of $\gamma < 1 \times 10^{-4}$ for the uptake of NO$_2$ was derived from
these measurements. Yabushita et al.12 have recently shown using ESI-MS that uptake of NO\textsubscript{2} to aqueous droplets, yielding the nitrate anion, is facilitated by the presence of halide anions, perhaps through the formation of a complex with NO\textsubscript{2} on the surface.

Back to Table

(2) Beichert, P.; Finlayson-Pitts, B. J. Knudsen cell studies of the uptake of gaseous HNO\textsubscript{3} and other oxides of nitrogen on solid NaCl. The role of surface absorbed water. \textit{J. Phys. Chem.} \textbf{1996}, \textit{100}, 15218-15228.

(13) Yoshitake, H. Effects of surface water on NO\textsubscript{2}-NaCl reaction studied by diffuse reflectance infrared spectroscopy (DRIRS). \textit{Atmos. Environ.} \textbf{2000}, \textit{34}, 2571-2580.

25. NO\textsubscript{2} + NaBr(s). Vogt et al.1 used diffuse reflectance infrared spectroscopy to study NO\textsubscript{2} + NaBr(s) at 298 K. The reaction was determined to be approximately second order in NO\textsubscript{2}. Assuming that adsorbed N\textsubscript{2}O\textsubscript{4} is the reactant leads to $\gamma = 2 (+4, -1.3) \times 10^{-4}$.

Back to Table

26. NO\textsubscript{2}/N\textsubscript{2}O\textsubscript{4} + sea salt. Sverdrup and Kuhlman2 measured the uptake of NO\textsubscript{2} on artificial sea salt using the NO\textsubscript{2} loss measured in a flow tube lined with the salt. The uptake coefficient was reported to increase from 10^{-7} to 10^{-6} as the relative humidity increased from 44% to 88%. Langer et al.1 used diffuse reflectance Fourier transform infrared spectrometry to follow nitrate formation on synthetic sea salt and found the reaction was approximately second order (1.8 ± 0.2) in NO\textsubscript{2} in He carrier gas but approximately first order (1.2 ± 0.2) in N\textsubscript{2}O\textsubscript{4} in air. Assuming that N\textsubscript{2}O\textsubscript{4} was the reactant in He, $\gamma_{\text{ss}} = 1 \times 10^{-4}$, and assuming NO\textsubscript{2} is the reactant in air, $\gamma_{\text{ss}} = 1 \times 10^{-8}$. These reactions are sufficiently slow that they are unlikely to be important in the atmosphere.

Back to Table

27. **NO$_3$ + H$_2$O(s).** Fenter and Rossi1 measured an upper limit for γ of 10$^{-3}$ over the range from 170 to 200 K.

28. **NO$_3$ + H$_2$O(l).** Rudich et al.3,4 used wetted-wall flow tube techniques to measure uptake coefficients for NO$_3$ on pure water and aqueous NaCl, NaBr, NaI, and NaN$_3$O$_2$ solutions. These studies were extended to other aqueous solutions by Imamura et al.1 Uptake on pure water was consistent with reaction of NO$_3$ to produce HNO$_3$ and OH. Uptake coefficients with solutions containing I$^-$, Cl$^-$, Br$^-$, NO$_2^-$, and other anions were larger and scaled with anion concentration, indicating electron transfer reactions to produce NO$_2^-$. Reactions with these anions and/or adsorbed organic contaminants may well dominate the reactive uptake of NO$_3$ by real atmospheric aqueous surfaces. The γ of $(2.0 \pm 1.0 \times 10^{-4})$ at 273 K determined for pure water by Rudich et al. is significantly lower than the lower limit of 2.5×10^{-3} from Thomas and co-workers as quoted by Mihelcic et al.2 and further discussed in Thomas et al.6 who also dispute that reactive uptake coefficient on pure water reported by Rudich et al. is due to nitric acid production. A detailed analysis of uptake coefficients for I$^-$ aqueous solutions by Rudich et al.3 indicated that the NO$_3$ mass accommodation coefficient is >0.04, but this result may be biased due to reactive uptake by interfacial I$^-$. Single droplet uptake results on Alizarin Red S dye and NaCl solutions at 293 K by Schütze and Herrman3 suggest a value an order of magnitude smaller (see Table 5.1).

29. **NO$_3$ + NaCl.** Also see note for NO$_3$ + H$_2$O(l). Recommended value for the initial uptake coefficient on solid NaCl is based on work of Seisel et al.4,5 Gershenzon and coworkers,1 and Gratpanche and Sawerysyn6. Seisel et al.4,5 used a Knudsen cell with mass spectrometric and laser-induced fluorescence detection of the NO$_3$. Salt powders from 60–630 μm in size were used, as well as spray-deposited samples; no dependence on mass for powders or between powders and the spray-deposited samples was observed so no corrections for diffusion into underlying layers were applied. They obtained values for γ_0 of $(4.9 \pm 3) \times 10^{-2}$ and $(4.6 \pm 4) \times 10^{-2}$, respectively. Gershenzon and coworkers used flow reactors with ESR and MS detection and measured the loss of NO$_3$ on an axially located rod coated with salt; they interpret their results, and the associated value of γ_0 derived from their data based on a multi-step mechanism involving adsorption and then reaction of NO$_3$ on the salt. The value for γ_0 is sensitive to several unknown parameters in the model, and they give a range from $(0.2–3.9) \times 10^{-2}$. Gratpanche and Sawerysyn6 used a flow tube coated with NaCl and ESR detection of NO$_3$, and reported a value of $(1.7 \pm 1.2) \times 10^{-2}$; on very dry NaCl, no uptake was observed, again indicating the importance of small amounts of water for the reaction. Gershenzon et al.1 reported that the uptake coefficient decreased by about a factor of 20 over about half an hour, suggesting that the steady state value of γ_{ss} is approximately 1.5×10^{-3}. Zelenov et al. reported that the uptake coefficient for NO$_3$ on NaCl (and NaBr; see next note)7,8 could be fit by a time-dependent term and a time-independent term: $\gamma(t) = \gamma_0 \exp(-t/\tau) + \gamma_{ss}$. They observed...
that γ_a depends on the type of salt, as well as the NO$_3$ and water concentrations, while γ_0 depended only on the type of salt and NO$_3$ concentration. They concluded that the products are chemisorbed Cl atoms. No temperature dependence has been observed over the temperature range 258–301 K by Gratpanche and Sawerysyn,2 consistent with only an ~10% change in the uptake coefficient from 293 to 373 K observed by Gershenzon et al.1

The uptake of NO$_3$ on aqueous solutions of NaCl has been measured at 273 K by Rudich et al.3 and at 293 K by Thomas et al.6 NO$_3$ reacts in solutions with the halide ions. The measured uptake coefficients varied from $(0.8–6) \times 10^{-3}$ for solutions of activity ranging from 0.008 to 0.45 at 273 K3 and was reported to be $> 2 \times 10^{-3}$ on 0.1 M NaCl at 293 K.6

Back to Table

(5) Seisel, S.; Fluckiger, B.; Caloz, F.; Rossi, M. J. Heterogeneous reactivity of the nitrate radical: Reactions on halogen salt at ambient temperature and on ice in the presence of HX (X = Cl, Br, I) at 190 K. *Phys. Chem. Chem. Phys.* 1999, 1, 2257-2266.

30. **NO$_3$ + NaBr and NaI.** Also see notes for NO$_3$ + NaCl and NO$_3$ + H$_2$O(I). Recommended value of γ_0 for the reaction with solid NaBr is based on reported values of 0.16 ± 0.08,4 0.20 ± 0.10,5 a range of 0.1 to 0.31 and 0.11 ± 0.062 (all errors cited are 1σ). Gershenzon et al.1 observed a decrease of about a factor of two with time, suggesting that γ_a ~0.05. Gratpanche and Sawerysyn2 found a slight negative temperature dependence, $\gamma_0 = (1.6+1.8-0.9 \times 10^{-3}) \exp[(1210 \pm 200)/T]$ over the range from 243–293 K. Gershenzon et al.1 also reported a small (30%) decrease in γ_0 from 293 to 373 K. Zelenov et al.6,7 reported that the uptake coefficient for NO$_3$ on NaBr (and NaCl; see preceding note) could be fit by a time-dependent term and a time-independent term: $\gamma(t) = \gamma_0 \exp[-(t/\tau) + \gamma_{ss}$. They observed that γ_a depends on the type of salt, as well as the NO$_3$ and water concentrations, while γ_0 depended only on the type of salt and NO$_3$ concentration. They concluded that the products are bromine atoms in agreement with the observations of the branching ratio as well as the mass balance by Seisel et al.4,5

Rudich et al.3 measured the uptake of NO$_3$ on aqueous KI solutions; NO$_3$ is taken up and reacts with I$^{-}$ in solution. Uptake coefficients increased with the concentration of I$^{-}$, ranging from $\gamma = 0.9 \times 10^{-3}$ at 5 × 10$^{-6}$ M KI to 3.2 × 10$^{-3}$ at a concentration of 8 × 10$^{-5}$ M.

Back to Table

(5) Seisel, S.; Fluckiger, B.; Caloz, F.; Rossi, M. J. Heterogeneous reactivity of the nitrate radical: Reactions on halogen salt at ambient temperature and on ice in the presence of HX (X = Cl, Br, I) at 190 K. *Phys. Chem. Chem. Phys.* **1999**, *1*, 2257-2266.

31. **NO\textsubscript{3} + organic surfaces.** Initial uptake of the nitrate radical occurs on organic surfaces that contain both unsaturated carbon-carbon bonds and saturated carbon-carbon bonds. The former reactions occur with large initial uptake coefficients (as large as 0.1) whereas smaller uptake coefficients describe uptake to saturated organic surfaces. The product distributions are highly complex. A more detailed discussion of this complex chemistry is given in two review articles: Kolb et al.2 and Abbatt et al.1

Back to Table

32. **N\textsubscript{2}O\textsubscript{5} + H\textsubscript{2}O(s).** Leu4 and Hanson and Ravishankara1 measured nearly identical values of 0.028 (±0.011) and 0.024 (±0.013) in the 195–202 K range on relatively thick ice films in coated wall flow tubes. Quinlan et al.5 measured a maximum value for γ on ice surfaces at 188 K of 0.03 in a Knudsen cell reactor. The average of these three studies is 0.027 with a standard deviation of 0.003. Hanson and Ravishankara2,3 presented new and re-analyzed data as a function of ice thickness, with a value of ~0.008 for the thinnest ice sample, rising to 0.024 for the thickest. From these data there would appear to be no strong dependence on temperature, at least over the 188–195 K range. It is unclear whether the measured dependence on ice film thickness is due to added porosity surface area in the thicker films or decreased ice film integrity in thinner films. The error estimate in the table is driven by the possible systematic error due to unresolved film thickness effects rather than the small statistical error among the “thick film” values from the three groups.

Zondlo et al.6 report the formation of a supercooled H\textsubscript{2}O/HNO\textsubscript{3} liquid layer at 185 K as a reaction product, forming NAT or NAD only after decreasing the relative humidity below the ice frost point. This effect is similar to that resulting from the interaction of gaseous HNO\textsubscript{3} or ClONO\textsubscript{2} with the ice surface. These authors measured γ = (7 ± 3) × 10-4 at 185 K for the reaction of N\textsubscript{2}O\textsubscript{5} with this supercooled liquid layer.

Back to Table

(1) Hanson, D. R.; Ravishankara, A. R. The reaction probabilities of ClONO\textsubscript{2} and N\textsubscript{2}O\textsubscript{5} on 40 to 75% sulfuric acid solutions. *J. Geophys. Res.* **1991**, *96*, 17307-17314.

33. \(\text{N}_2\text{O}_5 + \text{H}_2\text{O}(l) \). This reaction has now been studied widely on both pure water and on aqueous surfaces. The kinetics of the reaction are dependent on a number of conditions, as described below.

On pure waer, Van Doren et al.\(^{21}\) measured \(\gamma \) of \(0.057 \pm 0.003 \) at 271 K and \(0.036 \pm 0.004 \) at 282 K using a droplet train uptake technique, indicating that the reaction has a negative temperature dependence. George et al.\(^6\) also used a droplet train technique to measure \(\gamma \) of \((3.0 \pm 0.2) \times 10^{-2} \) (262 K), \((2.9 \pm 1.2) \times 10^{-2} \) (267 K), \((2.0 \pm 0.2) \times 10^{-2} \) (273 K), \((1.6 \pm 0.8) \times 10^{-2} \) (276 K), and \((1.3 \pm 0.8) \times 10^{-2} \) (277 K) on pure water, while Schweitzer et al.\(^{18}\) used the same approach for pure water and salt solutions between 262 and 278 K, obtaining similar results. Msibi et al.\(^{14}\) measured a smaller \(\gamma \) of \(2.5 \times 10^{-3} \) for water adsorbed on a denuder flow tube well under 66–96% relative humidity conditions at room temperature, making the nature of the surface unclear. After correction for gas-phase diffusion effects, Schütze and Herrmann\(^{13}\) measured a \(\gamma \) of \(1.1 \times 10^{-2} \) at 293 K using a single suspended droplet flow reactor method that was probably constrained by nitrate build-up in the droplet’s surface layer.

A number of other groups have measured the uptake coefficients of \(\text{N}_2\text{O}_5 \) on aqueous solutions, where the reactivity of the \(\text{N}_2\text{O}_5 \) is with the water solvent molecules. These studies include: Mozurkewich and Calvert\(^{11}\) on \(\text{NH}_3/\text{H}_2\text{SO}_4/\text{H}_2\text{O} \) aerosols in an aerosol flow tube, Hu and Abbatt\(^{10}\) on \(\text{NH}_3/\text{SO}_4 \) aerosols at 297 K in an aerosol flow tube, Mentel and co-workers\(^{13,22}\) on sodium sulfate and sodium nitrate particles in a large aerosol chamber, Thornton et al.\(^{20}\) measured uptake on malonic acid aerosols in an aerosol flow tube, Hallquist et al.\(^5\) studied ammonium sulfate and sodium nitrate particles, and Griffiths et al.\(^7\) measured uptake on a variety of soluble organic acids with and without ammonium sulfate present. Note that the studies conducted with sodium chloride or sea salt as the solute are listed in the \(\text{N}_2\text{O}_5 + \text{NaCl} \) note below.

Overall, the \(\gamma \) values measured at high relative humidity by Van Doren et al., Mozurkewich and Calvert, Hu and Abbatt, Thornton et al., Hallquist et al., and Griffiths et al., and those from experiments with NaCl at high relative humidity (Benke et al.\(^3\) and Thornton and Abbatt\(^{19}\)) are quite consistent when temperature and RH effects are factored in, yielding uptake coefficients in the 0.02 to 0.04 range at room temperature. The lower values from the Louis Pasteur (George et al. and Schweitzer et al.) and Birmingham (Msibi et al.) groups appear to have much less pronounced temperature dependence and are inconsistent with the other measurements. The same function used to fit the \(\text{N}_2\text{O}_5 \) uptake on sulfuric acid as a function of temperature and concentration, discussed below, has been extended to the Van Doren et al. and Hu and Abbatt data for pure water and very high RH aerosols. See note on \(\text{N}_2\text{O}_5 + \text{H}_2\text{SO}_4+\text{nH}_2\text{O}(l) \) for the functional fit and its error discussion.

However, other factors that affect the uptake coefficient include: 1. At low relative humidities, the \(\gamma \) values are reduced from the values close to water saturation, with the uptake coefficient scaling linearly with the water content of the aerosol below a specific relative humidity (roughly 50% RH). This is indicative of a competition for water of a reactive intermediate formed via \(\text{N}_2\text{O}_5 \) initial uptake (see in particular Thornton et al.,\(^{20}\) Thornton and Abbatt,\(^{19}\) Hallquist et al.,\(^9\) and Griffiths et al.\(^7\)). 2. At high aerosol nitrate concentrations the kinetics are slower, falling below 0.001 in some cases, indicative that a reactive intermediate along the reaction pathway is less stable under such conditions (see Mentel and co-workers\(^{13,22}\) and Hallquist et al.\(^5\)). Note that high nitrate levels may develop in laboratory experiments where high \(\text{N}_2\text{O}_5 \) concentrations are used, potentially biasing the uptake coefficients to lower values than are atmospherically significant. This may be manifest as an uptake coefficient that is dependent on the concentration of \(\text{N}_2\text{O}_5 \) used.\(^{20}\) 3. By varying particle diameters, the reacto-diffusive length has been measured to be 48 nm at 50% RH on malonic acid aqueous particles, indicating that this process is not fully occurring at the surface of the particle and that there might be a particle-size dependence to the uptake coefficient.\(^{20}\) 4. The uptake coefficients can be substantially suppressed when large organic molecules, such as those formed by the reaction of ozone with alpha-pinene or those present in humic-like materials are present in/on aqueous inorganic aerosol.\(^{1,5}\) The uptake coefficients in these systems can be substantially below 0.01, with only a few weight percent of organic present. Also, monolayers of surfactant organics on aqueous particles can have the same effect (Thornton and Abbatt\(^{19}\) and McNeill et al.\(^{11}\)). 5. Finally, as observed with pure water by Van Doren et al.\(^{21}\), there is a negative temperature dependence to the uptake coefficient over the small temperature range that has been studied.\(^{7,9}\) For example, the most recent measurements by Griffiths et al.\(^7\) show the uptake coefficient changing from 0.035 to 0.005 from 263 to 303 K at 50% RH. A new parameterization of laboratory kinetics that takes
into account the water, nitrate, dissolved organic, and chloride concentrations has been published by Bertram and Thornton.³

Beyond the laboratory, the uptake coefficient of N₂O₅ has been measured from decays on ambient (outdoor air) particles in an aerosol flow tube. It has been observed that the uptake coefficients are smallest (<0.005) when the organic content of the particles is high. Uptake coefficients of 0.03 were measured, but only on some occasions and when the sulphate/organic content of the particles was highest.⁴ Additional studies with ambient particles have confirmed the wide range of uptake coefficients under ambient conditions, observing a substantial amount of day-to-day variability that may be due to variable particle phase and/or organic composition.¹⁵,¹⁶

Back to Table

(2) Behnke, W.; George, C.; Scheer, V.; Zetsch. C. Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments. J. Geophys. Res. 1997, 102, 3795-3804.

34. **N$_2$O$_5$ + HNO$_3$+3H$_2$O(s).** Hanson and Ravishankara1 have measured $\gamma = 0.0006 \pm 0.0030$% near 200 K. They re-analyzed their results and give additional data as a function of ice thickness (Hanson and Ravishankara2), deriving a value of 3×10^{-4} for the thinnest nitric acid trihydrate (NAT) covered ice layer, with values up to three times higher for thicker NAT-covered ice layers. As in the case of uptake on water ice this may be due to increased surface area from porosity in the thicker films, or less integrity in the thinner films. The uncertainty listed in the Table is driven by this observed effect. All of the Hanson et al. data are in poor agreement with the $\gamma = 0.015 \pm 0.006$ reported by Quinlan et al.3 from their Knudsen cell measurements; this measurement may have been biased by formation of a super-cooled aqueous nitric acid surface and is judged to be unreliable. It is possible that the uptake coefficients will be affected by whether the NAT surfaces are water-rich or poor.

Back to Table

(1) Hanson, D. R.; Ravishankara, A. R. The reaction probabilities of ClONO$_2$ and N$_2$O$_5$ on polar stratospheric cloud materials. *J. Geophys. Res.* **1991**, *96*, 5081-5090.

35. **N$_2$O$_5$ + H$_2$SO$_4$•nH$_2$O(l).** This reaction has been intensively studied between 195 and 296 K for a wide range of H$_2$SO$_4$ wt.% values using four complementary experimental techniques. Data are available from aerosol flow tube studies (Fried et al.3, Hanson and Lovejoy4, Hu and Abbatt5, and Hallock5 et al.6), coated wall flow tube studies (Hanson and Ravishankara7 and Zhang et al.8), a stirred Knudsen cell (Manion et al.9) and droplet train studies (Van Doren et al.12 and Robinson et al.11). All studies have yielded γs between -0.05 and 0.20 with modest dependence on surface H$_2$SO$_4$ wt.% and temperature. The Knudsen cell studies, aerosol flow tube studies at higher N$_2$O$_5$ exposure and the ternary H$_2$SO$_4$/HNO$_3$/H$_2$O studies of Zhang et al.14 all illustrate that significant levels of HNO$_3$ in the H$_2$SO$_4$/H$_2$O solutions will reduce γ measurably; this fact explains some of the scatter in aerosol flow tube studies and the surface saturation evident in the Knudsen cell studies. The "nitrate effect" reduction of γ was also studied in extensive aerosol chamber studies at 193.6 K by Wagner et al.13 The effect of 5.0 \times 10$^{-7}$ Torr HNO$_3$ on γ as a function of temperature at two water vapor concentrations are plotted in Zhang et al.14, the decrease in γ is greatest at low temperatures, approaching a factor of 2--5 between 200 and 195 K.

Experimental data on sulfuric acid surfaces between 40 and 80 wt% sulfuric acid deemed to be free of saturation effects, plus the pure water uptake data of Van Doren et al.12 and high relative humidity ammonium sulfate aerosol uptake data of Hu and Abbatt7 were all fit to a polynomial expression to yield a single model describing γ for N$_2$O$_5$ uptake valid between 0 and 80 wt% H$_2$SO$_4$ and 180 to 300 K (Robinson et al.11). The form of this function is: $\gamma = \exp(k_0 + k_1/T + k_2/T^2)$, where T is the temperature in K. The parameters k$_0$, k$_1$, and k$_2$ obtained from the best-fit are:

$$k_0 = -25.5265 - 0.133188wt + 0.00930846wt^2 - 9.0194 \times 10^{-5}wt^3$$

$$k_1 = 9283.76 + 115.345wt - 5.19258wt^2 + 0.0483464wt^3$$

5-86
\[k_2 = -851801 - 22191.2wt + 766.916 wt^2 - 6.85427 wt^3 \]

where \(wt \) is the weight percentage of \(\text{H}_2\text{SO}_4 \).

The overall error of applying the uptake function provided here consists of two components. One is the standard deviation of the model-calculated value with respect to measured data, \(\sigma_m \), which is given by

\[
\sigma_m = \sqrt{\frac{\sum_{i=1}^{N} (1 - \frac{\gamma_i}{\gamma_{\text{model}}})^2}{N-1}}.
\]

The other is the standard deviation of relative experimental measurement error from the mean, \(\sigma_d \), which is given by

\[
\sigma_d = \sqrt{\frac{\sum_{i=1}^{N} \left(\frac{\Delta \gamma_i}{\gamma_i} \right)^2}{N(N-1)}}.
\]

The overall error is

\[
\sigma = \sqrt{\sigma_m^2 + \sigma_d^2}.
\]

(These formulations are also applied below in the error estimation for the ClONO\(_2\) + H\(_2\)O and HCl, BrONO\(_2\) + H\(_2\)O, and HOCl + HCl reaction system. For N\(_2\)O\(_5\), the error is estimated to be 15\% (1\(\sigma\)), with \(\sigma_m = 14.7\% \) and \(\sigma_d = 2.9\% \).

Liquid flow reactor studies on 60–80 wt\%\(\text{H}_2\text{SO}_4 \) at 273–280 K by Bertram and co-workers demonstrated that adsorbed single and dual component coatings of organics like 1-hexadecanol, 1-octadecanol and stearic acid could reduce \(\gamma \) by well over a factor of 10, while coatings of phytanic acid had little effect. Even 0.75 monolayer coatings of 1-octadecanole reduced \(\gamma \) by a factor of 10\(^1\),\(^2\),\(^8\) Park et al.\(^10\) impinged a molecular beam of N\(_2\)O\(_5\) on 72 wt\% \(\text{H}_2\text{SO}_4 \) at 216 K, observing that sub-monolayer coverage of 1-butanol and 1-hexanol reduced bare acid reactive uptake coefficients from ~0.15 to ~0.10 and 0.06, respectively.

Back to Table

36. N₂O₅ + H₂SO₄•H₂O(s). Zhang et al.¹ used coated flow tube techniques to measure the uptake of N₂O₅ on solid sulfuric acid monohydrate over a temperature range of 200 to 225 K. The measurement values of γ were significantly higher at 200 K (γ ~ 1 × 10⁻⁴) than at 225 K (γ ~ 10⁻⁵) and were well fit by log γ = [4.78 – 0.0386T(K)]. Acid-rich H₂SO₄•H₂O surfaces had a lower γ than water rich surfaces (log γ = [0.162 – 0.789 × log p_H₂O] where p_H₂O is their experimental water vapor partial pressure in Torr).

Back to Table

37. N₂O₅ + H₂SO₄•4H₂O(s). Hanson and Ravishankara¹ studied N₂O₅ uptake by frozen 57.5 and 60 wt.% H₂SO₄ as a function of temperature and relative humidity. The 57.5 wt% surface was not sensitive to relative humidity and was slightly more reactive (γ = 0.008 vs 0.005) at 205 K than at 195 K. Reaction probabilities on the 60 wt% surface dropped off with temperature and relative humidity.

Back to Table

(1) Hanson, D. R.; Ravishankara, A. R. Reaction of ClONO₂ with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N₂O₅ and ClONO₂ on frozen sulfuric acid. *J. Geophys. Res.* 1993, 98, 22931-22936.

38. N₂O₅ + HCl on H₂O(s). Leu¹ measured γ = 0.028 ± 0.011 at 195 K, while Tolbert et al.⁵ measured a lower limit of 1 × 10⁻³ at 185 K. Seisel et al.⁴ measured γ ~ 0.03 at 200 K using a Knudsen flow reactor with a range of HCl flows. The uptake coefficient at low HCl flows is only slightly enhanced compared to the uptake on a pure ice surface. CINO₂ was observed as the product in these studies. These experiments were done at high HCl levels probably leading to a liquid water/acid surface solution (Abbatt et al.). Indeed, Hanson and Ravishankara² point out that a pure ice surface is readily converted to one with a thin NAT coating even with low N₂O₅ partial pressures, making this reaction difficult to study on pure ice surfaces.

Back to Table

39. N₂O₅ + HCl on HNO₃•3H₂O(s). Hanson and Ravishankara¹ measured γ = 0.0032 (±30%) near 200 K.
40. \(\text{N}_2\text{O}_5 + \text{HCl on } \text{H}_2\text{SO}_4\text{H}_2\text{O(s)} \). Zhang et al.,\(^1\) saw no increase in \(\text{N}_2\text{O}_5 \) uptake on sulfuric acid monohydrate at 195 K upon exposure to HCl, setting \(\gamma < 10^{-4} \).

41. \(\text{N}_2\text{O}_5 + \text{HBr on } \text{H}_2\text{O(s)} \). Seisel et al.,\(^1\) report \(\gamma \) values ranging from \(3 \times 10^{-3} \) to 0.1, depending on the HBr concentrations employed; the measurements were conducted at 180 and 200 K. These authors report Br\(_2\) and HONO in 80\% yield as products with respect to \(\text{N}_2\text{O}_5 \) taken up, generated presumably by the secondary reaction of the primary product BrNO\(_2\) with HBr.

42. \(\text{N}_2\text{O}_5 + \text{HBr on HNO}_3\text{+3H}_2\text{O(s)} \). This reaction, yielding \(\gamma \approx 0.005 \), was investigated on NAT surfaces near 200 K by Hanson and Ravishankara.\(^3\) Under some conditions a much higher reaction coefficient of \(-0.04 \) was observed.

43. \(\text{N}_2\text{O}_5 + \text{NaCl} \). This reaction has been studied on both solid NaCl and on aqueous solutions. The uptake of \(\text{N}_2\text{O}_5 \) on solid NaCl has been studied using Knudsen cells,\(^3,5\) flow reactors,\(^7,8\) annular reactors\(^10\) and diffusion tubes.\(^6\) The reaction has two possible channels if there is water available on the surface: \(\text{N}_2\text{O}_5 + \text{NaCl} \rightarrow \text{ClNO}_2 + \text{NaNO}_3 \) (1) and \(\text{N}_2\text{O}_5 + \text{H}_2\text{O/NaCl} \rightarrow 2 \text{HNO}_3 \) (2). The presence of the two channels is supported by measured yields of ClNO\(_2\) (relative to \(\text{N}_2\text{O}_5 \) lost) that vary from 60–100\% \(^{3,5,6,8} \) and by the observation of gaseous HCl as a reaction product.\(^5\) Because hydrolysis on the surface occurs in addition to the reaction with Cl\(^-\), the net uptake coefficient for \(\text{N}_2\text{O}_5 \) is particularly sensitive to the presence of surface-adsorbed water (SAW), with higher values for powders where there are more steps and edges that hold SAW. For example, Leu et al.,\(^7\) measured an upper limit of \(\gamma < 1.0 \times 10^{-4} \) for salt powders that had been heated overnight in a vacuum, but \(-4.5 \times 10^{-4} \) for samples that were only pumped on for about an hour. Fenter et al.,\(^3\) reported a preferred value for the uptake coefficient of \((5 \pm 2) \times 10^{-4} \); however, the measured values varied from \(2 \times 10^{-3} \) for monodisperse powders (after correction for pore diffusion by factors of \(5 \) to 30) to \(< 1.0 \times 10^{-4} \) for a polished window face. Hoffman et al.,\(^5\) report a steady state value of \(\gamma_a = 3 \times 10^{-3} \) based on Knudsen cell studies of powders using less than a layer of salt where corrections to the available surface area due to diffusion into the salt are not necessary; the branching ratio for reaction (1) was measured to be \(0.73 \pm 0.28 \) (\(2\sigma \)).

The uptake of \(\text{N}_2\text{O}_5 \) on NaCl solutions or aqueous particles has been measured by a number of techniques.\(^1,2,4,11,14-16\) Overall, the reported values of \(\gamma \) for relative humidities between 45 and 100\% are between \(1.5 \times 10^{-2} \) to \(5.0 \times 10^{-2} \) and temperatures between 263 K and room temperature. Zettsch and coworkers\(^12\) used an aerosol chamber to measure the uptake of \(\text{N}_2\text{O}_5 \) on deliquesced NaCl particles from 71–94\% RH, and obtained a value of \(\gamma = 3.2 \times 10^{-2} \). Behnke et al.,\(^1\) measured ClNO\(_2\) in a yield of 66 ± 7\% from aerosol particle experiments. In a wetted wall flow tube, the yield was observed to increase to 100\% at concentrations of NaCl of 1 M and above. Thornton and Abbatt\(^15\) report a yield of at least 50\% ClNO\(_2\) at 50\% RH, using an aerosol flow tube technique. It is proposed by both groups that a mechanism involving a competition between the reaction of NO\(_2^+\) (or H\(_2\)NO\(_2^+\)) with water to form HNO\(_3\) or with Cl\(^-\) to form ClNO\(_2\) determines the product yield. George et al.,\(^4\) used a droplet train and measured the formation of NO\(_3^-\) in the droplets; the value of \(\gamma \) decreased from 0.039 ± 0.013 at 263 K to 0.014 ± 0.008 at 278 K. Stewart et al.,\(^14\) measured the uptake of \(\text{N}_2\text{O}_5 \) on NaCl particles in a flow tube; after correction for diffusion/particle size effects, an uptake coefficient of \(3 \times 10^{-2} \) was derived at relative humidities 30\% and
above. Schweitzer et al.11 used a droplet train apparatus to measure the uptake of N\textsubscript{2}O\textsubscript{5} on water and on solutions of NaCl, NaBr and NaI with concentrations ranging from 0.1 to 1 M over a temperature range from 262 to 278 K. Within experimental error, all of the uptake coefficients were the same, with an average value of \(\gamma = 0.018 \pm 0.003 \). For 1 M NaCl, the ClNO\textsubscript{2} yield was 100%.

Note that the uptake kinetics can be suppressed by the presence of an organic monolayer on the aqueous particles.9,15 Also, the product yield can change to Cl\textsubscript{2}, when the acidity of the surface is taken below 2 and for chloride concentrations as low as 0.05 M (Roberts et al.12).

Back to Table

(1) Behnke, W.; George, C.; Scheer, V.; Zetsch, C. Production and decay of ClNO\textsubscript{2} from the reaction of gaseous N\textsubscript{2}O\textsubscript{5} with NaCl solution: Bulk and aerosol experiments. J. Geophys. Res. 1997, 102, 3795-3804.
(3) Fenter, F. F.; Caloz, F.; Rossi, M. J. Heterogeneous kinetics of N\textsubscript{2}O\textsubscript{5} uptake on salt, with a systematic study of the role of surface presentation (for N\textsubscript{2}O\textsubscript{5} and HNO\textsubscript{3}). J. Phys. Chem. 1996, 100, 1008-1019.
(6) Koch, T. G.; vandenBergh, H.; Rossi, M. J. A molecular diffusion tube study of N\textsubscript{2}O\textsubscript{5} and HONO\textsubscript{2} interacting with NaCl and KBr at ambient temperature. Phys. Chem. Chem. Phys. 1999, 1, 2687-2694.
(7) Leu, M.-T.; Timonen, R. S.; Keyser, L. F.; Yung, Y. L. Heterogeneous reactions of HNO\textsubscript{3}(g) + NaCl(s) HCl(g) + NaNO\textsubscript{3}(s) and N\textsubscript{2}O\textsubscript{5}(g) + NaCl(s) ClNO\textsubscript{2}(g) + NaNO\textsubscript{3}(s). J. Phys. Chem. 1995, 99, 13203-13212, doi:10.1021/jp00350a026.
(8) Livingston, F. E.; Finlayson-Pitts, B. J. The reaction of gaseous N\textsubscript{2}O\textsubscript{5} with solid NaCl at 298 K: Estimated lower limit to the reaction probability and its potential role in tropospheric and stratospheric chemistry. Geophys. Res. Lett. 1991, 18, 17-21.
(9) McNeill, V. F.; Patterson, J.; Wolfe, G. M.; Thornton, J. A. The effect of varying levels of surfactant on the reactive uptake of N\textsubscript{2}O\textsubscript{5} to aqueous aerosol. Atmos. Chem. Phys. 2006, 6, 1635-1644.
(10) Msibi, I. M.; Li, Y.; Shi, J. P.; Harrison, R. M. Determination of heterogeneous reaction probability using deposition profile measurement in an annular reactor: application to the N\textsubscript{2}O\textsubscript{5}/H\textsubscript{2}O reaction. J. Atmos. Chem. 1994, 18, 291-300.
(13) Schweitzer, F.; Mirabel, P.; George, C. Multiphase chemistry of N\textsubscript{2}O\textsubscript{5}, ClO\textsubscript{2} and BrNO\textsubscript{2}. J. Phys. Chem. A 1998, 102, 3942-3952.
(14) Stewart, D. J.; Griffiths, P. T.; Cox, R. A. Reactive uptake coefficients for heterogeneous reaction of N\textsubscript{2}O\textsubscript{5} with submicron aerosols of NaCl and natural sea salt. Atmos. Chem. Phys. 2004, 4, 1381-1388.

44. N\textsubscript{2}O\textsubscript{5} + KBr, NaBr, NaI. Fenter et al.3 and Koch et al.3 measured the uptake coefficient for N\textsubscript{2}O\textsubscript{5} on KBr at ambient temperature using a Knudsen cell and molecular diffusion tube respectively. The Knudsen cell experiments gave a value of \((4 \pm 2) \times 10^{-3} \) after correction (by factors of \(6–16 \)) for pore diffusion, and the molecular diffusion tube a value of \((2.5 \pm 1) \times 10^{-3} \). In the Knudsen cell studies, the uptake coefficient was larger for powders and a depolished window face (both \(4 \times 10^{-3} \)) than for a polished window face (\(< 1 \times 10^{-3} \)), similar to the observations for the NaCl reaction (N\textsubscript{2}O\textsubscript{5} + NaCl); this again suggests the importance
of surface-adsorbed water and possibly surface defects created by roughening (which, however, also hold water) for the reaction. The initial product of the reaction is BrNO$_2$, identified by Finlayson-Pitts et al.2 by FTIR but this can react further with the salt to generate Br$_2$, the product observed by Fenter et al.1

Schweitzer et al.3 used a droplet train apparatus to measure the uptake of N$_2$O$_5$ on water and on solutions of NaBr and NaI, as well as NaCl, with concentrations ranging from 0.1 to 1 M over a temperature range from 262 to 278 K. Within experimental error, all of the uptake coefficients were the same, with an average value of $\gamma = 0.018 \pm 0.003$. For the NaBr reaction, the gas phase products were BrNO$_2$, Br$_2$, and HONO. For the NaI reaction, the only gas phase product observed was I$_2$.

Back to Table

(1) Fenter, F. F.; Caloz, F.; Rossi, M. J. Heterogeneous kinetics of N$_2$O$_5$ uptake on salt, with a systematic study of the role of surface presentation (for N$_2$O$_5$ and HNO$_2$). *J. Phys. Chem.* 1996, 100, 1008-1019.

45. N$_2$O$_5$ + sea salt. The uptake of N$_2$O$_5$ on solid synthetic sea salt was measured to be $\gamma = (3.4 \pm 0.8) \times 10^{-2}$ (2σ) by Hoffman et al.1 This will be an upper limit as 1–2 layers of salt were used and no correction was made for diffusion into the bottom layer. However, it is clear that the reaction is at least an order of magnitude faster than that for NaCl; the yield of ClNO$_2$ is 100%.

Stewart and Cox3 measured the uptake of N$_2$O$_5$ on submicron synthetic sea salt aerosols in a flow tube; after correction for diffusion/particle size effects, a value of $\gamma = 2.5 \times 10^{-2}$ was derived, independent of relative humidity above 30%. Similar results are reported for the same substrate by Thornton and Abbatt4 with the uptake coefficient changing from 0.02 to 0.03 from 43 to 70% RH. For partially crystallized artificial sea salt, the uptake coefficient was 0.005 at 30% RH.

Experiments were conducted by Lopez-Hilfiker et al.2 in a coated-wall flow tube on the uptake of N$_2$O$_5$ to frozen salt solutions containing variable ratios of Cl to Br, from temperatures of 258 to about 240 K. Br$_2$ and ClNO$_2$ products were observed with a total yield of unity, with their ratios dependent upon both temperature and the Cl/Br ratio of the frozen solution.

Back to Table

(3) Stewart, D. J.; Griffiths, P. T.; Cox, R. A. Reactive uptake coefficients for heterogeneous reacton of N$_2$O$_5$ with submicron aerosols of NaCl and natural sea salt. *Atmos. Chem. Phys.* 2004, 4, 1381-1388.

46. HONO + H$_2$O(l). Bongartz et al.1 present uptake measurements by two independent techniques, the liquid jet technique of Schurath and co-workers and the droplet train/flow tube technique of Mirabel and co-workers (Ponche et al.2). With a surface temperature of ~245 K the droplet train techniques yielded 0.045 < γ < 0.09, while the liquid jet operating with a surface temperature of 297 K obtained 0.03 < γ < 0.15.

Mertes and Wahner1 used a liquid jet technique to measure 4×10^{-3} < γ < 4×10^{-2} at 278 K. Harrison and Collins2 performed aerosol flow reactor experiments on deliquescent sodium chloride and ammonium sulfate droplets at 279 K obtaining reactive uptake coefficients of 0.0028 ± 0.0015 and 0.0028 ± 0.0006, for 85% relative humidity conditions, respectively; these measurements are probably subject to significant
surface saturation. Since HONO uptake by liquid water probably involves hydrolysis, an increase in Henry’s law solubility with decreasing temperature may be offset by a decreasing hydrolysis rate constant, leaving the uptake coefficient’s temperature trend uncertain. Measured uptake coefficients will not correspond to the mass accommodation coefficient.

Back to Table

(1) Bongartz, A.; Kames, J.; Schurath, U.; George, C.; Mirabel, P.; Ponche, J. L. Experimental determination of HONO mass accommodation coefficients using two different techniques. J. Atmos. Chem. 1994, 18, 149-169.

47. HONO + H2SO4+nH2O(l). Zhang et al.4 measured uptake coefficients for HONO on sulfuric acid that increased from (1.6 ± 0.1) × 10^{-2} for 65.3 wt% H2SO4 (214 K) to (9.1 ± 1.6) × 10^{-2} for 73 wt% H2SO4 (226 K). Fenter and Rossi3 measured uptake coefficients rising from 1.8 × 10^{-4} for 55 wt% H2SO4 (220 K) to 3.1 × 10^{-4} for 95 wt% H2SO4 (220 K and 273 K). Baker et al.1 measured much smaller uptake coefficients for 60 wt% at 298 K. In general, the values measured by Zhang et al.4 are a factor of 2 to 5 higher than those of Fenter et al.3 for comparable acid concentrations. Since the reaction probably depends on both temperature and acid concentration and since the data scatter is high in both experiments, further independent data will be required to define γ as a function of acid concentration and temperature. These data are generally consistent with the effective Henry’s law constant measurements of Becker et al.5 who illustrate that HONO solubility decreases exponentially with H2SO4 concentration until ~53 wt%, at which point reaction to form nitrosyl sulfuric acid increases H+ dramatically as H2SO4 concentration increases. Baker et al.1 invoke surface decomposition of HONO to explain their room temperature data, since they separately determine that the bulk second-order disproportionation rate for HONO is too slow to account for even their small uptake coefficients. It is possible that surface formation of nitrosyl sulfuric acid and not HONO disproportionation is responsible for much of their measured uptake. The Zhang et al.4 and Fenter and Rossi3 data have been combined and fit with a four-term polynomial as a function of acid wt%

\[\ln \gamma = a + b \cdot wt + c \cdot wt^2 + d \cdot wt^3 \]

where wt is the H2SO4 wt%, and

\[a = -155.7 \pm 29.7 \]
\[b = 5.663 \pm 1.232 \]
\[c = -0.07061 \pm 0.01679 \]
\[d = 0.000297 \pm 0.000076 \]

This parameterization should be used only within the 55–95-wt% H2SO4 range and the 214 to 273 K temperature range.

Back to Table

48. HONO + HCl + H2O(s). Knudsen cell uptake studies for HONO/HCl co-deposited on ice (180–200 K) and for HONO on 0.1 to 10 M HCl frozen solutions (~190 K) by Fenter and Rossi3 showed HONO uptake
coefficients in the 0.02 to 0.12 range as long as surface HCl concentrations significantly exceed HONO concentrations. CINO was evolved quantitatively with HONO consumption. In a coated wall flow tube Diao and Chu observed orders of magnitude lower uptake coefficients, even though low partial pressures of HONO were used. Some of the HCl partial pressures will have been large enough to melt the ice surface (Abbatt et al.³).

Back to Table

49. **HONO + HCl on H₂SO₄•H₂O(l).** Fenter and Rossi¹ saw no reaction for acid wt% >65. They measured γ = 2.0 ± 0.7 × 10⁻³ for 60 wt% acid saturated with HONO at 230 K. Zhang et al.² also measured the uptake of HCl after exposure to HONO, they observed HCl uptake with γs between 0.01–0.02 over an acid wt.% range of 60.8–71.3 (T = 207.9–222.6 K). The reaction was also studied by Longfellow et al.³ using both HCl doped and HONO doped sulfuric acid aerosols. Their uptake measurements confirmed reaction at higher acid wt%, but by using lower HONO partial pressures they measured smaller γs. The reverse reaction, CINO hydrolysis, was also studied in a wetted wall flow reactor and in the aerosol flow reactor by Longfellow et al.² and in a Knudsen cell reactor by Fenter and Rossi.¹ Data show clear evidence of both surface and bulk kinetics for the forward reaction. Longfellow et al.² report k³ values for the bulk reaction (in units of 10³ M⁻¹ s⁻¹) for 50 wt%: 81 at 250 K and 15 at 205 K; for 60 wt%: 9.4 at 250 K, 6.9 at 230 K and 5.0 at 219 K; for 67 wt%: 3.9 at 250 K; and for 70 wt%: 5.8 at 269 K and 0.35 at 215 K. The reaction is clearly complex and will require a comprehensive model of both the surface and bulk processes to arrive at an appropriate parameterization for γ.

Back to Table

50. **HONO + HBr + H₂O(s).** HONO reacts with HBr on ice films (Seisel and Rossi² and Diao and Chu¹), but note that the HBr partial pressures used are generally higher than those prevalent in the atmosphere and so melting of the ice film may have occurred in these experiments. Diao and Chu observe BrNO as a product in a coated-wall flow tube.

Back to Table

51. **HONO + NaCl(s).** Diffuse reflectance experiments by Vogt and Finlayson-Pitt³ on room temperature NaCl(s) and Knudsen cell uptake experiments by Fenter and Rossi on room temperature NaCl(s) and frozen 0.1 M NaCl aqueous solutions, all failed to show HONO uptake.¹ The latter results yield γ <1 × 10⁻⁴. HONO + NaCl. Junkermann and Ibusuki² reported that HONO reacts with NaCl to form nitrate on the surface. However, subsequent studies³ showed that the infrared bands assigned to NO₂ were due to nitrate, likely from the reaction of gas phase NO₂ and perhaps HNO₃ present in the HONO. There is no evidence at the present time for a reaction between HONO and NaCl.

Back to Table

5-93
52. **HONO + Al₂O₃(s).** Romanias et al.² used a coated wall flow reactor with solid films of ~20 nm γ-alumina particles to measure HONO uptake coefficients over a RH range of 1.4 × 10⁻³ to 35.4% and a temperature range of 274–320 K, implementing mass spectrometric detection of HONO and its gaseous reaction products NO and NO₂.

The effect of near ultraviolet radiation (315–400 nm, J₉0₂ = 0.002–0.012 s⁻¹) on uptake was also investigated. Reactive uptake was confirmed by a lack of HONO desorption and direct NOx product detection. Measured uptake coefficients are independent of [HONO] and T, but strongly dependent on RH. A moderate UV dependence that increased with RH and was linear in J₉0₂ was observed; neither significantly affected measured product branching ratios of (0.40 ± 0.06) for NO and (0.60 ± 0.09) for NO₂. Uptake coefficients were determined as a function of RH without and with UV radiation (J₉0₂ ~0.012 s⁻¹). The results were parameterized (estimated uncertainty of ±30%):

\[
\gamma(\text{dark}) = 4.8 \times 10^{-6} (\text{RH})^{-0.61} (\text{RH} = 1.4 \times 10^{-4} \text{to} 10.5\%) \\
\gamma(\text{UV}) = 1.7 \times 10^{-5} (\text{RH})^{-0.44} (\text{RH} = 1.4 \times 10^{-4} \text{to} 35.4\%)
\]

The same authors published similar results for HONO reactive uptake on Fe₂O₃ and Arizona Test Dust.¹

Given results from only one laboratory and no information on α-alumina surfaces, no uptake coefficient values are recommended.

Back to Table

53. **HNO₃ + NaCl(s) and NaCl(aq).** Recommendation is based on an average of the values of Hoffman et al.,³ Ghosal and Hemminger,⁴ the data of Davies and Cox³ as revised by Ghosal and Hemminger⁴ using their model for surface reactivation, and the single crystal data of Leu et al.¹² Hoffman et al. used less than a single layer of particles so that diffusion into the underlying layers is not a factor to obtain an initial value of \(\gamma_0 = (2.3 \pm 1.9) \times 10^{-3} \) (2σ). This is consistent within the combined experimental errors with a value of \((1.3 \pm 0.6) \times 10^{-3} \) determined from the formation of nitrate on the surface of single crystal (100) NaCl by Ghosal and Hemminger,⁵ and with a value of \(1.1 \times 10^{-3} \) from application of the Ghosal and Hemminger model to the Davis and Cox data.³ Ghosal and Hemminger suggest that the value could be as high as \(5 \times 10^{-3} \) for NaCl powders that have more steps and edges that hold SAW.⁷ At longer reaction times, the steady-state value⁸ is a factor of two smaller, \(\gamma = 1 \times 10^{-3} \). The reaction is hypothesized to occur both on dry terraces, which saturate rapidly, and on steps and edges that hold surface-adsorbed water. The water acts to recrystallize the product NaNO₃ so that the surface does not passivate during the reaction at atmospherically relevant HNO₃ pressures. This model, developed and modified by several research groups,²³⁶⁸ brings together most of the seemingly disparate measurements of the reaction probability made using a variety of techniques including flow tubes,³ Knudsen cells,²⁻⁴⁻⁵⁻⁸ and XPS studies of nitrate formation on single crystals.⁶⁻⁷⁻¹⁷ The only gas phase product observed is HCl, with a yield that is within experimental error of 100%. The higher value of \((1.3 \pm 0.4) \times 10^{-2} \) of Leu et al.¹² was obtained by correcting even larger measured values using a pore diffusion model;⁹⁻¹⁰ the corrections were typically in the range of a factor of 4–6. On single crystal NaCl where such corrections were not necessary, Leu et al.¹² measured a value of \((2.4 \pm 0.6) \times 10^{-3} \). A value of \((4 \pm 1) \times 10^{-2} \) was measured using a molecular diffusion tube technique by Koch et al.¹¹ The corrected value of \((8.7 \pm 1.4) \times 10^{-3} \) reported by Zangmeister and Pemberton¹⁸⁻¹⁹ using Raman spectroscopy to follow the nitrate formed on the surface is lower than the other values likely because a much higher HNO₃ concentration was used (~10⁻⁸ cm⁻³), which would lead to a
larger coverage of the surface by the recrystallized NaNO₃ product and passivation of much of the NaCl surface.

Abbatt and Waschewsky⁴ measured the loss of gas-phase HNO₃ in a flow tube containing deliquesced 1–5 μm NaCl particles (75% RH) and obtained a lower limit to the uptake coefficient for HNO₃ of 0.2 on unbuffered NaCl. Stemmler et al.¹⁵ report a value of 0.5 ± 0.2 for the initial uptake coefficient on deliquesced particles at 60% RH. Tolocka et al.¹⁶ followed the reaction of HNO₃ with 100–220 nm NaCl particles at 80% RH using single particle MS to measure the Cl⁻/NO₃⁻ ratio; the uptake coefficient for 100 nm particles was (4.9 ± 2.7) × 10⁻³ and increased with droplet size. Saul et al.¹⁴ have extended the Tolocka et al. work, by studying the reaction over a wide range of relative humidities, both above and below the efflorescence point. Uptake coefficients on the mixed nitrate-chloride particles reach a maximum of 0.12 or so at 50% RH, decreasing at both higher and lower RHs. The presence of hygroscopic MgCl₂ increases the uptake coefficient at low RHs, where the particles may remain liquid. Liu et al.¹³ using static particles probed spectroscopically determine the maximum uptake coefficients to be 0.2 (uncertainty a factor of three), also close to 50% RH, decreasing at higher and lower RHs. The combination of these studies shows that the initial uptake of HNO₃ into solution is fast, with γ₀ > 0.2; as the solution becomes acidified, HCl is expelled as the gaseous product. The uptake coefficient may decrease when the reaction proceeds on processed particles, where a large amount of nitrate has built up. In such cases, the maximum reactivity is at close to 50% RH. Note that the Stemmler et al.¹⁵ study illustrated that monolayer coverages of long-chain surfactants can reduce the initial uptake coefficient by over an order of magnitude.

Back to Table

(12) Leu, M.-T.; Timonen, R. S.; Keyser, L. F.; Yung, Y. L. Heterogeneous reactions of HNO₃(g) + NaCl(s) HCl(g) + NaNO₃(s) and N₂O₅(g) + NaCl(s) ClNO₃(g) + NaNO₃(s). *J. Phys. Chem. 1995*, 99, 13203-13212, doi:10.1021/j100035a026.

54. **HNO₃ + NaBr and KBr.** Fenter et al.¹ reported that the value of γ for uptake of HNO₃ on NaCl, NaBr, KBr and KCl was the same, (2.8 ± 0.3) × 10⁻², independent of sample mass. Koch et al.² reported an uptake coefficient of HNO₃ on KBr of (2 ± 1) × 10⁻² using a molecular diffusion tube technique. As discussed in Note 7, integration of the results of an extensive series of studies in different laboratories using different techniques, uptake coefficients for HNO₃ on NaCl give a value for the HNO₃-NaCl reaction that is smaller than measured in the Fenter et al.¹ and Koch et al.² studies. These values for KBr may therefore be upper limits. Leu et al.³ reported a value that is an order of magnitude smaller, (2.8 ± 0.5) × 10⁻² after applying large corrections (about an order of magnitude) for pore diffusion; the average uncorrected value using the geometric area was 0.027.

Back to Table

55. **HNO₃ + sea salt.** The uptake coefficient for HNO₃ on synthetic sea salt¹ is much larger than that on NaCl, which is attributed to the very hygroscopic nature of sea salt due to such components as the magnesium chloride and its hydrates (see Note on O₃ + sea salt). De Haan and Finlayson-Pitts¹ reported initial uptake coefficients of γₒ in the range of 0.07 to 0.75 and steady state values in the range of 0.03 to 0.25; these were measured using salt layers from 2 layers to 10³ layers. The initial uptake coefficient on MgCl₂·6H₂O was ≥0.4 and the steady-state value >0.1. At these high uptake values, the correction for diffusion into underlying layers is expected to be small. The large uptake coefficient on sea salt is consistent with the values measured for uptake on concentrated aqueous solutions of NaCl and the high water content of the surface of sea salt (see O₃ + seasalt Note above). The yield of HCl was within experimental error of 100%. Guimbaud et al.² measured the uptake coefficient of HNO₃ on 70 nm supersaturated sea-salt particles (deliquesced particles held at 55% RH) to be 0.50 ± 0.20; they concluded that this was the mass accommodation coefficient.

Back to Table

56. **HNO₃ + Al₂O₃.** Böренсен et al.¹ used diffuse reflectance FTIR observations to show that HNO₃ reacts with surface hydroxyl groups on γ-alumina at 299 K to produce surface bonded nitrate, while Goodman et al. reported similar observations for α-alumina at 296 K.² Goodman et al.² also observed that higher relative humidity lead to higher HNO₃ uptake. They integrated their nitrate absorbance feature to yield a time averaged uptake coefficient of (4 ± 1) × 10⁻⁸.² Underwood et al.⁵ report a linear mass dependent, BET corrected γₒ for α-alumina at 295 K of (9.7 ± 0.5) × 10⁻⁵. Hanisch and Crowley also measured liner mass
dependent γ_{S} on α-alumina (at 298 K) for four particle sizes, which yielded an average value of 0.133 ± 0.033. They argue that the lack of variance of γ_{S} on a large range of particle sizes and masses indicate that the BET correction to the geometrical surface area is not required. They also measured γ_{O} for an unpolished single crystal of $(1.6 \pm 1.4) \times 10^{-5}$ and smaller values on polished single crystals, showing the higher density of surface defect sites on small amorphous particle are critical for their high reactive active uptake coefficients. The recommendation is based on the Hanisch and Crowley data and analyses for particulate samples.3 Seisel et al.4 used Knudsen cell uptake experiments at 298 K to measure an initial uptake (γ_{O}) value of 0.13 ± 0.02 for γ–alumina with HNO$_3$ vapor concentrations of $\sim 10^{11}$ cm$^{-3}$. Lower values of γ were observed for higher nitric acid partial pressures; water vapor was observed as a product. They also performed DRIFTS experiments that yielded a mean uptake coefficient for surface nitrate formation of $(7.7 \pm 0.8) \times 10^{-3}$ at 298 K.

Back to Table

57. HO$_2$NO$_2$ + HCl on H$_2$SO$_4$•nH$_2$O(l). Zhang et al.1 performed wetted-wall flow-reactor studies with HCl and HO$_2$NO$_2$ partial pressures in the 10^{-6} to 10^{-7} Torr range. Using chemical ionization mass spectrometry (CIMS) to detect expected reaction products, no Cl$_2$ (using SF$_6$ as an analyte ion) or HOCl (using F$^-$) was detected over a temperature range of 200–225 K and an acid concentration range of 50–70 wt% H$_2$SO$_4$. An upper limit for the reactive uptake coefficient for HO$_2$NO$_2$ reacting with HCl of $\gamma < 1 \times 10^{-4}$ was deduced.

Back to Table

58. NH$_3$ + H$_2$SO$_4$•nH$_2$O. Robbins and Cadle,6 Huntzicker et al.,4 McMurry et al.,5 and Daumer et al.1 all studied NH$_3$ uptake by sulfuric acid aerosols in near room temperature flow reactors (T $= 281–300$ K). Uptake coefficients varied between 0.1 and 0.5. Rubel and Gentry7 used levitated H$_2$PO$_4$ acid droplets to show that heterogeneous reaction does control the initial NH$_3$ uptake on strong acid solutions. Both Rubel and Gentry and Däumer et al. also explored the effect of organic surface coatings. Swartz et al.8 used a droplet train flow reactor to measure reactive uptake coefficients on 20 to 70 wt% acid over a temperature range from 248 to 288 K. Measured uptake coefficients varied from 1.0 at 55 wt% and above to 0.3 at 20 wt% and drop off smoothly to the pure water results reported by the same group, as well as other droplet train flow reactor and coaxial jet uptake studies.9 Hanson and Kosiuch2 used an aerosol flow reactor to measure reactive uptake coefficients at room temperature (287 to 297 K) from 15 to 65 wt%. While the data have a fair amount of scatter, taken as a whole they are consistent with $\gamma = 1$ over the whole range of acid concentrations. There is no obvious reason for the discrepancy between the 15 to ~ 45 wt% results from Swartz et al.8 and Hanson and Kosiuch,2 the two groups have discussed conceivable issues at length in print9 and Hanson and Kosiuch.3

Back to Table

59. CO$_2$ + Al$_2$O$_3$(s). Parkyns1 and Szanyi and Kwak2 each report FTIR studies of CO$_2$ chemisorbed on γ-alumina surfaces annealed at temperatures up to ~800 K. They report that CO$_2$ can react with the HO-Al surface sites of γ-alumina at room temperature to form adsorbed bicarbonate structures. They also show that the surface OH on γ-alumina can be eliminated by calcination of the alumina surfaces at temperatures near 800 K. Adsorbed CO$_2$ on the dehydroxylated γ-alumina forms weakly bound carbonate species. No kinetic uptake data are available for CO$_2$ uptake.

Back to Table

60. H$_2$CO + Al$_2$O$_3$(s). Carlos-Cueller et al.1 reported Knudsen cell studies that determined γ$_o$ values for oxygenated volatile organic compounds (VOCs) at 295 K. They measured a γ$_o$ on α-alumina for formaldehyde of (7.7 ± 0.3) × 10$^{-3}$, based on BET surface areas and the KML2 correction for porosity; relatively “sticky” formaldehyde may not access the full BET surface and thus γ$_o$ may be underestimated. Xu et al.3 used a DRIFTS Reactor with γ-Al$_2$O$_3$ surfaces over a temperature range of 84–573 K and a RH range of 0–80%. BET and geometric surface areas were used to calculate initial uptake coefficients. Formaldehyde uptake was independent of gas phase O$_2$ over the studied range (0.18–730 × 10$^{-3}$ cm$^{-3}$); uptake was negatively correlated with RH. Surface analyses included FTIR, X-ray Diffraction and SEM. The initial surface product is dioxyhemethylene that is oxidized to formate, with reaction order of 0.74 ± 0.05. Polyoxymethylene is a secondary adsorbed product. Reactive uptake saturates active surface sites so initial γ$_o$ values are reported for both geometric and BET surface areas. For T = 298 K, γ$_o$(Geo) = (3.6 ± 0.8) × 10$^{-4}$ and γ$_o$(BET) = (1.4 ± 0.31) × 10$^{-4}$ (T = 298 K, RH = 0); γ$_o$(BET, 298 K) decreases approximately a factor of 2 as RH increases from 0 to 80%; γ$_o$(BET, 0 RH) increases irregularly by approximately a factor of 3 as T increases from 273 to 373 K. The Xu et al. room temperature BET value for γ-Al$_2$O$_3$ is ~5000 lower than the Carlos-Cueller et al. value for α-alumina. It is unclear how much of this is due to systematic error in one or both experiments and how much is due to different surface properties for the two alumina phases. Given the available data an upper limit of γ$_o$ < 5 × 10$^{-4}$ over the temperature range of 270–300 K is estimated for both phases.

Back to Table

61. CH$_3$OH + H$_2$SO$_4$•nH$_2$O(l) and H$_2$SO$_4$•nHNO$_3$•nH$_2$O(l). Van Loon and Allen7 report spectroscopic observations at 293 K for 0 to 96.5 wt% H$_2$SO$_4$ exposed to methanol vapor. They observed rapid surface adsorption and saturation, followed by slower bulk absorption. For acid concentrations between 47.1 and 63.3 wt% they observed surface reaction between methanol and sulfuric acid that formed methyl hydrogen sulfate, CH$_3$SO$_3$H. Iraci et al.1 used infrared spectroscopy to monitor the production of gas phase methyl nitrate, CH$_3$ONO$_2$, from the bulk reaction of ternary sulfuric acid/nitric acid/water solutions with 0.0005–0.005 M CH$_3$OH in 50.5 to 63.6 wt% H$_2$SO$_4$ with 0.03–0.21 M HNO$_3$ between 278.2 and 328.6 K. Within this range methyl nitrate production increased linearly with methanol and nitric acid concentration and exponentially with sulfuric acid concentration. At high acid concentrations nitric acid reacts with protons to form water and the nitronium ion, NO$_2^+$; methyl nitrate production was observed to be proportional to the NO$_2^+$ concentration indicating it was the nitrating agent.

Back to Table

62. CH$_3$OH + Al$_2$O$_3$(s). Carlos-Cueller et al.1 reported Knudsen cell studies that determined γ_0 values for oxygenated volatile organic compounds (VOCs) at 295 K. They measured γ_0 on α-alumina for methanol of $(1.0 \pm 0.7) \times 10^{-4}$, based on BET surface areas and the KML2 correction for porosity. Since data is only available from a single laboratory using only a single method, an upper limit of $\gamma_0 < 3 \times 10^{-4}$ is recommended for α-Al$_2$O$_3$.

Back to Table

(2) Keyser, L. F.; Leu, M.-T. Surface areas and porosities of ices used to simulate stratospheric clouds. J. Colloid Interface Sci. 1993, 155, 137-145.

63. HC(O)OH + Al$_2$O$_3$(s). Tong and co-workers3 used a DRIFTS reactor to investigate the uptake of formic acid on beds of α-Al$_2$O$_3$ particles; surface areas were estimated with BET measurements as well by geometric sample area. Their initial study3 reported γ(BET) and γ(Geo) for formic, acetic and propionic acids on α-Al$_2$O$_3$ at 300 K over a RH range (0–90%). For RH(0) they reported:

<table>
<thead>
<tr>
<th>Acid</th>
<th>γ(BET)</th>
<th>γ(Geo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC(O)OH</td>
<td>$(2.37 \pm 0.30) \times 10^{-7}$</td>
<td>$(2.07 \pm 0.26) \times 10^{-3}$</td>
</tr>
<tr>
<td>CH$_2$CH$_2$C(O)OH</td>
<td>$(5.99 \pm 0.78) \times 10^{-7}$</td>
<td>$(5.00 \pm 0.69) \times 10^{-3}$</td>
</tr>
<tr>
<td>CH$_2$C(O)OH</td>
<td>$(3.03 \pm 0.52) \times 10^{-7}$</td>
<td>$(3.04 \pm 0.63) \times 10^{-3}$</td>
</tr>
</tbody>
</table>

It is likely that γ(BET) underestimates the true uptake coefficient since organic acids adsorb and react before penetrating some pores and that γ(Geo) overestimates uptake rates. The effect of relative humidity on the HC(O)OH uptake coefficients is modest, with a slight (~10%) rise between RH(0) and RH(20%) and then a gradual fall off (~33%) between RH(20%) and RH(95%). A second publication by Tong and co-workers2 focused on the effects of temperature on uptake rate. For RH(0) they measured a modest increase (less than a factor of two) as T decreases from 298 to 240 K:

<table>
<thead>
<tr>
<th>T (K)</th>
<th>γ(BET)</th>
<th>γ(Geo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>$(1.34 \pm 0.02) \times 10^{-6}$</td>
<td>$(2.35 \pm 0.03) \times 10^{-3}$</td>
</tr>
<tr>
<td>285</td>
<td>$(1.52 \pm 0.04) \times 10^{-6}$</td>
<td>$(2.65 \pm 0.07) \times 10^{-3}$</td>
</tr>
<tr>
<td>277</td>
<td>$(1.70 \pm 0.03) \times 10^{-6}$</td>
<td>$(2.98 \pm 0.03) \times 10^{-3}$</td>
</tr>
<tr>
<td>273</td>
<td>$(1.77 \pm 0.01) \times 10^{-6}$</td>
<td>$(3.09 \pm 0.03) \times 10^{-3}$</td>
</tr>
<tr>
<td>263</td>
<td>$(1.96 \pm 0.02) \times 10^{-6}$</td>
<td>$(3.43 \pm 0.04) \times 10^{-3}$</td>
</tr>
<tr>
<td>250</td>
<td>$(2.22 \pm 0.02) \times 10^{-6}$</td>
<td>$(3.89 \pm 0.03) \times 10^{-3}$</td>
</tr>
</tbody>
</table>
Note that their earlier \(\gamma_0 \) for room temperature and RH(0) of \((2.07 \pm 0.26) \times 10^{-3} \) is in good agreement with the value of \((2.35 \pm 0.03) \times 10^{-3} \) reported in Wu et al.; however, their later room temperature \(\gamma(BET) \) value is more that a factor of five larger than their earlier value, calling into question the reliability of BET surface area determinations. Infrared spectra indicated surface enhanced crystallization of HCOOH at lower temperatures as well reaction with surface hydroxyl groups to form formate. Based on these data only an upper limit of \(\gamma_0 < 0.01 \) is recommended for \(\alpha\text{-Al}_2\text{O}_3 \).

Rubasinghege et al.\(^2\) used a Quartz Crystal Microbalance (QCM) and Attenuated Total Reflectance FTIR (ATR-FTIR) to characterize total HC(O)OH uptake and surface reactions on \(\gamma\text{-Al}_2\text{O}_3 \), SiO\(_2\) and kaolinite surfaces at T \((298 \text{ K})\) and RH \((<1\%)\); no kinetic data was presented. They observed both reversible and irreversible adsorption of HC(O)OH on \(\gamma\text{-Al}_2\text{O}_3 \). Adsorbed water, controlled by RH, increases the irreversible uptake of HC(O)OH. The resulting layer of adsorbed formate decreases the surface hydrophilicity, decreasing the amount of water uptake. Raun et al.\(^1\) report a density functional simulation of HC(O)OH interacting with an \(\alpha\text{-Al}_2\text{O}_3 \) \((0001)\) surface, presenting adsorbate dissociation pathways and estimating the energy barrier for dehydration reactions.

Back to Table

64. \(\text{CH}_3\text{CH}_2\text{OH} + \text{H}_2\text{SO}_4 \cdot \text{nH}_2\text{O} \). Timonen and Leu\(^1\) used a trough flow reactor to measure uptake coefficients for ethanol on 41.1 to 79.3 wt% H\(_2\)SO\(_4\), for selected temperatures between 193 to 273 K, but primarily for temperatures from 203 to 258 K. Uptake coefficients for 70.3–79.3 wt% acid showed little temperature variation, starting at -0.07 for 203 K and falling to 0.05 to 0.06 above 250 K, while uptake coefficients for 41.1 to 64.1 wt% started at -0.07 at 203 K and decreased to about 0.02 at 233 K for 41.1 wt% 1, to -0.03 at 243 K for 54.4 wt% and -0.035 at 253 K for 64.1 wt%. Uptake was only partially reversible, so it was attributed to both physical and reactive processes, making the reported uptake coefficients as upper limits for \(\gamma \). The authors attributed the reactive portion of the uptake to esterification reactions, forming ethyl hydrogen sulfate and diethyl sulfate, and saw some mass spectral evidence for these products when they mixed ethanol with 80 wt% acid in their reactor at 296 K. Michelsen et al.\(^1\) found no evidence for ethyl hydrogen sulfate in Knudsen cell ethanol uptake experiments for 39–76 wt% H\(_2\)SO\(_4\) over a 209–237K temperature range, so the extent of reaction for low temperature acid solutions remains uncertain. Timonen and Leu suggest that at low ethanol vapor fluxes surface reactivity may be important.

Back to Table

65. \(\text{CH}_3\text{C(O)OH} + \text{Al}_2\text{O}_3 (s) \). Carlos-Cueller et al.\(^1\) reported Knudsen cell studies that determined \(\gamma_0 \) values for oxygenated volatile organic compounds (VOCs) at 295 K. They measured a \(\gamma_0 \) on \(\alpha \)-alumina for acetic acid of \((2 \pm 1) \times 10^{-3} \), based on BET surface areas and the KML\(^2\) correction for porosity; “sticky” acetic acid may not access the full BET surface and thus \(\gamma_0 \) may be underestimated. Tong et al.\(^3\) used a DRIFTS

5-100
reactor to investigate the uptake of acetic acid on beds of α-Al₂O₃ particles at 300 K; surface areas were estimated with BET measurements as well by geometric sample area. For RH(0) they reported \(\gamma(\text{BET}) = (5.99 \pm 0.78) \times 10^{-7} \) and \(\gamma(\text{Geo}) = (5.00 \pm 0.69) \times 10^{-3} \); this \(\gamma(\text{BET}) \) is over 3000 times smaller than that reported by Carlos-Cueller et al. Given the disparity between the two values only an upper limit of \(\gamma_0 < 0.02 \) for α-Al₂O₃ is recommended.

Back to Table

(2) Keyser, L. F.; Leu, M.-T. Surface areas and porosities of ices used to simulate stratospheric clouds. J. Colloid Interface Sci. 1993, 155, 137-145.

66. CH₃CHO + H₂SO₄•nH₂O. Knudsen cell uptake measurements are reported by Michelsen et al.³ for 38.5–76.2 wt% H₂SO₄ over a temperature range of 211–241 K, with evidence of reactive uptake for some temperatures in the 38.5–66.3 wt% H₂SO₄ range. Using a rotating wetted-wall flow reactor Esteve and Nozière² measured small, probably solubility constrained, uptake coefficients at 298 ± 3 K for 96 wt% and 89.4 wt% of 9.4 × 10⁻⁶ and 4.2 × 10⁻⁷, respectively. Michelsen et al. found uptake over the 211–241 K temperature range was controlled by Henry’s law solubility, and had a complex dependence on acid concentration due to competition among the reversible bulk phase processes of physical dissolution, hydration to form the gem diol, protonation and enolization, all of which affect H⁺. They also saw evidence for aldol condensation at some temperatures and aldol condensation of acetaldehyde. Given its relatively small rate constant, they suggest that aldol condensation bulk reactions will play a negligible role for typical aldehyde concentrations in the atmosphere.

Back to Table

67. CH₃CHO, CH₃CH₂CHO and CH₃C(O)CH₃ + Al₂O₃(s). Li et al.¹ reported Knudsen cell studies that determined \(\gamma_0 \) values for oxygenated volatile organic compounds (VOCs) at 298 K. They reported very similar BET corrected \(\gamma_0 \) values on α-alumina for acetaldehyde (3.2 × 10⁻⁵), propionaldehyde (4.7 × 10⁻⁵), and acetone (2.0 × 10⁻⁵). For molecules this large BET surface area may not be assessable and derived \(\gamma_0 \)s may be underestimated. Since data are from a single laboratory using only one technique, only conservative lower limits are recommended.

Back to Table

68. CH₃C(O)CH₃ + H₂SO₄•nH₂O. Duncan et al.¹² used IR spectra of thin sulfuric acid films to establish that acetone is absorbed as the protonated species. Above 70 wt% protonated acetone undergoes a self condensation/dehydration reaction to form protonated mesityl oxide, which can, in turn, react with an additional protonated acetone to form trimethyl benzene. Kane et al.⁵ Henry’s law uptake measurements
diverged above 80 wt%, which they attribute to reactive uptake as suggested by Duncan et al. Using a rotating wetted-wall flow reactor Esteve and Nozière\(^3\) measured small, probably solubility constrained, uptake coefficients at 298 ± 3 K for 89.4, 85, 80.8 and 73.9 wt% H\(_2\)SO\(_4\) of 5.2 × 10\(^{-5}\), 5.6 × 10\(^{-6}\), 4.7 × 10\(^{-6}\) and 1.6 × 10\(^{-6}\), respectively.

Back to Table

69. **CH\(_2\)C(O)O\(_2\) + H\(_2\)O(l) and H\(_2\)SO\(_4\)-nH\(_2\)O.** Villalta et al.\(^1\) used wetted-wall flow tube techniques to measure \(\gamma = 4.3\) (+ 2.4 /–1.5) × 10\(^{-3}\) for water at 274 ± 3K. They also measured uptake for 34 wt% H\(_2\)SO\(_4\) at 246 K (\(\gamma = (2.7 \pm 1.5) \times 10^{-3}\)), 51 wt% at 273 K (\(\gamma = (0.9 \pm 0.5) \times 10^{-3}\)), and 71 wt% at 298 K (\(\gamma = (1.4 \pm 0.7) \times 10^{-3}\)). They suggest that products subsequent to hydrolysis are HO\(_2\) and CH\(_3\)C(O)OH.

Back to Table

70. **H\(_2\)C=C(CH\(_3\))CHO and H\(_2\)C=C(HC(O)CH\(_3\)) + Al\(_2\)O\(_3\)(s).** Zhao et al.\(^1\) report a coated wall flow reactor study with Transmission FTIR measurements of adsorption and reaction of both methacrolein (MAC) and methyl vinyl ketone (MVK) on α-Al\(_2\)O\(_3\) at T~300 K and relative humidity values of RH <1%, 20% and 60%. They reported RH = 0 \(\gamma_o\) values based on BET surface areas of: \(\gamma_o\)(MAC) = (2.0 ± 0.5) × 10\(^{-8}\) and \(\gamma_o\)(MVK) = (3.8 ± 0.8) × 10\(^{-8}\). They measured significantly lower \(\gamma_o\) for RH = 20 and 60% indicating that water vapor blocks reactive surface sites. Major products (>0.03) were CH\(_3\)CH\(_2\)CHO, HCHO and HCOOH for MAC and isomerization of MVK to CH\(_3\)CH=CHCHO (crotonaldehyde) that then reacted to produce CHOCHO, CH\(_3\)CHO and CH\(_3\)C(O)OH. For molecules this large some BET surface area may not be accessible and derived \(\gamma_o\)s may be underestimated. Given the strong impact of relative humidity and uncertainty in effective surface area no recommendations for \(\gamma_o\)s are made.

Back to Table

71. **CH\(_3\)C(O)O\(_2\)NO\(_2\) + HCl, Cl, ClO, and OC\(_1\)O on H\(_2\)SO\(_4\)-nH\(_2\)O(l).** Zhang and Leu\(^1\) performed wetted wall flow reactor studies with Cl species partial pressures in the 10\(^{-6}\) to 10\(^{-7}\) Torr range and CH\(_3\)C(O)O\(_2\)NO\(_2\) at 3 × 10\(^{-6}\) Torr after equilibrating the acid surfaces (42, 51, and 69 wt% at 202 and 224 K) with CH\(_3\)C(O)O\(_2\)NO\(_2\). Also uptake studies with 5 × 10\(^{-7}\) Torr CH\(_3\)C(O)O\(_2\)NO\(_2\) were performed after exposing the acid surface to the Cl species. No Cl species or CH\(_3\)C(O)O\(_2\)NO\(_2\) uptake enhancements were observed under either condition and an upper limit for the reactive uptake coefficient of \(\gamma < 1 \times 10^{-4}\) of CH\(_3\)C(O)O\(_2\)NO\(_2\) was deduced. No gas phase reaction products were observed using CIMS after 42 wt% H\(_2\)SO\(_4\) at 210 K was exposed to CH\(_3\)C(O)O\(_2\)NO\(_2\) and each Cl species for 20 minutes.

Back to Table

72. **Cl + H\(_2\)SO\(_4\)-nH\(_2\)O(l).** Measured reaction probability (Martin et al.\(^1\)) varies between 3 × 10\(^{-5}\) and 7 × 10\(^{-4}\) as H\(_2\)O and T co-vary. Reaction product is claimed to be HCl.

Back to Table
73. Cl + NaCl(s). Ciuraru et al.\(^1\) have measured the uptake coefficients for Cl atoms onto pure NaCl and artificial sea-salt in a coated-wall flow tube. The surface area of the substrates is not easily estimated. Uptake coefficients are on the order of 10^{-2} for dry NaCl, with evidence for Cl\(_2\) as a reaction product probably arising from surface recombination.

74. Cl\(_2\)+HBr + H\(_2\)O(s). Hanson and Ravishankara\(^1\) measured a reaction probability of >0.2 on water ice near 200 K. BrCl was not detected, presumably due to rapid reaction with excess HBr.

75. Cl\(_2\)+ NaCl. Mochida et al.\(^2\) used salt powders and spray-deposited films of NaCl and reported an initial uptake coefficient of 1.0×10^{-3}. Aguzzi and Rossi\(^1\) reported no measurable uptake of Cl\(_2\) on NaCl.

76. Cl\(_2\)+ NaBr and NaI. Mochida et al.\(^5\) used salt powders and spray-deposited films to obtain a value for the initial uptake coefficient of 2×10^{-2}. The measured uptake coefficients for the salt powders were a factor of six larger, but application of the pore diffusion model of Keyser et al.\(^3,4\) gave this value, which is in agreement with that for a spray-deposited film. Br\(_2\) was generated in a yield of 100%, within experimental error.

77. **Cl₂ + KBr.** Mochida et al.² used salt powders and spray-deposited films to obtain a value for the initial uptake coefficients. The value measured for salt powders was 0.176, but after correction for pore diffusion, this became 3.7 × 10⁻², similar to a value of 2.3 × 10⁻² measured for spray-deposited films. Br₂ was generated in a yield of 100%, within experimental error. Aguzzi and Rossi¹ measured a similar value, 2.7 × 10⁻², using a Knudsen cell. Santschi and Rossi³ reported an initial value of γ₀ = 0.11 for the uptake of Cl₂ on thin spray-deposited films of KBr that had not been extensively pumped on; this initial value was 4 × 10⁻² for films that had been pumped on for hours. They attributed the difference to the removal of surface-adsorbed water (SAW) by extensive pumping.

Back to Table

78. **Cl₂ + sea salt.** Mochida et al.¹ used a synthetic sea salt and a "natural" seasoning sea salt in Knudsen cell studies of the uptake of Cl₂. The synthetic sea salt value of (2.2 ± 0.3) × 10⁻² is the value reported after correction of the measured value of 0.138 using the pore diffusion model. For the “natural” seasoning salt, the measured value was 0.11 which after correction for diffusion into the underlying layers became (3.1 ± 1.1) × 10⁻². Br₂ was the major gas phase product, with small mass spectrometric signals also seen for BrCl.

Back to Table

79. **ClO + H₂O(s) and HNO₃•nH₂O(s).** Proposed reaction (Leu³) is 2 ClO → Cl₂ + O₂; reactive uptake may depend on ClO surface coverage, which in turn may depend on gas phase ClO concentrations. Kenner et al.² measured reaction probabilities of (8 ± 2) × 10⁻⁵ for ice at 183 K which is far lower than the limit of >1 × 10⁻³ obtained by Leu.³ Abbatt,¹ using nearly the same low levels of ClO as Kenner et al., obtained γ <1 × 10⁻⁵ at 213 K. The difference may lie in the level of ClO or other adsorbable reactive species present. The lower value of Abbatt is probably closer to the expected reactivity under stratospheric conditions. Using high concentrations of ClO radicals (>1016 molecules/cm²) exposed to ice surfaces at 225 K, McKeachie et al.⁴ infer an uptake coefficient of 0.001, which increases with ClO exposure. Formation of higher chloride oxides, notably OCIO, is observed mass spectrometrically and by UV-VIS spectroscopy, upon warming the ice. It is likely that the high ClO concentrations drive self-reactions on the ice surface. Kenner et al. also measured a reaction probability limit of < (8 ± 4) × 10⁻⁵ for NAT at 183 K.

Back to Table

80. **ClO + H₂SO₄•nH₂O.** Measured reaction probability (Martin et al.²) varies between 2 × 10⁻⁵ and 2 × 10⁻⁴ as H₂O content is varied by changing wall temperature. Reaction product is claimed to be HCl, not Cl₂. Abbatt¹ measured γ <1 × 10⁻⁵ for 60 and 70 wt% H₂SO₄ at 213 K.

Back to Table
81. HCl + HNO₃ on H₂SO₄•ₐₚHNO₃•ₐₚH₂O(l). Two studies have noted HCl activation in concentrated ternary H₂SO₄/HNO₃/H₂O solutions or ice slurries. Luick et al.² saw only gas phase HCl in 64.6 wt% H₂SO₄/4.8 wt% HNO₃ at 200 K, but saw a vapor phase Cl partitioning of 50% HCl and 50% CINO/CINO₂ for a 76.6/20.1 wt% solution (an ice slurry) at 200 K. Cappa et al.¹ saw substantial yields of CINO, CINO₂, and Cl₂ at 273 K for a range of solution compositions; e.g. 32.6%, 9.8%, and 44.4% respectively for a total HCl conversion of 86.9% in a 35% H₂SO₄/45% HNO₃ solution and 20.2%, 6.9%, 27.9% for a 60/25 wt% solution. While no kinetic coefficients or detailed mechanisms are available, these studies do show the potential for HCl activation in strong H₂SO₄/HNO₃/H₂O solutions.

82. HOCl + HCl + H₂O(s) and HNO₃•ₐₚH₂O(s). Hanson and Ravishankara⁵ and Abbatt and Molina¹ have investigated the HOCl + HCl reaction on water ice and NAT-like surfaces, and Chu et al.¹⁴ studied the reaction on water ice. Product yield measurements support the identification of Cl₂ and H₂O as the sole products. The measured yield of product Cl₂ is 0.87 ± 0.20 and was stated to be similar on both surfaces according to Abbatt and Molina. Within the accuracy of the experiments, the reaction probability does not depend on the gas phase HCl and HOCl densities. Only Abbatt and Molina investigated at more than one temperature, their data indicates that γ increases at lower temperatures. A plot of data from the three studies does show a weak temperature trend, with γ increasing about a factor of two as the temperature drops from 202 to 188 K. However, the data are too sparse to assign a definitive temperature dependence. The average of all three studies yields γ = 0.26 ± 0.08 for data based on the geometrical area of the flow tube surfaces. Chu et al.³ indicate that a porosity correction for their data would reduce their value by a factor of 3 to 4. The real uncertainty would appear to be dominated by systematic uncertainties in porosity corrections and a potential temperature dependence. Given the fact that any porosity correction must reduce the value, a central value of 0.2 is adopted with an uncertainty factor of 2. The high reaction probabilities measured for water ice indicate that this reaction may play a significant role in release of reactive chlorine from the HCl reservoir.

Two studies (Hanson and Ravishankara⁵ and Abbatt and Molina¹) have measured the reaction probability of HOCl + HCl on NAT surfaces. These data show γ increases as the ambient water pressure increases and then reaches a plateau. At relatively high water pressure, the two studies averaged γ = 0.135 ± 0.049, with no porosity correction. The reaction probability on water-poor NAT-like surfaces falls off dramatically (a factor of 10). A recommendation of 0.1 with an uncertainty factor of 2 is shown in Table 5-2. Carslaw and Peter² have published a model of this reaction and its dependence on HCl uptake.

References:
83. **HOCl + HCl + H₂SO₄nH₂O(l).** This process has been studied in coated flow tubes over ~200–260 K by Zhang et al., Hanson and Ravishankara, Donaldson et al., and Hanson and Lovejoy. Hanson and Lovejoy also made measurements in an aerosol flow tube from 251 to 276 K. A model of this and related sulfuric acid aerosol reactions tailored to stratospheric conditions has been published by Hanson et al. Zhang et al. held the water vapor partial pressure at 3.8 × 10⁻⁴ Torr and showed γ increased by a factor of 50 as the temperature was lowered from 209 to 198 K increasing the water mole fraction, showing that the reaction rate is strongly dependent on water activity.

A detailed kinetic uptake model has been developed to fit the experimental data. The formulation for γ is given as:

\[
\frac{1}{\gamma} = \frac{1}{\alpha} + \frac{1}{\Gamma_{\text{HOCl}}^{\text{expr}}}
\]

where

\[
\Gamma_{\text{HOCl}}^{\text{expr}} = \frac{4H_{\text{HOCl}} RT}{\bar{c}} (D_{\text{HOCl}} k_{\text{HOCl,HCl}})^{1/2}
\]

At the low temperatures of interest, α for HOCl was assumed to be unity consistent with the value for HCl measured at 240 K and below (Robinson et al.). The individual formulations for H_{\text{HOCl}}, D_{\text{HOCl}} and k_{\text{HOCl,HCl}} are given in Table A-4 in Shi et al. Reaction of HOCl with HCl is considered to be acid catalyzed. It is known that the reaction rate for HOCl + HCl in pure water is low (Donaldson et al.). Experimental data noted above indicated that the reaction rate of HOCl + HCl increases with acidity of H₂SO₄ solution. The data from the experimental studies noted above were fit to the model without bias. Using the same error analysis discussed in the note for N₂O₅ uptake on sulfuric acid, a detailed kinetic model yields a 33.4% error (one sigma fit to the available data set, with σ_m = 33.3% and σ_d = 3.0%).

In the cold stratosphere where T<190 K, the reaction of ClONO₂ + HCl is so fast that HCl is depleted which slows down the reaction of HOCl + HCl. As shown in Table A-4 in Shi et al., the effect of HCl depletion on the HOCl reactive uptake coefficient (due to reaction with ClONO₂ inside/on the surface of particles) is taken into account via the factor F_{HCl} (also see the note on chlorine nitrate/hydrochloric acid reactive uptake on sulfuric acid surfaces).

Back to Table

84. **HOCl + HBr on H₂O(s).** Chu and Chu measured γ at 189 K to be in the range from 0.06 to 0.38 for HBr partial pressures ranging from 1.1 × 10⁻⁷ to 6.6 × 10⁻⁵ Torr. At 220 K they measured γ in the range from 0.01 to 0.07 for HBr partial pressures in the range from 7.2 × 10⁻⁷ to 1.3 × 10⁻⁵ Torr. These γ values were estimated assuming the area of the ice surface to be equal to the geometric area of the cylindrical flow reactor; corrections for surface porosity effects range from a factor of 3 to 10 lower.

Back to Table

5-106
85. **HOCI + HBr on H₂SO₄•nH₂O(l).** Abbatt and Nowak⁴ measured uptake of HOCI in the presence of excess HBr on a 69.3 wt% sulfuric acid solution in a wetted wall flow reactor at 228 K. A second order bulk reaction rate constant, k^0, of $2 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$ was derived; this is a factor of ~10 faster than HOBr + HCl under the same conditions. Since HOCI and HBr have variable solubilities under stratospheric conditions, characterizing this reaction with a simple uptake coefficient is not appropriate. A full reaction/solubility/liquid phase diffusion model will require further data.

Back to Table

86. **HOCI + NaBr and KBr.** Rossi² reported studies of the uptake of HOCI in a Knudsen cell using KBr powders and spray-deposited thin films. Values for the initial uptake coefficients covered a wide range, from 5×10^{-3} to 0.2, due to changes in the surface from adsorbed reaction products. The major product initially was Br₂, and subsequently BrCl and HOBr, with much smaller amounts of BrOCl and Br₂O. The mechanism was interpreted as the formation of small amounts of HBr on the surface from hydrolysis of KBr, followed by the reaction of HOCI with adsorbed HBr to form BrCl which then reacts with KBr to form Br₂. On frozen solutions of NaBr, Huff and Abbatt observe reactivity of HOCI with uptake coefficients between 0.02 and 0.04 at 233 K in a coated-wall flow tube. Br₂ is the gas-phase product, thought to arise from the intermediate BrCl reacting with the bromide film. Although the kinetics are faster on the most acidic films (pH 2), there is no dependence of the acidity of the solution from pH 4 to 10.

Back to Table

87. **CINO + H₂O(l).** Scheer et al.¹ used droplet train and wetted wall flow reactor measurements to determine reactive uptake coefficients for CINO over a temperature range of 273–293 K. Measured values show a weak negative temperature dependence ranging from 0.12 at 273 K to 0.0058 at 293 K. The reaction was shown to be base catalyzed producing HONO.

Back to Table

88. **CINO + NaCl(s).** Using a Knudsen cell technique Beichart and Finlayson-Pitts⁴ set upper limits of γ $\leq 10^{-5}$ for reactive uptake of CINO on NaCl(s) powders at 298 K.

Back to Table

89. **CINO₂ + H₂O(l).** Behnke, George and co-workers have used droplet train and wetted wall flow reactor techniques to investigate the reactive uptake of CINO₂ on aqueous solutions.³–⁴ Droplet train flow reactor experiments from 268–279 K demonstrated that the reactive uptake coefficient on pure water is $< 1 \times 10^{-5}$.³ Wetted wall flow reactor studies from 279 to 292 K on pure water and very low concentration sodium halide solutions all yielded reactive uptake coefficients in the 10^{-6} range, with typical values of $(4.84 \pm 0.13) \times 10^{-6}$ at 291 K,³ and 3.41×10^{-6} at 276.6 K, 4.27×10^{-6} at 282.2 K, and 4.48×10^{-6} at 287.4 K.² There is apparently no significant temperature dependence.

Back to Table
(1) Behnke, W.; George, C.; Scheer, V.; Zetsch, C. Production and decay of ClNO$_2$ from the reaction of gaseous N_2O_5 with NaCl solution: Bulk and aerosol experiments. *J. Geophys. Res.* 1997, 102, 3795-3804.

(4) Schweitzer, F.; Mirabel, P.; George, C. Multiphase chemistry of N$_2$O$_5$, ClNO$_2$ and BrNO$_2$. *J. Phys. Chem.* 1998, 102, 3942-3952.

90. **ClNO$_2$ + KBr, NaBr, NaI and NaCl.** Caloz et al. measured the uptake of ClNO$_2$ on solid KBr at room temperature using a Knudsen cell and salt samples in the form of powders, spray-deposited films, polished windows and depolished windows. The uptake coefficient increased with the number of layers of salt powders; correction of the uptake coefficients using the pore diffusion model gave initial uptake coefficients of $(1.0-1.3) \times 10^{-4}$, in agreement with values measured for the spray-deposited film (1.0×10^{-4}) and depolished window (1.0×10^{-4}). The value for the polished window was an order of magnitude smaller, as expected since this has much less surface-adsorbed water (SAW) that assists in keeping the surface from becoming passivated. The yield of Br$_2$ relative to ClNO$_2$ lost was 0.55 ± 0.2. Using a diffusion tube method, Koch and Rossi measured an uptake coefficient of 2.0×10^{-4}, in reasonable agreement with the Knudsen cell results.

The uptake of ClNO$_2$ on aqueous solutions of NaBr has been shown to increase with the concentration of NaBr. Frenzel et al. measured the uptake of ClNO$_2$ on $(0.5-5) \times 10^{-3}$ M NaBr solutions from 275–291 K using a wetted wall flow tube apparatus; the values of γ increased from 1.2×10^{-5} to 4.0×10^{-5} over this range of NaBr concentrations. Schweitzer et al. used a droplet train apparatus from 275–288 K; γ increased from 8.6×10^{-6} to 9.4×10^{-4} as the NaBr concentration increased from 10^{-4} to 1.0 M. The main product was Br$_2$, with traces of BrNO$_2$ and BrCl. In a subsequent study, they applied a wetted wall flow tube method from 275–293 K and reported uptake coefficients that were independent of temperature over this range, but again increased with the concentration of NaBr: γ increased from 7.1×10^{-6} at 10^{-4} M NaBr to 9.2×10^{-4} at 1.0 M. Fickert et al. measured a wetted wall flow tube at 274 K and measured an uptake coefficient of 1.1×10^{-5} for 10^{-4} M NaBr, increasing to 1.1×10^{-4} for 10^{-2} M NaBr. The major gas phase products were Br$_2$ and BrNO$_2$, with the yield of BrNO$_2$ decreasing as the initial bromide ion concentration in solution increased. The mass accommodation coefficient for ClNO$_2$ on aqueous solutions at 275 K was measured to be $(9 \pm 4) \times 10^{-3}$. A Knudsen cell study by Beichert and Finlayson-Pitts found $\gamma \sim 10^{-5}$ on NaCl powders at 298 K.

The uptake of ClNO$_2$ on solutions of NaI was studied by George et al. and by Schweitzer et al. The uptake coefficient increases with the concentration of NaI. For example, George et al. reported that γ_0 increased from 1.1×10^{-3} to 6.6×10^{-3} as the iodide concentration increased from 10^{-3} M to 10^{-2} M at 280 K. This is consistent with the results of Schweitzer et al. who reported that γ_0 increased from 3.1×10^{-5} to 4.5×10^{-5} as the iodide concentration increased from 10^{-4} M to 10^{-2} M at 275 K.

The uptake of ClNO$_2$ on solutions of NaCl is much slower than on NaBr or NaI solutions. Behnke et al. reported uptake of ClNO$_2$ at 291 K using a wetted wall flow tube, with uptake coefficients decreasing as the NaCl concentration increased. At 0.1 M NaCl, $\gamma_0 = (3.1 \pm 0.3) \times 10^{-6}$ but at 4.6 M NaCl, the value was about an order of magnitude smaller, $\gamma_0 = (0.27 \pm 0.02) \times 10^{-6}$. They proposed that this was due to the common ion effect owing to the reversible hydrolysis of ClNO$_2$ to Cl$^-$ + NO$_2^-$.

Roberts et al. report that ClNO$_2$ produces Cl$_2$ when exposed to solutions of chloride with concentrations as low as 0.05 M, when the pH is less than 2.

Back to Table

(1) Behnke, W.; George, C.; Scheer, V.; Zetsch, C. Production and decay of ClNO$_2$ from the reaction of gaseous N$_2$O$_5$ with NaCl solution: Bulk and aerosol experiments. *J. Geophys. Res.* 1997, 102, 3795-3804.

91. ClINO2 + H2O(s). Measurement of $\gamma = 0.3 \pm (0.7, -0.1)$ (Hanson and Ravishankara) significantly exceeds early measurements of Molina et al.11, Tolbert et al.14, Leu9 and Moore et al.12 but agrees reasonably well with subsequent measurements by Chu et al.2, Zhang et al.15 and Fernandez et al.3 when geometrical surface areas are assumed for analysis. Previous measurements were probably complicated by NAT formation on the surface (Hanson and Ravishankara) and Chu et al.2). Lower levels of ClINO2(g) used by Hanson and Ravishankara minimized this surface saturation problem. Also, using lower ClINO2 concentrations, Zhang et al. obtained a reaction probability of 0.08 ± 0.02 at 195 K, Fernandez et al. measured 0.1, and values were 0.03 to 0.13 from Chu et al. Subsequent Knudsen cell measurements at 180 and 200 K by Opppliger et al.13 showed initial uptake γ in the 0.2 to 0.4 range. Measured reaction products were HNO3 and HOCl. All of the HNO3 and much of the HOCl is retained on the surface under polar stratospheric conditions (Hanson and Ravishankara). Hanson deposited ClINO2 on H218O enriched ice and detected H18OCl showing the Cl–ONO2 bond is broken at 191 K.

Data plots confirm a trend that at a high density of ClINO2, the product HNO3 covers the ice surface preventing the further reaction of ClINO2 with H2O molecules on the surface. Therefore, data obtained at high ClINO2 densities (>1014 molecules/cm2) are excluded from further evaluation. An experiment (Berland et al.) using a laser-induced thermal desorption technique yielded a much lower value of ClINO2 reaction probability at 190 K (about 3 orders of magnitude lower) after extrapolating the results obtained at temperatures of 140 K and below. We also exclude this point in the averaging of data since the physical characteristics of ice surfaces at these very low temperatures may not be very representative of those found at stratospheric temperatures. Selected data show no temperature dependence between T = 180 and 200 K and averaged $\gamma = 0.28 \pm 0.25$. Again, within the experimental accuracy, the Hanson and Ravishankara and Chu et al.3 data show that uptake measurements are nearly independent of ice substrate thickness. See Henson et al.4 for discussion of a model which accounts for the effect of HNO3 on the reaction ClINO2 on water and nitric acid ice surfaces. The reactivity of ClINO2 on ice, as modeled with high level ab initio methods and simulations with four water molecules is consistent with the above laboratory results, i.e., the uptake coefficient is modeled to be close to 0.1 at 180 K with a strong negative temperature dependence (Loerting et al.10).

Zondlo et al.16 report the formation of a supercooled H2O/HNO3 liquid layer at 185 K as a reaction product, forming NAT or NAD only after decreasing the relative humidity below the ice frost point. This effect is similar to that resulting from the interaction of gaseous HNO3 or N2O3 with the ice surface. These authors measured $\gamma = (3 \pm 2) \times 10^{-3}$ at 185 K for the reaction of ClINO2 with this supercooled liquid layer.

Back to Table

92. **ClONO$_2$ + H$_2$O(l)**. Deiber et al.\(^1\) used a droplet train reactor to measure the uptake of ClONO$_2$ on pure water between 274 and 285 K. No apparent temperature dependence was observed with all three temperatures measured resulting in reactive uptake measurements near 0.025.

Back to Table

93. **ClONO$_2$ + HNO$_3$•nH$_2$O(s)**. Hanson and Ravishankara\(^3\) report a γ value of 0.006 at 201 K for the ClONO$_2$ reaction with the water on NAT (HNO$_3$•nH$_2$O). However, these authors present re-analyzed and additional data with $\gamma \approx 0.001$ at 191 K in Hanson and Ravishankara.\(^4,5\) Similar experiments (Moore et al.\(^8\) and Leu et al.\(^7\)) report a larger value of 0.02 ± 0.01 which falls very rapidly as slight excesses of H$_2$O above the 3/1 H$_2$O/HNO$_3$ ratio for NAT are removed. In general, it is difficult to know that only NAT is formed when freezing from solution; it is likely that the high value reflects the reactivity on water ice that will form when the solution stoichiometry is water rich. They measured γ of less than 1×10^{-6} for slightly water-poor NAT surfaces. Abbott and Molina\(^1\) report γ values reaching 0.002 at 202 K and high RH. Hanson and Ravishankara\(^4\) reported that γ for this reaction increases by a factor of 4 as the surface temperature increases from 191 to 211 K. However, Knudsen cell measurements at 185 K by Barone et al.\(^2\) reported $\gamma = 0.004$ at a relative humidity (RH) of 100%., rising to 0.007 near RH = 120%, indicating a possible mild negative temperature dependence when high RH values from this and other studies are compared. Excluding the JPL data\(^19,10\) the other data obtained at high RH (~90%) were averaged, assuming no temperature dependence, to yield $\gamma = 0.0043 \pm 0.0021$. The strong dependence on RH and the possible temperature dependence suggest that systematic error probably exceeds the calculated statistical error. Within the experimental accuracy, the data of Hanson and Ravishankara\(^4,5\) show that measured uptake coefficients are independent of ice substrate thickness. Barone et al. report very similar uptake coefficients.
for nitric acid dihydrate (NAD) as for NAT as a function of RH at 202 K. See Henson et al.\(^6\) for discussion of a model which accounts for the effect of HNO\(_3\) on the reaction of ClONO\(_2\) on water and nitric acid ice surfaces.

Back to Table

94. **ClONO\(_2\) + H\(_2\)SO\(_4\)•nH\(_2\)O(l)**. Results from wetted-wall flow tube (Hanson and Ravishankara\(^5\)) Knudsen cell reactor (Manion et al.\(^6\)), aerosol flow tube (Hanson and Lovejoy\(^5\)), and droplet train uptake (Robinson et al.\(^7\)) experiments supplement older wetted-wall flow tube (Hanson and Ravishankara\(^6\)) and Knudsen cell measurements (Rossi et al.\(^8\) and Tolbert et al.\(^9\)). Although earlier Knudsen cell measurements probably suffered from surface saturation, more recent results compare well with those from other techniques. Saturation free results, available over a temperature range of 200–265 K and a H\(_2\)SO\(_4\) concentration range of 39 to 75 wt\%, were fit to a phenomenological model developed by Robinson et al.\(^7\). Measured γ values depend strongly on H\(_2\)SO\(_4\) concentration and vary modestly with temperature, with a trend to somewhat higher values for the 210–220 K temperature range. The temperature-dependent uptake model takes into account the temperature and composition dependence of the effective Henry’s Law constant, liquid phase diffusion coefficient, and the liquid phase hydrolysis rate constant. The hydrolysis reaction was treated by modeling two reaction channels, a direct hydrolysis process dominating reaction at low H\(_2\)SO\(_4\) concentrations with a reaction rate proportional to water activity and a proton-catalyzed reaction with a rate proportional to H\(^+\) activity, which dominates at higher acid concentrations.

The data fit to the original Robinson et al. model have been supplemented by additional wetted-wall flow tube and aerosol flow tube data from Hanson\(^2\) and aerosol flow tube data from Ball et al.\(^1\). A revised kinetic model (Shi et al.\(^9\)) incorporating these data has been developed that is based on the earlier work of Robinson et al.\(^7\). In this model, γ is calculated using the expression

$$
\frac{1}{\gamma} = \frac{1}{\alpha} + \frac{1}{\Gamma^{H_2O}_b}
$$

where,

$$
\Gamma^{H_2O}_b = \frac{4H_{ClONO_2}RT}{c} \left(\frac{D_{ClONO_2} \cdot k_{hydr}}{c} \right)^{1/2}
$$

The detailed parameterizations for H_{ClONO_2}, D_{ClONO_2}, and k_{hydr} are given in the Appendix in Shi et al.\(^9\). As was the case for N\(_2\)O\(_5\) hydrolysis k_{hydr} is seen to have a direct and an acid catalyzed channel. Using the same error analysis approach as in the note on N\(_2\)O\(_5\) uptake, the model error is about 32.4\% (1\(\sigma\)), with σ_m = 32.2\% and σ_d = 4.0\%.
In the calculation of the chlorine activation (Cl₂ production) rate under stratospheric conditions, one needs to take into account the competition between the reactions of ClONO₂ + H₂O and ClONO₂ + HCl. The presence of HCl will depress the reaction probability of ClONO₂ with H₂O.

Back to Table

(4) Hanson, D. R.; Ravishankara, A. R. The reaction probabilities of ClONO₂ and N₂O₅ on 40 to 75% sulfuric acid solutions. J. Geophys. Res. 1991, 96, 17307-17314.

95. ClONO₂ + H₃SO₄·H₂O(s) and H₃SO₄·4H₂O(s). Measurements by Hanson and Ravishankara¹ and Zhang et al.² demonstrate that the reaction probability on the tetrahydrate is a strong function of both temperature and relative humidity, both of which affect the level of adsorbed H₂O. Both groups covered the temperature range of 192–205 K. The reaction is slowest at higher temperatures and lower relative humidities. Zhang et al.³ have parameterized their data in the form of log γ = a₁ + a₂ log x + a₃ log² x; for 195 K and x = water partial pressure in Torr: a₁ = 10.12, a₂ = 5.75 and a₃ = 0.62; for a water partial pressure of 3.4 × 10⁻⁴ Torr and x = T(K) between 182 and 206: a₁ = 318.67, a₂ = −3.13 and a₃ = 0.0076. Zhang et al.³ have also measured a low value of γ ~2 × 10⁻⁴ on sulfuric acid monohydrate at 195 K.

Back to Table

(1) Hanson, D. R.; Ravishankara, A. R. Reaction of ClONO₂ with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N₂O₅ and ClONO₂ on frozen sulfuric acid. J. Geophys. Res. 1993, 98, 22931-22936.

96. ClONO₂ + HCl + H₂O(s). Reaction probabilities of 0.27 (+0.73, −0.13) (Leu ⁶) and 0.05 to 0.1 (Molina et al.⁸) were reported at 195 and 185 K, respectively. Abbatt and Molina¹ and Hanson and Ravishankara⁴ report that a portion of the reaction may be due to HOCI + HCl → Cl₂ + H₂O, with HOCI formed from ClONO₂ + H₂O(s) → HOCI + HNO₃(s). Hanson and Ravishankara⁵ saw no enhancement of the ClONO₂ reaction probability when H₂O(s) is doped with HCl. Their preferred value at 192 K is γ = 0.3, but this is consistent with γ = 1. Chu et al.⁵ also report a value of 0.27 (+0.19) at 188 K, assuming no correction for porosity, but suggest the true value is 0.10 (±0.08). Using a Knudsen cell technique and looking at initial uptake, Oppliger et al.⁶ measured γ = 0.7 at 180 K and 0.2 at 200 K with HCl in excess, and both Fernandez et al.⁸ and McNeil et al.⁷ report a value of >0.1 at close to 200 K. McNeil et al. report that this value is
substantially smaller at 218 K. Eliminating the Molina et al. points, which were taken at much higher ClONO₂ concentrations than the others, plots of the remaining data show no obvious bias when plotted as a function of reactant concentration or temperature (180–200 K). Their average value $\gamma = 0.26 \pm 0.06$. The Oppliger et al. data were presented for two HCl concentrations, differing by a factor of three. All points from both HCl concentrations were included since all the data were generally consistent with previous measurements, although the higher HCl concentrations did tend to produce modestly higher uptake coefficients. Until a fuller model is available, a single temperature independent value with a moderate uncertainty due to surface porosity seems appropriate.

(4) Hanson, D. R.; Ravishankara, A. R. The reaction probabilities of ClONO₂ and N₂O₅ on 40 to 75% sulfuric acid solutions. J. Geophys. Res. 1991, 96, 17307-17314.

97. ClONO₂ + HCl + HNO₃\rightleftharpoons3H₂O. Measurements by Hanson and Ravishankara,⁶ Leu and co-workers in Moore et al.,⁶ and Leu et al.,⁷ and Abbatt and Molina¹ all report high γ values (>0.1) on NAT for temperatures between 192 and 202 K on water-rich NAT. Hanson and Ravishankara indicate that reaction probabilities on NAD are similar to those on NAT. The most recent NAT studies (Abbatt and Molina¹) show a strong fall-off with relative humidity from $\gamma > 0.2$ at 90% RH to 0.002 at 20% RH, indicating the necessity of sufficient water to solvate reactants. Within the limited measurements, data plots show no indication that the reaction probability of ClONO₂ + HCl depends on HCl and ClONO₂ gas phase concentrations or temperature between 191 and 202 K for water-rich NAT, but for nitric acid-rich NAT, there is a strong dependence on the partial pressure of HCl indicating that HCl is a limiting reagent on the surface under those conditions (Abbatt and Molina¹). Averaged data yield $\gamma = 0.23 \pm 0.10$ for the water-rich case. Carslaw and Peter² have published a model of this reaction and its dependence on HCl uptake.
98. ClONO$_2$ + HCl + H$_2$SO$_4$$_nH_2$O(L). Early work by Tolbert et al.9 and Hanson and Ravishankara6 indicated that the presence of HCl had little effect on the reaction of ClONO$_2$ with concentrated sulfuric acid (>65 wt% H$_2$SO$_4$). Subsequent realization that HCl would be more soluble, and therefore a more potent reactant, in the colder, more dilute sulfuric acid aerosols characteristic of the polar stratosphere led to additional investigations by Hanson and Ravishankara,5 Zhang et al.,1 Elrod et al.,1 and Hanson.2 All these measurements show a strong dependence of reactivity on HCl solubility, which in turn depends on water activity. The solubility of HCl in a wide range of sulfuric acid solutions has been experimentally determined by a range of techniques that agree well with current thermodynamic models. See Robinson et al.8 for a review. Hanson and Lovejoy7 measured a reacto-diffusive length, l, of only 0.009 ± 0.005 μm for 60 wt% H$_2$SO$_4$ in an aerosol flow reactor. (See Hanson et al.6 for a definition of l) This is a factor of four lower than the value for the hydrolysis reaction of ClONO$_2$ showing the significant enhancement of ClONO$_2$ uptake due to HCl.

The ClONO$_2$ + HCl reaction on/in sulfuric acid has been modeled in Shi et al.9 using the same phenomenological model for ClONO$_2$ hydrolysis driven uptake by sulfuric acid. Since the effect of HCl on the ClONO$_2$ uptake is to increase the ClONO$_2$ pseudo-first-order reaction rate, the model of ClONO$_2$ uptake (see note on ClONO$_2$ uptake on sulfuric acid) should include the pseudo first order reaction rate, k_{HCl}. The formulation of k_{HCl} is found in the appendix in Shi et al.9. It is likely that the ClONO$_2$ reaction with HCl, like the ClONO$_2$ hydrolysis reaction, is acid catalyzed via protonated HCIO$_2^+$, where Cl$^-$ is activated as in the case of HOCl + HCl. For the ClONO$_2$ + HCl reaction, there is also a surface reaction (Hanson8). Hanson proposed that Γ_s, the effective uptake rate due to surface reactions, is linearly proportional to water activity; however, the calculated value of γ_o, at 250 K and 60 wt% H$_2$SO$_4$ using his formulation is 0.02 (here γ_o-Γ_s), which is contradictory to his aerosol flow reactor result, which yielded γ_o = 0.0079 (here γ_o-Γ_s) (Hanson and Lovejoy7). In the model presented in the Shi et al. appendix, it is assumed that that Γ_s is linearly proportional to Henry’s law constant of ClONO$_2$, rather than the water activity. The temperature dependence of Γ_s is determined, based on two measured values of Γ_s at 203 K (Hanson8) and 250 K (Hanson and Lovejoy7). The model yields a value of γ_o=0.011 (here γ_o-Γ_s), which is close to the measured value.

In the stratosphere, when the reaction rate of ClONO$_2$ with HCl exceeds the flux of HCl to the particle surface, HCl is depleted. This, in turn, will depress the rate of both the ClONO$_2$ and HCl + HCl reactions, and increase the ClONO$_2$ hydrolysis rate. Shi et al.9 have proposed a model in which this effect is taken into account by including a factor F_{HCl} (see Table A–3 in Shi et al.). The formulation of F_{HCl} is based on scaling HCl reaction and accommodation fluxes. This flux correction is not exact (i.e., it does not rigorously calculate the HCl surface or bulk concentration) but provides a good approximation to the expected reduction in HCl + ClONO$_2$/HCl reactivity and, just as importantly, the effective increase in ClONO$_2$ + H$_2$O reactivity when $p_{ClONO_2} > p_{HCl}$. This is particularly relevant during cold Cl activation events when HCl can be removed almost completely (i.e., see Jaegle et al.7).

Using the same error analysis approach as in the note on N$_2$O$_5$ uptake by sulfuric acid, the error of using the model in the Appendix is about 40.0% (one sigma), with σ_m = 39.8% and σ_d = 4.0%.

Back to Table

(1) Elrod, M. J.; Koch, R. E.; Kim, J. E.; Molina, M. S. HCl vapour pressures and reaction probabilities of ClONO$_2$ + HCl on liquid H$_2$SO$_4$-HNO$_3$-HCl-H$_2$O solutions. Faraday Discuss. 1995, 100, 269-278.
(4) Hanson, D. R.; Ravishankara, A. R. The reaction probabilities of ClONO$_2$ and N$_2$O$_5$ on 40 to 75% sulfuric acid solutions. J. Geophys. Res. 1991, 96, 17307-17314.
(5) Hanson, D. R.; Ravishankara, A. R. Reactive uptake of ClONO$_2$ onto sulfuric acid due to reaction with HCl and H$_2$O. J. Phys. Chem. 1994, 98, 5728-5735.

99. **ClONO$_2$+HCl + H$_2$SO$_4$•H$_2$O(s) and H$_2$SO$_4$•4H$_2$O(s).** This reaction has been studied by Hanson and Ravishankara1 and Zhang et al.2 The reaction probability is strongly dependent on the thermodynamic state of the SAT surface, which is controlled by the temperature and the water vapor partial pressure. At a water vapor pressure of 5.6 × 10$^{-4}$ Torr the measured γ drops by over two orders of magnitude as the SAT surface temperature rises from 195 to 206 K. The results from the two groups are in qualitative agreement, but sample different H$_2$O and HCl partial pressures. Zhang et al. have parameterized their data as a function of water partial pressure (at 195 K) and temperature (both at an HCl partial pressure of 4 to 8 × 10$^{-7}$ Torr) in the form log γ = a$_1$ + a$_2$ log x + a$_3$ (log x)2. For H$_2$O partial pressure, a$_1$ = 5.25, a$_2$ = 1.91, and a$_3$ = 0.0; for T(K), a$_1$ = 175.74, a$_2$ = −1.59, and a$_3$ = 0.0035. Care must be taken in extrapolating either data set to lower HCl concentrations. Zhang et al.3 measured no enhancement of ClONO$_2$ uptake on sulfuric acid monohydrate at 195 K with (2−8) × 10$^{-7}$ Torr of HCl present, implying γ <1 × 10$^{-4}$.

Back to Table

(1) Hanson, D. R.; Ravishankara, A. R. Reaction of ClONO$_2$ with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N$_2$O$_5$ and ClONO$_2$ on frozen sulfuric acid. *J. Geophys. Res.* **1993**, *98*, 22931-22936.

100. **ClONO$_2$ + HCl + Al$_2$O$_3$(s).** Molina et al.4 used flow tube techniques to measure γ = 0.020 ± 0.005 on α–alumina at 195–230 K with stratospheric (5 ppmV) water vapor levels. Measured γ was independent of T and was affected very little by 5 ppbv HNO$_3$ vapor. The same γ was measured for a Pyrex surface, indicating the absorbed water and not the inorganic substrate hosted the reaction.

Back to Table

101. **ClONO$_2$ + NaCl.** Timonen et al.10 studied the uptake of ClONO$_2$ on NaCl powders at 296 K and 225 K using a flow tube. Complete deactivation of the surface was observed at 225 K but not at 296 K. The uptake coefficients, after correction (typically by an order of magnitude) using the pore diffusion model of Keyser et al.7 were γ$_0$ = (4.6 ± 3.1) × 10$^{-3}$ (1σ) at 296 K and γ$_0$ = (6.7 ± 3.2) × 10$^{-3}$ (1σ) at 225 K. Similarly low values for the uptake coefficient are reported by Zelenov et al.4 using a flow tube approach. On the other hand, Caloz et al.2 used a Knudsen cell and found that the initial uptake coefficient was 0.23 ± 0.06, independent of the type of salt used (powders, single crystals, deposited salt films) and without applying a correction for pore diffusion since no mass dependence for γ was observed; in similar studies. Aguzzi and Rossi4 measured a value of γ$_0$ = 0.10 ± 0.05 for the uptake of ClONO$_2$ on NaCl and 0.27 ± 0.10 for uptake on the unreactive NaNO$_3$ and Na$_2$SO$_4$ salts. The Cl$_2$ yield was 100% for NaCl, in agreement with the earlier studies.2 but 27 ± 7% on the unreactive salts. Koch and Rossi9 used a diffusion tube technique to measure a value of 0.1 for the uptake coefficient. Gebel and Finlayson-Pitts5
used a Knudsen cell and measured an initial value of $\gamma_0 = 0.14 \pm 0.11$ (2σ) and a steady-state value of $\gamma = (3.9 \pm 1.8) \times 10^{-2}$, but concluded that approximately two layers of salt were sampled in these multi-layer experiments. The use of a single or sub-single layer of NaCl gave a steady state value corrected using the model of Hoffman et al. of $\gamma = (2.4 \pm 1.2) \times 10^{-2}$. The source of the very disparate results from the different groups and techniques is not clear. All studies agree that the yield of Cl2 is 100%, consistent with ClONO2 + NaCl → Cl2 + NaNO3 as observed earlier, with small amounts of HCl from hydrolysis of ClONO2 on the surface being observed in the presence of water.

Deiber et al. studied the uptake of ClONO2 on water, NaCl and NaBr solutions using a droplet train flow reactor. The uptake coefficient was the same on water and 0.1 M NaCl, and Cl2 was observed as the gas phase product.

Back to Table

102. **ClONO2 + KBr and NaBr.** Caloz et al. and Aguzzi and Rossi report a rapid uptake of ClONO2 on KBr solid salts at room temperature, $\gamma_0 = 0.35 \pm 0.06$ and $\gamma_0 = 0.18 \pm 0.07$ respectively; corrections for pore diffusion were not applied but are not expected to be large at these high uptake coefficients (see Introduction). This is consistent with a value of 0.1 measured by Koch and Rossi using a diffusion tube technique. The reaction products are BrCl, Br2 and Cl2. BrCl is the initial reaction product formed from ClONO2 + KBr → BrCl + KNO3. Br2 is generated in a secondary reaction of BrCl with KBr: BrCl + KBr → Br2 + KCl. Cl2 is then formed as the surface KBr is converted to KCl, which then reacts with ClONO2. Deiber et al. studied the uptake of ClONO2 on water, NaCl and NaBr solutions using a droplet train flow reactor. On NaBr, the uptake increased from 0.041 at 0.01 M NaBr to 0.073 at 1 M NaBr. From the dependence on the NaBr concentration, a value for the mass accommodation coefficient for ClONO2 of 0.108 ± 0.033 (2σ) was obtained. The gas phase products were BrCl and Br2, the latter formed by secondary reactions of BrCl with Br-.

Back to Table

103. **ClONO$_2$ + sea salt.** Gebel and Finlayson-Pitts1 reported a rapid reaction between ClONO$_2$ and synthetic sea salt, with initial values based on the geometric sample area of $y_0 = 0.42$ and steady-state values of $\gamma = 0.16$ (2σ). These were measured with multiple salt layers (3–236) but corrections for diffusion into underlying layers for such high uptake coefficients are relatively small, less than a factor of three. The yield of Cl$_2$ was $78 \pm 13\%$; small amounts of HCl and HOCl were also observed as products. The recommended lower limit is based on these studies and the rapid uptake of other reactive species such as HNO$_2$ and N$_2$O$_5$.

Back to Table

104. **ClONO$_2$ + HBr + H$_2$O(s) and HNO$_3$****nH$_2$O(s).** This reaction was studied by Hanson and Ravishankara2 on water ice and NAT near 200 K. A diffusion-limited reaction probability of >0.3 was observed. Allanic et al.4 measured $\gamma = 0.56 \pm 0.11$ at 200 K on water ice, observing Cl$_2$ and Br$_2$ to be formed in yields of 100% and 66 to 80%, respectively, in the range 180 to 200 K.

Back to Table

105. **ClONO$_2$ + HF + H$_2$O(s) and HNO$_3$****nH$_2$O(s).** Hanson and Ravishankara4 were not able to observe this reaction on water ice and NAT surfaces near 200 K.

Back to Table

106. **CF$_3$Cl$_{4-x}$ (x=0–3) and CF$_2$Br$_2$ + Al$_2$O$_3$(s).** Robinson et al.3 reported steady-state dissociative uptake of CF$_3$Cl and CF$_2$Br$_2$ on α-alumina surfaces at 210 and 315 K. Reaction probabilities of about 1×10^{-3} at 210 K were measured by monitoring the amounts of surface species bonded to the Al$_2$O$_3$ substrate. A re-analysis (Robinson et al.4) lowered this value by about a factor of 50. Moderate surface dosage with water vapor did not quench the reaction. In addition, Dai et al.5 and Robinson et al.2 studied dissociative chemisorption of CF$_3$Cl, CF$_2$Cl$_2$, CFCl$_3$, and CCl$_4$ on dehydrated γ-alumina powders. The obtained reactive uptake probabilities ranging from 0.4×10^{-5} for CFC$_3$ to 1.0×10^{-5} for CFCl$_3$ over a temperature range of 120 to 300 K. HCl and halomethyl radicals were observed as desorption products. Loss of these products may point to somewhat higher γs, since they were measured by integrating halogen bound to Al$_2$O$_3$ substrates.

Back to Table CF$_3$Cl$_{4-x}$, Back to Table CF$_2$Br$_2$

107. BrCl + NaCl, NaBr, KBr and NaI. The uptake of BrCl on solid NaCl and KBr using a Knudsen cell has been reported by Aguzzi and Rossi,1 yielding 298 K values of 6 × 10⁻² for NaCl and 0.14 on KBr. An earlier preliminary study from the same group reported a value at γ > 0.1 on KBr.² Insufficient data are available to make a recommendation. Katrib et al.⁴ measured the uptake of BrCl on aqueous solutions of NaI over the temperature range from 273 to 288 K; the uptake coefficient increased from 0.37 × 10⁻⁴ to 0.5 M NaI. The complex dependence on the I⁻ concentration indicated that a surface reaction was occurring at the air/solution interface.

Huff and Abbatt³ studied the loss of BrCl on frozen bromide salt solutions at 233 K, finding that the uptake coefficients vary between 0.02 and 0.04 depending on the bromide concentration, independent of solution acidity.

Back to Table

108. Br₂ + NaCl, KBr and NaI. Only one report of the uptake of Br₂ on solid NaCl and KBr using a Knudsen cell is available¹ as part of a study of BrONO₂ uptake on salts. The uptake coefficient for Br₂ was 4 × 10⁻¹ on NaCl and 3 × 10⁻³ on KBr. Insufficient data are available to make a recommendation.

Hu et al.² measured the uptake of Br₂ on aqueous solutions of NaI using a droplet train flow reactor over the temperature range of 263 to 293 K. The measured uptake coefficients decreased from 0.33 at 263 K to 0.08 at 293 K, with evidence for a significant contribution from a reaction at the interface between Br₂ and I⁻.

Back to Table

109. BrO + H₂O(s), H₂SO₄·nH₂O(l) and NaCl(aq). Abbott¹ used a coated flow tube technique to measure heterogeneous uptake on water ice, 60 and 70 wt% H₂SO₄ at 213 K, and 23 wt% aqueous NaCl at 253 K. He obtained γ(ice) = (1.0 ± 0.4) × 10⁻³, γ (60 wt% H₂SO₄) = (7 ± 2) × 10⁻⁴, γ (70% wt. H₂SO₄) = (5 ± 2) × 10⁻⁴ and γ (23% wt. NaCl) < 3 × 10⁻³. He observed product Br₃, indicating BrO self-reaction on both water ice and sulfuric acid solutions. Since reaction rate will depend on BrO concentrations, no recommendation is made for an atmospheric rate.

Back to Table

110. HOBr + H₂SO₄·nH₂O. Hanson¹ reported that uptake of HOBr on 80 wt.% H₂SO₄, producing Br₂. Br₂ and BrO₂ production was also observed by Iraci et al.² during Knudsen cell studied of HOBr uptake on 70 wt% uptake for temperatures below 228 K. These products probably arise from HOBr self-reaction, although impurities in the acid solution might also play a role. Iraci et al. discuss methods to correct HOBr uptake.

Back to Table

data for the effects of self-reaction and secondary reactions with its products. The bulk phase self-reaction of HOBr noted above is not likely to be significant over the expected range of atmospheric concentrations.

Back to Table

111. HOBr + HCl + H$_2$O(s). Abbatt1 measured $\gamma = 0.25$ (+0.10/-0.05) for this reaction on ice at 228 K. Chaix et al.3 measured $\gamma = 0.3$ on ice from 180 to 195 K, dropping to ~0.15 at 205 K. The BrCl product was observed by mass spectrometry. Allanic et al.2 report a faster rate for this reaction than for HOBr uptake on pure ice (which had an uptake coefficient of 0.15 at 200 K). Mossinger et al.4 report a lower limit for γ of 0.1, under conditions with HCl concentration in excess of the HOBr concentration. No data on NAT surfaces is available.

Back to Table

(2) Allanic, A.; Oppriger, R.; Rossi, M. J. Real-time kinetics of the uptake of HOBr and BrONO$_2$ on ice and in the presence of HCl in the temperature range 190-200 K. J. Geophys. Res. 1997, 102, 23529-23541.

112. HOBr + HCl + H$_2$SO$_4$•nH$_2$O. For the sulfuric acid reaction, Abbatt1 measured γ_S of ~0.1 to 0.2 for [HCl] >1 × 1012 cm$^{-3}$ over 68.8 wt% H$_2$SO$_4$ at 228 K; yielding an estimated $k^0_{\text{HCl+HOBr}} = 1.4 \times 10^9$ M$^{-1}$ s$^{-1}$ with a factor of 2 uncertainty. Hanson and Ravishankara3 also measured $\gamma \leq 0.2$ (+0.2, -0.1) for 60 wt% H$_2$SO$_4$ at 210 K. However, both of these measurements were based on significant underestimation of the solubility of HOBr in the relevant sulfuric acid solutions. More recent measurements by Waschewsky and Abbatt5 indicate that the Henry’s law constant for HOBr varies slightly with acidity between 60 to 70 wt% H$_2$SO$_4$ and more strongly with temperature between 208 and 238 K. (For 59.7 wt% H$_2$SO$_4$, H (M atm$^{-1}$) = 1.2 × 109 at 208 K and and 2.2 × 108 at 228 K.) The HOBr + HCl second order liquid phase rate constant, $k^0_{\text{HCl+HOBr}}$, varies between 2 × 108 and 3 × 109 (M$^{-1}$ s$^{-1}$) between 213 and 238 K over the same composition range (60–70 wt% H$_2$SO$_4$). Such a strong dependence on acid composition for the reaction rate of HOBr + HCl and the very small acid composition dependence for HOBr solubility in H$_2$SO$_4$ solution might be partially due to the formation of H$_2$OBr$^+$ in the acidic solution as discussed in their paper. However, this acid catalyzed reaction, i.e. H$_2$OBr$^+$ + HCl, alone does not completely account for measured reaction rates over the acid composition range studied.

Using the Henry’s Law data for HOBr reported by Waschewsky and Abbatt,5 the limiting reagent will vary depending on atmospheric temperature (H$_2$SO$_4$ wt%) and the concentrations of HOBr and HCl. For stratospheric conditions where [HOBr] is 10 ppbv and [HCl] 1 ppbv, they predict dissolved HOBr will be in excess above 204 K and HCl in excess below 204 K for a H$_2$O vapor partial pressure of 3 × 10$^{-7}$ atm. From their coated wall flow reactor uptake measurements, Waschewsky and Abbatt5 derived expressions for $k^0_{\text{HCl+HOBr}}$ and predicted uptake coefficients. For temperature between 204 and 218 K where HOBr is likely to be in excess, they calculated HCl uptake coefficients, γ_{HCl}, which range between 7 × 10$^{-5}$ and 9 × 10$^{-5}$. For temperatures in the 202–198 K range, where dissolved HCl is likely to be excess, the calculated uptake coefficients for HOBr, $\gamma_{\text{HCl+HBO}}$, of ~1 × 10$^{-2}$. Hanson has reported Henry’s law solubility data for 58–70 wt.% sulfuric acid and reactive uptake coefficients for HCl on HOBr doped sulfuric acid surfaces using a wetted wall flow reactor.2 Hanson’s reported that H_{HOBr} was independent of acid concentration at 250 K, however, the heat of solvation for HOBr derived is significantly lower (-12.5 ± 3.7 versus -9 ± 1 kcal/mol reported at lower temperatures by Waschewsky and Abbatt) that the values of H^* based on Hanson’s data, taken from 250 to 270 K, are much higher than the prior study’s when extrapolated to their lower
temperatures. Hanson’s reported γ_{HCl} are strongly dependent on HOBr partial pressure and drop almost three orders of magnitude as the sulfuric acid concentration is raised from 58 to 95 wt%, possibly because HCl may be reacting with sulfuric acid at higher acid concentrations. The higher temperature $k^3_{HCl+HOBr}$ values computed by Hanson for his data disagree, when extrapolated to lower temperatures with the values reported by Waschewsky and Abbatt as well as a prior lower temperature value reported by Hanson and Ravishankara.\(^2\) Better agreement can be obtained if the solvation enthalpy reported by Hanson is used to adjust the H_{HOBr} values used in the earlier, lower temperature studies. Clearly, the HOBr $+$ HCl reaction will be difficult to parameterize in a simple manner. Potential inconsistencies in their $k^3_{HCl+HOBr}$ values, as discussed by Waschewsky and Abbatt\(^2\) and Hanson\(^2\) indicate that further measurements are required before this reaction can be definitively modeled. Iraci et al.\(^4\) subsequently measured HOBr uptake over both of the temperature ranges covered in the prior experiments. Their derived H^* values agreed well with data from Waschewsky and Abbatt\(^2\) at lower temperatures but fell far below Hanson’s higher temperature measurements. Thus, it appears that HOBr $+$ HCl kinetic parameters developed from analyses based on the Hanson\(^2\) data may need to be reanalyzed.

Back to Table

113. HOBr $+$ HBr $+$ $H_2O(s)$ and $H_2SO_4+H_2O$. Abbatt\(^1\) measured $\gamma = 0.12 \pm (0.03)$ on ice at 228 K. Chaix et al.\(^3\) measured γ_0 values ranging from 0.44 at 180 K to 0.15 at 205 K. The Br$_2$ product was observed by mass spectrometry. The HBr concentrations were such that the ice surface had probably melted. Abbatt\(^2\) measured $\gamma = 0.25$ for [HBr] = 1×10^{12} cm$^{-3}$ over 68.8 wt% H$_2$SO$_4$ at 228 K; yielding an estimated $k_{R} > 5 \times 10^4$ M$^{-1}$ s$^{-1}$.

Back to Table

114. HOBr $+$ NaCl. Studies have been done on solid salts and aqueous surfaces. On solids, Mochida et al.\(^4\) studied the uptake of HOBr on NaCl using multi-layer powders (10–500 µm) in a Knudsen cell at room temperature. After correction (by about an order of magnitude) for diffusion into the underlying layers, they obtained values for the initial uptake coefficient in the range of 0.97–6.5×10^{-3}, with the corrected values decreasing with increasing concentrations of HOBr. They attributed this to competition between the reaction of HOBr with NaCl and a self-reaction of HOBr on the surface: 2 HOBr \rightarrow Br$_2$ $+$ H$_2$O $+$ $\frac{1}{2}$ O$_2$. Their final value of $\leq 6.5 \times 10^{-3}$ is based on their extrapolation back to very low HOBr concentrations. Both Br$_2$ and BrCl were observed as products. Chu et al.\(^3\) measured the uptake of HOBr on NaCl at 250 K over a range of RH from 1.5 to 22.5%. After correcting the measured loss of HOBr by a factor of ~ 30 for diffusion into the underlying salt layers using the pore diffusion model, they obtained a value $\gamma_0 = 5 \times 10^{-5}$. The smaller value compared to the Knudsen cell results of Mochida et al.\(^4\) may be due to the much lower temperature they used; BrCl was the only gas phase product observed. Huff and Abbatt\(^1\) report reactivity with frozen NaCl solutions in a coated-wall flow tube at 233 K. Uptake coefficients were dependent on the

5-120
chloride concentration of the solution and on the acidity, with faster kinetics on the more acidic surfaces. BrCl was the only product observed.

Abbatt and Waschewsky\(^1\) measured the uptake of HOBr on deliquesced 1–5 \(\mu\)m NaCl particles (75% RH); for particles at pH values of 0.3 and 7.2, a lower limit to the uptake coefficient of \(\gamma_0 >0.2\) was measured. On unbuffered particles, the upper limit for the uptake coefficient was \(\gamma_0 <1.5 \times 10^{-3}\) due to the limited availability of \(H^+\) for the reaction between HOBr and Cl\(^-\) to form BrCl. Somewhat smaller values have been measured by Pratte and Rossi\(^5\) in another aerosol flow tube experiment, using acidified NaCl particles. Acidification was necessary for the reaction to be observable. In general, the uptake coefficients varied from 1 to \(10 \times 10^{-3}\) from 70 to 90% relative humidity. The particles were acidified with quite large amounts of \(H_2SO_4\), and the authors show that the reactivity on pure \(H_2SO_4\) is less than that on the acidified salts. This could be a reason for the disagreement between the lower limit of Abbatt and Waschewsky and the Pratte and Rossi results.

115. HOBr + NaBr and KBr. Mochida et al.\(^6\) studied the uptake of HOBr on solid KBr using multi-layer powders and spray-deposited films in a Knudsen cell. After correction (by factors of \(\sim 4–5\)) for diffusion into the underlying layers for the powders, they obtained values for the initial uptake coefficient in the range of \((1.3–8.4) \times 10^{-2}\), with the corrected values again decreasing with increasing concentrations of HOBr due to the self-reaction of HOBr on the surface: \(2\text{HOBr} \rightarrow \text{Br}_2 + \text{H}_2\text{O} + \frac{1}{2}\text{O}_2\). On spray-deposited films where correction for diffusion into the underlying layers is not necessary, a value of \(0.18 \pm 0.04\) was measured. The recommended upper limit is based on their extrapolation back to very low HOBr concentrations for the powders, and the spray-deposited film results. \(\text{Br}_2\) was the only product observed. Chu et al.\(^2\) measured the uptake of HOBr on NaBr at 250 K in a flow tube at RH from 0.5 to 12%. After correction by approximately an order of magnitude for diffusion of HOBr into the underlying salt layers using a pore diffusion model, a value for \(\gamma_0\) of \(2.5 \times 10^{-3}\) was obtained; the smaller value may be due to the much lower temperature at which these studies were carried out. Again, \(\text{Br}_2\) was the only product observed.

The uptake of HOBr on aqueous solutions of NaBr has been measured by Wachsmuth et al.\(^7\) and by Fickert et al.\(^3\). Wachsmuth et al.\(^7\) report a rapid rate of uptake that is limited by mass accommodation; the mass accommodation coefficient was calculated to be \(0.6 \pm 0.2\). This is consistent with the studies of Fickert et al.\(^3\) who reported a lower limit for the mass accommodation coefficient of \(1 \times 10^{-3}\) at 274 K and observed that \(\text{Br}_2\) was released at 100% yield at \(pH <6.5\). The yield of \(\text{Br}_2\) decreased rapidly with \(pH\) at higher \(pH\) values due to the declining ratio of HOBr to Br\(^-\). Fickert et al.\(^3\) also measured the uptake of HOBr on aqueous solutions containing mixtures of NaCl and NaBr. BrCl was the major product at small Br\(^-\) concentrations while \(\text{Br}_2\) dominated as the bromide ion concentration in solution increased.

Finally, there have been a number of coated-wall flow tube studies of HOBr reactivity on frozen salt solutions containing both NaCl and NaBr (Kirchner et al.\(^5\), Huff and Abbatt,\(^4\) and Adams et al.\(^1\)). HOBr uptake coefficients are in the \(10^{-2}\) to \(10^{-3}\) range at roughly 233 K. A general finding is that if the HOBr concentrations are too high, then only BrCl is seen as a gas-phase product from films composed of the (low) seawater ratios of bromide to chloride. The reason for this is that the small concentrations of bromide at the surface are rapidly depleted, leaving only chloride available for reaction. However, for low
HOBr concentrations (10⁹ to 10¹⁰ molecules/cm³), as used by Adams et al., Br₂ is observed as the initial product.

Back to Table

116. BrNO₂ + H₂O(l). Behnke, George and co-workers have used wetted wall flow reactor techniques to investigate the reactive uptake of BrNO₂ on aqueous solutions from 276 to 298 K. Measured reactive uptake coefficients range from 1 to 3.5 × 10⁻³ with a small positive temperature dependence.

Back to Table

117. BrNO₂ + KCl and NaCl. Caloz et al. measured an uptake coefficient for BrNO₂ on KCl of 5 × 10⁻², but concluded that it was due only to reaction with a small bromide impurity in the KCl; as expected if this is the case, only Br₂ was generated in the reaction.

The uptake of BrNO₂ on aqueous solutions of 0.5 M NaCl has been measured using a droplet train flow reactor by Schweitzer et al. from 277–293 K yielding γ₀ ~1 × 10⁻³. Frenzel et al. used a wetted wall flow tube to obtain a lower limit for the uptake coefficient of 3.8 × 10⁻³ at 291 K.

Back to Table

118. BrNO₂ + KBr, NaBr and NaI. Caloz et al. used a Knudsen cell to study the uptake of BrNO₂ on solid KBr powders. The uptake was fast, γ₀ ≥0.3, with production of Br₂ as the gas phase product.

On aqueous solutions of NaBr, the uptake coefficient increases as the concentration of NaBr increases. For example, at 278 K, γ₀ increased from 8.6 × 10⁻⁴ to 1.1 × 10⁻³ as the NaBr concentration increased from 5 × 10⁻⁴ to 5 × 10⁻², but was independent of temperature over the range from 275–293 K. The major gas phase product is Br₂, with smaller amounts of BrNO₂ and only at the smaller concentrations of NaBr.

The uptake of BrNO₂ on aqueous NaI solutions has been determined using a droplet train flow reactor and a wetted wall flow tube; the uptake coefficient from 4.4 × 10⁻⁵ to 4.4 × 10⁻⁴ as the iodide concentration increased from 10⁻⁴ M to 5 × 10⁻³ M.
BrONO$_2$ and BrONO$_2$ + HCl + H$_2$O(s). Hanson and Ravishankara1 investigated these reactions in an ice-coated flow reactor at 200 ±10 K. The reaction of BrONO$_2$ with H$_2$O(s) proceeded at a rate indistinguishable from the gas phase diffusion limit, implying that the reaction probability may be as high as one; the product BrNO(g) was observed. Allanic et al.2 used a Knudsen cell reactor to measure BrONO$_2$ uptake between 190–200 K. Values of initial γ’s in the 0.2–0.3 range were observed. An average $\gamma = 0.26 \pm 0.05$ was obtained from all of the appropriate data from both experiments. Aguzzi and Rossi3 studied the hydrolysis reaction on various types of ices, obtaining $\gamma = 0.34 \pm 0.03$ at 180 K and $\gamma = 0.15 \pm 0.01$ at 210 K. They observed HOBr as the main product and Br$_2$O as a secondary product. Hanson and Ravishankara3 also codeposited HCl with BrONO$_2$ observing rapid production of BrCl. It is unclear whether BrCl is produced directly from BrONO$_2$ + HCl or via HOBr (from BrONO$_2$ hydrolysis) reacting with HCl.

119. BrONO$_2$ and BrONO$_2$ + HCl + H$_2$O(l). Deiber et al.1 used a droplet train reactor to measure uptake of BrONO$_2$ on pure water between 272 and 280 K. An apparent positive temperature dependence was observed with measured reactive uptake measurements ranging from 0.024 ± 0.0008 at 272.5 K to 0.039 ± 0.0012 at 279.7 K.

120. BrONO$_2$ + H$_2$O(l). Deiber et al.1 used a droplet train reactor to measure uptake of BrONO$_2$ on pure water between 272 and 280 K. An apparent positive temperature dependence was observed with measured reactive uptake measurements ranging from 0.024 ± 0.0008 at 272.5 K to 0.039 ± 0.0012 at 279.7 K.

121. BrONO$_2$ and BrONO$_2$ + HCl + H$_2$SO$_4$•nH$_2$O(l). Hanson and co-workers used both coated flow tube and aerosol flow tube techniques to show that the reaction of BrONO$_2$ with 45–70 wt% H$_2$SO$_4$ is extremely facile at temperatures from 210 to 298 K. Hanson and Ravishankara2 measured γ of 0.5 (+0.5, –0.25) (45 wt% H$_2$SO$_4$, 210 K, 0.4 +0.6, –0.2) (60 wt%, 210 K), and 0.3 (+0.7, –0.1) (70 wt%, 220 K) in a coated-wall flow tube experiment. Hanson et al.3 measured γ of 0.8 (20 to 40% error) for submicron aerosols at temperatures between 249 and 298 K and H$_2$SO$_4$ concentrations of 45 to 70 wt%; there was a sharp fall off in γ for H$_2$SO$_4$ concentrations between 73 and 83 wt%. Hanson also reported additional temperature dependent (230–295 K) coated flow reactor and room temperature (295–300 K) aerosol flow reactor studies extending measurements to higher acid wt% values.1 Hanson has analyzed these combined data sets, the data indicated that γ is a function of sulfuric acid concentration, but independent of temperature. After eliminating one previously reported anomalously low 83 wt% data point Hanson has fit an empirical expression for measured γ for BrONO$_2$ + H$_2$O in the form of: $1/\gamma=1/\alpha + 1/\gamma_{\text{ref}}$, where $\gamma_{\text{ref}} = \exp(a+b*\text{wt.})$ and $\alpha = 0.80$, and $a = 29.2$, $b = -0.40$. Using the same approach as detailed in the note for N$_2$O$_5$ uptake on sulfuric acid, the error for BrONO$_2$ + H$_2$O is 27.3% (1σ), with $\gamma_m = 26.6%$ and $\gamma_d = 6.3%$. Addition of excess HCl to 229 K, 40 and 60 wt% H$_2$SO$_4$ aerosols caused an increase in γ to 1.0 and 0.9, respectively.3

122. **BrONO$_2$ + HBr.** Aguzzi and Rossi1 measured γ over the 180–210 K temperature range, with γ = 0.3 at 180 K and an activation energy of −1.2 ± 0.2 kcal/mol.

Back to Table

123. **BrONO$_2$ + NaCl.** Aguzzi and Rossi1 used a Knudsen cell and three types of NaCl samples (powders, spray-deposited and single crystal) to measure the uptake of BrONO$_2$ and obtained consistent results with γ$_0$ = 0.31 ± 0.12. No correction for diffusion into the powders was made because of the high uptake coefficient (see Subsection 5.6). BrCl was the major product, 80 ± 20%, with smaller amounts (~10%) of Br$_2$ and some HCl. Rapid uptake of BrONO$_2$ of the same magnitude was observed on the unreactive salts NaNO$_3$ and Na$_2$SO$_4$, with a Br$_2$ yield of 45 ± 10%; this uptake and reaction was attributed to the self-reaction of BrONO$_2$ on the surface to generate Br$_2$O, which decomposed to Br$_2$.

Deiber et al.2 studied the uptake of BrONO$_2$ on water, NaCl and NaBr solutions using a droplet train apparatus from 272–280 K. The uptake coefficient was the same on water and 0.1 M NaCl, where BrCl was observed as the gas phase product. On NaBr, the uptake increased with the square root of the NaBr concentration, from which a value for the mass accommodation coefficient for BrONO$_2$ of 0.063 ± 0.021 (2σ) was obtained.

Back to Table

124. **BrONO$_2$ + KBr and NaBr.** Aguzzi and Rossi1 used a Knudsen cell and three types of KBr samples (powders, spray-deposited and single crystal) to measure the uptake of BrONO$_2$ and obtained consistent results with γ$_0$ = 0.33 ± 0.12. No correction for diffusion into the powders was made because of the high uptake coefficient (see Subsection 5.6). Br$_2$ was the major product, with its yield decreasing as the concentration of BrONO$_2$ increased; this was attributed to a competition between the reaction of BrONO$_2$ with KBr and the self-reaction of BrONO$_2$ on the surface.

Deiber et al.2 studied the uptake of BrONO$_2$ on water, NaCl and NaBr solutions using a droplet train flow reactor from 272–280 K. The uptake coefficient was the same on water and 0.1 M NaCl. On NaBr, the uptake increased with the square root of the NaBr concentration, from which a value for the mass accommodation coefficient for BrONO$_2$ of 0.063 ± 0.021 (2σ) was obtained. The gas phase product on the NaBr solution was Br$_2$.

Back to Table

125. **ICl on NaCl/NaBr.** ICl uptake onto acidified and neutral NaCl/NaBr solutions at 274 to 298 K was studied in coated–wall flow tubes. The initial uptake coefficients were in the 0.6 to 3 × 10$^{-3}$ range depending on the experimental system used, for solutions containing bromide; IBr was the gas-phase product observed. In an aerosol flow tube, uptake of ICl onto concentrated NaBr solutions showed uptake coefficients of 1 to 2 × 10$^{-2}$, which dropped to values of 10$^{-4}$ on sea-salt solution aerosols. IBr was the product of the reaction on NaBr particles, with a yield of 0.6 (Braban et al.1).

Back to Table

5-124
126. **HOI on NaCl/NaBr.** HOI uptake on acidified and neutral NaCl/NaBr solutions at 274 K in a wetted-wall flow tube indicate a lower limit for the uptake coefficient of 2.2×10^{-3} (Braban et al.1). IBr is identified as the major gas-phase product when the solutions contain chloride to bromide ratios of 1:200, whereas ICl is the product from pure NaCl solutions. HOI uptake on dry and frozen solutions of NaCl and NaBr with chloride to bromide ratios equal to that of seawater were also studied in a coated wall-flow tube. The product ICl is only formed when the surface is depleted of bromide, otherwise IBr forms. Uptake coefficients measured in a flow reactor by Holmes et al.2 are >0.01 at 243 K on the frozen films and >0.01 at 243 K and 298 K on dry salts. Mossinger and Cox3 report uptake of HOI onto dry films of NaCl, NaBr and sea salt from 278 to 298 K and measured uptake coefficients of 0.016, 0.034 and 0.061 respectively. The products are ICl, IBr and IC//IBr, respectively.

127. **CF3OH + H2O + H2O(l) and H2SO4+nH2O(l).** Lovejoy et al.1 used both wetted-wall and aerosol flow tube techniques to measure reacto-diffusive lengths of $0.4 \mu m$ for 40 wt% H2SO4 and 1.0 μm for 50 wt% H2SO4, both at 250 K. Recommended γ’s were estimated by averaging bulk uptake measurements at similar H2SO4 concentrations and ignoring temperature effects on water activity.

128. **SO2 + O3 + Al2O3(s).** Usher et al.1 present Knudsen cell data showing that pretreatment of α-alumina with SO2 increases γ values for O3 uptake by 30%; FTIR observations by the same group show that O3 oxidized surface sulfate and bisulfite formed by SO2 absorption to sulfate and bisulfate.

129. **SO2 on H2O2/ice.** SO2 loss on ice surfaces has been observed to proceed when H2O2 is present, making the reaction of potential significance in ice clouds. Clegg and Abbatt2 have observed this reaction when both SO2 and H2O2 are delivered from the gas phase in a coated-wall flow tube at 228 K, with H2O2 in excess. For both SO2 and H2O2 only small fractions of a monolayer are present on the surface during the reaction. It is inferred that the reaction proceeds through the HSO3− intermediate because the reaction rate declines as acidity builds up on the surface from the sulphuric acid product, i.e., because dissociation of adsorbed SO2 to form HSO3− is becoming inhibited. At about 200 K, relative to the uptake on pure ice, Chu et al.1 observe enhanced loss of SO2 on ice films that have been doped with 3% H2O2 and they detect sulphate as a product. Uptake coefficients are reported in Clegg and Abbatt that are dependent on both the H2O2 and SO2 partial pressure, so no single value prevails for atmospheric conditions.

130. SO2 + H2O2, O3, HONO, NO2, HNO3 + H2SO4+mH2O(l). Rattigan et al.2 used a bubble train reactor to measure the uptake of SO2 in the presence of solvated oxidants at 293 K. For H2O2 the second order rate constant at 1 wt% H2SO4 agreed well with previous bulk kinetics measurements and with previous droplet train/flow reactor measurements. Measurements at 20, 40, and 60 wt% H2SO4 are the first reported for concentrated acid. Reaction rate data were fit to a two term (acid catalyzed and water catalyzed) bulk second order rate expression, which, in the limit of high acid activity (aH+ = αH+ [H+], where αH+ is the H+ activity coefficient) reduces to: $k_{SO2} = 8.3 \times 10^4 (α_{H+,H2O} a_{H+}^2)$, where $α_{H+,H2O}$ is the water activity coefficient. Both $α_{H+}$ and $α_{H2O}$ can be obtained from the sulfuric acid thermodynamic model of Carslaw et al.1 The high $α_{H+}$ approximation for k_{SO2} should be accurate to a factor of two between 40 and 70 wt%.

Uptake of SO2 in the presence of solvated O3 was measured for 1–70 wt% acid; the Henry’s law expression for O3 was determined in separate experiments. Measured second order rates agree reasonably well with previous results measured below 18 wt%. A three term fit for reaction with SO2(aq), HSO3−, and SO42− was fit to the data: $k_{SO2} = 6.6 \times 10^5 [SO2(aq)] + 3.2 \times 10^5 [HSO3−] + 1 \times 10^6 [SO42−]$. This expression should be accurate to a factor of two for acid concentrations between 10 and 70 wt%.

No enhanced SO2 uptake was observed with added gas phase NO, NO2, or with 20 wt% HNO3 added to 50–60 wt% sulfuric acid.

Back to Table

131. SO2 + Al2O3. Goodman et al.2 used FTIR observations of SO2 absorption on α-alumina to show that surface bound sulfite and bisulfite products are produced, they integrated these surface feature absorbencies to estimate a γS of $(9.5 \pm 0.3) \times 10^{-5}$. Usher et al.8 performed BET corrected room temperature studies on four α-alumina samples reporting an average γO of $(1.6 \pm 0.5) \times 10^{-4}$ on γ-alumina at 298 K using a pulsed Knudsen cell method. FTIR studies of SO2 uptake on commercial γ-alumina catalyst samples also show sulfite formation on non-hydroxylated surfaces.13 Ma et al.6 co-deposited SO2 and NO2 on γ-alumina surfaces, using FTIR to observe that rather than forming adsorbed nitrite or nitrate, NO2 dimerized and the dimer oxidized SO2 to sulfate. Ma and coworkers4 extended their studies of NO2/N2O4 interactions with adsorbed SO2 on α-Al2O3, CaO, α-Fe2O3, ZNO3, MgO, TiO2, and SiO2. Lo et al.5 published a density functional theory study of SO2 interactions with hydrated and dehydrated γ-alumina surfaces calculating the thermochemistry of SO2 adsorption and conversion to SO3/HSO3.

Back to Table

132. SO$_2$ + NaCl and sea salt. Gebel et al.1 reported no measurable uptake of SO$_2$ on NaCl, yielding an upper limit of 1×10^{-4} for the uptake coefficient. The same was true for synthetic sea salt that had been heated while pumping. However, sea salt that had not been heated or pumped on extensively had a rapid uptake of SO$_2$ with initial uptake coefficients as large as 0.09. The time dependence of the uptake coefficient was consistent with uptake of SO$_2$ into a liquid layer, likely due to large amounts of water adsorbed on the hygroscopic components of sea salt such as magnesium hydrate. No gas phase products were observed but sulfite formation in the salt was seen by FTIR, indicating that uptake was due to dissolution of SO$_2$ into the water film on the salt surface.

Back to Table

133. SO$_3$ + H$_2$SO$_4$·nH$_2$O(l). Jayne et al.1 measured the uptake coefficient in a wetted wall-flow reactor at 300 K over a composition range of 78–92 H$_2$SO$_4$ wt%. The measured γ was indistinguishable from 1.0. Higher water concentrations and lower temperatures probably tend to increase γ, so a value near 1.0 probably holds for all atmospheric conditions.

Back to Table

134. OCS + Al$_2$O$_3$. Liu and co-workers have measured OCS uptake on both α-alumina and γ-alumina surfaces at 298 K using Knudsen cell techniques3 and on α-alumina surfaces with controlled water vapor levels using both a Knudsen cell and a reaction chamber equipped with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).4 The DRIFTS technique was also used to investigate heterogeneous reaction mechanisms, revealing that surface Al-OH plays a major role in oxidizing adsorbed OCS to CO$_2$ and that a number of surface adsorbed reactive intermediate anions, including HSCO$_2^-$, are formed. The overall reaction is essentially a surface catalyzed hydrolysis reaction producing both CO$_2$ and H$_2$S.1,2,4 Liu et al.3 report uptake of relatively dry OCS yielding rather small $\gamma_0 = (4.9 \pm 0.5) \times 10^{-7}$ and $\gamma_{ss} = (6.5 \pm 2.4) \times 10^{-8}$ values for α-alumina and $\gamma_0 = (1.0 \pm 0.2) \times 10^{-7}$ and $\gamma_{ss} = (1.8 \pm 0.4) \times 10^{-8}$ values for γ-alumina at 298 K. The low steady-state uptake coefficients are probably due to consumption of most of the surface Al-OH sites and a low regeneration rate due to limited water vapor. OCS uptake experiments that provide controlled water vapor fluxes to α-alumina surfaces produce somewhat higher γ_{ss} values in the Knudsen apparatus, and the values obtained by integrating the DRIFTS spectra for RH values between 7 and 47% fall in the range of 7.4×10^{-8} to 3.3×10^{-6}.4 Interestingly, the highest uptake values are not obtained for the highest RH values because water vapor can also occupy reactive alumina surface sites and block OCS adsorption.

Back to Table

(4) Liu, Y.; Ma, Q.; He, H. Comparative study of the effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of α-Al₂O₃ and MgO. Atmos. Chem. Phys. 2009, 9, 6273-6286.
5.15 Bibliography – Table 5-2
Aguzzi, A.; Rossi, M. J. Heterogeneous hydrolysis and reaction of BrONO$_2$ and Br$_2$O on pure ice and ice doped with HBr. J. Phys. Chem. A 2002, 106, 5891-5901, doi:10.1021/jp014383e.
Allanic, A.; Oppliger, R.; Rossi, M. J. Real-time kinetics of the uptake of HOBr and BrONO$_2$ on ice and in the presence of HCl in the temperature range 190-200 K. J. Geophys. Res. 1997, 102, 23529-23541.
Allanic, A.; Oppliger, R.; van den Bergh, H.; Rossi, M. J. The heterogeneous kinetics of the reactions ClONO$_2$ + HX/ice (X = Cl, Br, I), BrONO$_2$ + HI/ice and the reactivity of the interhalogens BrCl, ICl and IBr with HX/ice (X = Cl, Br, I) in the temperature range 180 to 205 K. Z. Phys. Chem. 2000, 214, 1479-1500.

Fenter, F. F.; Caloz, F.; Rossi, M. J. Heterogeneous kinetics of N$_2$O$_5$ uptake on salt, with a systematic study of the role of surface presentation (for N$_2$O$_5$ and HNO$_3$). *J. Phys. Chem.* **1996**, *100*, 1008-1019.

Hanson, D. R.; Ravishankara, A. R. The reaction probabilities of ClONO₂ and N₂O₅ on 40 to 75% sulfuric acid solutions. *J. Geophys. Res.* **1991**, *96*, 17307-17314.

Hanson, D. R.; Ravishankara, A. R. Reaction of ClONO₂ with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N₂O₅ and ClONO₂ on frozen sulfuric acid. J. Geophys. Res. 1993, 98, 22931-22936.

Hanson, D. R.; Ravishankara, A. R. Response to "Comment on porosities of ice films used to simulate stratospheric cloud surfaces". J. Phys. Chem. 1993, 97, 2802-2803.

Hanson, D. R.; Ravishankara, A. R. Reactive uptake of ClONO₂ onto sulfuric acid due to reaction with HCl and H₂O. J. Phys. Chem. 1994, 98, 5728-5735.

Liu, Y.; Ma, Q.; He, H. Comparative study of the effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of α-Al2O3 and MgO. Atmos. Chem. Phys. 2009, 9, 6273-6286.

Seisel, S.; Fluckiger, B.; Caloz, F.; Rossi, M. J. Heterogeneous reactivity of the nitrate radical: Reactions on halogen salt at ambient temperature and on ice in the presence of HX (X = Cl, Br, I) at 190 K. *Phys. Chem. Chem. Phys.* 1999, 1, 2257-2266.

Yoshitake, H. Effects of surface water on NO2-NaCl reaction studied by diffuse reflectance infrared spectroscopy (DRIRS). *Atmos. Environ.* 2000, 34, 2571-2580.

5-143
Table 5-3. Soot Surface Uptake Coefficients

<table>
<thead>
<tr>
<th>Gaseous Species</th>
<th>Uptake Coefficient (γ)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$</td>
<td>See Note</td>
<td>1, 2</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>0, See Note</td>
<td>1, 3</td>
</tr>
<tr>
<td>O$_3$</td>
<td>See Note</td>
<td>1, 4</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>See Note</td>
<td>1, 5</td>
</tr>
<tr>
<td>N$_2$O$_5$</td>
<td>See Note</td>
<td>1, 6</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>See Note</td>
<td>1, 7</td>
</tr>
<tr>
<td>NO$_3$</td>
<td>See Note</td>
<td>1, 8</td>
</tr>
<tr>
<td>HO$_2$</td>
<td>See Note</td>
<td>1, 9</td>
</tr>
<tr>
<td>HO$_2$NO$_2$</td>
<td>See Note</td>
<td>1, 10</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>See Note</td>
<td>1, 11</td>
</tr>
</tbody>
</table>

5.16 Notes to Table 5-3

1. See the discussions on soot presented in the introductory discussions of “Surface Types” and “Parameter Definitions” for descriptions of some of the factors affecting the uptake and reaction of gases on soot surfaces. In most cases, the available reactive surface area rather than the geometric areas have been used in obtaining the uptake coefficients; in those cases where the geometric area was used but a higher available surface area was involved in the measured uptake, the uptake coefficient is given as an upper limit. Most data are available at room temperature or there are very limited data at lower temperatures characteristic of the upper troposphere.

2. SO$_2$ + soot. $\gamma \leq 3 \times 10^{-3}$ measured using Degussa FW2 carbon black by Rogaski et al.\(^7\) This is an upper limit since it is based on the geometric surface area. Koehler et al.\(^5\) measured an average value of $(2 \pm 1) \times 10^{-3}$ over the first 10–30 s on n-hexane soot at -100°C (the initial uptake may be larger), but indicate that taking into account surface roughness would reduce this value. A number of studies\(^1\)–\(^7\) suggest that uptake is primarily due to physisorption on the surface; oxidation occurs in the presence of water, oxidants and metals.

3. NH$_3$ + soot. Chughtai et al.\(^1\) and Muenter and Koehler\(^2\) measured the uptake of NH$_3$ on soot. Based on Muenter and Koehler\(^2\) where conditions are closest to atmospheric, NH$_3$ is not taken up by soot particles at temperatures above 173 K.

5-144

4. O$_3$ + soot. Many studies report a rapid, initial loss of O$_3$ followed by a slower loss that also occurs on aged soot or soot pre-exposed to ozone.2,4,10,13,14,17,18 Initial, rapid O$_3$ loss may be most applicable for soot as it comes out of aircraft exhaust, with $\gamma^{\text{init}} \sim 10^{-3}$ from most studies using both carbon black and organic combustion soots.6,8,13,18 The second stage of the reaction is probably more applicable to soot dispersed in air; $\gamma^{\text{red}} \sim 10^{-4} - 10^{-6}$ using both carbon black and organic combustion soots.6,10,12,18 But in the range of 10^{-4} to 10^{-2} based on organic combustion soot data alone.8,10 A few studies have been carried out at temperatures below room temperature; 2,8,10 given the wide ranges measured even at room temperature, these values generally fall in the same range. Il'in et al.6 report a temperature dependence for the initial uptake on fresh soot of $\gamma^{\text{fresh}} = 1.9 \times 10^{-3}\exp(-780/T)$ and for aged soots, $\gamma^{\text{red}} = 1.8 \times 10^{-4}\exp(-1000/T)$. Both physisorption and reaction of ozone with the surface appear to take place. The studies of Fendel et al.6 suggest that lower particle growth in size below 40 ppb O$_3$ is due to less than a monolayer of O$_3$ on the surface. Stephens et al.18 proposed a Langmuir-type reversible adsorption of O$_3$, followed by a slower reaction with the surface. Pöschl et al.12 proposed a similar scheme for uptake of ozone on spark-generated graphite soot coated with benzo[a]pyrene. Initial reversible physisorption occurred with $\gamma \sim 10^{-3}$, and “apparent reaction probabilities” for O$_3$ with BaP on soot of $\gamma \sim 10^{-5} - 10^{-6}$ were reported. The presence of water inhibited the reaction, which was postulated to be due to competitive adsorption between water and ozone on the surface; this is in contrast to the report of Chughtai et al.1 in which the rate of ozone loss increased with RH. Pöschl et al.12 report Langmuir adsorption equilibrium constants for O$_3$ and H$_2$O, and a second order surface reaction rate constant for the O$_3$-BaP reaction of $(2.6 \pm 0.8) \times 10^{-17}$ cm2 s$^{-1}$. Three possible paths have been proposed: (1) chemisorption of O$_3$; (2) catalytic decomposition of O$_3$; 2O$_3$ \rightarrow 3O$_2$; (3) surface oxidation and formation of gas-phase carbon oxides. The studies of Fendel et al.6 suggest that lower particle growth in size below 40 ppb O$_3$ is due to less than a monolayer of O$_3$. Studies of Smith et al.15 and Smith and Chughtai14 suggest that catalytic decomposition occurs to some extent over the entire reaction sequence. CO$_2$ and H$_2$O are the major gas phase and surface oxidized functional groups on the surface such as carboxylic acids are observed.$^{1,3,5,6,9,11,14-16,18}$

Back to Table

(12) Pöschl, U.; Letzel, T.; Schauer, C.; Niessner, R. Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo[a]pyrene: O$_3$ and H$_2$O adsorption, benzo[a]pyrene...

5. HNO₃ + soot. Studies of the uptake of HNO₃ on soot have been carried out over a range of nitric acid pressures. Measured values of γ at room temperature are typically in the range 10⁻¹–10⁻³, with smaller uptake coefficients measured at longer reaction times. Saathoff et al. report an upper limit of 3 × 10⁻¹ as a time-averaged value over two days. At lower concentrations characteristic of the atmosphere, uptake appears to be primarily due to physisorption while at higher concentrations, >2 × 10¹² molecule cm⁻³, a surface reaction occurs. At 220 K, γ ~ 0.1 with irreversible uptake attributed to reaction with surface groups. Reaction of HNO₃ at concentrations from (1–9) × 10¹² molecule cm⁻³ with “grey” soot from a rich flame using hexane has been reported to generate HONO as the major gaseous product with initial and steady-state reaction probabilities of γₓ = 4.6 × 10⁻³ and γₓ = 5.2 × 10⁻⁴, respectively; reaction with “black” soot from a lean flame gave NO as the major gaseous product, with initial and steady-state reaction probabilities of γₓ = 2.0 × 10⁻² and γₓ = 4.6 × 10⁻³, respectively (based on geometric surface area of sample holder). The NO was hypothesized to result from secondary reactions of an initial HONO product.

Back to Table

(2) Disselkamp, R. S.; Carpenter, M. A.; Cowin, J. P. A chamber investigation of nitric acid-soot aerosol chemistry at 298 K. J. Atmos. Chem. 2000, 37, 113-123.

6. N₂O₅ + soot. Brouwer et al., Longfellow et al., and Saathoff et al. studied the uptake of N₂O₅ at room temperature on a ground charcoal (carbon black) sample, on propane soot and on spark-generated graphite soot, respectively. Brouwer et al. and Longfellow et al. report uptake coefficients based on the geometric sample surface area, and therefore give upper limits. An upper limit of γ ≤ 0.02 can be derived based on the

5-146
larger value of 0.016 reported by Longfellow et al. As discussed below, much smaller values are reported by Saathoff et al.: 4×10^{-5} under dry conditions and 2×10^{-4} at 50% RH. Three possible reactions may occur: (1) decomposition of NO$_2$ on the surface to generate NO$_2$ + NO; (2) reaction of NO$_2$ with the soot; (3) hydrolysis of NO$_2$ with water on the surface to generate HNO$_3$. The studies of Longfellow et al. support the decomposition reaction, with yields of NO$_2$ within experimental error of 100%; the generation of NO$_2$ on the surface followed by its decomposition to NO$_2$, may contribute to the observed production of NO$_2$. The studies of Brouwer et al. suggest that a redox reaction with the soot surface to generate NO occurs in parallel with hydrolysis of NO$_2$ to generate HNO$_3$. Saathoff et al. propose two independent, parallel reactions: (1) hydrolysis generating HNO$_3$, NO$_2$ + soot \rightarrow 2 HNO$_3$ with γ = $(4 \pm 2) \times 10^{-5}$ under dry conditions (<10 ppm H$_2$O) which increases to $(2 \pm 1) \times 10^{-4}$ at 50% RH. (2) decomposition to NO and NO$_2$: NO$_2$ + soot \rightarrow NO + NO$_2$ + products, with γ = $(4 \pm 2) \times 10^{-6}$ under dry conditions.

Back to Table

7. NO$_2$ + soot. A fast initial uptake of NO$_2$ is observed on fresh soots$^{1-3,8,12,15,17,19,20,24-26}$ with the initial uptake coefficient in studies involving both carbon blacks and organic combustion soots in the range of $\gamma^{init} \approx 10^{-1}$ to 10^{-6}. For longer reaction times on carbon black soots, $\gamma^{aged} \sim 10^{-4}$ based on studies by Kalberer et al.16 and Ammann et al.3,4 However, Kleffmann et al.18 report a lower uptake coefficient of $\sim 10^{-7}$ on carbon black over the first 5 minutes of reaction and and Saathoff et al.21 report an upper limit of $< 4 \times 10^{-8}$ averaged over 5 days under dry conditions (<10 ppm H$_2$O) on spark-generated graphite. On organic combustion soots, γ^{aged} has been reported to be in the range of $\sim 10^{-4}$ to 10^{-6}.1,4,5,19,22,24 All studies were done at room temperature except those of Longfellow et al.19 which were carried out at 262 K. The surface deactivates on continued exposure to NO$_2$, suggesting a maximum amount of HONO that can be formed per cm2 of soot area or mg of soot; this has been reported to be in the range of 10^{16} to 10^{18} HONO per mg of soot.5,12,14,15,18,24 However, reactivation on heating of the surface, exposure to water vapor and/or with time after the exposure has stopped has been observed.$^{12,19,24-26}$ A small portion (~10–20%) of the NO$_2$ taken up appears to be chemisorbed to the surface.$^{1,5,9,14,15,17,18,24-26}$ Infrared studies3,17,21 show that surface C–ONO, C–N–NO$_2$, and C–NO$_2$ groups are formed. The remainder of NO$_2$ reacted appears as gaseous HONO and NO; Salgado and Rossi22 report HONO as the major product for hexane soot from a flame at near stoichiometric ratio but NO as the major product for soot from an extremely lean flame. In addition, N$_2$O, CO, and CO$_2$ have been observed as products at higher temperatures.6,7 At lower NO$_2$ concentrations, the HONO yield can approach 100%; production of NO may be due to the bimolecular reaction of HONO on the surface at higher concentrations to give NO + NO$_2$ + H$_2$O. The HONO yield at 262 K appears to be smaller than at room temperature.19 Formation of HONO is due to reaction with a reduced surface site and not to NO$_2$ surface-catalyzed hydrolysis. The formation of HONO from the reaction of NO$_2$ with unspecified semi-volatile organics in diesel exhaust has been reported13 and proposed to be a much larger source of HONO than the reaction with the soot itself.

Back to Table

(20) Rogaski, C. A.; Golden, D. M.; Williams, L. R. Reactive uptake and hydration experiments on amorphous carbon treated with NO\textsubscript{2}, SO\textsubscript{2}, O\textsubscript{3}, HNO\textsubscript{3}, and H\textsubscript{2}SO\textsubscript{4}. *Geophys. Res. Lett.* **1997**, *24*, 381-384.

8. NO\textsubscript{3} + soot. Saathoff et al.1 report an upper limit of $\gamma < 3 \times 10^{-4}$ on dry soot (< 10 ppm H\textsubscript{2}O) and $\gamma < 10^{-3}$ at 50% RH based on measurements of NO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5}.

Back to Table
9. \(\text{HO}_2 + \text{soot} \). Saathoff et al.\(^1\) report an upper limit of \(\gamma < 10^{-2} \) on dry soot (<10 ppm H\(_2\)O) based on the decay of HO\(_2\)NO\(_2\) (in equilibrium with HO\(_2\) and NO\(_2\)) in the presence and absence of soot.

10. \(\text{HO}_2\text{NO}_2 + \text{soot} \). Saathoff et al.\(^1\) report an upper limit of \(\gamma < 10^{-3} \) on dry soot (<10 ppm H\(_2\)O) based on the decay of HO\(_2\)NO\(_2\) in the presence and absence of soot.

11. \(\text{H}_2\text{O} + \text{soot} \). Alcala–Jornod et al.\(^1\) report an upper limit to the initial uptake coefficient of \(\gamma < 2 \times 10^{-3} \), consistent with the earlier measurements of Rogaski et al.\(^8\). The uptake is most likely a reversible physisorption\(^1\) although based on water uptake isotherms, Chughtai et al.\(^3,5,6\) propose that at low relative humidities (<25%) chemisorption occurs. While prior exposure of Degussa FW-2 to NO\(_2\) and SO\(_2\) was not found to increase the uptake coefficient for water, treatment with HNO\(_3\) increased the measured uptake coefficient by a factor of 28 and with H\(_2\)SO\(_4\) by a factor of 68.\(^8\) Water adsorption isotherms on soot have been measured in a number of studies, e.g.\(^2,6\) and the amount of water taken up found to increase with the air/fuel ratio used to generate the soot, with the sulfur content, with aging and oxidation of the surface (e.g. by O\(_3\)) and with the presence of metals.\(^2,6,9\)

5.17 Bibliography – Table 5-3

<table>
<thead>
<tr>
<th>Title</th>
<th>Journal/Book</th>
<th>Volume/Issue/Year</th>
<th>Page Range</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chughtai, A. R.; Gordon, S. A.; Smith, D. M. Kinetics of the hexane soot reaction with NO₂/N₂O₄ at low concentration.</td>
<td>Carbon 1994, 32, 405-416.</td>
<td>32</td>
<td>405-416</td>
<td></td>
</tr>
<tr>
<td>Chughtai, A. R.; Miller, N. J.; Smith, D. M.; Pitts, J. R. Carbonaceous particle hydration III.</td>
<td>J. Atmos. Chem. 1999, 34, 259-279.</td>
<td>34</td>
<td>259-279</td>
<td></td>
</tr>
<tr>
<td>Chughtai, A. R.; Welch, W. F.; Smith, D. M. A spectroscopic and gravimetric study of the soot-NO₂/N₂O₄ reaction at various temperatures.</td>
<td>Carbon 1990, 28, 411-421.</td>
<td>28</td>
<td>411-421</td>
<td></td>
</tr>
<tr>
<td>Disselkamp, R. S.; Carpenter, M. A.; Cowin, J. P. A chamber investigation of nitric acid-soot aerosol chemistry at 298 K.</td>
<td>J. Atmos. Chem. 1998, 2000, 37, 113-123.</td>
<td>37</td>
<td>113-123</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-4. Henry’s Law Constants for Pure Water

<table>
<thead>
<tr>
<th>Substance</th>
<th>Temperature Range, K</th>
<th>H (298 K)a</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Uncertainty Rangeb</th>
<th>100 x $h_{0.o}$</th>
<th>1000 x h_{T} M$^{-1}$</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$</td>
<td>273–348</td>
<td>1.27×10^{-3}</td>
<td>-161.6</td>
<td>8160</td>
<td>22.39</td>
<td>I</td>
<td>$\Xi 0$</td>
<td>-0.334</td>
<td>1</td>
</tr>
<tr>
<td>O$_3$</td>
<td>273–333</td>
<td>1.03×10^{-2}</td>
<td>-14.08</td>
<td>2830</td>
<td>0.396</td>
<td>II</td>
<td>1.79</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>273–298</td>
<td>2.6×10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td>IV</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>OH</td>
<td>298</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HO$_2$</td>
<td>298</td>
<td>690</td>
<td></td>
<td></td>
<td></td>
<td>IV</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>278–303</td>
<td>8.70×10^{-4}</td>
<td>-13.08</td>
<td>7290</td>
<td></td>
<td>III</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>N$_2$</td>
<td>273–348</td>
<td>6.52×10^{-4}</td>
<td>-177.1</td>
<td>8640</td>
<td>24.71</td>
<td>I</td>
<td>-0.10</td>
<td>-0.605</td>
<td>2</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>273–348</td>
<td>60.2</td>
<td>-9.84</td>
<td>4160</td>
<td></td>
<td>III</td>
<td>-4.81</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NF$_3$</td>
<td>283–323</td>
<td>7.96×10^{-4}</td>
<td>-242.8</td>
<td>12100</td>
<td>34.236</td>
<td>II</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>N$_2$F$_4$</td>
<td>288–318</td>
<td>8.53×10^{-4}</td>
<td>-332.7</td>
<td>16610</td>
<td>47.370</td>
<td>III</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NH$_2$Cl</td>
<td>293–313</td>
<td>87</td>
<td>-15.51</td>
<td>5960</td>
<td></td>
<td>IV</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NHCl$_2$</td>
<td>293–313</td>
<td>29</td>
<td>-10.68</td>
<td>4180</td>
<td></td>
<td>IV</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NC$_3$</td>
<td>293–313</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td>IV</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NO</td>
<td>273–358</td>
<td>1.92×10^{-3}</td>
<td>-157.1</td>
<td>7950</td>
<td>21.298</td>
<td>II</td>
<td>0.60</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>276–293</td>
<td>1.2×10^{-2}</td>
<td>-12.32</td>
<td>2360</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NO$_3$</td>
<td>298</td>
<td>3.8×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td>IV</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>273–313</td>
<td>2.42×10^{-2}</td>
<td>-148.1</td>
<td>8610</td>
<td>20.266</td>
<td>I</td>
<td>-0.85</td>
<td>-0.479</td>
<td>2</td>
</tr>
<tr>
<td>NOCl</td>
<td>273–293</td>
<td>>0.05</td>
<td></td>
<td></td>
<td></td>
<td>IV</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HN$_3$</td>
<td>277–309</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HCN</td>
<td>287–311</td>
<td>9.02</td>
<td>-25.323</td>
<td>8206</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO</td>
<td>278–323</td>
<td>9.81×10^{-4}</td>
<td>-178.0</td>
<td>8750</td>
<td>24.875</td>
<td>I</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>273–353</td>
<td>3.44×10^{-2}</td>
<td>-123.3</td>
<td>7335</td>
<td>16.739</td>
<td>I</td>
<td>-1.72</td>
<td>-0.338</td>
<td>3</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>273–328</td>
<td>1.41×10^{-3}</td>
<td>-194.7</td>
<td>9750</td>
<td>27.274</td>
<td>I</td>
<td>0.22</td>
<td>-0.524</td>
<td>4</td>
</tr>
<tr>
<td>C$_2$H$_6$</td>
<td>273–333</td>
<td>1.88×10^{-3}</td>
<td>-240.2</td>
<td>12420</td>
<td>33.744</td>
<td>I</td>
<td>1.20</td>
<td>-0.601</td>
<td>4</td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>273–348</td>
<td>1.51×10^{-3}</td>
<td>-281.1</td>
<td>14510</td>
<td>39.652</td>
<td>I</td>
<td>2.40</td>
<td>-0.702</td>
<td>4</td>
</tr>
<tr>
<td>r-C$_3$H$_7$</td>
<td>273–348</td>
<td>1.24×10^{-3}</td>
<td>-269.9</td>
<td>14330</td>
<td>37.734</td>
<td>I</td>
<td>2.97</td>
<td>-0.726</td>
<td>4</td>
</tr>
<tr>
<td>CH$_3$CH(CHO)$_2$</td>
<td>278–318</td>
<td>9.18×10^{-4}</td>
<td>-360.6</td>
<td>18020</td>
<td>51.444</td>
<td>II</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>C$_3$H$_7$</td>
<td>288–348</td>
<td>5.96×10^{-3}</td>
<td>-154.6</td>
<td>8540</td>
<td>21.202</td>
<td>II</td>
<td>0.37</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>C$_3$H$_9$</td>
<td>273–343</td>
<td>4.14×10^{-2}</td>
<td>-145.8</td>
<td>7880</td>
<td>20.384</td>
<td>II</td>
<td>-1.59</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CH$_3$F</td>
<td>273–313</td>
<td>6.15×10^{-2}</td>
<td>-9.478</td>
<td>1990</td>
<td></td>
<td>IV</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CH$_3$Cl</td>
<td>273–323</td>
<td>0.109</td>
<td>-13.16</td>
<td>3262</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CH$_3$Br</td>
<td>273–313</td>
<td>0.173</td>
<td>-12.16</td>
<td>3100</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CH$_3$I</td>
<td>273–313</td>
<td>0.200</td>
<td>-13.52</td>
<td>3550</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>283–313</td>
<td>0.393</td>
<td>-13.23</td>
<td>3665</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>275–323</td>
<td>0.261</td>
<td>-15.63</td>
<td>4261</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CHCl$_3$Br</td>
<td>273–313</td>
<td>0.409</td>
<td>-18.32</td>
<td>5200</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CHCl$_3$Br$_2$</td>
<td>273–313</td>
<td>0.868</td>
<td>-18.67</td>
<td>5530</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CHBr$_3$</td>
<td>273–313</td>
<td>1.76</td>
<td>-16.79</td>
<td>5170</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CF$_2$Cl$_2$</td>
<td>273–313</td>
<td>3.09×10^{-3}</td>
<td>-17.41</td>
<td>3470</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CFCl$_3$</td>
<td>273–313</td>
<td>1.07×10^{-2}</td>
<td>-15.74</td>
<td>3340</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>283–320</td>
<td>3.61×10^{-2}</td>
<td>-17.69</td>
<td>4284</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CHF$_3$</td>
<td>278–348</td>
<td>1.34×10^{-2}</td>
<td>-12.84</td>
<td>2540</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CHClF$_2$</td>
<td>278–363</td>
<td>3.58×10^{-2}</td>
<td>-11.90</td>
<td>2555</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CF$_3$Cl</td>
<td>298–348</td>
<td>1.0×10^{-3}</td>
<td>-12.53</td>
<td>1660</td>
<td></td>
<td>IV</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CF$_4$</td>
<td>276–323</td>
<td>2.11×10^{-4}</td>
<td>-313.47</td>
<td>15140</td>
<td>44.62</td>
<td>III</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Note: IV indicates very high uncertainty, III indicates high uncertainty, II indicates medium uncertainty, I indicates low uncertainty, a indicates uncertainty.<ref>
<table>
<thead>
<tr>
<th>Substance</th>
<th>Temperature Range, K</th>
<th>H (298 K) a</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Uncertainty Range b</th>
<th>100 x h_{G,0} M⁻¹</th>
<th>1000 x h_{T, M⁻¹K⁻¹}</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2,2′-C₆H₄Cl₂</td>
<td>284–323</td>
<td>2.38</td>
<td>−15.18</td>
<td>4784</td>
<td>IV</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-C₆F₂Cl₃</td>
<td>283–303</td>
<td>3.4 × 10⁻³</td>
<td>−16.55</td>
<td>3241</td>
<td>V</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂Cl₆</td>
<td>283–303</td>
<td>0.26</td>
<td>−20.25</td>
<td>5633</td>
<td>V</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₄Cl</td>
<td>283–308</td>
<td>3.90 × 10⁻²</td>
<td>−13.79</td>
<td>3144</td>
<td>III</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-C₆H₃Cl₂</td>
<td>283–313</td>
<td>3.74 × 10⁻²</td>
<td>−14.82</td>
<td>3439</td>
<td>III</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-C₆H₄Cl₂</td>
<td>283–343</td>
<td>0.259</td>
<td>−13.76</td>
<td>3701</td>
<td>III</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-C₆H₄Cl₂</td>
<td>275–343</td>
<td>0.103</td>
<td>−14.18</td>
<td>3550</td>
<td>III</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂HCl₃</td>
<td>274–343</td>
<td>0.111</td>
<td>−16.64</td>
<td>4307</td>
<td>III</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂Cl₄</td>
<td>274–343</td>
<td>5.58 × 10⁻²</td>
<td>−17.84</td>
<td>4459</td>
<td>III</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-C₆H₂Br₂</td>
<td>283–303</td>
<td>1.48</td>
<td>−12.61</td>
<td>3875</td>
<td>V</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-C₆H₂Cl₂</td>
<td>274–303</td>
<td>0.343</td>
<td>−15.41</td>
<td>4275</td>
<td>IV</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-C₆H₃Cl₂</td>
<td>274–300</td>
<td>1.03</td>
<td>−13.13</td>
<td>3923</td>
<td>V</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-C₆H₄OH</td>
<td>274–318</td>
<td>3.60</td>
<td>−11.25</td>
<td>3736</td>
<td>IV</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃OH</td>
<td>273–373</td>
<td>203</td>
<td>−97.53</td>
<td>9240</td>
<td>12.61</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂OH</td>
<td>273–373</td>
<td>190</td>
<td>−162.9</td>
<td>12900</td>
<td>21.91</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-C₃H₇OH</td>
<td>273–373</td>
<td>142</td>
<td>−217.7</td>
<td>15800</td>
<td>29.76</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso-C₃H₇OH</td>
<td>283–358</td>
<td>124</td>
<td>−225.2</td>
<td>16260</td>
<td>30.8</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-C₆H₅OH</td>
<td>273–373</td>
<td>123</td>
<td>−265.7</td>
<td>18400</td>
<td>36.64</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso-C₆H₅OH</td>
<td>273–373</td>
<td>84</td>
<td>−283.6</td>
<td>18080</td>
<td>36.40</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sec-C₆H₅OH</td>
<td>273–343</td>
<td>111</td>
<td>−283.3</td>
<td>19280</td>
<td>39.2</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-C₆H₅OH</td>
<td>298–372</td>
<td>79</td>
<td>−275.9</td>
<td>19045</td>
<td>37098</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOC₆H₄OH</td>
<td>298</td>
<td>6.6 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₂CH(OH)CH₃</td>
<td>298</td>
<td>2.7 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₃H₂OH</td>
<td>298</td>
<td>1.6 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₃(OH)₂CO₂H₅</td>
<td>298</td>
<td>2.1 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₂CH₂CH(OH)CH₃</td>
<td>298</td>
<td>7.1 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₃H₄OH</td>
<td>298</td>
<td>3.5 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH(OH)(OH)CH(OH)CH₃</td>
<td>298</td>
<td>1.1 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₃CH(OH)CH(OH)CH₃</td>
<td>298</td>
<td>4.8 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₂(CH(OH))₂CH₂OH</td>
<td>298</td>
<td>1.1 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₄(OH)₃</td>
<td>298</td>
<td>7.4 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₅(OH)₃</td>
<td>298</td>
<td>5.2 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₅(OH)₄</td>
<td>298</td>
<td>1.1 × 10⁻³</td>
<td>V</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C₆H₅)₂O</td>
<td>283–303</td>
<td>2.0</td>
<td>−18.67</td>
<td>5774</td>
<td>V</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃OOH</td>
<td>277–293</td>
<td>300</td>
<td>−11.99</td>
<td>5280</td>
<td>IV</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₂OOH</td>
<td>278–293</td>
<td>1.7 × 10⁻³</td>
<td>−18.79</td>
<td>9870</td>
<td>V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)O(OH)</td>
<td>278–301</td>
<td>837</td>
<td>−11.07</td>
<td>5310</td>
<td>V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₄O₂O</td>
<td>278–301</td>
<td>336</td>
<td>−14.28</td>
<td>5995</td>
<td>V</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCHO (H⁺)</td>
<td>288–318</td>
<td>3.23 × 10³</td>
<td>−15.73</td>
<td>7100</td>
<td>IV</td>
<td>13</td>
<td>−240</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>CH₃CHO (H⁺)</td>
<td>273–313</td>
<td>12.9</td>
<td>−17.19</td>
<td>5890</td>
<td>IV</td>
<td>13</td>
<td>−3.0</td>
<td>−5.5</td>
<td></td>
</tr>
<tr>
<td>C₆H₆CHO</td>
<td>273–313</td>
<td>10.0</td>
<td>−12.20</td>
<td>4330</td>
<td>V</td>
<td>13</td>
<td>2.2</td>
<td>−4.0</td>
<td></td>
</tr>
<tr>
<td>C₆H₆CHO</td>
<td>283–318</td>
<td>9.6</td>
<td>−18.59</td>
<td>6220</td>
<td>V</td>
<td>13</td>
<td>8.7</td>
<td>−0.06</td>
<td></td>
</tr>
<tr>
<td>CHOCHO (H⁺)</td>
<td>278–308</td>
<td>4.19 × 10⁵</td>
<td>−12.15</td>
<td>7480</td>
<td>IV</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₂CHO (H⁺)</td>
<td>298–313</td>
<td>4 × 10⁶</td>
<td>−4.89</td>
<td>4630</td>
<td>V</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)OCHO (H⁺)</td>
<td>288–318</td>
<td>3.5 × 10⁵</td>
<td>−17.15</td>
<td>7545</td>
<td>IV</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)CHO</td>
<td>298</td>
<td>6.5</td>
<td>V</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)CH₃</td>
<td>273–311</td>
<td>27.8</td>
<td>−15.23</td>
<td>5530</td>
<td>III</td>
<td>14</td>
<td>−5.2</td>
<td>−2.9</td>
<td></td>
</tr>
<tr>
<td>C₆H₆C(O)CH₃</td>
<td>273–298</td>
<td>18</td>
<td>−16.40</td>
<td>5740</td>
<td>IV</td>
<td>14</td>
<td>1.1</td>
<td>−0.9</td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)C(O)CH₃</td>
<td>288–318</td>
<td>74</td>
<td>−14.66</td>
<td>5650</td>
<td>IV</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂C(O)C(O)CH₃</td>
<td>298</td>
<td>41</td>
<td>V</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Temperature Range, K</td>
<td>$H (298 \text{ K})$</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Uncertainty Rangeb</td>
<td>100 \times h$_{g.o.}$ M$^{-1}$</td>
<td>1000 \times h$_{r}$ M$^{-1}$ K$^{-1}$</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>HC(O)OH</td>
<td>275–308</td>
<td>8.9×10^3</td>
<td>-11.40</td>
<td>6100</td>
<td>IV</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$C(O)OH</td>
<td>275–308</td>
<td>4.1×10^3</td>
<td>-12.50</td>
<td>6200</td>
<td>IV</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC(OH)C(O)OH (H$^+$)</td>
<td>278–308</td>
<td>2.83×10^4</td>
<td>-3.26</td>
<td>4030</td>
<td>IV</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC(O)C(O)OH (H$^+$)</td>
<td>278–308</td>
<td>1.09×10^4</td>
<td>-6.84</td>
<td>4810</td>
<td>IV</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$C(O)C(O)OH</td>
<td>278–308</td>
<td>3.11×10^5</td>
<td>-4.417</td>
<td>5090</td>
<td>V</td>
<td>9.0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOC(O)C(O)OH</td>
<td>298</td>
<td>6.2×10^8</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOC(O)CH$_3$C(O)OH</td>
<td>298</td>
<td>2.4×10^{16}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOC(O)CH$_3$CH$_2$C(O)OH</td>
<td>298</td>
<td>3.1×10^9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOC(O)CH(OH)$_2$C(O)OH</td>
<td>298</td>
<td>5×10^7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOC(O)CH$_3$C(O)OH</td>
<td>298</td>
<td>3.8×10^9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOC(O)CH$_3$C(O)OH</td>
<td>298</td>
<td>6.7×10^9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$C(O)OH)$_2$C(O)CH$_2$C(O)OH</td>
<td>298</td>
<td>3.1×10^{17}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$OC(O)H</td>
<td>278–298</td>
<td>4.2</td>
<td>-11.88</td>
<td>3970</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_2$OC(O)H</td>
<td>278–298</td>
<td>3.4</td>
<td>-14.11</td>
<td>4570</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-C$_3$H$_7$OC(O)H</td>
<td>278–298</td>
<td>2.6</td>
<td>-15.99</td>
<td>5050</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$C(O)CH$_3$</td>
<td>276–303</td>
<td>2.05</td>
<td>-14.745</td>
<td>5008</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$C(O)OC$_2$H$_5$</td>
<td>278–298</td>
<td></td>
<td>-17.97</td>
<td>5890</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$O)$_2$CO</td>
<td>288–318</td>
<td>16.4</td>
<td>-13.765</td>
<td>4940</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C$_2$H$_5$O)$_2$CO</td>
<td>288–318</td>
<td>10.3</td>
<td>-17.72</td>
<td>5980</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$CHOCH(O)CH$_3$</td>
<td>288–318</td>
<td>2.04</td>
<td>-14.42</td>
<td>4510</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$C(CH$_3$)C(O)OCH$_3$</td>
<td>288–318</td>
<td>0.157</td>
<td>-16.33</td>
<td>4320</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$C(O)O$_2$</td>
<td>274</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>CH$_3$NH$_2$</td>
<td>298</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_5$NH$_2$</td>
<td>298</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_3$H$_7$NH$_2$</td>
<td>298</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_4$H$_9$NH$_2$</td>
<td>298</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$NH</td>
<td>298</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C$_2$H$_5$)$_2$NH</td>
<td>298</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_3$NH</td>
<td>298</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C$_2$H$_5$)$_3$N</td>
<td>298</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$NCI$_2$</td>
<td>278–318</td>
<td>0.333</td>
<td>-15.55</td>
<td>4308</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$NNO</td>
<td>293</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$NHC(O)H</td>
<td>333–373</td>
<td>1.4×10^5</td>
<td>-12.43</td>
<td>7240</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$C(O)NHCH$_3$</td>
<td>333–353</td>
<td>2.1×10^5</td>
<td>-13.06</td>
<td>7550</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$NC(O)H</td>
<td>343–372</td>
<td>1.3×10^4</td>
<td>-12.60</td>
<td>6590</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$NC(O)CH$_3$</td>
<td>343–272</td>
<td>6.2×10^2</td>
<td>-17.50</td>
<td>7820</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CN</td>
<td>273–303</td>
<td>52.8</td>
<td>-9.35</td>
<td>3970</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$NO$_2$</td>
<td>293–323</td>
<td>34.6</td>
<td>-9.92</td>
<td>4010</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_4$NO$_2$</td>
<td>293–323</td>
<td>21.7</td>
<td>-11.80</td>
<td>4430</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_3$H$_7$NO$_2$</td>
<td>293–323</td>
<td>13.1</td>
<td>-13.22</td>
<td>4710</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CH(NO$_2$)CH$_3$</td>
<td>293–323</td>
<td>8.42</td>
<td>-13.02</td>
<td>4520</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$ONO$_2$</td>
<td>273–298</td>
<td>2.0</td>
<td>-15.20</td>
<td>4740</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_5$ONO$_2$</td>
<td>273–298</td>
<td>1.59</td>
<td>-17.50</td>
<td>5360</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-C$_3$H$_7$ONO$_2$</td>
<td>273–298</td>
<td>1.10</td>
<td>-18.31</td>
<td>5490</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-C$_3$H$_7$ONO$_2$</td>
<td>273–298</td>
<td>0.791</td>
<td>-18.20</td>
<td>5360</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-C$_3$H$_7$ONO$_2$</td>
<td>273–298</td>
<td>1.01</td>
<td>-19.40</td>
<td>5790</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-C$_3$H$_7$ONO$_2$</td>
<td>273–298</td>
<td>0.648</td>
<td>-18.59</td>
<td>5410</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Temperature Range, K</td>
<td>H (298 K)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Uncertainty Range</td>
<td>100 x $h_{0.0}$</td>
<td>1000 x h_{T}</td>
<td>M⁻¹</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>CH₃C(O)C₂NO₂</td>
<td>274–297</td>
<td>2.8</td>
<td>-18.15</td>
<td>5730</td>
<td>IV</td>
<td>-6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂NO₂C₂H₄NO₂</td>
<td>293</td>
<td>640</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₂C₂H₄ONO₂</td>
<td>293</td>
<td>3.99 × 10⁴</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH₂CH(OONO₂)CH₃</td>
<td>293</td>
<td>7.3 × 10³</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH(OH)C₂H₄ONO₂</td>
<td>293</td>
<td>6.7 × 10³</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)C₂H₄ONO₂</td>
<td>293</td>
<td>1.01 × 10³</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH(OONO₂)C₂H₄ONO₂</td>
<td>293</td>
<td>175</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂NO₂C₂H₄CH₂C₂H₄ONO₂</td>
<td>298</td>
<td>160</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃NO₂</td>
<td>298</td>
<td>0.48</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)C₂H₃</td>
<td>293</td>
<td>47</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)C₂H₃</td>
<td>288–318</td>
<td>59</td>
<td>-14.08</td>
<td>5410</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)C₂H₃</td>
<td>293</td>
<td>33</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃C(O)C₂H₃</td>
<td>288–318</td>
<td>138</td>
<td>-24.92</td>
<td>8900</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃FCH₂OH</td>
<td>293</td>
<td>47</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃FCH₂OH</td>
<td>293</td>
<td>94</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃CH₂OH</td>
<td>276–299</td>
<td>47.7</td>
<td>-17.00</td>
<td>6220</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃FCH₂OH</td>
<td>275–299</td>
<td>141</td>
<td>-18.53</td>
<td>7000</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃CF₂CH₂OH</td>
<td>275–299</td>
<td>14.6</td>
<td>-11.71</td>
<td>4290</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂CH₂OH</td>
<td>293</td>
<td>37</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃CHO (H)</td>
<td>288–318</td>
<td>3.4 × 10⁵</td>
<td>1.16</td>
<td>3450</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃CHO(OH)</td>
<td>298</td>
<td>8.1 × 10⁴</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃CHO(OH)</td>
<td>278–308</td>
<td>3.0 × 10⁴</td>
<td>-12.71</td>
<td>6870</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃CHO(OH)</td>
<td>278–298</td>
<td>5.78 × 10³</td>
<td>-5.16</td>
<td>4120</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃CH₂G(OH)</td>
<td>278–308</td>
<td>1.1 × 10³</td>
<td>-21.08</td>
<td>9740</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃CH₂G(OH)</td>
<td>298–308</td>
<td>1.2 × 10³</td>
<td>-15.18</td>
<td>8010</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃CH₂G(OH)</td>
<td>298–308</td>
<td>7.4 × 10³</td>
<td>-17.83</td>
<td>8660</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₃F₂C(O)CH₃</td>
<td>278–308</td>
<td>2.5 × 10³</td>
<td>-24.26</td>
<td>10250</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr₃C(O)CH₃</td>
<td>278–308</td>
<td>1.5 × 10³</td>
<td>-19.12</td>
<td>9260</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr₃HC(O)CH₃</td>
<td>298–308</td>
<td>2.3 × 10³</td>
<td>-17.64</td>
<td>8940</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr₃C(O)CH₃</td>
<td>298–308</td>
<td>3.0 × 10³</td>
<td>-17.6</td>
<td>9000</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃C(O)OCH₃</td>
<td>278–298</td>
<td>0.11</td>
<td>-20.16</td>
<td>5250</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃CH₂OC(O)H</td>
<td>278–298</td>
<td>0.55</td>
<td>-16.33</td>
<td>4690</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)OCH₂CF₃</td>
<td>278–298</td>
<td>0.56</td>
<td>-18.15</td>
<td>5240</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅OC(O)CF₃</td>
<td>278–298</td>
<td>0.09</td>
<td>-18.95</td>
<td>4930</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>298</td>
<td>2.3</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂</td>
<td>263–383</td>
<td>9.29 × 10⁻²</td>
<td>-134.4</td>
<td>7590</td>
<td>18.702</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br₂</td>
<td>273–308</td>
<td>0.725</td>
<td>-15.05</td>
<td>4390</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrCl</td>
<td>279–299</td>
<td>0.98</td>
<td>-18.9</td>
<td>5630</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO</td>
<td>298</td>
<td>0.71</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂O</td>
<td>273–293</td>
<td>17</td>
<td>-3.23</td>
<td>1810</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂O</td>
<td>283–333</td>
<td>1.01</td>
<td>-11.65</td>
<td>3470</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCl</td>
<td>293–313</td>
<td>660</td>
<td>-13.2</td>
<td>5880</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOB₉</td>
<td>298</td>
<td>>1.3 × 10³</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>278–383</td>
<td>1.36</td>
<td>-39.72</td>
<td>4250</td>
<td>4.525</td>
<td>II</td>
<td>-6.07</td>
<td>0.275</td>
<td></td>
</tr>
<tr>
<td>H₂S</td>
<td>273–323</td>
<td>0.102</td>
<td>-145.2</td>
<td>8120</td>
<td>20.296</td>
<td>III</td>
<td>-3.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS₂</td>
<td>274–305</td>
<td>0.062</td>
<td>-17.05</td>
<td>4250</td>
<td>IV</td>
<td>5.49</td>
<td>-4.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COS</td>
<td>273–288</td>
<td>2.02 × 10⁻²</td>
<td>-15.68</td>
<td>3510</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃SH</td>
<td>298–368</td>
<td>0.39</td>
<td>-12.42</td>
<td>3420</td>
<td>V</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅SH</td>
<td>298–368</td>
<td>0.28</td>
<td>-13.82</td>
<td>3740</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Temperature Range, K</td>
<td>H (298 K)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Uncertainty Range</td>
<td>100 x h_{G,0}</td>
<td>1000 x h_{T,0}</td>
<td>Note</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>CH₃SCH₃</td>
<td>272–305</td>
<td>0.54</td>
<td>−12.19</td>
<td>3460</td>
<td>V</td>
<td>−3.1</td>
<td>−0.26</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>CH₃SC₂H₅</td>
<td>298</td>
<td>0.43</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>C₂H₂SC₂H₅</td>
<td>298</td>
<td>0.35</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>CH₃CHCH₂SCH₃</td>
<td>298</td>
<td>0.43</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>CH₃S(O)CH₃</td>
<td>298</td>
<td>9.9 × 10⁴</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>CH₃NCS</td>
<td>298</td>
<td>17</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>CH₃SSCH₃</td>
<td>298</td>
<td>0.59</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>C₂H₂SSC₂H₅</td>
<td>298</td>
<td>0.37</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>278–308</td>
<td>0.13</td>
<td>−10.74</td>
<td>2590</td>
<td>IV</td>
<td></td>
<td></td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

a. \(\ln H = A + B/T + C \ln(T) \) [M atm⁻¹]

b. Uncertainty Classes:
 I—Better than 10%
 II—10% to 50%
 III—50% to 100%
 IV—Factor of 2 to factor of 10
 V—Factor of 10 to factor of 100
 VI—Greater than a factor of 100

c. \(h_{G,0} \) and \(h_{T,0} \) are the gas-specific Sеченov coefficients. See section 5.10, Parameter Definitions, for more information.
5.18 Notes to Table 5-4

Note 1: Simple O, H Species

O₂

The recommendation was taken from the studies of Benson et al.¹ and Rettich et al.⁹ The data show clear curvature in a plot of ln (Kₐ) v. 1/T. A two parameter fit gives

\[A = -13.26 \text{ and } B = 1950 \text{ K} \]

for the temperature range 273–285 K. The salt effect parameter ²h₂,o is set to zero (see discussion in the text preceding this Table). The temperature dependent salt effect parameter is from the optimization of Weisenberger and Schumpe.¹⁶

O₃

The recommendation of Rischbieter et al.¹⁰ was accepted and refitted. Salt effect parameters were obtained from the effect of NaCl, KCl, Na₂SO₄, and Ca(NO₃)₂ on H, combined with specific ion parameters.

H

An average of estimates of the solubility of H based on two approaches: One is simply the assumption that the solubility of H is the same as the solubility of H₂.⁸ The second assumes that the solubility of H is what would be expected for a rare gas atom of the same radius.¹¹ The average value from 273 K to 298 K is 2.6 × 10⁻², with very small variation with temperature. Above room temperature the solubility increases.

OH

Calculated from the reduction potential of the OH radial, \(E(OH/\text{OH}^-) = 1.90 \pm 0.02 \) V, derived from an equilibrium with Ti⁺.¹³ This was combined with the Gibbs energy of the anion and the gas-phase radical to obtain the free energy of solution.

HO₂

The recommendation was based on a calculation by Schwartz¹² based on the gas phase constituents HO₂, H⁺, and O₂⁻. Thermodynamic values were updated to those in our Thermodynamic tables, to \(pK_a = (4.8 \pm 0.1) \), and to a reduction potential \(E(\text{O}_2/\text{O}_2^-) = -0.35 \pm 0.01 \) V. The reduction potential, referenced to one atmosphere O₂, is based primarily on equilibria reported by Meisel and Czapski,⁶ corrected for a revised duroquinone potential.¹⁵

H₂O₂

The data of Lind and Kok⁴ (corrected),³ Hwang and Dasgupta,³ Yoshizumi et al.,¹⁷ Staffelback and Kok,¹⁴ O’Sullivan et al.,⁷ and Huang and Chen² are all in good agreement. The recommendation is from a two-parameter fit to all the results (Kok, et al. and Hwang and Dasgupta are represented by calculated endpoints; Huang and Chen by calculated points at the experimental temperatures). Previous recommendations were \(A = -14.16 \) and \(B = 760 \).

Note 2: Simple Inorganic Nitrogen Species

N₂ The recommendation of Battino³ was accepted and refitted to three-parameter equations. A two parameter fit gives A = 12.81 and B = 1625 K for the temperature range 273–293 K. Salt effect parameters taken from the optimization of Weisberger and Schumpe.¹⁸

NH₃ Based on the recommendation by Edwards et al.,¹⁰ refit to a two-parameter equation. Over the temperature range 273–348 K, there appears to be little curvature in the data. The more recent work of Dasgupta and Dong⁸ are in quite good agreement with this recommendation, whereas the results of Hales and Drewes¹⁰ are somewhat higher and those of Shi et al.¹⁶ (an uptake study) are significantly lower. The Hales and Drewes paper also included studies of the effect of dissolved CO₂ on the solubility of NH₃. The solubility of NH₃ in solutions containing a wide variety of ions is discussed by Clegg and Brimblecombe.¹ Salt effect parameters taken from the optimization of Weisberger and Schumpe.¹⁸

NF₃, N₂F₄ Refit to three-parameter equation from the recommendation of Wilhelm et al.¹⁹

Chloramines Derived from flashoff studies with glass sparging columns at 20°C and 40°C.¹¹ Data point for ammonia at 20°C in exact agreement with recommended value in Table.

NO Three-parameter refit from the recommendation of Battino.² Two-parameter fit gives A = -12.27 and B = 1790 K for the temperature range 273–293 K. Salt effect parameters taken from the optimization of Weisberger and Schumpe.¹⁸

NO₂ Based on NO₂ uptake studies and an analysis of literature values.⁶ A value of 0.014 was obtained from an analysis of studies of reactive dissolution of NO₂ by Schwartz and White.¹⁵

NO₃ From the reduction potential E°(NO₃/NO₂⁻) = (2.46 ± 0.02) V, which is an average based on determinations of equilibria with Cl⁻,⁵,¹² combined with the Gibbs energy for the anion and the gas-phase radical. The derived solubility value is in good agreement with that calculated from the uptake of NO₃ into a wetted-wall flow reactor containing Cl⁻.¹³ It is in very poor agreement with the much higher value derived from a study of the uptake of NO₃ by a series of wetted denuders.¹⁷

N₂O Three-parameter refit to the recommendation of Battino.¹ Two parameter fit gives A = 13.40 and B = 2880 K for the temperature range 273–293 K. Salt effect parameters taken from the optimization of Weisberger and Schumpe.¹⁸
NOCl Uptake kinetics measured as function of temperature into water and solutions containing HCl, NaCl, and NaOH. Only the latter had an effect. The kinetics were consistent with an uptake coefficient of 0.03.

HN3 Measured using a packed column technique at pH 1.8 (μ = 0.02 mol L⁻¹). The effective Henry’s law constant can be calculated using $K_H^* = K_H (1 + K_a / [H^+])$, with $pK_a = 4.65$.

(5) Buxton, G. V.; Salmon, G. A.; Wang, J. The equilibrium $\text{NO}_3^- + \text{Cl}^- \rightleftharpoons \text{NO}_3^- + \text{Cl}$: A laser flash photolysis and pulse radiolysis study of the reactivity of NO_3 with chloride ion in aqueous solution. Phys. Chem. Phys. 1999, 1, 3589-3593.
Note 3: Simple Inorganic Carbon Species

CO
The recommendation is based on smoothed data from Rettich et al.\(^2\) and refit to three-parameter equation. A two parameter fit gives \(A = -12.72\) and \(B = 1720\) K for the temperature range 273–293 K.

\[\text{CO} \]

Refit to three-parameter equation from the recommendation of Carroll et al.\(^1\). Two parameter fit gives \(A = -11.92\) and \(B = 2550\) K for the temperature range 273–293 K. Salt effect parameters taken from the optimization of Weisberger and Schumpe.\(^3\)

Note 4: Hydrocarbons

CH\(_4\)
The recommendation is a three-parameter fit to the smoothed recommendation of Battino.\(^1\). There is very good agreement with the more recent data of Ben-Naim and Battino.\(^2\) A two parameter fit gives \(A = -13.45\) and \(B = 2040\) K for the temperature range 273–293 K. Salt effect parameters taken from the optimization of Weisberger and Schumpe.\(^4\)

\[\text{C}_2\text{H}_6 \]
The recommendation is a three-parameter fit to the smoothed recommendation of Battino.\(^1\). There is very good agreement with the more recent data of Ben-Naim and Battino.\(^2\) Two parameter fit gives \(A = -15.95\) and \(B = 2875\) K for the temperature range 273–293 K.

\[\text{C}_3\text{H}_8 \]
The recommendation is a three-parameter fit to the smoothed recommendation of Battino.\(^1\). There is very good agreement with the more recent data of Ben-Naim and Battino.\(^2\) A two parameter fit gives \(A = 17.52\) and \(B = 3275\) K for the temperature range 273–293 K. Salt effect parameters taken from the optimization of Weisberger and Schumpe.\(^4\)

\[n-\text{C}_4\text{H}_{10} \]
The recommendation is a three-parameter fit to the smoothed recommendation of Battino.\(^1\). There is very good agreement with the more recent data of Ben-Naim and Battino.\(^2\) A two parameter fit gives \(A = -19.28\) and \(B = 3740\) K for the temperature range 273–288 K. Salt effect parameters taken from the optimization of Weisberger and Schumpe.\(^4\)

\[\text{CH}_3\text{CH}(/\text{CH}_3)\text{CH}_3 \]
The recommendation is from a three-parameter fit to the smoothed recommendation of Battino.\(^1\). A two parameter fit gives \(A = 18.22\) and \(B = 3340\) K for the temperature range 278–293 K.

\[\text{C}_2\text{H}_4 \]
The recommendation is from a three-parameter fit to the smoothed recommendation of Wilhelm.\(^5\) A two parameter fit gives \(A = -12.40\) and \(B = 2170\) K for the temperature range 288–313 K. Salt effect parameters taken from the optimization of Weisberger and Schumpe.\(^4\)

\[\text{C}_2\text{H}_2 \]
Converted from the evaluation of Fogg et al.\(^3\) A two parameter fit gives \(A = -10.70\) and \(B = 2230\) for the temperature range 272–298 K. Previous recommendation was from a three-parameter fit to the recommendation of Wilhelm et al.\(^5\) The recommendation of Yaws et al.\(^6\) generates identical results.

Note 5: C1 Haloalkanes

CH₃F A refit to the evaluation of Staudinger and Roberts.⁵

CH₃Cl From the review of Warneck⁶ and in good agreement with the review cited previously.⁵ The uncertainties quoted are ±0.47 in A and ±139 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with Kₜ = 0.104 vs. 0.131 M atm⁻¹ at 293 K.³

CH₃Br, CH₃I A refit to the evaluation of Staudinger and Roberts.⁵

CH₂Cl₂ From the review of Warneck.⁶ The review cited previously,⁵ gave somewhat different parameters, but a similar value at 298 K. The uncertainties quoted are ±0.78 in A and ±231 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with Kₜ = 0.401 vs. 0.485 M atm⁻¹ at 293 K.³

CHCl₃ From the review of Warneck.⁶ The review cited previously,⁵ gave somewhat different parameters, but a similar value at 298 K. The uncertainties quoted are ±0.38 in A and ±112 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with Kₜ = 0.313 vs. 0.334 M atm⁻¹ at 293 K.³

CHClBr₂, CHClBr₃, CF₂Cl₂, CFCI₃ A refit to the evaluation of Staudinger and Roberts.⁵

CCl₄ From the review of Warneck⁶ and in good agreement with the review cited previously.⁵ The uncertainties quoted are ±0.40 in A and ±119 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with Kₜ = 0.040 vs. 0.046 M atm⁻¹ at 293 K.³

CHF₃ Calculated values from the evaluation of Welhelm⁷ were combined with results from Zheng et al.,⁸ double weighted. The latter study, gas solubilities measured at 278, 308, and 338 K and at NaCl concentrations from 0 to 0.0564 mole/mole (0 to 174‰) with a gas absorption unit. Calculated values for 0‰ NaCl taken at each temperature and fitted to a two-parameter equation.

CHF₂Cl A linear fit to the data of Zheng et al.,⁸ Boggs and Buck,¹ and Kutsuna and Hori.⁴ The data of Chang and Criddle² were significantly lower than these results and not included in the fit. The review by Wilhelm, et al.⁷ gave a three-parameter fit that indicated curvature, but this does not appear to be supported by these more recent data.

CF₃Cl, CF₄ A refit to the evaluation of Welhelm et al.⁷

Note 6: C₂ Haloalkanes

Chloroethanes

All recommended values are taken from the review of Warneck.³

C₂H₃Cl The uncertainties quoted are ±1.04 and ±305 in B.

1,1-C₂H₄Cl₂ The uncertainties quoted are ±0.74 in A and ±219 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with $K_h = 0.227$ vs. 0.223 M atm⁻¹ at 293 K.¹

1,2-C₂H₄Cl₂ The uncertainties quoted are ±0.56 in A and ±165 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with $K_h = 1.33$ vs. 1.16 M atm⁻¹ at 293 K.¹

1,1,1-C₂H₃Cl₃ The uncertainties quoted are ±0.32 in A and ±96 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with $K_h = 0.070$ vs. 0.076 M atm⁻¹ at 293 K.¹

1,1,2-C₂H₃Cl₃ The uncertainties quoted are ±0.40 in A and ±118 in B.

1,1,1,2-C₂H₂Cl₄ The uncertainties quoted are ±1.30 in A and ±394 in B.

1,1,2,2-C₂H₂Cl₄ The uncertainties quoted are ±0.94 in A and ±281 in B.

1,1,2-C₂F₃Cl₃ (Freon 113) A refit to the evaluation of Staudinger and Roberts.²

C₂Cl₆ A refit to the evaluation of Staudinger and Roberts.² Warneck³ did not make a recommendation for this substance.

Chloroethenes

All recommended values are taken from the review of Warneck.³

C₂H₃Cl The uncertainties quoted are ±0.66 and ±194 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with $K_h = 0.048$ vs. 0.047 M atm⁻¹ at 293 K.²

1,1-C₂H₂Cl₂ The uncertainties quoted are ±0.61 in A and ±182 in B.

cis-1,2-C₂H₂Cl₂
The uncertainties quoted are ±0.34 in A and ±104 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with $K_h = 0.313$ vs. 0.320 M atm$^{-1}$ at 293 K.\(^1\)

trans-1,2-C$_2$H$_2$Cl$_2$
The uncertainties quoted are ±0.28 in A and ±86 in B.

C$_2$HCl$_3$ The uncertainties quoted are ±0.40 in A and ±120 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with $K_h = 0.131$ vs. 0.142 M atm$^{-1}$ at 293 K.\(^1\)

C$_2$Cl$_4$ The uncertainties quoted are ±0.25 in A and ±74 in B. A more recent study over the temperature range 8–91°C is also in close agreement, with $K_h = 0.080$ vs. 0.081 M atm$^{-1}$ at 293 K.\(^1\)

1,2-C$_2$H$_4$Br$_2$
A refit to the evaluation of Staudinger and Roberts.\(^3\)

Note 7: C$_3$ Haloalkanes

Chloropropanes
A refit to the evaluation of Staudinger and Roberts.\(^1\)

Note 8: Alcohols

CH$_3$OH The recommendation is from a three-parameter fit to the values derived through a comprehensive analysis of limiting activity coefficients, infinite-dilution partial molar excess enthalpies and heat capacities, and measured Henry’s law constants.\(^4\) A two-parameter fit up to 298 K gives $A = -13.61$ and $B = 5640$, whereas a two-parameter fit up to 373 K gave $A = -12.16$ and $B = 5215$. An evaluation by Warneck\(^10\) for the temperature range 273 to 353 K resulted in recommended parameters of $A = -12.45$ and $B = 5310$. The previous recommendation was $A = -12.08$ and $B = 5210$, which was based on the two data points of Snider and Dawson.\(^8\) The 298 K result of Butler et al.\(^3\) and a calculation based on the NBS Thermodynamic tables,\(^9\) are in very good agreement. The 298 K result of Altschuh et al.\(^1\) is about 40% lower.

C$_3$H$_7$OH The recommendation is from a three-parameter fit to the values derived through a comprehensive analysis of limiting activity coefficients, infinite-dilution partial molar excess enthalpies and heat capacities, and measured Henry’s law constants.\(^4\) A two-parameter fit up to 298 K gives $A = -17.14$ and $B = 6660$, whereas a two-parameter fit up to 373 K gave $A = -14.57$ and $B = 5908$. An evaluation by Warneck\(^10\) for the temperature range 273 to 353 K resulted in recommended parameters of $A = -15.87$ and $B = 6274$. The previous recommendation was $A = -16.98$ and $B = 6630$, which was based on the two data points of Snider and Dawson,\(^8\) the 298 K results of Butler et al.\(^3\) and Rohrschneider,\(^7\) and a calculation based on the NBS Thermodynamic tables,\(^9\) are in very good agreement. The 298 K result of Altschuh, et al.\(^1\) is about 50% lower.
n-C_3H_7OH The recommendation is from a three-parameter fit to the values derived through a comprehensive analysis of limiting activity coefficients, infinite-dilution partial molar excess enthalpies and heat capacities, and measured Henry’s law constants.\(^4\) A two-parameter fit up to 298 K gives $A = -19.80$ and $B = 7370$. The previous recommendation was $A = -20.16$ and $B = 7470$, which was based on two data points from Snider and Dawson.\(^8\) Room temperature data from other studies\(^1,3\) support these results.

iso-C_3H_7OH, 2-propanol

The recommendation is from a three-parameter fit to the values derived through a comprehensive analysis of limiting activity coefficients, infinite-dilution partial molar excess enthalpies and heat capacities, and measured Henry’s law constants.\(^5\) A two-parameter fit up to 298 K gives $A = -18.95$ and $B = 7100$. The previous recommendation was $A = -20.5$ and $B = 7450$, which was based on the two data points of Snider and Dawson\(^8\) supported by room temperature data from other studies.\(^1,3\)

n-C_4H_9OH The recommendation is from a three-parameter fit to the values derived through a comprehensive analysis of limiting activity coefficients, infinite-dilution partial molar excess enthalpies and heat capacities, and measured Henry’s law constants.\(^5\) A two-parameter fit up to 298 K gives $A = -17.68$ and $B = 6725$. The previous recommendation was $A = -19.34$ and $B = 72.10$, which was based on two data points from Snider and Dawson.\(^8\) Room temperature data from other studies\(^1,2\) support these results.

iso-C_4H_9OH, 2-methyl-1-propanol

The recommendation is from a three-parameter fit to the values derived through a comprehensive analysis of limiting activity coefficients, infinite-dilution partial molar excess enthalpies and heat capacities, and measured Henry’s law constants, over the temperature range 298–372 K.\(^5\) A two-parameter fit up to 298 K gives $A = -21.56$ and $B = 7720$. Extrapolated values are in very good agreement with the results of Snider and Dawson\(^8\) at 273 and 298 K and room temperature data from other studies.\(^3,1\) A room temperature value of 22.2 M atm\(^{-1}\) from a thermal desorption-GC/MS study is about 40% lower than this recommendation.\(^6\)

sec-C_4H_9OH, 2-butanol

The recommendation is from a three-parameter fit to the values derived through a comprehensive analysis of limiting activity coefficients, infinite-dilution partial molar excess enthalpies and heat capacities, and measured Henry’s law constants, over the temperature range 298–372 K.\(^5\) A two-parameter fit up to 298 K gives $A = -22.60$ and $B = 7095$. Extrapolated values are in very good agreement with the results of Snider and Dawson\(^8\) at 273 and 298 K and room temperature data from Butler et al.\(^3\)

$tert$-C_4H_9OH, 2-methyl-2-propanol

The recommendation is from a three-parameter fit to the values derived through a comprehensive analysis of limiting activity coefficients, infinite-dilution partial molar excess enthalpies and heat capacities, and measured Henry’s law constants, over the temperature range 298–372 K.\(^5\) Extrapolated values are in very good agreement with the results of Snider and Dawson\(^8\) at 273 and 298 K and room temperature data from Butler et al.\(^3\) The two data points of Snider and Dawson yield $A = -23.63$ and $B = 8310$.

4. Dohnal, V.; Fenclova, D.; Vrbka, P. Temperature dependences of limiting activity coefficients, Henry’s law constants, and derivative infinite dilution properties of lower (C_1 - C_5)

Note 9: **Diols**

Alkyl diols The vapor pressure of the pure liquid and the activity coefficient of the dilute solution were determined from an analysis of literature data. These were then used to obtain the Henry’s law values.¹

Note 10: **Polyols**

HOCH₂CH(OH)CH₂OH, glycerol

The vapor pressure of the pure liquid and the activity coefficient of the dilute solution were determined from an analysis of literature data. These were then used to obtain the Henry’s law value.¹

HOCH₂(CH(OH))₂CH₂OH, erythritol

Determined from the solubility, water activity, obtained by a review of the literature, and solid vapor pressure of the polyol.¹

C₅H₈(OH)₄, pentaerythritol

Determined from the solubility, water activity, obtained by a review of the literature, and solid vapor pressure of the polyol.¹

C₅H₁₀(OH)₅, xylitol, adonitol, arabitol

Determined from the solubility, water activity, obtained by a review of the literature, and solid vapor pressure of the polyols steroisomers.¹ These values, xylitol (4.0 × 10¹³), adonitol (4.7 × 10¹³), and arabitol (6.8 × 10¹³) were averaged to get the value in the Table.

C₆H₁₀(OH)₆, sorbitol, mannitol, glactitol

Determined from the solubility, water activity, obtained by a review of the literature, and solid vapor pressure of the polyols steroisomers.¹ These values, sorbitol (6.7 × 10¹⁶), mannitol (1.8 × 10¹⁴), and glactitol (9.1 × 10¹⁶) were averaged to get the value in the Table.

Note 11: Ethers

\[(\text{C}_2\text{H}_5)_2\text{O}, \text{diethyl ether}\]

A refit to the evaluation of Staudinger and Roberts.\(^1\)

Note 12: Hydroperoxides

\[\text{CH}_3\text{OOH}\]

The data of Lind and Kok\(^1\)\(^2\) and O'Sullivan et al.\(^4\) are in excellent agreement and were fit to a two-parameter expression. A lower limit value of 700 M atm\(^{-1}\) at 281 K was estimated from an uptake study, in agreement with the present recommendation.\(^3\)

\[\text{HOCH}_2\text{OOH}\]

The results of O’Sullivan et al.\(^4\) and Staffelback and Kok\(^5\) are very close and were fit to obtain the recommended values. The results of Zhou and Lee\(^6\) are much lower and were not included.

\[\text{CH}_3\text{C(O)OOH and C}_2\text{H}_5\text{OOH}\]

Experimental results of O’Sullivan et al.\(^4\)

Note 13: Aldehydes

\[\text{HCHO}\]

The recommended value is the apparent Henry’s law constant and includes a contribution due to hydrolysis \(H^* = H(1 + K_{\text{hyd}})\). Data from Betterton and Hoffmann\(^3\) and Zhou and Mopper\(^9\) are in substantial agreement and were fit to a two-parameter expression. The more recent results of Allou et al.\(^7\) are in complete agreement. Betterton and Hoffmann have calculated \(H = 2.5 \text{ M atm}^{-1}\) at 298 K for the physical solubility. A gas-stripping study over the temperature range 5–50 C agreed at room temperature, but was lower below and higher above room temperature.\(^7\) Salt effect parameters derived from data on the effect of seawater concentration (0 to 100%) on the measured \(H\).\(^9\) For these calculations, the seawater was assumed to be a solution of pure NaCl, with 35‰ salinity equal to 0.6 M. Additional studies of the effect of NaCl as a function of temperature have been carried out by Allou et al.\(^1\)

\[\text{CH}_3\text{CHO}\]

The recommended value is the apparent Henry’s law constant and includes a contribution due to hydrolysis \(H^* = H(1 + K_{\text{hyd}})\). The results of Snider and Dawson,\(^8\) Benkelberg et al.,\(^2\) and Betterton and Hoffmann\(^3\) are in excellent agreement and have been fit to a two-parameter expression for the recommendation. The results of Zhou and Mopper\(^9\) curve off at higher temperatures and were not included in the fit. (Note the similar situation for acetone.) Betterton and Hoffmann\(^3\) have calculated \(H = 4.8 \text{ M atm}^{-1}\) at 298 K for the physical solubility. Salt effect parameters derived from data on the effect of seawater concentration (0 to 100%) on
the measured \(H \). For these calculations, the seawater was assumed to be a solution of pure NaCl, with 35‰ salinity equal to 0.6 M.

\[\text{C}_2\text{H}_5\text{CHO} \] Results of Zhou and Mopper\(^9\) and Snider and Dawson\(^8\) agree only to within about a factor of two. The two points from the former were weighted by 3 and combined with the five points of the latter to generate the recommendation. A room temperature value of 9.26 M atm\(^{-1}\) from a thermal desorption-GC/MS study is in good agreement with this recommendation.\(^6\) Salt effect parameters derived from data on the effect of seawater concentration (0 to 100%) on the measured \(H \). For these calculations, the seawater was assumed to be a solution of pure NaCl, with 35‰ salinity equal to 0.6 M.

\[\text{C}_3\text{H}_7\text{CHO} \] The results from Zhou and Mopper\(^9\) were fit to a two-parameter expression. A room temperature value of 6.19 M atm\(^{-1}\) from a thermal desorption-GC/MS study is about 40% lower than this recommendation.

\[\text{CHOCHO}, \text{glyoxal} \] Measured using a bubble-column method.\(^4\) Validation measurements on formaldehyde and acetic acid gave results of \(4.8 \times 10^3 \) and \(5.0 \times 10^3 \), slightly higher than the recommendations here. The recommended value is the apparent Henry’s law constant and includes a contribution due to hydrolysis \(H^* = H(1 + K_{\text{hyd}}) \). An intrinsic \(K_h = 1.90 \) M atm\(^{-1}\) was calculated at 298 K. The solubility increased by about a factor of three at 0.05 M NaCl, but dropped by ~50% when the concentration was increased to 5 M. Na\(_2\)SO\(_3\) concentrations of 0.0003 M to 0.03 M increased the solubility, up to a factor of ~50. Even higher sulfate concentrations led to values too high to measure. An earlier study reported only limiting values of \(\geq 3 \times 10^3 \).\(^3\)

\[\text{HOCH}_2\text{CHO}, \text{hydroxyacetaldehyde} \] Apparent Henry’s law measurements by a bubble-column technique at 25 and 45°C.\(^3\) An intrinsic Henry’s law constant of \(4.1 \times 10^3 \) M atm\(^{-1}\) at 298 K was calculated.

\[\text{CH}_3\text{C(O)}\text{CHO}, \text{methyl glyoxal} \] Measured using a static technique with daily instrument calibrations and absolute determinations of partial pressures.\(^5\) An uncertainty of \(\pm 0.7 \) M atm\(^{-1}\) was reported.

\[\text{CH}_2\text{C(CH}_3\text{)}\text{CHO}, \text{methacrolein} \] Measured using a bubble-column method.\(^4\) Validation measurements on formaldehyde and benzaldehyde as a function of temperature and water composition. \textit{Atmos. Environ.} \textbf{2011}, \textit{45}, 2991-2998, doi:10.1016/j.atmosenv.2010.05.044.

\[\text{HOCH}_2\text{CHO}, \text{hydroxyacetaldehyde} \] Apparent Henry’s law measurements by a bubble-column technique at 25 and 45°C.\(^3\) An intrinsic Henry’s law constant of \(4.1 \times 10^3 \) M atm\(^{-1}\) at 298 K was calculated.

\[\text{CH}_3\text{C(O)}\text{CHO}, \text{methyl glyoxal} \] Measured using a static technique with daily instrument calibrations and absolute determinations of partial pressures.\(^5\) An uncertainty of \(\pm 0.7 \) M atm\(^{-1}\) was reported.

5-168

Note 14: *Ketones*

CH₃COCH₃

The recommendation is from a fit to the data of Snider and Dawson,¹⁰ Benkelberg et al.,¹ Betterton,² and Strekowski and George.¹¹ Room temperature data points of Nozière and Riemer,⁶ Hoff et al.,⁵ Burnett,⁷ and Vitenberg et al.¹² are in very good agreement. Results of Zhou and Mopper¹³ are somewhat higher, particularly at room temperature and above. The situation is similar for acetaldehyde. Salt effect parameters derived from data on the effect of seawater concentration (0 to 100%) on the measured H.¹³ For these calculations, the seawater was assumed to be a solution of pure NaCl, with 35‰ salinity equal to 0.6 M. The K_S values from this work are somewhat different than those obtained by Benkelberg et al.,¹ 0.089 vs 0.17 at 298 K and 0.17 vs 0.085 at 273 K. The magnitude of this difference is not too great, but the two studies predict a different sign for h_T.

C₂H₅C(O)CH₃, butanone, methyl ethyl ketone

The recommendation is from the two points of Snider and Dawson.¹⁰ The room temperature points of Vitenberg et al.¹² and Rohrschneider⁹ are in good agreement, while a room temperature value of 10.5 M atm⁻¹ from a thermal desorption-GC/MS study⁷ is about 80% lower. The higher temperature data of Zhou and Mopper¹³ are somewhat higher and those of Friant and Suffet⁴ are lower than the recommendation. Salt effect parameters derived from data on the effect of seawater concentration (0 to 100%) on the measured H.¹³ For these calculations, the seawater was assumed to be a solution of pure NaCl, with 35‰ salinity equal to 0.6 M.

CH₃C(O)C(O)CH₃, 2,3-butanedione

Measured by a bubble-column technique.²

CH₂CHC(O)CH₃, methyl vinyl ketone

Measured using a static technique with daily instrument calibrations and absolute determinations of partial pressures.⁶ An uncertainty of ±7 M atm⁻¹ was reported.

Recent advances in thermal desorption-gas chromatography-mass spectrometry method to eliminate the matrix effect between air and water samples: Application to the accurate determination of Henry's law constant. *J. Chromatog. A* 2014, 1342, 78-85, doi:10.1016/j.chroma.2014.03.040.

The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedione. *Atmos. Environ.* 2003, 37, 841-851.

Note 15: C1 and C2 Organic Acids

HC(O)OH The results of Johnson et al. are accepted. The 298 K result of Khan et al. is about 75% lower.

CH3C(O)OH The results of Johnson et al. are accepted. A value calculated from the NBS Thermodynamic tables is about a factor of two higher.

HC(OH)C(O)OH, glycolic acid Measured using a bubble-column method with no pH control (measured ~3–3.1). Validation measurements on formaldehyde and acetic acid gave results of 4.8×10^3 and 5.0×10^3, slightly higher than the recommendations in the Table. An intrinsic $K_h = 2.37 \times 10^4$ M atm$^{-1}$ was calculated at 298 K.

HC(O)C(O)OH, glyoxylic acid Measured using a bubble-column method with no pH control (measured ~2.6–2.8). Validation measurements on formaldehyde and acetic acid gave results of 4.8×10^3 and 5.0×10^3, slightly higher than the recommendations in the Table. An intrinsic $K_h = 28.67$ M atm$^{-1}$ was calculated at 298 K.

CH3C(O)C(O)OH, pyruvic acid Taken from Khan et al. Salt effect derived from effect of NaCl ($k_s = 0.236$ M$^{-1}$) and KCl ($k_s = 0.235$ M$^{-1}$) on the partial pressure over 1.5 M solution of pyruvic acid at various salt concentrations. Much different values derived when other salts were used, suggesting complications due to specific interactions and, possibly, to the weakly buffered nature of the solution.

HOC(O)C(O)OH, oxalic acid Determined from the solubility, water activity, obtained by a review of the literature, and solution vapor pressure of the acid. The first two were obtained by a review of the literature; the vapor pressure was from evaporation measurements on levitated particles.

Note 16: C3 and Higher Organic Acids

HOC(O)CH$_2$C(O)OH, malonic acid

The solubility and water activity for the acid were obtained through a review of the literature. These were combined with solid vapor pressure1 or solution vapor pressure4 data to derive Henry’s law values of 0.94×10^{10} and 3.9×10^{10} M atm$^{-1}$.2

HOC(O)CH$_2$CH$_2$(O)OH, succinic acid

The solubility and water activity for the acid were obtained through a review of the literature. These were combined with solid vapor pressure1 or solution vapor pressure4 data to derive Henry’s law values of 2.0×10^9 and 4.2×10^9 M atm$^{-1}$.2

HOC(O)(CHOH)$_2$C(O)OH, tartaric acid

Determined from the solubility, water activity, obtained by a review of the literature, and liquid vapor pressure of the acid.3 The first two were obtained by a review of the literature; the vapor pressure was obtained from the evaporation rate of levitated, supersaturated liquid particles.3 The value listed is the midpoint of the range (0.7–9.3 × 10^{17}) from the uncertainty in the vapor pressure data.

HOC(O)C$_3$H$_6$(O)OH, glutaric acid

The solubility and water activity for the acid were obtained through a review of the literature. These were combined with solid vapor pressure1 or solution vapor pressure4 data to derive Henry’s law values of 2.4×10^9 and 5.2×10^9 M atm$^{-1}$.2

HOC(O)C$_4$H$_8$(O)OH, adipic acid

Determined from the solubility, water activity, obtained by a review of the literature, and solid vapor pressure of the acid.2 The first two were obtained by a review of the literature; the vapor pressure was from evaporation rates of aerosol samples.1

(CH$_2$C(O)OH)$_2$C(OH)C(O)OH, citric acid

Determined from the solubility, water activity, obtained by a review of the literature, and liquid vapor pressure of the acid.2 The first two were obtained by a review of the literature; the vapor pressure was obtained from the evaporation rate of levitated, supersaturated liquid particles.3 The value listed is the midpoint of the range (0.2–6 × 10^{17}) from the uncertainty in the vapor pressure data.

Note 17: Formates and Acetates

CH₃OC(O)H Methyl formate, C₂H₃OC(O)H ethyl formate, n-C₃H₇OC(O)H n-propyl formate
Measured using a column-stripping method.¹

CH₃C(O)CH₃ methyl acetate
A refit to the evaluation of Staudinger and Roberts.²

CH₃C(O)OC₂H₅ ethyl acetate
Measured using a column-stripping method.¹

Note 18: Carbonates

(CH₃O)₂CO, dimethyl carbonate; (C₂H₅O)₂CO, diethyl carbonate; CH₂CHOC(O)CH₃, vinyl acetate; CH₂C(CH₃)C(O)OCH₃, methyl methacrylate
Infinite dilution activity coefficients were determined and combined with vapor pressure values to yield Henry’s law constants. These were presented as a three-parameter equation. The values showed only slight curvature and are given here as fit to a two-parameter equation.¹

Note 19: Peroxyacyl Species

CH₃C(O)O₂ peroxyacetyl radical
Villalta et al.¹ measured an upper limit for H of 0.2 M atm⁻¹ in a coated-wall flow tube uptake experiment on aqueous sodium ascorbate solutions.

Note 20: Amines

Aliphatic amines
Water-saturated air was bubbled through a 0.01 N NaOH solutions containing the amines and the amine removed from the air stream by passing through a 0.01 N HCl solution. The concentration of the uncharged amine in the original solution was adjusted for the percentage of ionized amine.¹

CH₃NCl
Determined by using a static method with a variable headspace and measuring the dichloromethylamine concentration in the liquid phase by UV spectroscopy.²

Note 21: *Amides*

CH$_3$NHC(O)H, N-methylformamide
Measured by circulating still and differential distillation methods.¹

CH$_3$C(O)NHCH$_3$, N-methylacetamide
Measured by a differential distillation method.¹

(CH$_3$)$_2$NC(O)H, N,N-dimethylformamide
Measured by comparative ebulliometry.¹

(CH$_3$)$_2$NC(O)CH$_3$, N,N-dimethylacetamide
Measured by comparative ebulliometry, circulating still and differential distillation methods.¹

Note 22: *Cyano compounds*

CH$_3$CN
The values reported by Benkelberg et al.,¹ Snider and Dawson,³ Hamm et al.² are all in good agreement and have been fit to a two-parameter expression for the recommendation. The Hamm et al.² paper includes a measurement with artificial seawater at 293 K. Salt effect derived from the effect of 0.6 mol L⁻¹ NaCl on solubility at 293 K.¹

Note 23: *Nitro compounds*

Nitroalkanes (CH$_3$NO$_2$, C$_2$H$_5$NO$_2$, C$_3$H$_7$NO$_2$, and CH$_3$CH(NO$_2$)CH$_3$)
The recommended values are all taken from the work of Benes and Dohnal.¹ For nitromethane, the 298 K value from Rohrschneider² is about 30% higher.

Alkyl nitrates (CH$_3$ONO$_2$, C$_2$H$_5$ONO$_2$, 1-C$_3$H$_7$ONO$_2$, 2-C$_3$H$_7$ONO$_2$, 1-C$_4$H$_9$ONO$_2$, 2-C$_4$H$_9$ONO$_2$)
The recommended values are all taken from the work of Kames and Schurath.² The results of Luke et al.³ are in very good agreement for 1-butyl and 2-butyl nitrates, but the values reported by Hauff² for 1- and 2-propyl and butyl nitrates by head-space chromatography are significantly (~50%) lower.

CH$_3$C(O)O$_2$NO (PAN)
The results of Kames and Schurath² and Frenzel et al.³ are close and were used for the recommendation. They are somewhat higher (~60%) than the single temperature point of Holdren et al.² Kames and Schurath² and Holdren et al.² also measured hydrolysis rate constants. K₄ = 0.0807 M⁻¹ for NaCl at 293.2 K based on solubility in artificial sea water (~0.7 M).²
Bifunctional alkyl nitrates

\(\text{HOC}_2\text{HONO}_2\), \(\text{HOCH}_2\text{CH(ONO}_2\text{)})\text{CH}_3\), \(\text{CH}_3\text{CH(OH)CH}_2\text{ONO}_2\), \(\text{CH}_3\text{C(O)CH}_2\text{ONO}_2\)

The recommended values (at 293 K) are taken from the work of Kames and Schurath.\(^6\)

\(\text{CH}_3\text{CH(ONO}_2\text{)}\text{CH}_2\text{ONO}_2\), 1,2-propane dinitrate

Direct measurement at 293 K.\(^5\) A much lower value of 33 atm\(^{-1}\) L\(^{-1}\) mol was calculated from vapor pressure and solubility measurements.\(^2\)

\(\text{O}_2\text{NO}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{ONO}_2\), 1,3-propane dinitrate

Calculated from vapor pressure and solubility measurements.\(^2\) Note that the value for 1,2-propane dinitrate was much lower than that directly measured.

\(\text{CCl}_3\text{NO}_2\), chloromethylnitrate (chloropicrin)

Measured by a stripping technique in water, 0.1 M and 0.2 M NaCl, and at pH 4.0 and 8.0 (buffered). All values were within the stated margin of error (±0.3).\(^10\)

(2) Fischer, R. G.; Ballschmiter, K. Prediction of the environmental distribution of alkyl dinitrates - Chromatographic determination of vapor pressure p(0), water solubility \(\text{SH}_2\text{O}\), gas-water partition coefficient \(K\text{-GW}\) (Henry's law constant) and octanol-water partition coefficient \(K\text{-OW}\). \textit{Fresenius J. Anal. Chem.} 1998, 360, 769-776, doi:10.1007/s002160050803.

(4) Hauff, K.; Fischer, R. G.; Ballschmiter, K. Determination of \(C_1\) - \(C_3\) alkyl nitrates in rain, snow, white frost, lake, and tap water by a combined codistillation head-space gas chromatography technique. Determination of Henry's law constants by head-space gc. \textit{Chemosphere} 1998, 37, 2599-2615.

Note 24: Haloacetones

\(\text{CH}_2\text{FC(O)}\text{CH}_3\), fluoroacetone

Measured by a static approach.\(^2\) The stated uncertainty was ±0.08%.

\(\text{CH}_2\text{ClC(O)}\text{CH}_3\), chloroacetone

Measured by a bubble-column technique.\(^1\)

\(\text{CHCl}_2\text{C(O)}\text{CH}_3\), 1,1-dichloroacetone

Measured by a static approach.\(^2\) The stated uncertainty was ±0.06%.

\(\text{CF}_3\text{C(O)}\text{CH}_3\), 1,1,1-trifluoroacetone

Measured by a bubble-column technique.\(^1\)

Note 25: Haloalcohols

CH₂FCH₂OH, fluoroethanol
Measured by a static approach.² The stated uncertainty was ±0.17%.

CHF₂CH₂OH, 2,2-difluoroethanol
Measured by a static approach.² The stated uncertainty was ±0.33%.

CF₃CH₂OH, CHF₂CF₂CH₂OH, CF₃CF₂CH₂OH
Measured using the equilibrium headspace technique.¹ Parameters derived through a linear fit to the reported data.

CHCl₂CH₂OH, 2,2-dichloroethanol
Measured by a static approach.² The stated uncertainty was ±0.67%.

Note 26: Haloaldehydes

CCl₃CHO 1,1,1-trichloroacetalddehyde (chloral). Apparent Henry’s law constant measured by head-space analysis.¹ An intrinsic Henry’s law constant of 14 mol L⁻¹ atm⁻¹ at 25°C was derived. Listed parameters from a refit to the data.

Note 27: Haloacids

CFH₂C(O)OH
Equilibrium partial pressure of the acid obtained using a stripping technique over a solution containing 0.15 mol kg⁻¹ HBr to suppress dissociation. Reported values corrected for the effect on the activity of the solution.¹ Due to high toxicity, only a single determination was made for this acid.

CF₂HC(O)OH
Equilibrium partial pressure of the acid obtained using a stripping technique over a solution containing 0.15 to 6.0 mol kg⁻¹ HBr to suppress dissociation.¹ Reported values corrected for the effect on the activity of the solution.

CF₃C(O)OH, trifluoroacetic acid
Values derived at 178, 288, and 298 K from the simultaneous measurement of the equilibrium partial pressures of TFA over aqueous solutions and the concentration of undissociated TFA in solution using total reflection IR spectroscopy.² The previous recommended value from the equilibrium partial pressure of the acid obtained using a stripping technique over a solution containing HBr to suppress dissociation, assuming a pKₐ value of 0.47 at 298 K.¹ The results of Kutsuna and Hori suggest a pKₐ value of 0.2. It has been pointed out that are large discrepancies in reported pKₐ values for TFA, which are not fully understood.³

CCl₂C(O)OH and CCl₃C(O)OH
Equilibrium partial pressure of the acid obtained using a stripping technique over a solution containing 0.15 to 6.0 mol kg⁻¹ HBr to suppress dissociation. Reported values corrected for the effect on the activity of the solution.¹

CCl₃C(O)OH
Equilibrium partial pressure of the acid obtained using a stripping technique over a solution containing 0.25 to 6.0 mol kg$^{-1}$ HBr to suppress dissociation. Reported values corrected for the effect on the activity of the solution.1

CClF$_2$C(O)OH and CBrF$_2$C(O)OH

Equilibrium partial pressure of the acid obtained using a stripping technique over a solution containing 0.15 to 6.0 mol kg$^{-1}$ HBr to suppress dissociation. Reported values corrected for the effect on the activity of the solution.1

CBr$_3$C(O)OH

Equilibrium partial pressure of the acid obtained using a stripping technique over a solution containing 0.15 to 6.0 mol kg$^{-1}$ HBr to suppress dissociation. Reported values corrected for the effect on the activity of the solution.1

Only a few measurements at 308 K and one at 298 K were made. The reported value of B is the mean of those for CF$_3$C(O)OOH and CCl$_3$C(O)OOH.1

Note 28: Haloacetates

CF$_3$C(O)OCH$_3$, methyl trifluoroacetate

Parameters derived from a linear fit to the reported data from a column-stripping study. A hydrolysis rate constant of $10^{5.3±2.0}\exp\left[(5.07±1.27) \times 10^3/T\right]$ s$^{-1}$ was also obtained.2

CF$_3$CH$_2$OC(O)H, 2,2,2-trifluoroethyl acetate

Value measured using a column-stripping method.1

CH$_3$C(O)OCH$_2$CF$_3$, 2,2,2-trifluoroethyl acetate

Parameters derived from a linear fit to the reported data from a column-stripping study. The hydrolysis rate constant was too slow to measure.2

C$_2$H$_5$OC(O)CF$_3$, ethyl trifluoroacetate

Value measured using a column-stripping method.1

Note 29: Halogens

Cl

From the reduction potential $E^\circ(\text{Cl}/\text{Cl}^-) = (2.43 ± 0.03)$ V, together with the Gibbs energy for the anion and the gas-phase atom. The potential was derived from an analysis of the reaction of OH with Cl$^-$, yielding the equilibrium constant for OH + Cl$^-$ + H$^+$ \leftrightarrow H$_2$O + Cl (K$_{eq} = 1.1 \times 10^5$ M$^{-2}$, corrected to a standard state of water at unit activity),8 and the reduction potential $E^\circ(\text{OH}^-/\text{H}_2\text{O}) = (2.73 ± 0.02)$ V.7

Cl$_2$

Three-parameter refit to the recommendation of Battino.3 Two parameter fit gives A = 9.38 and B = 2090 K for the temperature range 283–313 K. A more recent study in which the chlorine solubility was determined by measuring the total molecular chlorine concentration in contact with pure chlorine gas resulted in values of 0.11 mol L$^{-1}$ atm$^{-1}$ at 10°C, 0.074 at 20°C, and 0.052 at 30°C.1

5-176
The results of Kelley and Tartar\(^6\) and Jenkins and King\(^5\) agree well below about 313 K, and with the 298 K point of Hill et al.\(^4\) Recommendation based on a two-parameter fit to all data at and below 308 K.

BrCl

The recommendation is from the work of Barlett and Margerum.\(^2\)

Note 30: Inorganic Halogen Species

ClO

From the reduction potential E(ClO/ClO\(^-\)) = (1.41 ± 0.02)V, which is based on an equilibrium with carbonate at high pH and ionic strength.\(^5\) This was combined with the Gibbs energy of the anion and the gas-phase radical to obtain the free energy of solution. Due to the high ionic strength, 3 M, it was not possible to correct the potential value and obtain a reduction potential for the standard state. Thus, the derived Henry’s law constant must be considered uncertain.

ClO\(_2\)

Fit to recommendation of Wilhelm et al.\(^7\) Data appear somewhat uncertain.

HOCI

Two-parameter fit to the recommendation of Battino.\(^1\)

HOBr

The Henry’s law constant was estimated to be more than twice that of HOCI based on a study of the effective Henry’s law constant for free bromine from a stripping column.\(^2\)

Note 31: Inorganic Sulfur Species

SO\textsubscript{2}
The recommendation of Battino1 was accepted and refit to a three-parameter equation. The earlier recommendation of Edwards et al.3 is slightly lower. A two parameter fit gives $A = -9.53$ and $B = 2930$ K for the temperature range 278–298 K. New value of $h_{SO_{2},0}$ from absorption equilibria studies in aqueous HCl and NaCl solutions.5 Temperature dependence, h_γ, from the optimization of Weisberger and Schumpe.10

H\textsubscript{2}S
In the recommendation of Fogg,5 two expressions were given, representing the results above and below 283 K. The predicted values from these expressions were calculated, with the points at 283 K averaged, converted to the desired units, and then fit with the two- and three-parameter expressions. These are the recommended values. More recent results of Rinker and Sandall2 and Munder et al.6 are slightly lower; in these studies, the physical solubility of H\textsubscript{2}S was determined through measurements involving aqueous solutions of glycols or amines, neutralized with HCl. The reported values of De Bruyn et al.2 are significantly (~30\%) lower. The earlier recommendation of Edwards et al.3 is very close to the recommendation of Fogg5, as is the recommendation of Yaws et al.12 The room temperature point calculated from the NBS Thermodynamic tables Wagman et al.9 is also slightly lower. The work of De Bruyn et al.2 covered also a wide range of NaCl and (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} concentration and of pH. Salt effect parameters derived from the solubility of gases in liquid water. The work of De Bruyn et al.2 covered also a wide range of NaCl and (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} concentration and of pH. Salt effect parameters taken from the optimization of Weisberger and Schumpe.10

CS\textsubscript{2}
The recommendation is from a fit to data of Elliott,4 who also present data in 0.5 mol L-1 NaCl. The results of De Bruyn et al.2 are significantly (50\%) lower. The work of De Bruyn et al.2 covered also a wide range of NaCl and (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} concentration and of pH. Salt effect parameters derived from the ratio of the solubility of CS\textsubscript{2} in water and 0.5 M NaCl.3 At 278 K, $k_\gamma = 0.184$ M-1, compared to 0.150 M-1 from the results of De Bruyn, et al. Note also De Bruyn, et al.2 obtained $k_\gamma = 0.410$ M-1 for (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}, whereas these parameters would predict 0.261 M-1.

COS
The reviews by Wilhelm et al.11 and Yaws et al.12 result in identical values over the low temperature range (<303 K) and are combined to generate the recommendation. The results of De Bruyn et al.2 are somewhat (~25\%) lower at the lower temperature range. The work of De Bruyn et al.2 covered also a wide range of NaCl and (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} concentration and of pH.

Note 32: Organic Sulfur Species

CH₃SH
The recommendation is based on the data of Przyjazny et al.² Results of De Bruyn et al.³ are about half the recommended value at 298 K. The work of De Bruyn et al.³ covered a wide range of pH and NaCl and (NH₄)₂SO₄ concentrations. At 298 K, they obtained Kₛ = 0.314 M⁻¹ for (NH₄)₂SO₄ and Kₛ = 0.143 M⁻¹ for NaCl. From the latter, we calculate hₒ = 0.003 M⁻¹; the values for (NH₄)₂SO₄ from this work have tended to be high.

C₂H₂SH
The recommendation is based on the data of Przyjazny et al.² The results of Vitenberg⁶ are slightly lower than the extrapolated value at 293 K.

CH₃SCH₃
The recommendation is based on the values of Dacey et al.² The single temperature point of Wong and Wang⁴ and the higher temperature results of Przyjazny et al.⁴ are in good agreement. The results of De Bruyn et al.³ are about 30% lower. A more recent value of 0.47 M atm⁻¹ at 298 K, in good agreement with the value recommended here, was obtained by a dynamic gas stripping approach coupled to a mass spectrometer.⁵ The studies of Dacey et al.² and Wong and Wang⁴ were also carried out with seawater. The work of De Bruyn et al.³ covered also a wide range of NaCl and (NH₄)₂SO₄ concentration and of pH. Salt effect parameters based on the values of Dacey et al.² for Sargasso sea water from 0 to 29 C. The values for K₋₂ obtained by Wong and Wang⁴ for sea water from 18 to 44 C are in good agreement. Dacey et al.² also measured K₋₂ at 18 C for NaCl solutions up to 32%. For the 10–32% data, a value of Kₛ = 0.117 M⁻¹ can be derived, in good agreement with the predicted value of 0.113 M⁻¹. The 278 K value of Kₛ = 0.180 M⁻¹ obtained by De Bruyn et al.³ is somewhat larger. Note also the De Bruyn, et al.³ obtained Kₛ = 0.332 M⁻¹ for (NH₄)₂SO₄, whereas these values would predict 0.223.

CH₃SC₂H₅, C₂H₅SC₂H₅, CH₃CH₂CH₂SCH₃, higher alkyl sulfides
Obtained by a dynamic gas stripping approach coupled to a mass spectrometer.⁵ An uncertainty of ±0.03 M atm⁻¹ was estimated for CH₃SC₂H₅, of ±0.01 M atm⁻¹ for C₂H₅SC₂H₅, and ±0.02 M atm⁻¹ for CH₃CH₂CH₂SCH₃.

CH₃S(O)CH₃
The recommendation is from Watts and Brimblecombe⁷ cited by Allen et al.¹

CH₃NCS, methyl isothiocyanate
Measured by stripping technique in pure water.⁹ Measurements in NaCl and buffer solutions tended to be lower (0.1 M NaCl, 9 M atm⁻¹; 0.2 M, 7 M atm⁻¹).

CH₃SSCH₃ and C₂H₅SSC₂H₅
Obtained by a dynamic gas stripping approach coupled to a mass spectrometer.⁵ An uncertainty of ±0.04 M atm⁻¹ was estimated for CH₃SSCH₃ and ±0.03 M atm⁻¹ for C₂H₅SSC₂H₅.

Note 33: Mercury Species
Hg, Mercury
A direct measurement of the partitioning between the gas and aqueous phases, carried out in the presence of added SnCl₂ as a reducing agent.¹

5.19 Bibliography – Table 5-4

Buxton, G. V.; Salmon, G. A.; Wang, J. The equilibrium $\text{NO}_3 + \text{Cl}^{-} \rightleftharpoons \text{NO}_3^- + \text{Cl}$: A laser flash photolysis and pulse radiolysis study of the reactivity of NO_3 with chloride ion in aqueous solution. *Phys. Chem. Chem. Phys.* **1999**, *1*, 3589-3593.

5-184

Table 5-5. Ion-Specific Schumpe Parameters

<table>
<thead>
<tr>
<th>Cation</th>
<th>h_i</th>
<th>Anion</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$^+$</td>
<td>0</td>
<td>OH$^-$</td>
<td>0.0839</td>
</tr>
<tr>
<td>Li$^+$</td>
<td>0.0754</td>
<td>HS$^-$</td>
<td>0.0851</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>0.1143</td>
<td>F$^-$</td>
<td>0.092</td>
</tr>
<tr>
<td>K$^+$</td>
<td>0.0922</td>
<td>Cl$^-$</td>
<td>0.0318</td>
</tr>
<tr>
<td>Rb$^+$</td>
<td>0.0839</td>
<td>Br$^-$</td>
<td>0.0269</td>
</tr>
<tr>
<td>Cs$^+$</td>
<td>0.0759</td>
<td>I$^-$</td>
<td>0.0039</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>0.0556</td>
<td>NO$_3^-$</td>
<td>0.0795</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>0.1694</td>
<td>NO$_3^-$</td>
<td>0.0128</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>0.1762</td>
<td>ClO$_3^-$</td>
<td>0.1348</td>
</tr>
<tr>
<td>Sr$^{2+}$</td>
<td>0.1881</td>
<td>BrO$_3^-$</td>
<td>0.1116</td>
</tr>
<tr>
<td>Ba$^{2+}$</td>
<td>0.2168</td>
<td>IO$_3^-$</td>
<td>0.0913</td>
</tr>
<tr>
<td>Mn$^{2+}$</td>
<td>0.1463</td>
<td>ClO$_4^-$</td>
<td>0.0492</td>
</tr>
<tr>
<td>Fe$^{2+}$</td>
<td>0.1523</td>
<td>IO$_4^-$</td>
<td>0.1464</td>
</tr>
<tr>
<td>Co$^{2+}$</td>
<td>0.168</td>
<td>CN$^-$</td>
<td>0.0679</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>0.1654</td>
<td>SCN$^-$</td>
<td>0.0627</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>0.1675</td>
<td>HCrO$_4^-$</td>
<td>0.0401</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>0.1537</td>
<td>HCO$_3^-$</td>
<td>0.0549</td>
</tr>
<tr>
<td>Cd$^{2+}$</td>
<td>0.1869</td>
<td>CO$_3^{2-}$</td>
<td>0.1423</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>0.2174</td>
<td>HPO$_4^{2-}$</td>
<td>0.1499</td>
</tr>
<tr>
<td>Cr$^{3+}$</td>
<td>0.0648</td>
<td>SO$_3^{2-}$</td>
<td>0.127</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>0.1161</td>
<td>SO$_4^{2-}$</td>
<td>0.1117</td>
</tr>
<tr>
<td>La$^{3+}$</td>
<td>0.2297</td>
<td>S$_2$O$_3^{2-}$</td>
<td>0.1149</td>
</tr>
<tr>
<td>Ce$^{3+}$</td>
<td>0.2406</td>
<td>PO$_4^{3-}$</td>
<td>0.2119</td>
</tr>
<tr>
<td>Th$^{4+}$</td>
<td>0.2709</td>
<td>Fe(CN)$_6^{3-}$</td>
<td>0.3574</td>
</tr>
</tbody>
</table>

The values in this table can be used to estimate the solubility of a gas in various mixed electrolyte solutions, even if these data have not been obtained experimentally for all of the ions. For example, the solubility of ozone in a solution of 0.8 M HCl and 1.2 M Na$_2$SO$_4$ at 273 K would be estimated as follows:

First, H$^o = 0.024$ M atm$^{-1}$ at 273 K, from the Henry’s Law Table; from the same Table, the gas-specific parameters for ozone are $h_{G,o} = 0.00396$ M$^{-1}$ and $h_T = 1.79 \times 10^{-3}$ M$^{-1}$ K$^{-1}$, thus:

$$k_G = 0.00396 + 1.79 \times 10^{-3} \times (273 - 298) = -0.0408 \text{ M}^{-1}$$

The specific ion parameters from Table 5-4 are corrected by this value to calculate the change in the logarithm of the Henry’s law constant

$$\log (H^o/H_T) = 2 \times 1.2 \times (0.1143 - 0.0408) \text{ M}^{-1} + 1.2 \times (0.1117 - 0.0408) \text{ M}^{-1} +$$

$$0.8 \times (0 - 0.0408) \text{ M}^{-1} + 0.8 \times (0.0318 - 0.0408) \text{ M}^{-1} = 0.181$$

Thus, $(H^o/H_T) = 1.517$

$$H = 0.024 \text{ M atm}^{-1}/1.517 = 0.016 \text{ M atm}^{-1}$$ for O$_3$ in this salt solution at 273 K.
Table 5-6. Henry’s Law Constants for Acids

<table>
<thead>
<tr>
<th>Species</th>
<th>T(K)</th>
<th>Wt.% H₂SO₄</th>
<th>H or H⁺ (M/atm)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ in H₂SO₄+nH₂O(l)</td>
<td>293</td>
<td>1–70</td>
<td>(\ln(H_2/H) = (4.08 \pm 0.2) \times 10^{-3} \times \text{wt}) (H_2 = 0.012 \text{ M atm}^{-1}) wt is the H₂SO₄ wt%</td>
<td>1</td>
</tr>
<tr>
<td>NO₂ in H₂SO₄+nH₂O(l)</td>
<td>203–343</td>
<td>39–68</td>
<td>See Note</td>
<td>2</td>
</tr>
<tr>
<td>HONO in H₂SO₄+nH₂O(l)</td>
<td>248–298</td>
<td>>80</td>
<td>In (H^+ = a_1 + a_2 \text{ wt} + a_3 \text{ wt}^2 + (b_1 + b_2 \text{ wt})/T) (a_1 = 26.1 \pm 9.4, a_2 = -1.095 \pm 0.21, a_3 = 0.00732 \pm 0.00121) (b_1 = -5792 \pm 1610, b_2 = 181.3 \pm 24)</td>
<td>3</td>
</tr>
<tr>
<td>HNO₃ in H₂SO₄+nH₂O(l)</td>
<td>~195–300</td>
<td>0–80</td>
<td>See Note</td>
<td>4</td>
</tr>
<tr>
<td>HNO₃ and HCl in H₂SO₄+mHNO₂+mHCl(l)</td>
<td>~195–300</td>
<td>0–80</td>
<td>See Note</td>
<td>4</td>
</tr>
<tr>
<td>HO₃NO₂ in H₂SO₄+nH₂O(l)</td>
<td>201–230</td>
<td>50–75</td>
<td>In (H = 3.69 -m\text{H}_2\text{SO}_4 \times (-0.25 + 65/T) - 8400 \times (1/T_0 - 1/T)) (\text{mH}_2\text{SO}_4) is the molality of the H₂SO₄ solution, (T_0 = 298.15 \text{ K})</td>
<td>5</td>
</tr>
<tr>
<td>CH₂O in H₂SO₄+mHNO₂+mH₂O(l)</td>
<td>240–300</td>
<td>10–85 also 8–40 wt.% HNO₃</td>
<td>See Note</td>
<td>6</td>
</tr>
<tr>
<td>CH₃OH in H₂SO₄+nH₂O(l)</td>
<td>197–223</td>
<td>40–85</td>
<td>See Note</td>
<td>7</td>
</tr>
<tr>
<td>CH₃CH₂OH in H₂SO₄+nH₂O(l)</td>
<td>209–237</td>
<td>39–76</td>
<td>See Note</td>
<td>8</td>
</tr>
<tr>
<td>CH₃CHO in H₂SO₄+nH₂O</td>
<td>211–241</td>
<td>30–76</td>
<td>See Note</td>
<td>9</td>
</tr>
<tr>
<td>CH₃C(O)CH₃ in H₂SO₄-nH₂O(l)</td>
<td>198–298</td>
<td>10–80</td>
<td>In (H^+ = a_1 + a_2 \text{ wt} + a_3 \text{ wt}^2 + (b_1 + b_2 \text{ wt} + b_3 \text{ wt}^2)/T) wt is the H₂SO₄ wt%, (a_1 = -21.438 \pm 4.31, a_2 = -0.32163 \pm 0.207, a_3 = 0.0072935 \pm 0.00235) (b_1 = 7292 \pm 1220, b_2 = 33.524 \pm 53.42, b_3 = -0.975 \pm 0.571)</td>
<td>10</td>
</tr>
<tr>
<td>CH₃C(O)OCH₃ in H₂SO₄-nH₂O(l), H₂SO₄-nH₂O(l)</td>
<td>199–295</td>
<td>0–75</td>
<td>In (H^+ = 1.07 -m\text{H}_2\text{SO}_4 \times (0.69 - 152/T) - 5810 \times (1/T_0 - 1/T)) (\text{mH}_2\text{SO}_4) is the molality of the H₂SO₄ solution, (T_0 = 298.15 \text{ K})</td>
<td>11</td>
</tr>
<tr>
<td>CF₂O in H₂SO₄+nH₂O(l)</td>
<td>215–230</td>
<td>60</td>
<td><5</td>
<td>12</td>
</tr>
<tr>
<td>CF₃OH in H₂SO₄+nH₂O(l)</td>
<td>250</td>
<td>40–50</td>
<td>>240 210</td>
<td>13</td>
</tr>
<tr>
<td>HOCI in H₂SO₄+nH₂O(l)</td>
<td>200–300</td>
<td>46–80</td>
<td>(H_{\text{HOCI}} = 1.91 \times 10^{-6} \times \exp(5682.4/T) \times \exp(-S_{\text{HOCI}} M_{\text{H}2\text{SO}4}) \text{ M atm}^{-1}) (S{\text{HOCI}} = 0.0776+59.18/T \text{ M}^{-1}, M{\text{H}_2\text{SO}_4}) molar conc.</td>
<td>14</td>
</tr>
<tr>
<td>ClONO₂ in H₂SO₄+nH₂O(l)</td>
<td>200–265</td>
<td>40–75</td>
<td>(H_{\text{ClONO}2} = 1.6 \times 10^{-6} \times \exp(4710/T) \times \exp(-S{\text{ClONO}2} M{\text{H}_2\text{SO}4}) \text{ M atm}^{-1}) (S{\text{ClONO}2} = 0.306 + 24.0/T \text{ M}^{-1}, M{\text{H}_2\text{SO}_4}) molar conc.</td>
<td>15</td>
</tr>
<tr>
<td>HBr in H₂SO₄+nH₂O(l) and H₂SO₄+mHNO₂+mH₂O(l)</td>
<td>200–240</td>
<td>40–72</td>
<td>In (H^+ = a_1 + (b_1 + b_2 \text{ wt})/T) (a_1 = -11.695 \pm 0.537, b_1 = 11.101 \pm 163, b_2 = -90.7 \pm 1.2)</td>
<td>16</td>
</tr>
<tr>
<td>HOBr in H₂SO₄+nH₂O(l)</td>
<td>201–252</td>
<td>45–252</td>
<td>See Note</td>
<td>17</td>
</tr>
<tr>
<td>SO₂ in H₂O(l), H₂SO₄+nH₂O(l)</td>
<td>193–242</td>
<td>0–97</td>
<td>In (H^+ = a_1 + a_2 \text{ wt} + a_3 \text{ wt}^2 + (b_1 + b_2 \text{ wt} + b_3 \text{ wt}^2)/T), (\text{wt}) is the H₂SO₄ wt%, (a_1 = -10.778 \pm 2.07, a_2 = -0.11541 \pm 0.0827, a_3 = 0.0012506 \pm 0.000811) (b_1 = 3310 \pm 578, b_2 = 30.581 \pm 22.2, b_3 = -0.3569 \pm 0.209)</td>
<td>18</td>
</tr>
</tbody>
</table>
5.20 Notes to Table 5-6

1. **O₃ in H₂SO₄•nH₂O(l).** Bubble train uptake measurements where performed by Rattigan et al.¹ at 293 K for 1–70 wt% H₂SO₄. Recommended expression is a Sechenov coefficient formulation where H = 0.012 M atm⁻¹ is the 293 K value of H for pure water from Wilhelm et al.² In the measurement, account was taken of the loss of O₃ due to reaction with H⁺.

 Back to Table

2. **NO₂ in H₂SO₄•nH₂O(l).** Langenberg et al.¹ present novel capillary gas chromatography measurements for 39, 59, and 68 wt% H₂SO₄ over the temperature range of 203 to 243 K. However, NO₂ solubility must be derived from chromatographic waveforms, which are contorted by much higher N₂O₄ solubility. The resulting values for H₂SO₄ are in the 1 to 10¹² range, but show inconsistent trends with temperature and concentration, indicating possibly large systematic error.

 Back to Table

3. **HONO in H₂SO₄•nH₂O(l).** Becker et al.¹ measured HONO partial pressure, P_HONO, over bulk solutions in a temperature range of 248–298 K and a H₂SO₄ concentration range of 0–67 wt%. Longfellow et al.² measured P_HONO in a wetted wall flow reactor over a temperature range of 218–295 K and an acid concentration range of 60–83 wt%. Agreement between these two data sets is excellent. H⁺ decreases from 0 wt% to 53 wt% due to physical solubility, then increases above 53 wt% due to protonation and/or association with H₂SO₄ to make nitrosoyl sulfuric acid. Becker et al. parameterized their data as a function of sulfuric acid wt% and temperature. However, the Becker et al. parameterization is not able to fit the combined sets of Becker et al.¹ and Longfellow et al.² data, particularly at the lower temperatures and higher wt% most relevant to the stratosphere. Therefore, the recommended functional form was used to fit the combined sets of data for >60 wt%. This function fits both sets of data very well. It is important to note that this function is only valid for H₂SO₄ concentrations near 60 wt% and above. The parameterization in Becker et al.¹ should be used to calculate H for H₂SO₄ concentrations <60 wt%. (Note that the units for H are mol/kg-bar in Becker et al.¹ The density parameterization of Myhre et al.³ was used to convert to M/atm units.)

 Back to Table

4. **HNO₃ and HCl in H₂SO₄•nH₂O(l) and H₂SO₄•nHNO₃•nH₂O(l).** Effective Henry’s law coefficients, H⁺, for HNO₃, and HCl in binary H₂SO₄/H₂O and ternary H₂SO₄/HNO₃/H₂O solutions over the temperature range 195 to 300 K are required to model the composition and heterogeneous chemistry of stratospheric and upper tropospheric aerosols. Solubility data can be obtained from analysis of heterogeneous uptake experiments with the liquid phase diffusion coefficient estimated from acid solution viscosity (Williams and Long¹⁵). Solubilities can also be obtained from equilibrium or from vapor pressure data.

Experimental solubility data for HNO₃ is provided by Van Doren et al.,¹² Reihs et al.,⁹ and Zhang et al.¹⁶ Data for HCl solubility is provided by Watson et al.,¹³ Hanson and Ravishankara,⁵,⁶ Zhang et al.,¹⁶ Williams and Golden,¹⁴ Abbatt,¹ Elrod et al.,⁴ and Robinson et al.¹⁰

These studies all show that trace species solubility in H₂SO₄/H₂O and H₂SO₄/HNO₃/H₂O solutions is a strong function of water activity, which, in turn, depends on both temperature and acid concentrations. Prediction of
HNO₃ and HCl H⁺ values for atmospheric compositions requires a sophisticated model. Comprehensive thermodynamic models of acid solutions for a range of atmospheric conditions have been published by Carslaw et al., Tabazadeh et al., and Luo et al. These models do an excellent job of reproducing the available experimental data, even for ternary H₂SO₄/HNO₃/H₂O solutions (Elrod et al.). These models and the Carslaw et al. review should be consulted for plots/predictions of H⁺ for HNO₃ and HCl in strong acid solutions over the atmospheric temperature range. The most widely used model of Carslaw et al. was revised in Massucci et al.

Back to Table

5. HO₂NO₂ in H₂SO₄+nH₂O(l). Zhang et al. performed wetted wall flow reactor studies using CIMS to detect HO₂NO₂ uptake over a temperature range of 201–230 K and an acid concentration range of 52.9–74 wt% H₂SO₄. HD⁻ values were determined for 52.9, 58.3/59.1, 66.4 and 73.8/74 wt%, with 5 to 15 data points per temperature or temperature pair. All uptake appeared to be reversible with the variation in H strongly temperature dependent, but only moderately dependent on H₂SO₄ wt%. D₁ values were calculated from a cubic cell model to derive H. Uncertainties in measured H values were estimated by authors to be 25% for H <1 × 10⁶ M atm⁻¹ and 50% for H >1 × 10⁶ M atm⁻¹. These data were parameterized by Leu and Zhang in the Sechenov coefficient form adopted by Huthwelker et al. for HOCl, and their formulation is recommended.

Back to Table
6. CH₂O in H₂SO₄•mHNO₃•nH₂O(l). The recommended Henry’s Law relationship is:

\[H^* = H(1 + K_2a_{H_2O} + K_3a_{H^+}) \]

where: \(H = 3.4 \times 10^{-5} \exp \left[-\frac{-0.0456 + 55.5}{T}\right] \) (0.46 \(m_{H_2SO_4} + 0.13 \) \(m_{HNO_3} \)) M atm⁻¹, \(T \) is the temperature in K, and \(m_{H_2SO_4} \) and \(m_{HNO_3} \) are the respective acid molalities; \(K_2 = \exp \left(4020/T - 5.83\right) \) M⁻¹, \(K_3 = 0.56 \exp \left[8.84 - (T-260)/T\right] \) M⁻¹, and \(a_{H_2O} \) and \(a_{H^+} \) are the water and \(H^+ \) activities which are obtained from a thermodynamic model of the solution, e.g. Carslaw et al.¹ Valid for 10–85 wt% \(H_2SO_4 \), 8–40 wt% \(HNO_3 \), \(T = 240–300 \) K.

Knudsen cell studies by Tolbert et al.⁴ and Iraci and Tolbert² and droplet train/flow reactor studies by Jayne et al.³ all yield data showing that CH₂O is strongly absorbed by sulfuric acid solutions, and Jayne et al. also provide data for ternary acid solutions. The Jayne et al.³ study included \(H_2SO_4 \) concentrations from 10 to 85 wt% and \(HNO_3 \) concentration between 8 and 40 wt% with temperature variations from 241 to 300 K. These data were parameterized with three terms, representing physical CH₂O solubility, reversible hydrolysis to \(CH_3OH_2 \), important in more dilute solutions, and reversible formation of \(CH_3O^- \), dominant at high acidities. The Jayne et al.³ parameterization is recommended above. The \(H^* \) data from Iraci and Tolbert² cover 49 to 95 wt% \(H_2SO_4 \) and a temperature range of 197 to 214.5 K and are in fair agreement with extrapolation of \(H^* \) expression from Jayne et al.³ for concentrations below ~75 wt%. However, the Iraci and Tolbert data are taken on such thin acid films that initial uptake slopes are difficult to determine accurately and the data scatter is large. While the Iraci and Tolbert data do indicate significantly larger \(H^* \) values for \(H_2SO_4 \) concentrations above 75 wt%, the data do not compel a reformulation of the Jayne et al. parameterization.

7. CH₃OH in H₂SO₄•mH₂O(l). \(H^* \) data from Kane and Leu,³ taken over 40–85 wt% \(H_2SO_4 \) and from 210–235 K, indicate soluble uptake below 65 wt% and predominately reactive uptake to form methanesulfonic acid and dimethylsulfate above 65 wt%. Uptake decreased slightly with temperature below 65 wt% and increases slightly with temperature above. Data yield \(H^*k^{1/2} \) at high acid concentrations. Weakly temperature dependent \(\gamma_S \) of ~0.15 were measured for 65, 75, and 80 wt%. However, Knudsen cell studies by Iraci et al.¹ at 45, 61 and 72 wt% over a 197–223 K temperature range show only well behaved reversible uptake. They argue that low vapor pressures explain the lack of \(CH_3OH \) recovery for the short observation times used by Kane and Leu. They also cite three older literature studies on the reaction of methanol and ethanol at room temperature in sulfuric acid which report reaction rate constants much lower than those deduced by Kane and Leu.¹ Iraci et al. present the following parameterization of their data plus data for water:

\[\log H^* = A + 1000B/T \]

where \(A = 7.00 + \log M_{H_2O} \), \(B = 0.000619 \) m² + 0.00544 m + 2.267, \(M_{H_2O} \) is the molarity of water in the solution (mol L⁻¹) and \(m \) is the molality of the \(H_2SO_4 \) (moles \(H_2SO_4 \) per kg \(H_2O \)).

Note that this parameterization is based only on the Iraci et al. data. A reanalysis of the Kane and Leu³ results to provide additional data in the 40–72 wt% range, and \(H^* \) values for higher wt% should be undertaken to validate and extend the Iraci et al. data.
Iraci et al.2 used infrared spectroscopy to monitor the production of gas phase methyl nitrate, CH$_3$ONO$_2$, from the bulk reaction of ternary sulfuric acid/nitric acid/water solutions with 0.00005–0.005 M CH$_3$OH in 50.5 to 63.6 wt\% H$_2$SO$_4$ with 0.03–0.21 M HNO$_3$ between 278.2 and 328.6 K. This reaction may complicate determinations of Henry’s law solubility of methanol in ternary acid solutions when sulfuric acid concentrations are high enough (probably >70 wt\%) to produce high levels of NO$_2^*$, the assumed nitrating agent.

Back to Table

8. \textbf{CH$_3$CHO in H$_2$SO$_4$•nH$_2$O (I)}. Michelsen et al.1 reported Knudsen cell ethanol uptake experiments for 36–76 wt\% H$_2$SO$_4$ over a 209–237 K temperature range as well as equilibrium ethanol vapor pressure measurements for 0.5 M ethanol in 59.1 wt\% acid between 214.3 and 230.8 K and 0.1 M ethanol in 38.5 wt\% acid between 214.0 and 223.9 K. Henry’s law solubility parameters from the two methods agreed well. Solubility increased dramatically with increasing acid wt\% and decreasing temperature. Michelsen et al. present the following parameterization of their data:

\[\log H^* = A + 1000B/T \]

where \(A = \Delta S^\circ/2.303R + \log M_{H_2O}, \) \(B = 5.319 (\chi_{acid})^2 + 0.812 (\chi_{acid}) + 2.647, \) and \(\Delta S^\circ = -174 \text{ J mol}^{-1} \text{ K}^{-1}, \)
\(M_{H_2O} \) is the molarity of water in the solution calculated at 220K (mol L$^{-1}$) and \(\chi_{acid} \) is the mole fraction of sulfuric acid in the solution. Representative values of these parameters are presented in Table 2 of Michelsen et al.1 Williams et al.3 performed Knudsen cell H* measurements on the effect of 0.1M acetone on the uptake of ethanol by 38.4 wt\% H$_2$SO$_4$ at 219.1 K yielding \(H^* = (2.2 \pm 0.1) \times 10^7 \text{ M atm}^{-1} \) in good agreement with values without added acetone reported by Michelsen et al.1 and Timonen and Leu;2 indicating no effect of added acetone.

Timonen and Leu2 calculated H* values from their uptake coefficients on 41.1 wt\% H$_2$SO$_4$ that are in moderate agreement with the Michelsen et al. parameterization.

Back to Table

9. \textbf{CH$_3$CHO in H$_2$SO$_4$•nH$_2$O (I)}. Michelsen et al.1 reported Knudsen cell acetaldehyde uptake experiments for 39–76 wt\% H$_2$SO$_4$ over a 211–241 K temperature range. Tabulated H* values for 37 experiments covering four acid concentrations ranged from 2×10^{5} to $1.5 \times 10^{8} \text{ M atm}^{-1}$; with highest values at highest acid concentration and lowest temperatures. Data for the highest acid concentrations (~76 wt\% H$_2$SO$_4$) generally indicated simple solubility behavior, while some measurements at lower acid concentrations (39–66 wt\%) showed indications of reactive uptake.

Williams et al.2 performed Knudsen cell H* measurements on the effect of 0.1M ethanol or acetone on the uptake of acetaldehyde, reproducing a few temperatures and acid concentrations used for the data reported in Michelsen et al.1 The solubility of acetaldehyde in acid with 0.1 M ethanol or 0.1 M acetone was nearly an order of magnitude higher than the corresponding organic free measurements. Two measurements at 216.1 and 226.8 K with 0.0016 M formaldehyde added to 38.5 wt\% H$_2$SO$_4$ showed no H* enhancement over organic free measurements but time resolved uptake measurements showed evidence for enhanced reactive uptake.
10. CH$_2$C(O)CH$_3$ in H$_2$SO$_4$•nH$_2$O(l). Duncan et al.2,3 used IR spectra of thin sulfuric acid films to establish that acetone is absorbed as the protonated species. Above 70 wt% protonated acetone undergoes a self-condensation/dehydration reaction to form protonated mesityl oxide, which, in turn, reacts with an additional protonated acetone to form trimethyl benzene. Duncan et al.3 measured reversible uptake and derived Henry’s law constants for 70 wt% H$_2$SO$_4$ at 180, 187 and 195 K and a value at 201 K for 76 wt%. Kane et al.6 measured uptake in a wetted wall flow reactor and derived H* parameters for 40, 50, 65, and 75 wt% over a much wider temperature range than Duncan et al.3. Their data diverge above 80 wt% which they attribute to reactive uptake as suggested by Duncan et al.2,3 Klassen et al.7 provide Knudsen cell uptake derived data for 48.7 to 78.3 H$_2$SO$_4$ wt% between 210 and 240 K that are generally consistent with that of Kane et al.6 Imamura and Akiyoshi5 report wetted wall flow reactor H* measurements at 230 K for 50 and 60 wt%, 250 K for 60, 69 and 76 wt%, and 270 K for 76 and 79 wt%; their data diverges a factor of 2 to 4 from that of Kane et al.6 and Klassen et al.7

Equally weighted data sets from Kane et al.6 and Klassen et al.7 were combined and fit to generate the recommended parameterization. Two points for the solubility of acetone in water at 298 K and 273 K (Benkelberg et al.1) were included to improve the extrapolation to low wt% solutions. The data points from Imamura and Akiyoshi5 were not included because they were inconsistent with the other data and have a very different temperature dependence. The few data points from Duncan et al.2,3 are also inconsistent with the other data and were not included in the parameterization. Using a rotating wetted-wall flow reactor Esteve and Nozière4 measured H* coefficients at 298 ± 3 K for 89.4, 85, 80.8 73.9 and 70 wt% H$_2$SO$_4$, reporting values of 840, 650, 500, and 320 M atm$^{-1}$, respectively. These data are not included in the recommended parameterization since the temperature/wt% ranges they cover are unlikely to occur in the atmosphere.

Williams et al.8 performed Knudsen cell H* measurements on the effect of 0.1 M ethanol on the uptake of acetone by 38.4 to 75.0 wt% H$_2$SO$_4$ at temperatures between 217.6 and 238.5 K, corresponding to data points previously reported by Kane et al. and Klassen et al. Their data indicated that the added ethanol had “no significant effect” on the solubility of acetone for comparable ethanol free measurements.

11. **CH$_2$C(O)O$_2$NO$_2$ in H$_2$O and H$_2$SO$_4$•nH$_2$O(l).** Zhang and Leu5 performed wetted wall flow reactor studies using CIMS to detect CH$_2$C(O)O$_2$NO$_2$ uptake over a temperature range of 199 to 226 K. Uptake studies were performed at 46, 54, 59, and 72 wt% H$_2$SO$_4$ to yield H$^+$D$_i^{1/2}$ values. D$_i$ values were calculated from a cubic cell model to derive H*. Leu and Zhang5 fit their data from Zhang and Leu,5 including water data from Kames and Schurath2 and Kames et al.3 using the Sechenov coefficient form adopted by Huthwelker for HOCl.4 This formulation is recommended for both water and sulfuric acid solutions.

Back to Table

12. **CF$_2$O in H$_2$SO$_4$•nH$_2$O(l).** Hanson and Ravishankara1 calculate an upper limit for H of CF$_2$O based on assumed solubility limit resulting in lack of measurable uptake into 60 wt% H$_2$SO$_4$.

Back to Table

13. **CF$_2$OH in H$_2$SO$_4$•nH$_2$O(l).** Lovejoy et al.1 determined reacto-diffusive lengths of >0.4 µm and 1.0 µm for CF$_2$OH uptake at 250 K on 40 and 50 wt% H$_2$SO$_4$ aerosols, respectively. This leads to H$^-$ estimates of >240 and 210 M atm$^{-1}$, respectively.

Back to Table

14. **HOCl in H$_2$SO$_4$•nH$_2$O(l).** Recommendation is from the model of Shi et al.5 which is based on wetted wall flow tube data from Hanson and Ravishankara1 and Hanson and Lovejoy2 and uptake by stirred and static solutions by Donaldson et al.1 This model incorporates newer, higher temperature data and replaces earlier recommended formulation by Huthwelker et al.4

Back to Table

3. Hanson, D. R.; Ravishankara, A. R. Reaction of ClONO$_2$ with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N$_2$O$_5$ and ClONO$_2$ on frozen sulfuric acid. *J. Geophys. Res.* 1993, 98, 22931-22936.

15. **ClONO$_2$ in H$_2$SO$_4$•nH$_2$O(l).** Recommendation is from the model of Shi et al.2 who used a measurement of the hydrolysis reaction’s reacto-diffusive length by Hanson and Lovejoy1 on 60 wt% H$_2$SO$_4$ at 250 K to derive the hydrolysis rate constant, k$_{hyd}$, and constrain H$_{ClONO2}$ at 250 K. Shi et al. fit the Hk$^{1/2}$ dependence of the ClONO$_2$ uptake coefficients for a variety of ClONO$_2$ hydrolysis and ClONO$_2$ + HCl data to derive a parameterization for H as a function of wt% and T.

5-194
16. **HBr in H$_2$SO$_4$•mHNO$_3$•nH$_2$O(l).** Experimental data for HBr solubility is provided by Williams et al.,7 Abbatt,1 Abbatt and Nowak,2 Kleffman et al.,4 and Behr et al.3 Data from time-dependent uptake measurements and from vapor pressure measurements are in good agreement after correcting for the fact that for some of the vapor pressure measurements the HBr concentration in solution was high enough to increase the acidity and thereby decrease the HBr solubility. By comparing pairs of data points with different HBr concentrations (from the same experiment), an average correction factor was obtained. The correction factor was used to correct the vapor pressure data of Williams et al.,7 Abbatt and Nowak,2 and Kleffmann et al. to zero effective HBr concentration. (This is different than the approach taken in Kleffmann et al. of using a “corrected” H$_2$SO$_4$ wt%%. However, the resulting parameterization is very similar to the one in Kleffmann et al.4) The time-dependent uptake data of Williams et al.7 and Abbatt,1 and the molecular beam uptake data of Behr et al.3 did not require correction. All of the experimental data have been fit to obtain the recommended parameterization as a function of H$_2$SO$_4$ wt% and temperature. Agreement between this parameterization and the updated activity coefficient model of Massucci et al.6 (and http://www.hpc1.uea.ac.uk/~e770/aim.html) is good for >60 wt%, but not very good at lower H$_2$SO$_4$ wt%, particularly at low temperatures. Therefore, this parameterization is recommended for calculating HBr Henry’s law solubilities. The only data for HBr solubilities in ternary solutions is from Kleffmann et al.4 The data do not agree well with the updated activity coefficient in Massucci et al.4 or with the older activity coefficient model in Luo et al.5 Until further information becomes available, the recommendation is to use the parameterization for ternary solutions given in Kleffmann et al.4

17. **HOBr in H$_2$SO$_4$•nH$_2$O(l).** HOBr solubility measurements have been reported from coated wall flow reactor uptake studies by Waschewsky and Abbatt3 and Hanson4 and from Knudsen cell uptake studies from Iraci et al.2 Although they were performed in different temperature ranges, extrapolations of Hanson’s higher temperature data to the temperature range investigated by Waschewsky and Abbatt predicted much higher HOBr solubility than they measured. Iraci et al. subsequently measured HOBr uptake over both of the temperature ranges covered in the prior experiments. Their data agreed well with data from Waschewsky and Abbatt3 at lower temperatures (213–238 K) but fall far below Hanson’s higher (250–270 K) temperature measurements. The Iraci et al. measurements were performed at ~45, 55, 61 and 70 wt% H$_2$SO$_4$ and investigated over the temperature range from 201 to 252 K. Their results, like the earlier studies, indicate that
the dependence of H* on acid concentration is relatively weak. For H$_2$SO$_4$ acid wt% from 55 to 75, H* is well described by: log H* = (2349 ± 280)/T – (5.27 ± 1.24). Their ~45 wt% data are fit by: log H* = (3665 ± 270)/T – (10.63 ± 1.23).

Back to Table

18. SO$_2$ in H$_2$SO$_4$•nH$_2$O(l). Room temperature vapor pressure measurements reviewed by Hayduk et al. and bubble train reactor uptake measurements by Rattigan et al. for 0–70 wt% H$_2$SO$_4$ agree very well. Langenberg et al. used a novel capillary gas chromatography technique to deduce H* values for 41–83 wt% H$_2$SO$_4$ over a temperature range of 193–242 K. The recommended parameterization is a fair fit to the Rattigan et al. and Langenberg et al. data sets and allows reasonable extrapolation over the full range of atmospheric temperatures. Note that the Langenberg et al. data is in mol/kg-bar units and was converted to mole/l units using the density parameterization of Myhre et al.

Back to Table

5.21 Bibliography – Table 5-6

Table 5.7. Henry’s Law Values for Gas Solubility into Sea Water

\[\text{Ln } H = A + \frac{B}{T} \text{ (M atm}^{-1}) \]

<table>
<thead>
<tr>
<th>Substance</th>
<th>Temperature Range, K</th>
<th>(H(298 \text{ K})) (M atm(^{-1}))</th>
<th>A</th>
<th>B (K)</th>
<th>Uncertainty Range</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(_2)O</td>
<td>272–313</td>
<td>0.021</td>
<td>-12.65</td>
<td>2620</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>273–297</td>
<td>8.1 \times 10^{-4}</td>
<td>-11.89</td>
<td>1420</td>
<td>III</td>
<td>1</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>272–297</td>
<td>0.028</td>
<td>-12.21</td>
<td>2580</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>288–308</td>
<td>0.0012</td>
<td>-10.26</td>
<td>1050</td>
<td>III</td>
<td>2</td>
</tr>
<tr>
<td>CHF(_3)</td>
<td>278–338</td>
<td>0.012</td>
<td>-11.79</td>
<td>2210</td>
<td>III</td>
<td>3</td>
</tr>
<tr>
<td>CF(_4)</td>
<td>288–303</td>
<td>1.7 \times 10^{-4}</td>
<td>-16.57</td>
<td>2340</td>
<td>IV</td>
<td>3</td>
</tr>
<tr>
<td>CHF(_2)Cl</td>
<td>273–338</td>
<td>0.032</td>
<td>-12.56</td>
<td>2720</td>
<td>III</td>
<td>4</td>
</tr>
<tr>
<td>CFCl(_3)</td>
<td>273–306</td>
<td>0.0074</td>
<td>-17.86</td>
<td>3860</td>
<td>IV</td>
<td>4</td>
</tr>
<tr>
<td>CF(_2)Cl(_2)</td>
<td>288–303</td>
<td>0.0026</td>
<td>-12.93</td>
<td>2080</td>
<td>IV</td>
<td>4</td>
</tr>
<tr>
<td>CF(_3)Cl</td>
<td>288–303</td>
<td>8.1 \times 10^{-4}</td>
<td>-12.20</td>
<td>1520</td>
<td>IV</td>
<td>4</td>
</tr>
<tr>
<td>CH(_3)Cl</td>
<td>273–298</td>
<td>0.088</td>
<td>-13.97</td>
<td>3440</td>
<td>III</td>
<td>5</td>
</tr>
<tr>
<td>CH(_2)Cl(_2)</td>
<td>273–303</td>
<td>0.35</td>
<td>-13.97</td>
<td>3860</td>
<td>III</td>
<td>5</td>
</tr>
<tr>
<td>CHCl(_3)</td>
<td>273–298</td>
<td>0.20</td>
<td>-16.19</td>
<td>4350</td>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>CCl(_4)</td>
<td>273–313</td>
<td>0.026</td>
<td>-17.67</td>
<td>4180</td>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>CH(_3)Br</td>
<td>274–304</td>
<td>0.15</td>
<td>-11.91</td>
<td>2990</td>
<td>III</td>
<td>6</td>
</tr>
<tr>
<td>CH(_2)Br(_2)</td>
<td>273–303</td>
<td>0.91</td>
<td>-15.40</td>
<td>4560</td>
<td>III</td>
<td>6</td>
</tr>
<tr>
<td>CHBr(_3)</td>
<td>273–303</td>
<td>1.07</td>
<td>-15.37</td>
<td>6150</td>
<td>III</td>
<td>6</td>
</tr>
<tr>
<td>CHBr(_2)Cl</td>
<td>273–293</td>
<td>0.40</td>
<td>-17.51</td>
<td>4940</td>
<td>IV</td>
<td>7</td>
</tr>
<tr>
<td>CHBr(_2)Cl</td>
<td>273–293</td>
<td>0.73</td>
<td>-17.69</td>
<td>5180</td>
<td>IV</td>
<td>7</td>
</tr>
<tr>
<td>CH(_3)I</td>
<td>273–295</td>
<td>0.15</td>
<td>-15.14</td>
<td>3940</td>
<td>II</td>
<td>8</td>
</tr>
<tr>
<td>CH(_2)I</td>
<td>273–293</td>
<td>2.31</td>
<td>-16.84</td>
<td>5270</td>
<td>IV</td>
<td>8</td>
</tr>
<tr>
<td>CH(_2)I(_2)</td>
<td>273–303</td>
<td>0.85</td>
<td>-17.34</td>
<td>5120</td>
<td>III</td>
<td>9</td>
</tr>
<tr>
<td>1,1-C(_2)H(_4)F(_2)</td>
<td>278–338</td>
<td>0.050</td>
<td>-11.80</td>
<td>2600</td>
<td>IV</td>
<td>10</td>
</tr>
<tr>
<td>1,1,1,2-C(_2)H(_2)F(_4)</td>
<td>273–338</td>
<td>0.016</td>
<td>-13.13</td>
<td>2680</td>
<td>III</td>
<td>10</td>
</tr>
<tr>
<td>1,1-C(_2)H(_4)Cl(_2)</td>
<td>275–298</td>
<td>0.15</td>
<td>-14.93</td>
<td>3890</td>
<td>IV</td>
<td>11</td>
</tr>
<tr>
<td>1,2-C(_2)H(_4)Cl(_2)</td>
<td>279–298</td>
<td>0.77</td>
<td>-12.75</td>
<td>3725</td>
<td>IV</td>
<td>11</td>
</tr>
<tr>
<td>1,1,1-C(_2)H(_3)Cl(_3)</td>
<td>275–298</td>
<td>0.043</td>
<td>-17.27</td>
<td>4210</td>
<td>III</td>
<td>11</td>
</tr>
<tr>
<td>C(_2)HCl(_3)</td>
<td>275–318</td>
<td>0.087</td>
<td>-16.58</td>
<td>4215</td>
<td>II</td>
<td>11</td>
</tr>
<tr>
<td>Substance</td>
<td>Temperature Range, K</td>
<td>$H(298 \text{ K})$ (M atm$^{-1}$)</td>
<td>A</td>
<td>B (K)</td>
<td>Uncertainty Range</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>C_2Cl_4</td>
<td>275–318</td>
<td>0.047</td>
<td>-17.635</td>
<td>4350</td>
<td>II</td>
<td>11</td>
</tr>
<tr>
<td>$\text{C}_2\text{H}_5\text{I}$</td>
<td>274–303</td>
<td>0.14</td>
<td>-18.06</td>
<td>4800</td>
<td>IV</td>
<td>12</td>
</tr>
</tbody>
</table>

Uncertainty Classes:
- I—Better than 10%
- II—10% to 50%
- III—50% to 100%
- IV—Factor of 2 to factor of 10
- V—Factor of 10 to factor of 100
- VI—Greater than a factor of 100

5.22 Notes to Table 5-7

Note 1: Inorganic Gases

N_2O. Measurements at 36.13‰ NaCl using a microgasometric technique.\(^5\) Data taken from the IUPAC evaluation.\(^7\)

CO. The two published reports on the solubility of CO into salt water were evaluated by Wiesenburg,\(^6\) who concluded that the data of Douglas\(^1\) were significantly more reliable than those of Schmidt.\(^3\) Those data were fit to a function of temperature and salinity. The present recommendation takes this function, calculates the values for 35‰ salinity, and fits those results to a two-parameter equation. A three parameter fit over the temperature range 274–303 K yields $\ln H = -179.224 + 8620/T + 25.13\ln(T)$.

CO_2. Published data on the solubility of CO_2 into salt water were evaluated by Weiss,\(^4\) who also carried out some confirmatory measurements. The extensive results of Murray and Riley\(^2\) were accepted and fit as a function of temperature and salinity. The present recommendation for seawater takes the calculated values for 35‰ salinity and the newer values for 35.33‰ and fits them to a two-parameter equation over the indicated temperature range. A three parameter fit over the temperature range 272–313 K yields $\ln H = -157.779 + 8810/T + 21.88\ln(T)$.

Note 2: Alkanes

CH_4. Ostwald coefficients determined in filtered seawater with a salinity of 35‰.\(^1\) Results fit to a linear equation.

Note 3: Fluroromethanes

CHF$_3$. Gas solubilities measured at 278, 308, and 338 K and at NaCl concentrations from 0 to 0.0564 mole/mole (0 to 174%) with a gas absorption unit. 2 Calculated values for 35% NaCl taken at each temperature and fitted to a two-parameter equation.

CF$_4$. Ostwald coefficients determined in filtered seawater with a salinity of 35%. 1 Results fit to a linear equation.

Note 4: Fluorochloromethanes

CHF$_2$Cl. Gas solubilities measured at 278, 308, and 338 K and at NaCl concentrations from 0 to 0.0564 mole/mole (0 to 174%) with a gas absorption unit. 4 Calculated values for 35% NaCl taken at each temperature and fitted to a two-parameter equation. These values were double-weighted and fit together with the values measured 2 in seawater by a purge-and-trap technique.

CFCl$_3$. A linear fit to the results of Hunter-Smith, et al.1 and Ooki and Yokouchi2 in seawater. The results are in good agreement at low temperatures (<293 K) but diverge at room temperature and above.

CF$_2$Cl$_2$, CF$_3$Cl.

Ostwald coefficients determined in filtered seawater with a salinity of 35%. 3 Results fit to a linear equation.

Note 5: Chloromethanes

CH$_3$Cl. From a measurement of the concentration of the substance in a column of seawater at 30.4 or 34.34‰ salinity as a stream of nitrogen is bubbled through. 5 Similar results were reported by Elliott and Rowland at 0 and 22°C. 1

CH$_3$Cl$_2$. From a measurement of the concentration of the substance in a column of seawater at 34.34‰ salinity as a stream of nitrogen is bubbled through 5 combined with values determined in seawater of salinities of 33.1‰ to 36.1‰ by using a purge-and-trap method and an equilibrator. 7

CHCl$_3$. Taken from a linear fit to the results of Moore, et al.5 Hunter-Smith et al.4 and Dewulf, et al.2 The latter were from a study as a function of salinity and the calculated value at 35‰ was used. These data were double-weighted in the fit. A measurement at 25°C with a purge-and-trap/GC method gave a result in close agreement. 8

5-202
CCL₄. A linear fit to the results of Hunter-Smith, et al., Bullister and Wisegarver, and Dewulf, et al. The latter were from a study as a function of salinity and the calculated value at 35‰ was used. These data were double-weighted in the fit. The Bullister and Wisegarver data were from a study of the solubility as a function of temperature and salinity. Calculated values for 35‰ from a complex expression were used.

Note 6: Bromomethanes

CH₂Br. Solubility determined with a gas-liquid membrane equilibrator with a 35‰ NaCl solution. An approximately 5% correction was applied for non-ideality and to express the result in terms of fugacities. Very similar values were measured for filtered seawater. The results of Elliott and Rowland at 0 and 22°C are very close to these.

CH₂Br₂. From a measurement of the concentration of the substance in a column of seawater at 34.34‰ salinity as a stream of nitrogen is bubbled through combined with values determined in seawater of salinities of 33.1‰ to 36.1‰ by using a purge-and-trap method and an equilibrator.

CHBr₃. A linear fit to the results from a purge-and-trap method, calculated from the expression presented, and with a stripping technique with mass spectrometric detection. Another measurement at 25°C with a purge-and-trap/GC method gave a result about 50% higher.

Note 7: Chlorobromomethanes

CHBrCl₂
A linear fit to the results measured by a stripping technique at a salinity of 30.4‰.¹ A measurement at 25°C with a purge-and-trap/GC method gave a bit higher result.²

CHBr₂Cl
A linear fit to the results from a stripping technique at a salinity of 30.4‰.¹ A measurement at 25°C with a purge-and-trap/GC method gave a result about 20% higher.²

Note 8: Iodomethanes

CH₃I
A linear fit to the results from a stripping technique at a salinity of 30.4‰ by Moore, et al.,¹ Elliott and Rowland,¹ who also found similar results in 0.5 M NaCl, and Ooki and Yokouchi at salinities of 33.1‰ to 36.1‰.³

CH₂I₂
A linear fit to the results from a stripping technique at a salinity of 30.4‰.²

Note 9: Chloriodomethanes

CH₂ClI
From a measurement of the concentration of the substance in a column of seawater at 34.34‰ salinity as a stream of nitrogen is bubbled through¹ combined with values determined in seawater of salinities of 33.1‰ to 36.1‰ by using a purge-and-trap method and an equilibrator.²

Note 10: Fluoroethanes

1,1-C₂H₂F₂
Gas solubilities measured at 278, 308, and 338 K and at NaCl concentrations from 0 to 0.0564 mole/mole (0 to 174‰) with a gas absorption unit.² Calculated values for 35‰ NaCl taken at each temperature and fitted to a two-parameter equation.

1,1,1,2-C₂H₂F₄
Gas solubilities measured at 278, 308, and 338 K and at NaCl concentrations from 0 to 0.0564 mole/mole (0 to 174‰) with a gas absorption unit.² Calculated values for 35‰ NaCl taken at each temperature and fitted to a two-parameter equation. These values were double-weighted
and fit together with values determined in seawater of salinities of 33.1‰ to 36.1‰ by using a purge-and-trap method and an equilibrator.¹

Note 11: *Chloroethanes*

1,1-C₂H₄Cl₂

Derived from an equilibrium partitioning study as a function of salinity and temperature.¹ The derived value at 35‰ at each temperature was used.

1,2-C₂H₄Cl₂

Derived from an equilibrium partitioning study as a function of salinity and temperature.¹ The derived value at 35‰ at each temperature was used. The data at 2°C were rejected due to a high reported standard deviation and a poor fit to the other results.

1,1,1-C₂H₃Cl₃

The results from a multiple equilibration technique,² were combined with the derived values at 35‰ at each temperature from an equilibrium partitioning study as a function of salinity and temperature.¹ The highest temperature point from this latter study was not included in the fit.

C₂HCl₃, C₂Cl₄

A fit to results from measurements of the concentration of the substance in a column of seawater at 34.34‰ salinity as a stream of nitrogen is bubbled through,³ from an equilibrium partitioning study as a function of salinity and temperature,¹ and from a gc/headspace method with seawater of 35‰ salinity.⁴ The derived value at 35‰ at each temperature from Dewulf et al.¹ was used and double-weighted.

Note 12: *Iodoethanes*

C₂H₅I

Values determined in seawater of salinities of 33.1‰ to 36.1‰ by using a purge-and-trap method and an equilibrator.¹

Bibliography – Table 5-7

SECTION 6. THERMODYNAMIC PARAMETERS

Table of Contents

SECTION 6. THERMODYNAMIC PARAMETERS ... 6-1
 6.1 Introduction... 6-1
 6.2 Notes to Table 6-2... 6-22
 6.3 Bibliography – Thermodynamic Parameters .. 6-116

Tables

Table 6-1. Glossary of Groupings.. 6-2
Table 6-2. Gas-Phase Entropy and Enthalpy Values at 100 kPa............................... 6-3

6.1 Introduction

Table 6-2 lists selected entropy and enthalpy of formation values at 298 K for a number of atmospheric species. As much as possible, the values were taken from primary evaluations that develop a recommended value from the original studies. Otherwise, the values were selected from the original literature, which is referenced in the table. Often, the enthalpy of formation and the entropy values are taken from different sources, usually due to a more recent value for the enthalpy of formation. The cited error limits are from the original references and therefore reflect often widely varying criteria. Some enthalpy values have been adjusted to reflect the value of a reference compound selected for this table; these are mentioned in the Notes. Values that are calculated or estimated are also indicated in the Notes, along with information on the level of theory. Results other than those recommended are also often mentioned in the Notes, including recommendations from previous versions of this Table. These should provide a better perspective on the selected value. All values in the Table are in SI (Joule) units. In the notes, some values are reported in calorie units (1 cal = 4.184 J).

In order to make the utilization of Table 6-2 more convenient, the species are grouped according to some defining characteristic. Each of these groupings has a number linked to that group in the Table. Each group, in turn, has a linked Note associated with it, in which the group’s species are listed sequentially, followed by comments. At the end of each Note, the applicable references are given. Below is a list of these various groups and their group numbers. Formulas are presented in the order: C H O N F Cl Br I S Hg.
<table>
<thead>
<tr>
<th>Table 6-1. Glossary of Groupings</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O₂ O₂·₃ 1 Cᵥ₆ H₁₂ Br₁₂ Br₁₂ Cl₁₂ Cl₁₂ 46</td>
</tr>
<tr>
<td>H₂O complexes 2 Cᵥ₆ H₁₂ Br₁₂ Cl₁₂ Br₁₂ F₁₂ 47</td>
</tr>
<tr>
<td>H₂O₄ N₁₂ 3 Cᵥ₆ H₁₂ Br₁₂ Cl₁₂ Br₁₂ O₁₂ 48</td>
</tr>
<tr>
<td>N₁₂ O₁₂ 4 Cᵥ₂ H₁₂ O₁₂ 49</td>
</tr>
<tr>
<td>H₁₂ N₁₂ O₁₂ 5 Cᵥ₂ H₁₂ Br₁₂ Cl₁₂ O₁₂ 50</td>
</tr>
<tr>
<td>Cᵥ₁ H₂₄ 6 Cᵥ₂ H₂₂ Br₁₂ O₁₂ 51</td>
</tr>
<tr>
<td>Cᵥ₁ H₂₂ O₁₂ 7 Cᵥ₂ H₂₂ Cl₁₂ Br₁₂ 52</td>
</tr>
<tr>
<td>Cᵥ₁ H₂₂ N₁₂ 8 H₁₂ I₁₂ 53</td>
</tr>
<tr>
<td>Cᵥ₁ H₂₂ N₁₂ O₁₂ 9 I₁₂ O₁₂ 54</td>
</tr>
<tr>
<td>Cᵥ₁ H₂₂ N₁₂ O₁₂ containing NO₂ moiety 10 H₁₂ I₁₂ O₁₂ 55</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₆ 11 Br₂ O₁₂ Cl₁₂ I₁₂ 56</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₆ O₁₂ 12 Br₂ O₁₂ I₁₂ 57</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₂ 13 Cl₁₂ O₁₂ 58</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₃₄ 14 Br₂ I₁₂ O₁₂ 59</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₃₄ 15 I₁₂ N₁₂ O₁₂ 60</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ N₁₂ O₁₂ 16 I₁₂ N₁₂ O₁₂ 61</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 17 I₁₂ N₁₂ O₁₂ 62</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 18 I₁₂ N₁₂ O₁₂ 63</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 19 I₁₂ N₁₂ O₁₂ 64</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ N₁₂ O₁₂ 20 I₁₂ N₁₂ O₁₂ 65</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 21 I₁₂ N₁₂ O₁₂ 66</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 22 I₁₂ N₁₂ O₁₂ 67</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 23 I₁₂ N₁₂ O₁₂ 68</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 24 I₁₂ N₁₂ O₁₂ 69</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 25 I₁₂ N₁₂ O₁₂ 70</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 26 I₁₂ N₁₂ O₁₂ 71</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 27 I₁₂ N₁₂ O₁₂ 72</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 28 I₁₂ N₁₂ O₁₂ 73</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 29 I₁₂ N₁₂ O₁₂ 74</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 30 I₁₂ N₁₂ O₁₂ 75</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 31 I₁₂ N₁₂ O₁₂ 76</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 32 I₁₂ N₁₂ O₁₂ 77</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 33 I₁₂ N₁₂ O₁₂ 78</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 34 I₁₂ N₁₂ O₁₂ 79</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 35 I₁₂ N₁₂ O₁₂ 80</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 36 I₁₂ N₁₂ O₁₂ 81</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 37 I₁₂ N₁₂ O₁₂ 82</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 38 I₁₂ N₁₂ O₁₂ 83</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 39 I₁₂ N₁₂ O₁₂ 84</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 40 I₁₂ N₁₂ O₁₂ 85</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 41 I₁₂ N₁₂ O₁₂ 86</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 42 I₁₂ N₁₂ O₁₂ 87</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 43 I₁₂ N₁₂ O₁₂ 88</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 44 I₁₂ N₁₂ O₁₂ 89</td>
</tr>
<tr>
<td>Cᵥ₂ H₂₂ O₁₂ 45 I₁₂ N₁₂ O₁₂ 90</td>
</tr>
<tr>
<td>SPECIES</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>(1) Simple compounds of H and O</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>H$_2$</td>
</tr>
<tr>
<td>O(3P)</td>
</tr>
<tr>
<td>O(1D)</td>
</tr>
<tr>
<td>O$_2$</td>
</tr>
<tr>
<td>O$_2$(1Δg)</td>
</tr>
<tr>
<td>O$_2$(1Σg$^+$)</td>
</tr>
<tr>
<td>O$_3$</td>
</tr>
<tr>
<td>OH</td>
</tr>
<tr>
<td>H$_2$O</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
</tr>
<tr>
<td>HO$_2$</td>
</tr>
<tr>
<td>H$_3$O$_2$</td>
</tr>
<tr>
<td>HOOOH</td>
</tr>
<tr>
<td>HOOOOH</td>
</tr>
<tr>
<td>(2) Water complexes</td>
</tr>
<tr>
<td>H$_2$O•H$_2$O</td>
</tr>
<tr>
<td>OH•H$_2$O</td>
</tr>
<tr>
<td>HO$_2$•H$_2$O</td>
</tr>
<tr>
<td>O$_3$•H$_2$O</td>
</tr>
<tr>
<td>CH$_2$O•H$_2$O</td>
</tr>
<tr>
<td>OCl•OH</td>
</tr>
<tr>
<td>ClO•HOH</td>
</tr>
<tr>
<td>OBr•OH</td>
</tr>
<tr>
<td>BrO•HOH</td>
</tr>
<tr>
<td>(3) Simple compounds of N and H</td>
</tr>
<tr>
<td>N(4S)</td>
</tr>
<tr>
<td>N$_2$</td>
</tr>
<tr>
<td>NH</td>
</tr>
<tr>
<td>NH$_2$</td>
</tr>
<tr>
<td>NH$_3$</td>
</tr>
<tr>
<td>N$_2$H</td>
</tr>
<tr>
<td>trans-N$_2$H$_2$</td>
</tr>
<tr>
<td>cis-N$_2$H$_2$</td>
</tr>
<tr>
<td>N$_2$H$_3$</td>
</tr>
<tr>
<td>N$_2$H$_4$</td>
</tr>
<tr>
<td>(4) Simple compounds containing N and O</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>N$_2$O</td>
</tr>
<tr>
<td>NO$_2$</td>
</tr>
<tr>
<td>NO$_3$</td>
</tr>
<tr>
<td>N$_2$O$_3$</td>
</tr>
<tr>
<td>N$_2$O$_4$</td>
</tr>
<tr>
<td>N$_2$O$_5$</td>
</tr>
<tr>
<td>SPECIES</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>(5) Compounds containing N, H, and O</td>
</tr>
<tr>
<td>HNO</td>
</tr>
<tr>
<td>HON</td>
</tr>
<tr>
<td>NH$_2$O</td>
</tr>
<tr>
<td>NH$_3$OH</td>
</tr>
<tr>
<td>HNOH</td>
</tr>
<tr>
<td>NH$_3$NO$_2$</td>
</tr>
<tr>
<td>HONO</td>
</tr>
<tr>
<td>trans-HONO</td>
</tr>
<tr>
<td>cis-HONO</td>
</tr>
<tr>
<td>trans-HOON</td>
</tr>
<tr>
<td>HNO$_2$</td>
</tr>
<tr>
<td>HONO$_2$</td>
</tr>
<tr>
<td>cis,cis-HOONO</td>
</tr>
<tr>
<td>trans,perp-HOONO</td>
</tr>
<tr>
<td>HO$_2$NO$_2$</td>
</tr>
<tr>
<td>NH$_3$NO$_3$</td>
</tr>
<tr>
<td>(6) Compounds with one C and 0-4 H</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>CH</td>
</tr>
<tr>
<td>CH$_2$(B$_2$I)</td>
</tr>
<tr>
<td>CH$_2$(A$_2$I)</td>
</tr>
<tr>
<td>CH$_3$</td>
</tr>
<tr>
<td>CH$_4$</td>
</tr>
<tr>
<td>(7) Compounds containing one C, 0-4 H, and one or more O</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>CO$_2$</td>
</tr>
<tr>
<td>HCO</td>
</tr>
<tr>
<td>CH$_2$O</td>
</tr>
<tr>
<td>trans-HOCO</td>
</tr>
<tr>
<td>cis-HOCO</td>
</tr>
<tr>
<td>HC(O)O</td>
</tr>
<tr>
<td>CO(O)OH</td>
</tr>
<tr>
<td>HC(O)OH</td>
</tr>
<tr>
<td>trans-HC(O)OO</td>
</tr>
<tr>
<td>cis-HC(O)OO</td>
</tr>
<tr>
<td>trans-HC(O)OOH</td>
</tr>
<tr>
<td>cis-HC(O)OOH</td>
</tr>
<tr>
<td>CH$_2$OO</td>
</tr>
<tr>
<td>CH$_2$O$_2$</td>
</tr>
<tr>
<td>CH$_3$O</td>
</tr>
<tr>
<td>CH$_2$O$_2$</td>
</tr>
<tr>
<td>CH$_2$OH</td>
</tr>
<tr>
<td>CH$_3$OH</td>
</tr>
<tr>
<td>CH$_3$OH+HO$_2$</td>
</tr>
<tr>
<td>CH$_2$OOH</td>
</tr>
<tr>
<td>CH$_3$OOH</td>
</tr>
<tr>
<td>CH$_3$O$_3$</td>
</tr>
<tr>
<td>CH$_3$O$_4$</td>
</tr>
<tr>
<td>SPECIES</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>(8) Compounds containing one C and H and N</td>
</tr>
<tr>
<td>CN</td>
</tr>
<tr>
<td>HCN</td>
</tr>
<tr>
<td>C₂N₂</td>
</tr>
<tr>
<td>CH₃NH₂</td>
</tr>
<tr>
<td>CH₃NH₂</td>
</tr>
<tr>
<td>CH₃CN</td>
</tr>
<tr>
<td>CH₃CN</td>
</tr>
<tr>
<td>CH₃N₂</td>
</tr>
<tr>
<td>(9) Compounds containing one C and H, N, and O</td>
</tr>
<tr>
<td>CH₃NO</td>
</tr>
<tr>
<td>NH₂CO</td>
</tr>
<tr>
<td>NCO</td>
</tr>
<tr>
<td>HNCO</td>
</tr>
<tr>
<td>HCONH₂</td>
</tr>
<tr>
<td>CH₂NO₂</td>
</tr>
<tr>
<td>CH₂NO₂</td>
</tr>
<tr>
<td>CH₂ONO</td>
</tr>
<tr>
<td>CH₂ONO₂</td>
</tr>
<tr>
<td>CH₂O₂NO₂</td>
</tr>
<tr>
<td>C(NO₂)₄</td>
</tr>
<tr>
<td>(NH₂)₂CO</td>
</tr>
<tr>
<td>(10) A series of nitroalkanes, their isomers, and radical products</td>
</tr>
<tr>
<td>CH₃N(O)OH</td>
</tr>
<tr>
<td>CH(NO₂)₂</td>
</tr>
<tr>
<td>CH₂(NO₂)₂</td>
</tr>
<tr>
<td>CH₃(NO₂)ONO</td>
</tr>
<tr>
<td>CH(NO₂)N(O)OH</td>
</tr>
<tr>
<td>CH(NO₂)₂</td>
</tr>
<tr>
<td>CH(NO₂)₂ONO</td>
</tr>
<tr>
<td>C(NO₂)₂(NOOH)</td>
</tr>
<tr>
<td>(11) Compounds containing two C and 0 - 6 H</td>
</tr>
<tr>
<td>C₂</td>
</tr>
<tr>
<td>C₂H</td>
</tr>
<tr>
<td>C₂H₂</td>
</tr>
<tr>
<td>H₂CC</td>
</tr>
<tr>
<td>C₂H₃</td>
</tr>
<tr>
<td>C₂H₄</td>
</tr>
<tr>
<td>C₂H₅</td>
</tr>
<tr>
<td>C₂H₆</td>
</tr>
<tr>
<td>(12) Compounds containing two C, one O, and 1-6 H</td>
</tr>
<tr>
<td>CHCO</td>
</tr>
<tr>
<td>CH₃CO</td>
</tr>
<tr>
<td>CH₃CO</td>
</tr>
<tr>
<td>C₂H₂O</td>
</tr>
<tr>
<td>CH₃C(O)H</td>
</tr>
<tr>
<td>CH₃(C(O)H</td>
</tr>
<tr>
<td>syn-CHCHOH</td>
</tr>
<tr>
<td>anti-CHCHOH</td>
</tr>
<tr>
<td>anti-CH₂COH</td>
</tr>
<tr>
<td>SPECIES</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>syn-CH$_3$CHOH</td>
</tr>
<tr>
<td>anti-CH$_3$CHOH</td>
</tr>
<tr>
<td>CH$_3$CHO</td>
</tr>
<tr>
<td>CH$_3$CH$_2$OH</td>
</tr>
<tr>
<td>CH$_3$CHOH</td>
</tr>
<tr>
<td>C$_2$H$_2$OH</td>
</tr>
<tr>
<td>CH$_3$OCH$_2$</td>
</tr>
<tr>
<td>CH$_3$OCH$_3$</td>
</tr>
</tbody>
</table>

(13) **Compounds containing two C, two O, and 1-6 H**

(CHO)$_2$ | -212 ± 0.8 | -206.4 ± 0.5 | |
cy-(C$_2$H$_2$O)O	-190 ± 10	314.8	
CH$_3$CHOH	26.40	311.5	
C$_2$H$_4$O$_2$	-27.4 ± 9.9	290.1	
C$_2$H$_5$OOH	-166.9	284.9	
CH$_3$OO	-173.8 ± 2.4	287.1	
CH$_3$OC(O)H	-155.2	287.1	
CH$_3$OC(O)H	-357.4 ± 0.7	284.9	
CH$_3$COO	-190	284.9	
CH$_3$(OH)C(O)	-154	284.9	
CH$_3$(OH)C(O)H	-207	284.9	
CH$_3$(OH)C(O)H	-318	284.9	
CH$_3$C(O)OH	-253 ± 13	283.4	
CH$_3$C(O)O	-192.5	283.4	
CH$_3$C(O)OH	-432.8 ± 0.5	332.67	
CH$_3$(OH)$_2$	-309.2 ± 1.3	303.81	
CH$_3$(OH)CH$_2$OH	-392.2 ± 4.0	303.81	
C(OH)$_2$C(O)H	-496 ± 0.4	303.81	
C(OH)C(O)H	-212.0 ± 0.7	303.81	
CH$_3$OOCH$_3$	71.42	303.81	
CH$_3$OOCH$_3$	-125.5 ± 5.0	-106.6 ± 5.0	308.4± 3.0

(14) **Alkylcarbonate radicals**

HO(CO)O | -360.0 | |
CH$_3$OC(O)O	-347.9	
C$_2$H$_5$OC(O)O	-379.3	
i-C$_3$H$_7$OC(O)O	-419.7	
t-C$_3$H$_7$OC(O)O	-457.7	

(15) **Compounds with two C and more than 2 O**

CH$_3$C(O)O$_2$ | -154.4 | |
CH$_3$(OH)C(O)OH	-583 ± 10	-568 ± 10	318.6± 5.0
CH$_3$(OH)OOC(O)H	-571.7 ± 6.6	320.6± 5.0	
(HOCO)$_2$	-731.8 ± 2.0	-721.2 ± 2.0	320.6± 5.0
CH$_3$O$_2$CH$_3$	-41.0	366.74	
C(OH)$_2$C(O)H	-400 ± 1		
CH$_3$(OH)C(O)H	-496 ± 0.4		

(16) **Compounds with two C, one N, and 0-5 O**

C$_2$H$_5$NO$_2$ | -105.56 ± 0.29 | |
<p>| C$_2$H$_5$ONO | -99.37 ± 0.50 | |
| C$_2$H$_5$O$_2$NO$_2$ | -96.7 | |
| CH$_3$C(O)O$_2$NO$_2$ | -240.1 | |</p>
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</th>
<th>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$CHN(O)OH</td>
<td>-54.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_5$NH$_2$</td>
<td>-47.6±0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$NHCH$_3$</td>
<td>-18.8±1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CONH$_2$</td>
<td>-238.3±0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(17) C$_3$ hydrocarbons

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</th>
<th>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_3$H$_4$</td>
<td>190.5±1.1</td>
<td>497.5±16.7</td>
<td>248±15</td>
</tr>
<tr>
<td>C$_3$H$_4$</td>
<td>184.9±0.7</td>
<td></td>
<td>266.6</td>
</tr>
<tr>
<td>cis-C$_3$H$_4$</td>
<td>277.1±2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-C$_3$H$_4$</td>
<td>166.1±4.3</td>
<td>177.8±4.3</td>
<td>248±15</td>
</tr>
<tr>
<td>C$_3$H$_6$</td>
<td>20.0±0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-C$_3$H$_7$</td>
<td>101.3±1.0</td>
<td>119.1±1.0</td>
<td></td>
</tr>
<tr>
<td>i-C$_3$H$_7$</td>
<td>86.6±2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>-104.68±0.50</td>
<td></td>
<td>270.20</td>
</tr>
</tbody>
</table>

(18) Compounds containing 3 C and 1-8 H, and 1 O

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</th>
<th>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-C$_3$H$_7$OH</td>
<td>-255.1±0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-C$_3$H$_7$OH</td>
<td>-272.6±0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_3$H$_5$CO</td>
<td>-36.4±2.9</td>
<td></td>
<td>298.3</td>
</tr>
<tr>
<td>C$_3$H$_5$(O)OH</td>
<td>-185.6±0.8</td>
<td></td>
<td>304.51</td>
</tr>
<tr>
<td>syn-CH$_2$CHOCH$_2$</td>
<td>88.9±2</td>
<td></td>
<td>316.14</td>
</tr>
<tr>
<td>anti-CH$_2$CHOCH$_2$</td>
<td>92.2±2</td>
<td></td>
<td>316.85</td>
</tr>
<tr>
<td>syn-CH$_2$CHOCH$_3$</td>
<td>148.8±2</td>
<td></td>
<td>300.62</td>
</tr>
<tr>
<td>anti-CH$_2$CHOCH$_3$</td>
<td>164.2±2</td>
<td></td>
<td>307.40</td>
</tr>
<tr>
<td>syn-CH$_2$COCH$_3$</td>
<td>140.3±2</td>
<td></td>
<td>312.50</td>
</tr>
<tr>
<td>anti-CH$_2$COCH$_3$</td>
<td>134.8±2</td>
<td></td>
<td>319.49</td>
</tr>
<tr>
<td>syn-CH$_2$CHOCH$_3$</td>
<td>-107.0±2</td>
<td></td>
<td>273.80</td>
</tr>
<tr>
<td>anti-CH$_2$CHOCH$_3$</td>
<td>-100.0±2</td>
<td></td>
<td>299.37</td>
</tr>
<tr>
<td>CH$_2$C(O)CH$_2$</td>
<td>-34.3</td>
<td></td>
<td>303.99</td>
</tr>
<tr>
<td>CH$_2$C(O)CH$_3$</td>
<td>-217.1±0.7</td>
<td></td>
<td>295.46</td>
</tr>
<tr>
<td>CH$_2$CHOCH$_3$</td>
<td>-37.2</td>
<td></td>
<td>313.7</td>
</tr>
<tr>
<td>CH$_2$CH$_2$OCH$_2$</td>
<td>-31.3</td>
<td></td>
<td>315.1</td>
</tr>
<tr>
<td>CH$_2$CH$_2$OCH$_3$</td>
<td>-216.4±0.6</td>
<td></td>
<td>305.9</td>
</tr>
<tr>
<td>CH$_2$CC(O)H</td>
<td>177.8±1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$CHCO</td>
<td>100±13</td>
<td></td>
<td>279.5</td>
</tr>
<tr>
<td>CH$_2$CHCO</td>
<td>-64.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CHC(O)H</td>
<td>-74.3±1.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(19) Compounds containing 3 C and 8 H, and 2 O

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</th>
<th>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_3$H$_5$O$_2$</td>
<td>90.5±6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$CHOOCH$_3$</td>
<td>-42.0</td>
<td></td>
<td>344.2</td>
</tr>
<tr>
<td>CH$_2$CHO(OH)CH$_2$OH</td>
<td>-429.8±4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_3$H$_5$OOH</td>
<td>-183.4±1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$OC(O)CH$_3$</td>
<td>-210.6</td>
<td></td>
<td>323.5</td>
</tr>
<tr>
<td>CH$_2$OC(O)CH$_3$</td>
<td>-413.0</td>
<td></td>
<td>320.9</td>
</tr>
<tr>
<td>CH$_2$OCH$_2$OCH$_3$</td>
<td>-348.5±0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$CH$_2$OC(O)</td>
<td>-194.6</td>
<td></td>
<td>325.8</td>
</tr>
<tr>
<td>CH$_2$CHO(O)H</td>
<td>-197.2</td>
<td></td>
<td>327.6</td>
</tr>
<tr>
<td>CH$_2$CH$_2$OC(O)H</td>
<td>-392.8</td>
<td></td>
<td>323.5</td>
</tr>
<tr>
<td>CH$_2$OHIC(O)CH$_3$</td>
<td>-373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$CHOOC(CH$_3$)</td>
<td>31.5</td>
<td></td>
<td>347.52</td>
</tr>
<tr>
<td>CH$_2$CH$_2$OOCH$_3$</td>
<td>-154.5</td>
<td></td>
<td>344.4</td>
</tr>
</tbody>
</table>
Compounds containing 3 C, H, N, and O

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</th>
<th>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH$_3$)$_2$CHO</td>
<td>-65.4 ± 11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$COOH</td>
<td>-14.2</td>
<td></td>
<td>349.9</td>
</tr>
<tr>
<td>(CH$_3$)$_2$CHO</td>
<td>-204.2</td>
<td></td>
<td>340.0</td>
</tr>
<tr>
<td>CH$_3$(OH)$_2$C(O)H</td>
<td>-550.8 ± 7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$(OH)$_2$CHOH</td>
<td>-577.9 ± 1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CHOOCCH$_3$</td>
<td>-42.0</td>
<td></td>
<td>344.2</td>
</tr>
</tbody>
</table>

Compounds containing 4 C, H, and O

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</th>
<th>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-C6H${10}$</td>
<td>-125.65 ± 0.67</td>
<td></td>
<td>309.91</td>
</tr>
<tr>
<td>(CH$_3$)$_2$CCO</td>
<td>-90.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$C(CH$_3$)$_3$O</td>
<td>-91.3 ± 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$COO</td>
<td>-101.5 ± 9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$)$_2$COOH</td>
<td>-239 ± 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH$_3$COO)$_2$</td>
<td>-500 ± 10</td>
<td>-477 ± 10</td>
<td>390.7 ± 6.0</td>
</tr>
<tr>
<td>trans-CH$_2$CHOOCH$_3$</td>
<td>-83.5</td>
<td></td>
<td>381.7</td>
</tr>
<tr>
<td>cis-CH$_2$CHOOCH$_3$</td>
<td>-89.0</td>
<td></td>
<td>382.8</td>
</tr>
<tr>
<td>CH$_2$C(CH$_3$)OOCH$_3$</td>
<td>-87.0</td>
<td></td>
<td>366.9</td>
</tr>
<tr>
<td>CH$_2$CH$_2$CH$_2$OOCH$_3$</td>
<td>-50.5</td>
<td></td>
<td>394.3</td>
</tr>
</tbody>
</table>

Inorganic compounds containing F

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</th>
<th>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>79.38 ± 0.05</td>
<td>77.29 ± 0.05</td>
<td>158.75 ± 0.004</td>
</tr>
<tr>
<td>F$_2$</td>
<td>0.00</td>
<td>0.00</td>
<td>202.79 ± 0.005</td>
</tr>
<tr>
<td>HF</td>
<td>-273.30 ± 0.70</td>
<td>273.25 ± 0.70</td>
<td>173.799 ± 0.003</td>
</tr>
<tr>
<td>HOF</td>
<td>-86.7 ± 1.0</td>
<td>-83.8 ± 1.0</td>
<td>226.77 ± 0.21</td>
</tr>
<tr>
<td>FO</td>
<td>110.7 ± 0.5</td>
<td>110.0 ± 0.5</td>
<td>216.40 ± 0.3</td>
</tr>
<tr>
<td>FO</td>
<td>24.5 ± 2</td>
<td>26.8 ± 2</td>
<td>247.46 ± 0.4</td>
</tr>
<tr>
<td>OFO</td>
<td>523.0 ± 1.3</td>
<td>523.8 ± 1.3</td>
<td>251 ± 1</td>
</tr>
<tr>
<td>FO</td>
<td>25.6 ± 2</td>
<td></td>
<td>259.5 ± 0.2</td>
</tr>
<tr>
<td>HOOF</td>
<td>-42.7 ± 4</td>
<td>-36.8 ± 4</td>
<td></td>
</tr>
<tr>
<td>FOOF</td>
<td>19.2 ± 2.0</td>
<td>22.9 ± 2.0</td>
<td>277.2 ± 0.2</td>
</tr>
<tr>
<td>FOOOF</td>
<td>110.3 ± 4</td>
<td></td>
<td>209.7</td>
</tr>
<tr>
<td>FNO</td>
<td>-87.2 ± 1.2</td>
<td>-84.7 ± 1.2</td>
<td>247.7 ± 1.5</td>
</tr>
<tr>
<td>cis-FONO</td>
<td>42.6 ± 1.6</td>
<td>47.1 ± 1.6</td>
<td>274.0 ± 1.5</td>
</tr>
<tr>
<td>trans-FONO</td>
<td>54.2 ± 1.6</td>
<td>58.4 ± 1.6</td>
<td>275.5 ± 1.5</td>
</tr>
<tr>
<td>FNO$_2$</td>
<td>-114.9 ± 1.6</td>
<td>-108.7 ± 1.6</td>
<td>258.5 ± 1.5</td>
</tr>
<tr>
<td>FONO$_2$</td>
<td>12.3 ± 2.0</td>
<td>19.8 ± 2.0</td>
<td>291.3 ± 1.5</td>
</tr>
<tr>
<td>NF$_2$</td>
<td>35.6 ± 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF$_3$</td>
<td>-132.8 ± 0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compounds containing one C, H, and one or more F

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</th>
<th>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</th>
<th>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>244.1 ± 10</td>
<td>240.5 ± 10</td>
<td>213.03</td>
</tr>
<tr>
<td>CHF</td>
<td>149.8 ± 2.1</td>
<td>149.8 ± 2.1</td>
<td>223.09</td>
</tr>
<tr>
<td>CH$_2$F</td>
<td>-32 ± 8</td>
<td>-29 ± 8</td>
<td>236.52</td>
</tr>
<tr>
<td>CHF$_2$</td>
<td>-238.9 ± 0.8</td>
<td>-230.5 ± 0.8</td>
<td>222.78</td>
</tr>
<tr>
<td>CF$_2$</td>
<td>-192.0 ± 3.3</td>
<td>-192.5 ± 3.3</td>
<td>240.66</td>
</tr>
<tr>
<td>CHF$_2$</td>
<td>-239 ± 4</td>
<td>-235 ± 4</td>
<td>258.50</td>
</tr>
<tr>
<td>CH$_2$F$_2$</td>
<td>-452.7 ± 0.8</td>
<td>-444.8 ± 0.8</td>
<td>246.59</td>
</tr>
<tr>
<td>SPECIES</td>
<td>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</td>
<td>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</td>
<td>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>CF$_3$</td>
<td>-465.7 ± 2.1</td>
<td>-462.8 ± 2.1</td>
<td>264.56</td>
</tr>
<tr>
<td>CHF$_3$</td>
<td>-692.9 ± 2.1</td>
<td>-685.8 ± 2.1</td>
<td>259.67</td>
</tr>
<tr>
<td>CF$_4$</td>
<td>-933.20 ± 0.75</td>
<td>-927.20 ± 0.75</td>
<td>261.454</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(24) Compounds containing one C and one or more F and O Back</td>
</tr>
<tr>
<td>CF$_3$H$_2$O</td>
<td>-210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$H$_2$OH</td>
<td>-433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCO</td>
<td>-176.7 ± 0.9</td>
<td>-177.2 ± 0.9</td>
<td>248.78</td>
</tr>
<tr>
<td>FCO$_2$</td>
<td>-362.8 ± 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHF$_3$O</td>
<td>-382.5 ± 1.2</td>
<td>-378.8 ± 1.2</td>
<td>246.69</td>
</tr>
<tr>
<td>CF$_3$HO</td>
<td>-417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$OH</td>
<td>-682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_2$O</td>
<td>-606.5 ± 1.2</td>
<td>-603.4 ± 1.2</td>
<td>258.97</td>
</tr>
<tr>
<td>CF$_3$</td>
<td>-635.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$O$_2$</td>
<td>-427.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$O</td>
<td>-614 ± 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$OH</td>
<td>-923.4 ± 13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$OF</td>
<td>-740.1 ± 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$FOOH</td>
<td>-352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHF$_2$OOH</td>
<td>-575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$OOH</td>
<td>-807</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(25) CF$_3$O$_2$NO$_2$ and CF$_3$CN Back</td>
</tr>
<tr>
<td>CF$_3$O$_2$NO$_2$</td>
<td>102.7\pm2.0</td>
<td></td>
<td>163\pm7</td>
</tr>
<tr>
<td>CF$_3$CN</td>
<td>-495.4 ± 1.7</td>
<td>-491.6 ± 1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(26) Compounds containing two C and one or more F Back</td>
</tr>
<tr>
<td>CH$_3$CHF</td>
<td>-138.8 ± 1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CH$_2$F</td>
<td>-59.4 ± 8</td>
<td></td>
<td>279.7</td>
</tr>
<tr>
<td>CH$_3$CHF$_2$</td>
<td>-70.3 ± 8</td>
<td></td>
<td>274.0</td>
</tr>
<tr>
<td>CH$_3$CH$_2$F</td>
<td>-272.5 ± 3.2</td>
<td>-257.0 ± 3.2</td>
<td>264.6\pm1.5</td>
</tr>
<tr>
<td>CH$_3$CF$_2$</td>
<td>-335.0 ± 4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CF$_2$</td>
<td>-503.0 ± 3.2</td>
<td>-488.6 ± 3.2</td>
<td>282.0\pm1.5</td>
</tr>
<tr>
<td>anti-CH$_3$FCH$_2$F</td>
<td>-443.4 ± 3.2</td>
<td>-429.8 ± 3.2</td>
<td>289.5\pm1.4</td>
</tr>
<tr>
<td>gauche-CH$_3$FCH$_2$F</td>
<td>-447.3 ± 3.2</td>
<td>-433.5 ± 3.2</td>
<td>288.8\pm1.4</td>
</tr>
<tr>
<td>CH$_3$FCHF</td>
<td>235.5</td>
<td></td>
<td>293.3</td>
</tr>
<tr>
<td>CHF$_2$CH$_2$</td>
<td>-277</td>
<td></td>
<td>297.8</td>
</tr>
<tr>
<td>CH$_2$CF$_2$</td>
<td>-302.5 ± 8.4</td>
<td></td>
<td>290.3</td>
</tr>
<tr>
<td>CH$_2$CF$_2$</td>
<td>-500.8 ± 6.3</td>
<td>-486.9 ± 6.3</td>
<td>282.4</td>
</tr>
<tr>
<td>anti-CH$_2$FCH$_2$F</td>
<td>-666.4 ± 3.2</td>
<td>-653.7 ± 3.2</td>
<td>309.8\pm1.5</td>
</tr>
<tr>
<td>gauche-CH$_2$FCH$_2$F</td>
<td>-661.0 ± 3.2</td>
<td>-648.3 ± 3.2</td>
<td>309.2\pm1.5</td>
</tr>
<tr>
<td>CH$_3$CF$_3$</td>
<td>-517.1 ± 5</td>
<td></td>
<td>306.8</td>
</tr>
<tr>
<td>CH$_3$CF$_3$</td>
<td>-751.5 ± 3.2</td>
<td>-738.3 ± 1.7</td>
<td>286.8\pm1.5</td>
</tr>
<tr>
<td>CF$_2$CF$_2$</td>
<td>-658.9 ± 4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-CHF$_2$CF$_2$</td>
<td>-878.4 ± 3.2</td>
<td>-867.9 ± 3.2</td>
<td>319.0\pm1.5</td>
</tr>
<tr>
<td>gauche-CHF$_2$CF$_2$</td>
<td>-872.2 ± 3.2</td>
<td>-861.7 ± 3.2</td>
<td>318.9\pm1.5</td>
</tr>
<tr>
<td>CHFCF$_3$</td>
<td>-690</td>
<td></td>
<td>326.2</td>
</tr>
<tr>
<td>CH$_2$FCF$_3$</td>
<td>-906.2 ± 3.2</td>
<td>-894.6 ± 3.2</td>
<td>316.0\pm1.5</td>
</tr>
<tr>
<td>CF$_2$CF$_3$</td>
<td>-891.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHF$_2$CF$_3$</td>
<td>-1110.6 ± 3.2</td>
<td>-1100.6 ± 3.2</td>
<td>332.9\pm1.5</td>
</tr>
<tr>
<td>C$_2$F$_6$</td>
<td>-1344.3 ± 3.4</td>
<td>-1335.9 ± 3.4</td>
<td>331.8</td>
</tr>
<tr>
<td>SPECIES</td>
<td>(\Delta H(298 \text{ K})) (\text{kJ mol}^{-1})</td>
<td>(\Delta H(0 \text{ K})) (\text{kJ mol}^{-1})</td>
<td>(S(298 \text{ K})) (\text{J K}^{-1} \text{ mol}^{-1})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(27) Compounds containing two C and one or more F and O Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂FOCH₂OH</td>
<td>−423.6±5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂FCOOH</td>
<td>−594.0±5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂CO</td>
<td>−605±2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂C(O)H</td>
<td>−810.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂C(O)F</td>
<td>−442.1±3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂C(O)F</td>
<td>−1038±4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂C(O)OH</td>
<td>−1031±1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂OCO₂</td>
<td>−968±16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂OOCF₃</td>
<td>−1471±21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(28) Compounds containing more than two C and one or more F Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso-C₃H₇F</td>
<td>−315.5±2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-C₄H₁₀F</td>
<td>−360±8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂C(O)OCH₃</td>
<td>−993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(29) Inorganic compounds containing Cl Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>121.303±0.002</td>
<td>119.622±0.0002</td>
<td>165.190±0.004</td>
</tr>
<tr>
<td>Cl₂</td>
<td>0.0</td>
<td></td>
<td>223.081±0.010</td>
</tr>
<tr>
<td>HCl</td>
<td>−92.31±0.10</td>
<td>−92.13±0.10</td>
<td>186.902±0.005</td>
</tr>
<tr>
<td>ClO</td>
<td>101.681±0.040</td>
<td>101.086±0.040</td>
<td>224.96±0.1</td>
</tr>
<tr>
<td>ClOO</td>
<td>98.3±2.1</td>
<td></td>
<td>270.3</td>
</tr>
<tr>
<td>ClOONH</td>
<td>0.8±4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClOCl</td>
<td>98.1±0.6</td>
<td>100.6±0.6</td>
<td>256.84</td>
</tr>
<tr>
<td>ClOClO</td>
<td>185.4±1.7</td>
<td>191.2±1.7</td>
<td>270.75±0.5</td>
</tr>
<tr>
<td>ClCIO</td>
<td>133.5</td>
<td>134.7</td>
<td>277.6</td>
</tr>
<tr>
<td>ClOClO</td>
<td>81.3±1.8</td>
<td>83.1±1.8</td>
<td></td>
</tr>
<tr>
<td>ClOClOCl</td>
<td>130.1±1</td>
<td>133.3±1</td>
<td>302.9</td>
</tr>
<tr>
<td>ClOCl₂</td>
<td>114.6±5</td>
<td>118.7±5</td>
<td>294.4±6</td>
</tr>
<tr>
<td>ClOClO₂</td>
<td>164.0±5</td>
<td>166.5±5</td>
<td>312.6</td>
</tr>
<tr>
<td>Cl₂O₃</td>
<td>140±5</td>
<td>144±5</td>
<td>337.8±6</td>
</tr>
<tr>
<td>HOCl</td>
<td>−74.8±1.2</td>
<td>−71.8±1.2</td>
<td>236.50±0.42</td>
</tr>
<tr>
<td>HOCIO</td>
<td>20.9±1.7</td>
<td>25.9±1.7</td>
<td></td>
</tr>
<tr>
<td>HOCIO₂</td>
<td>−10.9±1.3</td>
<td>−3.8±1.3</td>
<td></td>
</tr>
<tr>
<td>HOCIO₃</td>
<td>−0.4±4.2</td>
<td>12.1±4.2</td>
<td></td>
</tr>
<tr>
<td>CIF</td>
<td>−55.70±0.31</td>
<td>−55.605±0.31</td>
<td>217.94</td>
</tr>
<tr>
<td>ClOF</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO₃F</td>
<td>−34.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(30) Inorganic compounds containing Cl, O, and N Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClINO</td>
<td>54.3±1.4</td>
<td>56.2±1.4</td>
<td>261.0±1.5</td>
</tr>
<tr>
<td>ClINO₂</td>
<td>12.5±1.0</td>
<td>17.9±1</td>
<td>272.23</td>
</tr>
<tr>
<td>cis–ClONO</td>
<td>55.2±2.7</td>
<td>59.6±2.7</td>
<td>282.8±1.5</td>
</tr>
<tr>
<td>trans–ClONO</td>
<td>68.4±2.7</td>
<td>72.4±2.7</td>
<td>286.1±1.5</td>
</tr>
<tr>
<td>cis, perp–ClO₂NO</td>
<td>102</td>
<td></td>
<td>315.9</td>
</tr>
<tr>
<td>trans, perp–ClO₂NO</td>
<td>108</td>
<td></td>
<td>318.8</td>
</tr>
<tr>
<td>ClONO₂</td>
<td>26.7±3.1</td>
<td>33.8±2.7</td>
<td>301.9±1.5</td>
</tr>
<tr>
<td>cis, perp–ClO₂ONO</td>
<td>130.0±3.1</td>
<td>135.5±3.1</td>
<td>312.2±1.5</td>
</tr>
<tr>
<td>trans, perp–ClO₂ONO</td>
<td>136.4±3.1</td>
<td>143.0±3.1</td>
<td>315.1±1.5</td>
</tr>
<tr>
<td>trans, perp–OCINO</td>
<td>179</td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>O₂ClONO₂</td>
<td>92±17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₃Cl</td>
<td>50.4</td>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>NHCl₂</td>
<td>140.0</td>
<td>145.9</td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>ΔH(298 K) kJ mol⁻¹</td>
<td>ΔH(0 K) kJ mol⁻¹</td>
<td>S(298 K) J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>NCl₃</td>
<td>227.4</td>
<td>230.9</td>
<td></td>
</tr>
</tbody>
</table>

(31) Compounds containing one C and one or more Cl and H

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K) kJ mol⁻¹</th>
<th>ΔH(0 K) kJ mol⁻¹</th>
<th>S(298 K) J K⁻¹ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl</td>
<td>433.7±1.1</td>
<td>430.0±1.1</td>
<td>224.3±1.1</td>
</tr>
<tr>
<td>CHCl</td>
<td>319.4±0.8</td>
<td>319.2±0.8</td>
<td>234.88</td>
</tr>
<tr>
<td>CH₂Cl</td>
<td>117.3±3.1</td>
<td>120.7±3.1</td>
<td>271±7</td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>−81.9±0.6</td>
<td>−73.6±0.6</td>
<td>227.15</td>
</tr>
<tr>
<td>CCl₂</td>
<td>229.4±0.8</td>
<td>228.3±0.8</td>
<td>265.03</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>89.0±3.0</td>
<td>91.4±3.0</td>
<td>280±7</td>
</tr>
<tr>
<td>CH₃Cl₂</td>
<td>−95.1±2.5</td>
<td>−89.7±2.5</td>
<td>270.31</td>
</tr>
<tr>
<td>CCl₃</td>
<td>71.1±2.5</td>
<td>71.7±2.5</td>
<td>303.24</td>
</tr>
<tr>
<td>CH₃Cl₃</td>
<td>−102.9±2.5</td>
<td>−97.8±2.5</td>
<td>295.51</td>
</tr>
<tr>
<td>CCl₄</td>
<td>−95.6±2.5</td>
<td>−93.3±2.5</td>
<td>309.90</td>
</tr>
</tbody>
</table>

(32) Compounds containing one C and one or more Cl, H, and O

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K) kJ mol⁻¹</th>
<th>ΔH(0 K) kJ mol⁻¹</th>
<th>S(298 K) J K⁻¹ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCH₃O</td>
<td>−18.4</td>
<td>−18.4</td>
<td></td>
</tr>
<tr>
<td>CCH₃OH</td>
<td>−246</td>
<td>−246</td>
<td></td>
</tr>
<tr>
<td>CClO</td>
<td>−21.8±2.5</td>
<td>−21.8±2.5</td>
<td>265.3±1.3</td>
</tr>
<tr>
<td>CHClO</td>
<td>−184.2±1.7</td>
<td>−180.8±1.7</td>
<td>259.07</td>
</tr>
<tr>
<td>CH₂OCl</td>
<td>135.5</td>
<td>135.5</td>
<td>279.7</td>
</tr>
<tr>
<td>CH₃OCl</td>
<td>−64.5</td>
<td>−64.5</td>
<td>272.8</td>
</tr>
<tr>
<td>CH₂ClO₂</td>
<td>−5.1±13.6</td>
<td>−5.1±13.6</td>
<td></td>
</tr>
<tr>
<td>CH₃ClOOH</td>
<td>−173.3±6.1</td>
<td>−173.3±6.1</td>
<td>303.09</td>
</tr>
<tr>
<td>CCl₂O</td>
<td>−220.9</td>
<td>−220.9</td>
<td>283.8</td>
</tr>
<tr>
<td>CCl₃HO</td>
<td>−27.6</td>
<td>−27.6</td>
<td></td>
</tr>
<tr>
<td>CCl₃HOH</td>
<td>−277</td>
<td>−277</td>
<td></td>
</tr>
<tr>
<td>CHCl₂O₂</td>
<td>−19.2±11.2</td>
<td>−19.2±11.2</td>
<td>311.8</td>
</tr>
<tr>
<td>CH₂ClOCl</td>
<td>−92.3</td>
<td>−92.3</td>
<td>339.1</td>
</tr>
<tr>
<td>CHCl₂OOH</td>
<td>−187.2±13.6</td>
<td>−187.2±13.6</td>
<td>330.75</td>
</tr>
<tr>
<td>CHCl₂OCl</td>
<td>−109.4</td>
<td>−109.4</td>
<td>339.1</td>
</tr>
<tr>
<td>CCl₂O</td>
<td>−43.5±20</td>
<td>−43.5±20</td>
<td></td>
</tr>
<tr>
<td>CCl₂OH</td>
<td>−293</td>
<td>−293</td>
<td></td>
</tr>
<tr>
<td>CCl₂O₂</td>
<td>−20.9±8.9</td>
<td>−20.9±8.9</td>
<td></td>
</tr>
<tr>
<td>CCl₃OOH</td>
<td>−190.9±13.1</td>
<td>−190.9±13.1</td>
<td>346.64</td>
</tr>
<tr>
<td>CCl₃OCl</td>
<td>−111.8</td>
<td>−111.8</td>
<td>357.2</td>
</tr>
</tbody>
</table>

(33) Compounds containing one C and one or more Cl and F

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K) kJ mol⁻¹</th>
<th>ΔH(0 K) kJ mol⁻¹</th>
<th>S(298 K) J K⁻¹ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHFCI</td>
<td>−61.1±10</td>
<td>−61.1±10</td>
<td>273.5±1.5</td>
</tr>
<tr>
<td>CH₂FCl</td>
<td>−263.9±3.1</td>
<td>−265.3±3.1</td>
<td>263.8±1.5</td>
</tr>
<tr>
<td>CFCl</td>
<td>31.13</td>
<td>30.2±13</td>
<td>259.03</td>
</tr>
<tr>
<td>CF₂Cl</td>
<td>−274.4±2.7</td>
<td>−272.2±2.7</td>
<td>285.5±1.5</td>
</tr>
<tr>
<td>CFCl₂</td>
<td>−93.3±3.8</td>
<td>−91.8±3.8</td>
<td>297.4±1.5</td>
</tr>
<tr>
<td>CHFCI₂</td>
<td>−283.1±4.2</td>
<td>−277.3±4.2</td>
<td>292.4±1.5</td>
</tr>
<tr>
<td>CHF₂Cl</td>
<td>−482.6±3.2</td>
<td>−476.1±3.2</td>
<td>280.8</td>
</tr>
<tr>
<td>CFCI₃</td>
<td>−285.3</td>
<td>−282</td>
<td>309.9</td>
</tr>
<tr>
<td>CF₂Cl₂</td>
<td>−494.1</td>
<td>−489.9</td>
<td>300.7</td>
</tr>
<tr>
<td>CF₃Cl</td>
<td>−709.2±2.9</td>
<td>−704.2±2.9</td>
<td>285.2</td>
</tr>
</tbody>
</table>

(34) Compounds containing one C and one or more Cl, F, and O

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K) kJ mol⁻¹</th>
<th>ΔH(0 K) kJ mol⁻¹</th>
<th>S(298 K) J K⁻¹ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFCIO</td>
<td>−410.9±1.7</td>
<td>−408.4±1.7</td>
<td>276.70</td>
</tr>
<tr>
<td>CF₂OCl</td>
<td>−734.7±4.2</td>
<td>−734.7±4.2</td>
<td></td>
</tr>
<tr>
<td>CCl₃OF</td>
<td>−158.1</td>
<td>−158.1</td>
<td></td>
</tr>
<tr>
<td>cis-FC(O)OCl</td>
<td>−418</td>
<td>−414</td>
<td></td>
</tr>
<tr>
<td>trans-FC(O)OCl</td>
<td>−429</td>
<td>−425</td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>ΔH(298 K) kJ mol⁻¹</td>
<td>ΔH(0 K) kJ mol⁻¹</td>
<td>S(298 K) J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>CHClFOOH</td>
<td>-345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl₂FOOH</td>
<td>-390</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compounds containing two C and one or more Cl

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K) kJ mol⁻¹</th>
<th>ΔH(0 K) kJ mol⁻¹</th>
<th>S(298 K) J K⁻¹ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂HCl</td>
<td>226±10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₂Cl</td>
<td>22±3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CH₂Cl</td>
<td>93.0±2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CHCl</td>
<td>76.5±1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CH₂Cl</td>
<td>-112.1±0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂Cl₂</td>
<td>227±14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CCl₂</td>
<td>2.4±2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis–CHClCHCl</td>
<td>-3±2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans–CHClCHCl</td>
<td>-0.5±2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CCl₂</td>
<td>42.5±1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CHCl₂</td>
<td>-132.6±3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHCl₂CH₂</td>
<td>90.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ClCH₂Cl</td>
<td>-132.0±3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂HCl₃</td>
<td>-17.5±3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ClCHCl₂</td>
<td>-148.0±4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CCl₃</td>
<td>71.5±8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CCl₂</td>
<td>-144.6±2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂Cl₄</td>
<td>-24.2±4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHCl₂CHCl₂</td>
<td>-156.7±3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ClCCl₃</td>
<td>-152.3±2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂Cl₅</td>
<td>-21.3±5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂HCl₆</td>
<td>-155.9±4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂Cl₇</td>
<td>-148.2±5.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compounds containing two C and one or more Cl and O

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K) kJ mol⁻¹</th>
<th>ΔH(0 K) kJ mol⁻¹</th>
<th>S(298 K) J K⁻¹ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClCH₂CH₂OH</td>
<td>-267.2±0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₁CHClO₂</td>
<td>-54.7±3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₁C(O)Cl</td>
<td>-242.8±0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂C(O)OH</td>
<td>-427.6±1.0</td>
<td>-416.0±1.0</td>
<td>325.9±5.0</td>
</tr>
<tr>
<td>CH₂ClCH₂OOH</td>
<td>-191±5</td>
<td></td>
<td>373.38</td>
</tr>
<tr>
<td>CH₁CHClOOH</td>
<td>-226</td>
<td></td>
<td>331</td>
</tr>
<tr>
<td>CH₁CCl₅OOH</td>
<td>-244</td>
<td></td>
<td>362</td>
</tr>
<tr>
<td>CH₂C(O)Cl</td>
<td>-244.8±8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(O)CC(O)Cl</td>
<td>-335.8±6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHCl₂C(O)Cl</td>
<td>-241.0±8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>ΔH(298 K) kJ mol$^{-1}$</td>
<td>ΔH(0 K) kJ mol$^{-1}$</td>
<td>S(298 K) J K$^{-1}$ mol$^{-1}$</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>CCl$_3$CH$_2$OOH</td>
<td>−210±6</td>
<td></td>
<td>405.26</td>
</tr>
<tr>
<td>CH$_3$CO</td>
<td>−62.8</td>
<td></td>
<td>359.4</td>
</tr>
<tr>
<td>CCl$_3$(O)H</td>
<td>−236</td>
<td></td>
<td>346.4</td>
</tr>
<tr>
<td>CCl$_3$(O)Cl</td>
<td>−240±9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CCl$_2$O$_2$</td>
<td>−69.7±4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl$_3$CH$_2$OOH</td>
<td>−205±6</td>
<td></td>
<td>386.31</td>
</tr>
</tbody>
</table>

(38) Compounds containing three C and, possibly, F, Cl, and O

<table>
<thead>
<tr>
<th>Compounds containing three C and, possibly, F, Cl, and O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl$_3$CHClCH$_3$</td>
</tr>
<tr>
<td>CF$_2$Cl(OC)OCH$_3$</td>
</tr>
<tr>
<td>CF$_2$Cl(OC)OCH$_2$</td>
</tr>
</tbody>
</table>

(39) Inorganic compounds containing Br

Br	111.87±0.12	117.93±0.12	175.018±0.004
Br(g)	30.91±0.11	45.71±0.11	245.468±0.005
HBr(g)	−36.29±0.16	−28.44±0.16	198.700±0.004
BrO	123.4±0.4	131.0±0.4	232.97±0.1
OBrO	163.9±4.4	171.1±4.3	271±2
BrOO	119.8±6	128.2±6	289±3
BrO$_3$	221±50	233±50	285±2
BrOBr	107.6±3.5	124.1±3.5	290.8±2
BrBrO	168.2±6	184.1±6	313±2
BrOOBr	166.1±6	184.5±6	
BrOBBr	205.0±6	222.2±6	
OBrBrO	303		
BrBrO$_2$	201.7±6	219.7±6	
HOBr	−60.5±1.1	−50.0±1.1	248.0
BrOOH	24.3±4		
HOBrO	42.3		
HBrO$_2$	249		

(40) Inorganic compounds containing Br and F

BrF	−58.85±1.0	−51.2±1.0	228.985
BrOF	28.0		
BrO$_2$F	12.6		

(41) Inorganic compounds containing Br and Cl

BrCl	14.79±0.16	22.23±0.16	240.046
ClOBr	94.1±6	103.3±6	
ClBrO	145.2±6	154.0±6	
BrClO	159.4±6	168.2±6	
ClOOBr	151.5±6	162.3±6	
ClOBrO	192.5±6	202.5±6	
BrClO$_2$	186.2±6	196.2±6	
ClBrO$_2$	171.1±6	182.0±6	
BrClO$_2$	158.2±6	169.5±6	

(42) Inorganic compounds containing Br, N, and O

<p>| BrNO | 82.17±0.8 | 91.46±0.8 | 273.66±0.8 |
| cis–BrONO | 71.9 | | |
| trans–BrONO | 88.3 | | |
| BrNO$_2$ | 45.2 | | |
| BrONO$_2$ | 42.7±8 | | |</p>
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(\Delta H(298 \text{ K})) kJ mol(^{-1})</th>
<th>(\Delta H(0 \text{ K})) kJ mol(^{-1})</th>
<th>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBrONO(_2)</td>
<td>153.6±8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_2)BrONO(_2)</td>
<td>161.9±8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(43) Bromoamines and Mixed Chlorobromoamines

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(\Delta H(298 \text{ K})) kJ mol(^{-1})</th>
<th>(\Delta H(0 \text{ K})) kJ mol(^{-1})</th>
<th>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH(_2)Br</td>
<td>79.4</td>
<td>93.9</td>
<td></td>
</tr>
<tr>
<td>NHBr(_2)</td>
<td>200.9</td>
<td>221.3</td>
<td></td>
</tr>
<tr>
<td>NBr(_3)</td>
<td>308.9</td>
<td>333.5</td>
<td></td>
</tr>
<tr>
<td>NHBrCl</td>
<td>166.5</td>
<td>179.7</td>
<td></td>
</tr>
<tr>
<td>NBrCl(_2)</td>
<td>258.2</td>
<td>268.8</td>
<td></td>
</tr>
<tr>
<td>NBrCl</td>
<td>380.7</td>
<td>398.4</td>
<td></td>
</tr>
</tbody>
</table>

(44) Compounds containing one C and one or more Br

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(\Delta H(298 \text{ K})) kJ mol(^{-1})</th>
<th>(\Delta H(0 \text{ K})) kJ mol(^{-1})</th>
<th>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBr</td>
<td>498.3±2.1</td>
<td>501.7±2.1</td>
<td>230.9</td>
</tr>
<tr>
<td>CHBr</td>
<td>378.7±2.9</td>
<td>386.4±2.9</td>
<td>252.9</td>
</tr>
<tr>
<td>CH(_2)Br</td>
<td>172.8±2.7</td>
<td></td>
<td>260.465</td>
</tr>
<tr>
<td>CH(_3)Br</td>
<td>–36.36±0.4</td>
<td></td>
<td>245.85±0.25</td>
</tr>
<tr>
<td>CBr(_2)</td>
<td>350.2±0.4</td>
<td>363.7±0.4</td>
<td>268.7</td>
</tr>
<tr>
<td>CHBr(_2)</td>
<td>188.9±9</td>
<td></td>
<td>298.6</td>
</tr>
<tr>
<td>CH(_2)Br(_2)</td>
<td>3.6±3.4</td>
<td>24.9±3.4</td>
<td>294</td>
</tr>
<tr>
<td>CBr(_3)</td>
<td>224±9</td>
<td></td>
<td>334.57</td>
</tr>
<tr>
<td>CHBr(_3)</td>
<td>55.4±3.3</td>
<td></td>
<td>330.67</td>
</tr>
<tr>
<td>CBr(_4)</td>
<td>83.9±3.4</td>
<td></td>
<td>358.06</td>
</tr>
</tbody>
</table>

(45) Compounds containing one C and one or more F and Br

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(\Delta H(298 \text{ K})) kJ mol(^{-1})</th>
<th>(\Delta H(0 \text{ K})) kJ mol(^{-1})</th>
<th>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFBr</td>
<td>89.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH(_2)FBr</td>
<td>–214.2</td>
<td></td>
<td>276.19</td>
</tr>
<tr>
<td>CHF(_2)Br</td>
<td>–424.9±1.0</td>
<td></td>
<td>295.17</td>
</tr>
<tr>
<td>CF(_2)Br</td>
<td>–641.4±2.3</td>
<td>–637.6±2.3</td>
<td>297.49</td>
</tr>
<tr>
<td>CHFBr(_2)</td>
<td>–191.6</td>
<td>–171.8</td>
<td>316.98</td>
</tr>
<tr>
<td>CF(_2)Br(_2)</td>
<td>–386.6</td>
<td>–368.4</td>
<td>325.24</td>
</tr>
<tr>
<td>CFBr(_3)</td>
<td>–143.5</td>
<td>–119.5</td>
<td>345.87</td>
</tr>
</tbody>
</table>

(46) Compounds containing one C and one or more Cl and Br

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(\Delta H(298 \text{ K})) kJ mol(^{-1})</th>
<th>(\Delta H(0 \text{ K})) kJ mol(^{-1})</th>
<th>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CClBr</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHClBr</td>
<td>143±6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH(_2)ClBr</td>
<td>–43.7±1.9</td>
<td>–43.3±1.9</td>
<td></td>
</tr>
<tr>
<td>CCl(_2)Br</td>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHCl(_2)Br</td>
<td>–48.8</td>
<td>–36.8</td>
<td>316.18</td>
</tr>
<tr>
<td>CCl(_3)Br</td>
<td>–41.1±2.0</td>
<td>–32.0±2.0</td>
<td>332.92</td>
</tr>
<tr>
<td>CClBr(_2)</td>
<td>163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHClBr(_2)</td>
<td>–9.0</td>
<td>10.1</td>
<td>327.79</td>
</tr>
<tr>
<td>CCl(_3)Br(_2)</td>
<td>9.3</td>
<td>25.5</td>
<td>348.30</td>
</tr>
<tr>
<td>CClBr(_3)</td>
<td>48.7</td>
<td>71.6</td>
<td>357.69</td>
</tr>
</tbody>
</table>

(47) Compounds containing one C and one or more Cl and Br

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(\Delta H(298 \text{ K})) kJ mol(^{-1})</th>
<th>(\Delta H(0 \text{ K})) kJ mol(^{-1})</th>
<th>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHFClBr</td>
<td>–229.8</td>
<td></td>
<td>304.74</td>
</tr>
<tr>
<td>CF(_2)ClBr</td>
<td>–446.6±2.7</td>
<td></td>
<td>318.70</td>
</tr>
<tr>
<td>CFCI(_2)Br</td>
<td>–230.1</td>
<td></td>
<td>330.48</td>
</tr>
<tr>
<td>CFCIBr(_2)</td>
<td>–183.0</td>
<td>–165.9</td>
<td>342.82</td>
</tr>
<tr>
<td>SPECIES</td>
<td>$\Delta H(298 \text{ K})$</td>
<td>$\Delta H(0 \text{ K})$</td>
<td>S(298 K)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>kJ mol$^{-1}$</td>
<td>kJ mol$^{-1}$</td>
<td>J K$^{-1}$ mol$^{-1}$</td>
</tr>
<tr>
<td>(48) Compounds containing one C, one or more O, and Br</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr$_2$O</td>
<td>-27.1 ± 0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBrO</td>
<td>93.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr$_2$OH</td>
<td>-125.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr$_2$O</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr$_2$OCl</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr$_2$OBr</td>
<td>38.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_2$OBr</td>
<td>-755.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCl$_2$OBr</td>
<td>-132.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$BrOOH</td>
<td>-112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHFBrOOH</td>
<td>-330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHCBrOOH</td>
<td>-143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$BrOOH</td>
<td>-112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(49) Compounds containing two C and Br</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$Br</td>
<td>623.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$HBr</td>
<td>296±6</td>
<td>298±6</td>
<td></td>
</tr>
<tr>
<td>CH$_2$CHBr</td>
<td>79.2±1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CHBr</td>
<td>135.6±6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CHBr</td>
<td>125.8±8</td>
<td>149.9±8</td>
<td></td>
</tr>
<tr>
<td>CH$_2$CH$_2$Br</td>
<td>-62.9 ± 1.5</td>
<td>-40.8 ± 1.5</td>
<td>287.3±0.4</td>
</tr>
<tr>
<td>C$_2$Br$_2$</td>
<td>335.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-C$_2$HBrCBr</td>
<td>333.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CB$_2$</td>
<td>140.2±5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CB$_2$H</td>
<td>-26.7 ± 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHBrCBr$_2$</td>
<td>144.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$BrCH$_2$Br</td>
<td>-71.6 ± 1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$Br$_3$</td>
<td>385.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$BrCHBr$_2$</td>
<td>53.5±4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$CB$_3$</td>
<td>-4.6</td>
<td>27.2</td>
<td>354.1</td>
</tr>
<tr>
<td>C$_2$Br$_4$</td>
<td>190.1</td>
<td></td>
<td>387.4</td>
</tr>
<tr>
<td>C$_2$Br$_2$CB$_2$</td>
<td>218.8</td>
<td></td>
<td>419.0</td>
</tr>
<tr>
<td>CBr$_2$CHBr</td>
<td>243.6</td>
<td></td>
<td>416.9</td>
</tr>
<tr>
<td>C$_2$Br$_5$</td>
<td>183.3</td>
<td></td>
<td>444.7</td>
</tr>
<tr>
<td>C$_2$HBr$_5$</td>
<td>113.1</td>
<td></td>
<td>439.2</td>
</tr>
<tr>
<td>C$_2$Br$_6$</td>
<td>165.5</td>
<td></td>
<td>459.1</td>
</tr>
<tr>
<td>(50) Compounds containing two C and Br and F and/or Cl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_2$CH$_3$Br</td>
<td>-694.5 ± 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_2$HCF$_2$Br</td>
<td>-833.4 ± 4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_3$CF$_2$Br</td>
<td>-1064.4 ± 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_2$BrCF$_2$Br</td>
<td>-789.1 ± 5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHFClCF$_2$Br</td>
<td>-644.8 ± 6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHClBrCHClBr</td>
<td>-36.9 ± 8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_2$BrCFClBr</td>
<td>-656.6 ± 20.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-15
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>$\Delta H(298,K)$ kJ mol$^{-1}$</th>
<th>$\Delta H(0,K)$ kJ mol$^{-1}$</th>
<th>S(298 K) J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(51) Compounds containing two C, O and Br</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$C(O)Br</td>
<td>-190.4 ± 0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$BrCOOH</td>
<td>-383.5 ± 3.1</td>
<td>-364.6 ± 4</td>
<td>337.0 ± 5.0</td>
</tr>
<tr>
<td>BrCH$_2$CH$_2$OH</td>
<td>-221.7 ± 0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(52) Compounds containing three C and Br</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$CHBrCH$_3$</td>
<td>-95.6 ± 0.9</td>
<td>-67.6 ± 0.9</td>
<td></td>
</tr>
<tr>
<td>(53) Compounds containing I and 0 or 1 H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>106.760 ± 0.04</td>
<td>107.161 ± 0.04</td>
<td>180.787 ± 0.004</td>
</tr>
<tr>
<td>I$_2$</td>
<td>62.42 ± 0.08</td>
<td>65.50 ± 0.08</td>
<td>260.687 ± 0.005</td>
</tr>
<tr>
<td>HI</td>
<td>26.50 ± 0.10</td>
<td>28.676 ± 0.10</td>
<td>206.589 ± 0.005</td>
</tr>
<tr>
<td>(54) Compounds containing I and O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>122.2 ± 1.3</td>
<td>124.3 ± 1.3</td>
<td>239.6 ± 0.1</td>
</tr>
<tr>
<td>OIO</td>
<td>118.5 ± 2.0</td>
<td>122.1 ± 2.0</td>
<td>279.9</td>
</tr>
<tr>
<td>IOO</td>
<td>86.3 ± 6</td>
<td>87.6 ± 6</td>
<td>308.4</td>
</tr>
<tr>
<td>IO$_3$</td>
<td>147.8</td>
<td>153.9</td>
<td>293 ± 4</td>
</tr>
<tr>
<td>IO$_4$</td>
<td>107.5 ± 6</td>
<td>114.2 ± 6</td>
<td>306.5</td>
</tr>
<tr>
<td>I$_2$O</td>
<td>158.2 ± 6</td>
<td>164.0 ± 6</td>
<td>317.8</td>
</tr>
<tr>
<td>IO$_4$</td>
<td>177.8 ± 6</td>
<td>186.2 ± 6</td>
<td>337.0</td>
</tr>
<tr>
<td>IO$_5$</td>
<td>138.5 ± 6</td>
<td>147.7 ± 6</td>
<td>339.9</td>
</tr>
<tr>
<td>IO$_6$</td>
<td>152.3 ± 6</td>
<td>161.5 ± 6</td>
<td>349.7</td>
</tr>
<tr>
<td>OIO</td>
<td>259.4 ± 6</td>
<td>263.2 ± 6</td>
<td>356.3</td>
</tr>
<tr>
<td>IO$_3$O</td>
<td>64.0</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>IO$_5$O</td>
<td>111.3</td>
<td>131.5</td>
<td></td>
</tr>
<tr>
<td>IO$_6$O</td>
<td>33.0</td>
<td>54.6</td>
<td></td>
</tr>
<tr>
<td>(55) Compounds containing I, H and O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOI</td>
<td>-70.7 ± 3.7</td>
<td>-66.1 ± 3.7</td>
<td>255.0 ± 0.1</td>
</tr>
<tr>
<td>HIO</td>
<td>143.3</td>
<td>148.0</td>
<td></td>
</tr>
<tr>
<td>HOIO</td>
<td>-17.4</td>
<td>-11.0</td>
<td></td>
</tr>
<tr>
<td>HOIO</td>
<td>36.9</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td>(56) Di-halo compounds containing I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>-81.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICl</td>
<td>17.393 ± 0.040</td>
<td>19.026 ± 0.040</td>
<td>247.572</td>
</tr>
<tr>
<td>IBr</td>
<td>40.807 ± 0.14</td>
<td>49.754 ± 0.14</td>
<td>258.809</td>
</tr>
<tr>
<td>(57) Compounds containing I, O, and F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOF</td>
<td>-32.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO$_2$F</td>
<td>-109.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(58) Compounds containing I, O, and Cl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClIOI</td>
<td>94.1 ± 6</td>
<td>97.5 ± 6</td>
<td></td>
</tr>
<tr>
<td>ClIO</td>
<td>95.0 ± 6</td>
<td>97.5 ± 6</td>
<td></td>
</tr>
<tr>
<td>ClIO</td>
<td>180.7 ± 6</td>
<td>183.3 ± 6</td>
<td></td>
</tr>
<tr>
<td>ClIO$_2$</td>
<td>56.9 ± 6</td>
<td>61.5 ± 6</td>
<td></td>
</tr>
<tr>
<td>ClIOIO</td>
<td>143.1 ± 6</td>
<td>149.0 ± 6</td>
<td></td>
</tr>
<tr>
<td>ClIOOI</td>
<td>154.4 ± 6</td>
<td>161.1 ± 6</td>
<td></td>
</tr>
<tr>
<td>IOClO</td>
<td>182.4 ± 6</td>
<td>188.7 ± 6</td>
<td></td>
</tr>
<tr>
<td>IOClO</td>
<td>191.6 ± 6</td>
<td>196.6 ± 6</td>
<td></td>
</tr>
<tr>
<td>(59) Compounds containing I, O, and Br</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrIO</td>
<td>107.1 ± 6</td>
<td>118.0 ± 6</td>
<td></td>
</tr>
<tr>
<td>BrIO</td>
<td>122.2 ± 6</td>
<td>133.9 ± 6</td>
<td></td>
</tr>
<tr>
<td>IBrO</td>
<td>192.5 ± 6</td>
<td>204.2 ± 6</td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>ΔH(298 K)</td>
<td>ΔH(0 K)</td>
<td>S(298 K)</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>BrOOI</td>
<td>169.9±6</td>
<td>184.1±6</td>
<td></td>
</tr>
<tr>
<td>BrOIO</td>
<td>152.3±6</td>
<td>166.9±6</td>
<td></td>
</tr>
<tr>
<td>IOBrO</td>
<td>202.5±6</td>
<td>216.3±6</td>
<td></td>
</tr>
<tr>
<td>BrO₂</td>
<td>92.5±6</td>
<td>105.9±6</td>
<td></td>
</tr>
<tr>
<td>IBrO₂</td>
<td>239.7±6</td>
<td>253.1±6</td>
<td></td>
</tr>
<tr>
<td>OBrO</td>
<td>273.6±6</td>
<td>292.5±6</td>
<td></td>
</tr>
</tbody>
</table>

(60) Compounds containing I, O, and N

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K)</th>
<th>ΔH(0 K)</th>
<th>S(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>BrOOI</td>
<td>169.9±6</td>
<td>184.1±6</td>
<td></td>
</tr>
<tr>
<td>BrOIO</td>
<td>152.3±6</td>
<td>166.9±6</td>
<td></td>
</tr>
<tr>
<td>IOBrO</td>
<td>202.5±6</td>
<td>216.3±6</td>
<td></td>
</tr>
<tr>
<td>BrO₂</td>
<td>92.5±6</td>
<td>105.9±6</td>
<td></td>
</tr>
<tr>
<td>IBrO₂</td>
<td>239.7±6</td>
<td>253.1±6</td>
<td></td>
</tr>
<tr>
<td>OBrO</td>
<td>273.6±6</td>
<td>292.5±6</td>
<td></td>
</tr>
</tbody>
</table>

(61) Compounds containing one C and I and H

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K)</th>
<th>ΔH(0 K)</th>
<th>S(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>CHI</td>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂I</td>
<td>217.2±3</td>
<td>221.6±3</td>
<td></td>
</tr>
<tr>
<td>CH₃I</td>
<td>13.2±0.5</td>
<td>22.7±0.5</td>
<td>253.7±0.25</td>
</tr>
<tr>
<td>Cl₂</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂I₂</td>
<td>290.4±6</td>
<td>295.8±6</td>
<td></td>
</tr>
<tr>
<td>CH₂I₃</td>
<td>107.9±4.5</td>
<td>117.4±4.5</td>
<td>309.39</td>
</tr>
<tr>
<td>CH₃I</td>
<td>208.5±9</td>
<td>216.4±9</td>
<td>355.5</td>
</tr>
<tr>
<td>Cl₃</td>
<td>369±20</td>
<td>366±20</td>
<td></td>
</tr>
<tr>
<td>Cl₄</td>
<td>321±60</td>
<td>326±60</td>
<td>391.6</td>
</tr>
</tbody>
</table>

(62) Compounds containing one C and I, H and O

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K)</th>
<th>ΔH(0 K)</th>
<th>S(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>CHI₂OOH</td>
<td>–247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI₂OOH</td>
<td>–157</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(63) Compounds containing one C, F, and I

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K)</th>
<th>ΔH(0 K)</th>
<th>S(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>CFSI</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₂I</td>
<td>–586.2±2.1</td>
<td>–580.3±2.1</td>
<td>307.78</td>
</tr>
<tr>
<td>CF₃I</td>
<td>–274.8</td>
<td>–269.3</td>
<td>346.34</td>
</tr>
</tbody>
</table>

(64) Compounds containing one C, Cl, and I

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K)</th>
<th>ΔH(0 K)</th>
<th>S(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>CCl₂</td>
<td>343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂Cl</td>
<td>11.1±1.9</td>
<td>19.2±1.9</td>
<td></td>
</tr>
<tr>
<td>CCl₃I</td>
<td>9.0</td>
<td>12.1</td>
<td>340.31</td>
</tr>
</tbody>
</table>

(65) Compounds containing one C, Br, and I

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K)</th>
<th>ΔH(0 K)</th>
<th>S(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>CHBrI</td>
<td>242±6</td>
<td>232±6</td>
<td></td>
</tr>
<tr>
<td>CH₂Br</td>
<td>55.4±3.4</td>
<td>70.8±3.4</td>
<td></td>
</tr>
<tr>
<td>CBr₂I</td>
<td>272±6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr₂I</td>
<td>105±9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBrI</td>
<td>395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr₂</td>
<td>321±9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr₃I</td>
<td>321±9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBr₄</td>
<td>321±9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(66) Compounds containing two C and I

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K)</th>
<th>ΔH(0 K)</th>
<th>S(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>cis-CHICHI</td>
<td>207.4±0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-CHICHI</td>
<td>207.4±0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH₃I</td>
<td>–9.8±1.5</td>
<td>6.3±1.5</td>
<td>295.52±0.42</td>
</tr>
<tr>
<td>CH₄CH₄I</td>
<td>64.5±2.5</td>
<td>80.0±2.5</td>
<td></td>
</tr>
</tbody>
</table>

(67) Compounds containing two C, F and I

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K)</th>
<th>ΔH(0 K)</th>
<th>S(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ mol⁻¹</td>
<td>kJ mol⁻¹</td>
<td>J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>CF₂CH₂I</td>
<td>–64.4±2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF₃CF₂I</td>
<td>–100.2±4.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(68) Compounds containing two C, O and I
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>ΔH(298 K) kJ mol⁻¹</th>
<th>ΔH(0 K) kJ mol⁻¹</th>
<th>S(298 K) J K⁻¹ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃C(O)I</td>
<td>-126.4±2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CH₂OH</td>
<td>-150.3±0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(69) Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing two C, N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CN</td>
<td>172.5±4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(70) Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing three C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂CHIC₃H₂</td>
<td>-38.5±0.9</td>
<td>-16.4±0.9</td>
<td></td>
</tr>
<tr>
<td>(71) Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing S and H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>277.17±0.15</td>
<td>274.92±0.15</td>
<td>167.829±0.006</td>
</tr>
<tr>
<td>S₂</td>
<td>128.6±0.3</td>
<td>128.29±0.3</td>
<td>228.167±0.010</td>
</tr>
<tr>
<td>HS</td>
<td>142.92±0.78</td>
<td>142.47±0.78</td>
<td>195.552</td>
</tr>
<tr>
<td>H₂S</td>
<td>-20.6±0.5</td>
<td>-17.68±0.5</td>
<td>205.81±0.05</td>
</tr>
<tr>
<td>HSS</td>
<td>105±4</td>
<td></td>
<td>252.40</td>
</tr>
<tr>
<td>HSSH</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSSS</td>
<td>110±4</td>
<td>129±4</td>
<td></td>
</tr>
<tr>
<td>HSSSSH</td>
<td>22±4</td>
<td>28.9±4</td>
<td></td>
</tr>
<tr>
<td>(72) Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing S and O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>4.78±0.25</td>
<td>4.73±0.25</td>
<td>221.94</td>
</tr>
<tr>
<td>SO₂</td>
<td>205±4</td>
<td>207±4</td>
<td></td>
</tr>
<tr>
<td>SO₃</td>
<td>-296.81±0.20</td>
<td>-294.30±0.20</td>
<td>248.223±0.050</td>
</tr>
<tr>
<td>S₂O</td>
<td>-395.9±0.7</td>
<td>-390.16±0.7</td>
<td>256.541</td>
</tr>
<tr>
<td>S₂O₂</td>
<td>-55.39±1.10</td>
<td>-53.35±1.10</td>
<td>266.961</td>
</tr>
<tr>
<td>SO₃</td>
<td>224±4</td>
<td>226±4</td>
<td></td>
</tr>
<tr>
<td>(73) Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing S, H and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSO</td>
<td>-24.7±4.2</td>
<td>-21.8±4.2</td>
<td>241.4</td>
</tr>
<tr>
<td>HOS</td>
<td>-7.5±4.2</td>
<td>-4.6±4.2</td>
<td>240.0</td>
</tr>
<tr>
<td>HSO₂</td>
<td>-178±8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSOO</td>
<td>-247±4</td>
<td>-243±4</td>
<td></td>
</tr>
<tr>
<td>HSO₂O</td>
<td>113±6</td>
<td>118±6</td>
<td></td>
</tr>
<tr>
<td>HSOH</td>
<td>-117±4</td>
<td>-111±4</td>
<td></td>
</tr>
<tr>
<td>HSO₂O</td>
<td>59±6</td>
<td>64±6</td>
<td></td>
</tr>
<tr>
<td>HOOSH</td>
<td>-31.0±4</td>
<td>-23.4±4</td>
<td></td>
</tr>
<tr>
<td>HSO₂OH</td>
<td>-285±4</td>
<td>-276±4</td>
<td></td>
</tr>
<tr>
<td>HSO₂O₂</td>
<td>-375.7±4.4</td>
<td>-367.5±4.4</td>
<td>294.1</td>
</tr>
<tr>
<td>H₂SO₃</td>
<td>-732.7±2</td>
<td>-720.8±2.0</td>
<td>311.3±1.5</td>
</tr>
<tr>
<td>HOSS</td>
<td>-67±4</td>
<td>-63±4</td>
<td></td>
</tr>
<tr>
<td>HSSO</td>
<td>-40±4</td>
<td>-36±4</td>
<td></td>
</tr>
<tr>
<td>HSOS</td>
<td>105±6</td>
<td>109±6</td>
<td></td>
</tr>
<tr>
<td>HOSSH</td>
<td>-128±4</td>
<td>-120±4</td>
<td></td>
</tr>
<tr>
<td>HSOSH</td>
<td>-0.4±4</td>
<td>6.3±4</td>
<td></td>
</tr>
<tr>
<td>(74) Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing S, H, N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-HSNO</td>
<td>107.3±2.7</td>
<td>112.4±2.7</td>
<td>266.4</td>
</tr>
<tr>
<td>cis-HSNO</td>
<td>110.7±2.7</td>
<td>115.8±2.7</td>
<td>266.1</td>
</tr>
<tr>
<td>(75) Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing halogens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S and O or H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSH</td>
<td>-128.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F₂SO</td>
<td>-588</td>
<td>-584</td>
<td></td>
</tr>
<tr>
<td>F₂SO₂</td>
<td>-758</td>
<td>-750</td>
<td></td>
</tr>
<tr>
<td>FCISO</td>
<td>-387</td>
<td>-384</td>
<td></td>
</tr>
<tr>
<td>FCISO₂</td>
<td>-554</td>
<td>-547</td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>ΔH(298 K) kJ mol⁻¹</td>
<td>ΔH(0 K) kJ mol⁻¹</td>
<td>S(298 K) J K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>(76) NS and PS Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>283±24</td>
<td>283±24</td>
<td>222.093</td>
</tr>
<tr>
<td>PS</td>
<td>152±10</td>
<td>153±10</td>
<td>234.065</td>
</tr>
<tr>
<td>(77) Compounds containing one C and S, H Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>279.775±0.75</td>
<td>276.529±0.75</td>
<td>210.55</td>
</tr>
<tr>
<td>CS₂</td>
<td>116.70±1.0</td>
<td>115.91±1.0</td>
<td>237.882</td>
</tr>
<tr>
<td>HCS</td>
<td>300.4±8.4</td>
<td>300.0±8.4</td>
<td></td>
</tr>
<tr>
<td>CH₃S</td>
<td>114.6±8.4</td>
<td>118.4±8.4</td>
<td></td>
</tr>
<tr>
<td>CH₄S</td>
<td>124.7±1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃SH</td>
<td>151.9±9.2</td>
<td>158.2±9.2</td>
<td>270.0</td>
</tr>
<tr>
<td>CH₃SH</td>
<td>−22.9±0.7</td>
<td></td>
<td>255.14</td>
</tr>
<tr>
<td>(78) Compounds containing one C and S, H, O Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS₂OH</td>
<td>108.4±5.4</td>
<td></td>
<td>321±20</td>
</tr>
<tr>
<td>CH₃SO</td>
<td>−35.1±3.1</td>
<td>−28.3±3.1</td>
<td>261.4</td>
</tr>
<tr>
<td>CH₃S(O)O</td>
<td>−144.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃SO</td>
<td>−70.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃S(O)O</td>
<td>−219</td>
<td></td>
<td>290.9</td>
</tr>
<tr>
<td>CH₃OSO</td>
<td>−230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃SOO</td>
<td>75.7±5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃S(O)OH</td>
<td>−107</td>
<td></td>
<td>317.0</td>
</tr>
<tr>
<td>CH₃S(O)OH</td>
<td>−324</td>
<td></td>
<td>302.6</td>
</tr>
<tr>
<td>OCS</td>
<td>−141.7±2</td>
<td>−141.8±2</td>
<td>231.644</td>
</tr>
<tr>
<td>SC(SOH)</td>
<td>108.9±5.0</td>
<td>111.4±5.0</td>
<td>321.8</td>
</tr>
<tr>
<td>SO₂COH</td>
<td>60.3±4.6</td>
<td>65.4±4.6</td>
<td>296.9</td>
</tr>
<tr>
<td>(79) Compounds containing two C and S, H Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃SCH₂</td>
<td>136.3±8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃SCH₃</td>
<td>−37.4±0.6</td>
<td>285.96</td>
<td></td>
</tr>
<tr>
<td>CH₃SSCH₃</td>
<td>−24.7±1.0</td>
<td>336.80</td>
<td></td>
</tr>
<tr>
<td>C₂H₆SH</td>
<td>−46.1±0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSC₆H₅CH₃S</td>
<td>−9.7±1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(80) Compounds containing two C and S, H, O Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃S(O)CH₃</td>
<td>−151.3±0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃S(O)OCH₃</td>
<td>−304</td>
<td>342.8</td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)SH</td>
<td>−175.1±8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(81) Compounds containing Li Back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>159.3±1</td>
<td>157.7±1</td>
<td>138.78</td>
</tr>
<tr>
<td>Li₂</td>
<td>215.9±3.0</td>
<td>215.5±3.0</td>
<td>197.00</td>
</tr>
<tr>
<td>LiH</td>
<td>140.624±0.04</td>
<td>140.794±0.04</td>
<td>170.909</td>
</tr>
<tr>
<td>LiF</td>
<td>−341±4</td>
<td>−341±8</td>
<td>200.278±0.008</td>
</tr>
<tr>
<td>LiCl</td>
<td>−196±4</td>
<td>−196±12</td>
<td>212.92</td>
</tr>
<tr>
<td>LiBr</td>
<td>−154±13</td>
<td>−146±13</td>
<td>224.35</td>
</tr>
<tr>
<td>LiOH</td>
<td>−229.0±5</td>
<td>−227.1±5</td>
<td>214.66</td>
</tr>
<tr>
<td>LiO</td>
<td>53.1±4</td>
<td>53.6±4</td>
<td>210.96</td>
</tr>
<tr>
<td>LiO₂</td>
<td>−94.6±4</td>
<td>−92.5±4</td>
<td></td>
</tr>
<tr>
<td>LiO₃</td>
<td>−77.8±4</td>
<td>−73.6±4</td>
<td></td>
</tr>
<tr>
<td>Li₂O</td>
<td>−158.6±4</td>
<td>−157.7±4</td>
<td>229.11</td>
</tr>
<tr>
<td>Li₂SO₄</td>
<td>−1042±84</td>
<td>−1030±84</td>
<td>332.82±42</td>
</tr>
<tr>
<td>SPECIES</td>
<td>$\Delta H(298 \text{ K})$ kJ mol$^{-1}$</td>
<td>$\Delta H(0 \text{ K})$ kJ mol$^{-1}$</td>
<td>$S(298 \text{ K})$ J K$^{-1}$ mol$^{-1}$</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>(82) Compounds containing Na</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>107.5±0.7</td>
<td>107.8±0.7</td>
<td>153.72</td>
</tr>
<tr>
<td>Na$_2$</td>
<td>142.07±1.2</td>
<td>144.56±1.2</td>
<td>230.24±0.030</td>
</tr>
<tr>
<td>NaH</td>
<td>124.3±19</td>
<td>126.2±19</td>
<td>188.39</td>
</tr>
<tr>
<td>NaF</td>
<td>–290±2</td>
<td>–289±2</td>
<td>217.61</td>
</tr>
<tr>
<td>NaCl</td>
<td>–181±2</td>
<td>–180±2</td>
<td>229.79</td>
</tr>
<tr>
<td>NaBr</td>
<td>–143.9±2.1</td>
<td>–135.0±2.2</td>
<td>241.22</td>
</tr>
<tr>
<td>NaOH</td>
<td>–191.0±8</td>
<td>–187.4±8</td>
<td>229.27</td>
</tr>
<tr>
<td>NaO</td>
<td>90.4±4</td>
<td>92.0±4</td>
<td>229.13±2.1</td>
</tr>
<tr>
<td>NaO$_2$</td>
<td>–47.7±4</td>
<td>–44.4±4</td>
<td>260.66±6.24</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>–51.5±4</td>
<td>–46.0±4</td>
<td>346.85±16.7</td>
</tr>
<tr>
<td>(83) Compounds containing K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>89.0±0.8</td>
<td>89.9±0.8</td>
<td>160.22</td>
</tr>
<tr>
<td>KH</td>
<td>123.0±15</td>
<td>125.5±15</td>
<td>198.02</td>
</tr>
<tr>
<td>KF</td>
<td>–326.8±2</td>
<td>–324.7±2</td>
<td>226.61±2.04</td>
</tr>
<tr>
<td>KCl</td>
<td>–214.7±0.4</td>
<td>–212.9±0.4</td>
<td>250.53</td>
</tr>
<tr>
<td>KBr</td>
<td>–180.1±2.1</td>
<td>–170.9±2.1</td>
<td>238.59</td>
</tr>
<tr>
<td>KO</td>
<td>–232±3</td>
<td>–228±3</td>
<td>238.02±2.1</td>
</tr>
<tr>
<td>KO$_2$</td>
<td>62.3±4</td>
<td>64.0±4</td>
<td>238.02±2.1</td>
</tr>
<tr>
<td>KO$_3$</td>
<td>–86.6±4</td>
<td>–83.3±4</td>
<td>238.02±2.1</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>–77.0±4</td>
<td>–72.0±4</td>
<td>238.02±2.1</td>
</tr>
<tr>
<td>K$_2$O$_3$</td>
<td>–51.5±4</td>
<td>–46.0±4</td>
<td>346.85±16.7</td>
</tr>
<tr>
<td>(84) Compounds containing Hg and H or O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HgF$_2$</td>
<td>2.9±20</td>
<td>7.4±20</td>
<td>248.373</td>
</tr>
<tr>
<td>HgCl$_2$</td>
<td>78.45±9.6</td>
<td>82.5±9.6</td>
<td>260.005</td>
</tr>
<tr>
<td>HgBr$_2$</td>
<td>104±10</td>
<td>115.5±10</td>
<td>271.538</td>
</tr>
<tr>
<td>HgI$_2$</td>
<td>133.5±4.6</td>
<td>138.8±4.6</td>
<td>280.752</td>
</tr>
<tr>
<td>HgF$_3$</td>
<td>–295±10</td>
<td>–290±10</td>
<td>271.74</td>
</tr>
<tr>
<td>HgCl$_3$</td>
<td>–146.3±6.3</td>
<td>–142.3±6.3</td>
<td>294.793</td>
</tr>
<tr>
<td>HgBr$_3$</td>
<td>–85.45±8.4</td>
<td>–67.3±6.3</td>
<td>320.223</td>
</tr>
<tr>
<td>HgI$_3$</td>
<td>–16.1±2.1</td>
<td>–9.8±2.1</td>
<td>338.206</td>
</tr>
<tr>
<td>(85) Mono- and di-halides of Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgBr</td>
<td></td>
<td></td>
<td>299.37</td>
</tr>
<tr>
<td>ClHgI</td>
<td>–83.5</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>BrHgI</td>
<td>–46.9</td>
<td></td>
<td>320.45</td>
</tr>
<tr>
<td>(86) Mixed di-halides of Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgO</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(87) Compounds containing Hg, a halogen, and O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHgO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(88) Addition compounds formed by HgCl, HgBr and free radicals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgNO</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrHgNO</td>
<td>157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgONO</td>
<td>–46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>(\Delta H(298 \text{ K})) kJ mol(^{-1})</td>
<td>(\Delta H(0 \text{ K})) kJ mol(^{-1})</td>
<td>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>BrHgONO</td>
<td>–8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgNO(_2)</td>
<td>–34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrHgNO(_2)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgOO</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrHgOO</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgOOH</td>
<td>–85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrHgOOH</td>
<td>–47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgOCl</td>
<td>–42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrHgOCl</td>
<td>–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgOBr</td>
<td>–24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrHgOBr</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(89) *Organo-mercury compounds*

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(\Delta H(298 \text{ K})) kJ mol(^{-1})</th>
<th>(\Delta H(0 \text{ K})) kJ mol(^{-1})</th>
<th>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>HgCH(_3)</td>
<td>188±8</td>
<td>201±8</td>
<td></td>
</tr>
<tr>
<td>Hg(CH(_3))(_2)</td>
<td>93.3±4.1</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Hg(C(_2)H(_5))(_2)</td>
<td>72.0±4.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(90) *Halo-organo-mercury compounds*

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(\Delta H(298 \text{ K})) kJ mol(^{-1})</th>
<th>(\Delta H(0 \text{ K})) kJ mol(^{-1})</th>
<th>(S(298 \text{ K})) J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClHgCH(_3)</td>
<td>–51.5±2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrHgCH(_3)</td>
<td>–18.4±2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHgCH(_3)</td>
<td>22.0±2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClHgC(_2)H(_5)</td>
<td>–66.1±4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrHgC(_2)H(_5)</td>
<td>–32.0±4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHgC(_2)H(_5)</td>
<td>12.8±4.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2 Notes to Table 6-2

Note 1: Simple compounds of H and O

<table>
<thead>
<tr>
<th>Compound</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Enthalpy value is from the optimization of Ruscic et al.17 and is almost the same as the CODATA Key Value,2 but with a smaller error limit. Entropy value from CODATA.2</td>
</tr>
<tr>
<td>H\textsubscript{2}</td>
<td>CODATA Key Value.2</td>
</tr>
<tr>
<td>O(3P)</td>
<td>Enthalpy value is from the optimization of Ruscic et al.17 CODATA Key Value2 of $\Delta H_{298} = 249.18\pm0.10$ kJ mol-1 was used in previous evaluation. Entropy value is from CODATA.</td>
</tr>
<tr>
<td>O(4D)</td>
<td>Based on a transition to the weighted midpoint of the O3P J-levels.13</td>
</tr>
<tr>
<td>O\textsubscript{2}</td>
<td>CODATA Key Value.2</td>
</tr>
<tr>
<td>O\textsubscript{2}(\Sigma\textsubscript{g}+)</td>
<td>Spectroscopic value from Huber and Herzberg.10</td>
</tr>
<tr>
<td>OH</td>
<td>Enthalpy value is from the optimization of Birge-Sponer extrapolations of OH vibrational levels are 2.1 kJ mol-1 higher. The entropy is taken from Gurvich et al.8 A network optimization of \textit{ab initio} reaction enthalpies results in a value of $\Delta H_f^o = 36.90\pm0.16$ kJ mol-1.3 Uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables ver. 1.20.</td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
<td>The enthalpy and entropy values are the result of an optimization in the Active Thermochemical Tables (ATcT).16 Previous values of -241.826 ± 0.040 kJ mol-1 and 188.835 ± 0.010 J mol-1 K-1 are CODATA Key Values.2 A network optimization of \textit{ab initio} reaction enthalpies results in a value of $\Delta H_f^o = -239.18\pm0.23$ kJ mol-1.3 The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.</td>
</tr>
<tr>
<td>HO\textsubscript{2}</td>
<td>The enthalpy values are from an optimization of a local thermochemical network consisting of 14 experimental and 7 theoretical reaction enthalpies, and grounded in very well established reference enthalpies.6 Most theoretical values from the literature were rejected in favor of determinations at a higher level of theory. In this study, computed values of $\Delta H_{298} = 11.88\pm0.33$ kJ mol-1 and $\Delta H_f^o = 14.81\pm0.33$ kJ mol-1 were obtained from a composite quantum chemical method discussed in the study, roughly 0.5 kJ mol-1 lower than earlier values. The previous Table values, $\Delta H_{298} = 11.92\pm0.22$ kJ mol-1 and $\Delta H_f^o = 14.85\pm0.22$ kJ mol-1, were from an optimization based on both experimental and theoretical data.18 Previous enthalpy value at 298 K of 13.4 ± 2.1 kJ mol-1 was based upon a negative ion thermodynamic cycle,15 which was in good agreement with the photoionization result of 13.8 ± 3.3 kJ mol-1.12 An earlier network optimization of \textit{ab initio} reaction enthalpies resulted in a value of $\Delta H_f^o = 15.09\pm0.23$ kJ mol-1.3 The uncertainty corresponds to the 95% confidence limit.</td>
</tr>
<tr>
<td>H\textsubscript{2}O\textsubscript{2}</td>
<td>Enthalpy value based on the enthalpy of formation of liquid H\textsubscript{2}O\textsubscript{2} and the enthalpy of vaporization.20 A CCSD(T) calculation of the atomization energy, employing the cc-pVnZ basis sets (n=T,Q,5,6) led to $\Delta H_{298} = -32.28$ kcal mol-1 and $\Delta H_f^o = -30.83$ kcal mol-1.5</td>
</tr>
<tr>
<td>HO\textsubscript{3}</td>
<td>Enthalpy for the reaction HOOOH + FOO \rightarrow HOOF + HOOO at the CCSD(T)/CBS(Q5) level of theory is 9.50 kcal mol-1. Adjusted for the Table reference values, this gives the cited enthalpy of formation. The minimum was found to be the \textit{trans} configuration at the CCSD(T)/CBS(Q5) level of theory, with the \textit{cis} configuration 0.5 kcal mol-1 higher in energy.7 Note that the enthalpy values obtained from the atomization energy were higher, due, apparently, to higher order correlation effects.7 A more recent calculation employing the 2-electron reduced density matrix method suggests that the \textit{cis} isomer is 1.84 kcal mol-1 higher in energy than the trans isomer with a aug-cc-pVQZ basis set.9 The selected value is supported by another analysis using the isodesmic reaction HO\textsubscript{3} + FOO \rightarrow HO\textsubscript{3} + FO which leads to a value of $\Delta H_f^o = 6.3$ kcal mol-1.5 An older theoretical study, using both atomization energies and the reaction HOOO + OH \rightarrow HOOOH + OH, resulted in $\Delta H_f^o = 7.1\pm2$ kcal mol-1 (not adjusted).4 The enthalpy of formation derived from an estimate of the ionization...</td>
</tr>
</tbody>
</table>
energy of HO\(_3\), which comes from a study of the electron transfer reactions between HO\(_3^+\) and a series of neutral substrates, was \(\Delta H_{298} = -1\pm5\) kcal mol\(^{-1}\).\(^{20}\) The stability of HO\(_3\) has been supported by a neutralization-reionization mass spectrometry experiment, which led to a lifetime of \(>1\) \(\mu\)s,\(^{1}\) and an infrared action spectrum, which leads to an upper limit for the HO-O\(_2\) bond strength of 6.12 kcal mol\(^{-1}\).\(^{14}\)

HO\(_3\)H

CCSD(T) calculation of the atomization energy, employing the cc-pVnZ basis sets (\(n=T,Q,5,6\)).\(^{5}\) Reaction enthalpy for the reaction 2 HOOH \(\rightarrow\) HOOOH + HOH was calculated to be \(-15.5\) kcal mol\(^{-1}\) using the G2 method, leading to \(\Delta H_{298} = -22.7\) kcal mol\(^{-1}\).\(^{11}\) Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (\(n = D,T,Q,5\)) level gives \(\Delta H_{298} = -21.3\) kcal mol\(^{-1}\) and \(\Delta H_{0} = -19.2\pm1\) kcal mol\(^{-1}\).\(^{2}\)

HO\(_3\)H

CCSD(T) calculation of the atomization energy, employing the cc-pVnZ basis sets (\(n = T,Q,5,6\)).\(^{5}\)

Note 2: *Water complexes*

O•H₂O Structures were optimized using the QCISD approach, using the 6-311G(2df,2p) and G+ with aug-cc-pVTDZ and aug-cc-pVTZ basis sets. Single point calculations were carried out using the CCSD(T) method with the same basis sets. The lowest energy complexes have van der Waals structures, not hydrogen-bonding, with the two terminal oxygens of ozone interacting with the oxygen atom of water. The calculated bond dissociation enthalpy is 1.58 kcal mol⁻¹. The structure involving the central oxygen atom of ozone has a slightly weaker bond, but, due to ZPE corrections, a slightly lower enthalpy.²

OH•H₂O The structure was optimized with A’ symmetry at the CCSD(T)/aug-cc-pVTZ level and a binding energy of 5.88 kcal mol⁻¹ calculated, resulting in the listed formation enthalpy.² In another calculation, the binding energy for the hydrogen-bonded complex was calculated by optimizing the structure using the PM3 method followed by HF/6-31G* self-consistent field optimization. A G3 calculation leads to a reaction enthalpy of −4.49 kcal mol⁻¹ for the formation of the complex.¹

H₂O•H₂O The enthalpy and entropy values are the result of an optimization in the Active Thermochemical Tables (ATcT).⁶

HO₂•H₂O Derived from the recommended equilibrium constant for the formation of the complex (Table 3-1, Note 4).

OCl•OH₂ Obtained from a dissociation energy of 2.70 kcal mol⁻¹, calculated at the MP2//aug-cc-pVTZ level of theory with a quadruple-ζ basic set. Values of 1.70–1.79 kcal mol⁻¹ were calculated using B3LYP with triple to quintuple-ζ bases sets. B3LYP//aug-cc-pVTZ was also used to calculate BDEs for hydrates with up to six water molecules.⁴

ClO•HOH Obtained from a dissociation energy of 1.55 kcal mol⁻¹, calculated at the MP2//aug-cc-pVTZ level of theory with a quadruple-ζ basic set. Value of 1.06–1.23 kcal mol⁻¹ were calculated using B3LYP with triple to quintuple-ζ bases sets. B3LYP//aug-cc-pVTZ was also used to calculate BDEs for hydrates with up to six water molecules.⁴

OBr•OH₂ Obtained from a dissociation energy of 3.48 kcal mol⁻¹, calculated at the MP2//aug-cc-pVTZ level of theory. A value of 2.54 kcal mol⁻¹ was calculated using B3LYP, which was also used to calculate BDEs for hydrates with up to four water molecules.⁵

BrO•HOH Obtained from dissociation energy of 1.70 kcal mol⁻¹, calculated at the MP2//aug-cc-pVTZ level of theory. A value of 1.58 kcal mol⁻¹ was calculated using B3LYP, which was also used to calculate BDEs for hydrates with up to four water molecules.⁵

Note 3: Simple compounds of N and H

N\(\text{I}^\text{S}\)
The enthalpy value is the result of an optimization in the Active Thermochemical Tables (ATcT). Previous value of 472.420±0.050 kJ mol\(^{-1}\) derived from a PFI-PEPICO TOF study. Entropy from CODATA Key Values.

N\(_2\)
CODATA Key Values.

NH
Enthalpy from review of Anderson. Entropy and enthalpy difference (0.05 kJ mol\(^{-1}\)) from JANAF. A network optimization of \textit{ab initio} reaction enthalpies results in a value of \(\Delta_h H_0^\circ = 359.17±0.17\) kJ mol\(^{-1}\). The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

NH\(_2\)
Recommended values from the IUPAC Task Group. Enthalpy is a weighted average of four measurements since 1982. Previous recommendation was 186±1 kJ mol\(^{-1}\). Entropy was taken from a computed anharmonic potential surface, and is close to the JANAF value of 194.71±0.05 kJ mol\(^{-1}\).

NH\(_3\)
CODATA Key Value. The JANAF Tables give \(\Delta_h H_0^\circ = -38.91\) kJ mol\(^{-1}\), \(\Delta_h H_298^\circ = -45.90\) kJ mol\(^{-1}\), and \(S^\circ = 192.774\) J K\(^{-1}\)mol\(^{-1}\). A network optimization of \textit{ab initio} reaction enthalpies results in a value of \(\Delta_h H_0^\circ = -38.52±0.26\) kJ mol\(^{-1}\). The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

N\(_2\)H
Geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit.

\textit{trans-}N\(_2\)H:
Geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit. Previous value, 212±10 kJ mol\(^{-1}\), taken from the Gurvich et al. review. (The same value was used for the equilibrium mixture.)

\textit{cis-}N\(_2\)H:
Geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit. Previous enthalpy value, 248±12 kJ mol\(^{-1}\), based on enthalpy of conversion of the \textit{trans} to \textit{cis} isomers, 36±12 kJ mol\(^{-1}\).

N\(_2\)H\(_3\)
Geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit.

N\(_2\)H\(_4\)
Taken from review of Gurvich et al. An enthalpy value of 23.1 kcal mol\(^{-1}\) was obtained using a geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit.

References:
Note 4: Simple compounds containing \(N \) and \(O \)

NO

Enthalpy value is an update\(^7\) to the recommendation of the IUPAC Task Group, which is from an optimization based on experimental data.\(^8\) Previous enthalpy value, 91.29±0.17 kJ mol\(^{-1}\) from review of Anderson.\(^3\) Much of the difference can be ascribed to the change in the enthalpy for \(N \). Entropy from JANAF.\(^4\)

\(\text{N}_2\text{O} \)

Taken from review of Gurvich et al.\(^6\) The JANAF Tables give \(\Delta H_{f}^0 = 85.48 \text{ kJ mol}^{-1} \), \(\Delta H_{298}^0 = 82.05 \text{ kJ mol}^{-1} \), and \(S^o = 219.957 \text{ J K}^{-1}\text{mol}^{-1} \).\(^4\)

NO\(_2\)

The enthalpy value is from an optimization based on experimental data.\(^8\) Entropy from Gurvich et al.\(^6\)

NO\(_3\)

Enthalpy derived from a molecular beam photodissociation translational spectroscopic study, adjusted to Table values for \(O \) and \(\text{NO}_2 \).\(^5\) Entropy from review of Abramowitz, et al.\(^1\)

N\(_2\)O\(_3\)

Taken from review of Gurvich et al.\(^6\) The JANAF Tables give \(\Delta H_{f}^0 = 89.6 \text{ kJ mol}^{-1} \), \(\Delta H_{298}^0 = 82.8 \text{ kJ mol}^{-1} \), and \(S^o = 308.539 \text{ J K}^{-1}\text{mol}^{-1} \).\(^4\)

N\(_2\)O\(_4\)

Taken from review of Gurvich et al.\(^6\) The JANAF Tables give \(\Delta H_{f}^0 = 18.7 \text{ kJ mol}^{-1} \), \(\Delta H_{298}^0 = 9.1 \text{ kJ mol}^{-1} \), and \(S^o = 304.376 \text{ J K}^{-1}\text{mol}^{-1} \).\(^4\)

N\(_2\)O\(_5\)

Selected enthalpy value derived from a third-law calculation on the equilibrium constant for the reaction, \(\text{NO}_2 + \text{NO}_3 \leftrightarrow \text{N}_2\text{O}_5 \), presented in Table 3-1, note 11. Entropy value was calculated by Alecu and Marshall,\(^2\) as discussed in Table 3-1. Previous values (\(\Delta H_{298}^0 = 13.3 \text{ kJ mol}^{-1} \), and \(S^o = 355.7 \text{ J mol}^{-1} \)) and enthalpy difference taken from review of Gurvich et al.\(^6\) The JANAF Tables give \(\Delta H_{f}^0 = 12.7 \text{ kJ mol}^{-1} \), \(\Delta H_{298}^0 = 11.3 \text{ kJ mol}^{-1} \), and \(S^o = 346.548 \text{ J K}^{-1}\text{mol}^{-1} \).\(^4\)

(2) Alecu, I. M.; Marshall, P. Computational study of the thermochemistry of \(\text{N}_2\text{O}_5 \) and the kinetics of the reaction \(\text{N}_2\text{O}_5 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 \). *J. Phys. Chem A* 2014, 118, 11405-11416, doi:10.1021/jp09301t.

Note 5: Compounds containing N, H, and O

<table>
<thead>
<tr>
<th>Compound</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO</td>
<td>Geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit. Previous enthalpy, 107.1±2.5 kJ mol⁻¹, from review of Anderson. Entropy from Gurvich et al., who cites an enthalpy of 102 kJ mol⁻¹.</td>
</tr>
<tr>
<td>HON</td>
<td>Geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit.</td>
</tr>
<tr>
<td>NH₂O</td>
<td>Geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit.</td>
</tr>
<tr>
<td>NH₂OH</td>
<td>Calculated using isodesmic reactions at several levels of theory and several basis sets. Previous value of −9.6±2.2 kcal mol⁻¹ based on average of theoretical and experimental values. Entropy from Gurvich et al.</td>
</tr>
<tr>
<td>HNOH</td>
<td>Geometry optimized at the frozen core CCSD(T) level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets; the CCSD(T) energy extrapolated to the CBS limit.</td>
</tr>
<tr>
<td>NH₂NO₂</td>
<td>The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets. The previous value, ΔᵢH²⁹⁸ = −26±10 kJ mol⁻¹, was based on measurements of the enthalpy of formation of the crystalline substance and an estimated value of the enthalpy of sublimation, 60.7±10 kJ mol⁻¹.</td>
</tr>
<tr>
<td>HONO</td>
<td>Thermodynamic properties for the equilibrium mixtures of isomers from Gurvich et al. review.</td>
</tr>
</tbody>
</table>

trans-HONO

Taken from review of Gurvich et al. Values calculated using G3, CBS-QB3, and CBS-APNO methods applied to atomization, isomerization, and work reactions are ΔᵢH²⁹⁸ = −18.90±0.05 kcal mol⁻¹ and S° = 57.89 cal K⁻¹ mol⁻¹.

cis-HONO

Enthalpy value obtained on basis of enthalpy of conversion of trans-HONO into cis-HONO, 1.7±0.4 kJ mol⁻¹. Values calculated using G3, CBS-QB3, and CBS-APNO methods applied to atomization, isomerization, and work reactions are ΔᵢH²⁹⁸ = −18.40±0.05 kcal mol⁻¹ and S° = 57.64 cal K⁻¹ mol⁻¹.

trans-HOONO, hydroperoxynitrene or nitrosyl O-oxide

The O-O dissociation energy was calculated at the CCSDTQ/aug-cc-pVTZ level of theory as 39.0 kJ mol⁻¹. This was corrected to 298 K by −5.7 kJ mol⁻¹ to give the selected enthalpy value. The cis isomer was calculated to be 6.4–8.5 kJ mol⁻¹ less stable.

HNO₂, nitryl hydride

Calculated using G3, CBS-QB3, and CBS-APNO methods applied to atomization, isomerization, and work reactions.

HONO₂

Taken from the updated NIST-JANAF Tables.

cis,cis-HOONO

Derived from a third-law analysis of the equilibrium constant for HO + NO₂ ←→ c,c-HOONO (Table 3-1, Note 1). Previous enthalpy value of −5.7 kcal mol⁻¹ and values for the cis,perp- and trans,perp-HOONO calculated at the MP2 level of theory. A computational
study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets, led to $\Delta H^o = -6.4 \pm 2.0$ kJ mol$^{-1}$, $\Delta H^o_{298} = -15.5 \pm 2.0$ kJ mol$^{-1}$, and $S = 271.0 \pm 2.0$ J K$^{-1}$ mol$^{-1}$.

trans, perp-HOONO

Derived from the dissociation energy for t,p-HOONO and reported molecular constants (Table 3-1, Note 1). Enthalpy values for the cis,cis-, cis,perp-, and trans,perp-HOONO have also been calculated at the MP2 level of theory.

HO₂NO₂

Derived from a third-law analysis of the equilibrium constant for HO₂NO₂ ↔ HO₂ + NO₂. Previous recommended enthalpy value of -12.7 ± 0.6 kcal mol$^{-1}$ from Regimbal and Mozurkewich. A value of $\Delta H^o = -52.3$ kJ mol$^{-1}$ was obtained from a computational study in which equilibrium structures optimized at the MP2 level with the 6-311G(d,p) basis set and enthalpy values calculated by both atomization energies and through use of isodesmic reactions at the G3, G3B3, and G4 methods. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets, led to $\Delta H^o = -41.3 \pm 2.4$ kJ mol$^{-1}$, $\Delta H^o_{298} = -52.4 \pm 2.4$ kJ mol$^{-1}$, and $S = 296.2 \pm 2.0$ J K$^{-1}$ mol$^{-1}$. The enthalpy difference was used to calculate the 0 K value in the Table.

NH₂NO₃

Enthalpy obtained from a third-law analysis of the sublimation pressure of NH₂NO₃ over the range 321–360 K. The entropy was calculated from molecular constants taken from the literature. A high-level theoretical calculation, CCSD(T) extrapolated to the aug-cc-pV∞Z basis set, gives $\Delta H^o = -221.1 \pm 3$ kJ mol$^{-1}$, $\Delta H^o_{298} = -230.6 \pm 3$ kJ mol$^{-1}$, and $S = 342.4$ J K$^{-1}$ mol$^{-1}$.

Note 6: **Compounds with one C and 0-4 H**

C
CODATA Key Value.\(^2\) The JANAF Tables give \(\Delta H_0^\circ = 711.2 \text{ kJ mol}^{-1}\), \(\Delta H_298^\circ = 716.7 \text{ kJ mol}^{-1}\), and \(S^\circ = 158.100 \text{ J K}^{-1} \text{ mol}^{-1}\).\(^1\)

CH
Recommendation taken from IUPAC Task Group.\(^9\) Previous recommendation of \(\Delta H(298 \text{ K}) = 597.37\pm1.3 \text{ kJ mol}^{-1}\) was from Gurvich et al.\(^6\) The preferred value corresponds to the theoretical value of Császár et al.,\(^4\) which is in agreement with the experimental values but is considered to be of higher accuracy. The entropy was taken from Gurvich et al.\(^6\) A network optimization of \textit{ab initio} reaction enthalpies results in a value of \(\Delta H_0^\circ = 592.62\pm0.24 \text{ kJ mol}^{-1}\).\(^3\) The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

CH\(_2\)(\(^3\)B\(_1\))
Update to the recommendation from IUPAC Task Group.\(^10\) Previous recommendations of \(\Delta H(298 \text{ K}) = 390.4\pm0.8 \text{ kJ mol}^{-1}\) and \(S(298 \text{ K}) = 194.90 \text{ J K}^{-1} \text{ mol}^{-1}\) were from experiments of Russic et al.\(^11\) The present enthalpy recommendation represents a weighted average of this and other experimental results; the higher uncertainty reflects this and the differences between measurements that relate methylene to methyl and those derived from the dissociation of ketene. A network optimization of \textit{ab initio} reaction enthalpies results in a value of \(\Delta H_0^\circ = 390.86\pm0.29 \text{ kJ mol}^{-1}\).\(^3\) The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

CH\(_3\)(\(^4\)A\(_1\))
Update to the recommendation taken from IUPAC Task Group.\(^10\) Previous recommendation of \(\Delta H(298 \text{ K}) = 428.0\pm0.8 \text{ kJ mol}^{-1}\) was from Jacox.\(^7\) The preferred value is based on the enthalpy of formation of triplet methylene and a separation between the singlet and triplet sates of 3147\(\pm5 \text{ cm}^{-1}\).

CH\(_3\)
Recommendation taken from IUPAC Task Group.\(^9\) Entropy value differs only slightly from previously recommended value of 193.96 J K\(^{-1}\) mol\(^{-1}\) from Gurvich et al.\(^6\) A network optimization of \textit{ab initio} reaction enthalpies results in a value of \(\Delta H_0^\circ = 149.66\pm0.34 \text{ kJ mol}^{-1}\).\(^3\) The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

CH\(_4\)
Enthalpy from an active thermochemical tables optimization.\(^12\) Enthalpy from flame calorimetry \(-74.48\pm0.41 \text{ kJ mol}^{-1}\) used previously.\(^8\) Entropy from Frenkel et al.\(^5\) A network optimization of \textit{ab initio} reaction enthalpies results in a value of \(\Delta H_0^\circ = -66.35\pm0.46 \text{ kJ mol}^{-1}\).\(^3\) The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

5. Frenkel, M.; Kabo, G. J.; Marsh, K. N.; Roganov, G. N.; Wilhoit, R. C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, 1994; Vol. I.
CODATA Key Value.³ Atomization energies calculated using CCSD(T) with aug cc-pVnZ (n = D - 7) basis sets, using frozen-core CCSD(T) optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of $\Delta H^\alpha_{128} = -27.0 \pm 0.2$ kcal mol⁻¹ and $\Delta H^\alpha_{98} = -26.2 \pm 0.2$ kcal mol⁻¹.¹² A network optimization of *ab initio* reaction enthalpies results in a value of $\Delta H^\alpha = -114.09 \pm 0.32$ kJ mol⁻¹.¹⁴ The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

CO

CODATA Key Value.³ The active thermochemical tables optimization gives $\Delta H^\alpha_{98} = -393.47 \pm 0.014$ kJ mol⁻¹ and $\Delta H^\alpha = -393.108 \pm 0.014$ kJ mol⁻¹.²⁴ Atomization energies calculated using CCSD(T) with aug cc-pVnZ (n=D-7) basis sets, using frozen-core CCSD(T) optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of $\Delta H^\alpha_{128} = -93.7 \pm 0.2$ kcal mol⁻¹ and $\Delta H^\alpha_{98} = -93.8 \pm 0.2$ kcal mol⁻¹.¹² A network optimization of *ab initio* reaction enthalpies results in a value of $\Delta H^\alpha = -392.98 \pm 0.40$ kJ mol⁻¹.¹⁴ The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

HCO

Enthalpy from reversible reactions of I and Br with CH₂O,¹ using present values for HI and HBr. Entropy taken from Gurvich et al.¹³ Atomization energies calculated using CCSD(T) with aug cc-pVnZ (n=D-7) basis sets, using frozen-core CCSD(T) optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of $\Delta H^\alpha_{98} = 10.4 \pm 0.2$ kcal mol⁻¹ and $\Delta H^\alpha_{98} = 10.5 \pm 0.2$ kcal mol⁻¹.¹²

CH₂O

Enthalpy at 298 K obtained by using experimental reaction enthalpies taken from the literature.⁷ This value was confirmed by three computational approaches involving enthalpies of the same reaction, isodesmic reaction enthalpies, and atomization energies, using a range of high-level computational techniques. The previous value, $\Delta H^\alpha_{98} = -108.7 \pm 0.50$ kJ mol⁻¹, was taken from review of Gurvich et al., as is the present entropy value and enthalpy difference.¹³ A CCSD(T) calculation with the aug-cc-pVnZ (n=D,T,Q,5) basis set extrapolated to the CBS limit gave $\Delta H^\alpha_{98} = -104.2 \pm 2.1$ kJ mol⁻¹, $\Delta H^\alpha_{98} = -107.95 \pm 2.1$ kJ mol⁻¹, and $S = 218.57$ J K⁻¹ mol⁻¹.²⁰ A computation using the focal-point analysis approach resulted in $\Delta H^\alpha = -105.42 \pm 0.33$ kJ mol⁻¹, $\Delta H^\alpha_{98} = -109.23 \pm 0.33$ kJ mol⁻¹.¹⁴
trans-HOCO
The enthalpy and entropy values are taken from a CCSDT(Q) calculation, with structure optimized using the cc-pVQZ basis set.21 The previous $\Delta_{f}H_{298}^{o} = -187.9 \pm 2.1$ was obtained from atomization energies calculated using CCSD(T) with aug cc-pVnZ (n = D - 7) basis sets, using frozen-core CCSD(T) optimized geometries and extrapolated to the complete basis set limit.12 An earlier computational study using G3 and CBS-QB3 methods gave $\Delta_{f}H_{298}^{o} = -43.3 \pm 2$ kcal mol-1.10 These results are in agreement with photoionization lower limit of -46.5 kcal mol-1.25

cis-HOCO
The enthalpy and entropy values are taken from a CCSD(T) calculation, with structure optimized using the cc-pVQZ basis set.21 The previous $\Delta_{f}H_{298}^{o} = -175.7 \pm 2.1$ was obtained from atomization energies calculated using CCSD(T) with aug cc-pVnZ (n = D - 7) basis sets, using frozen-core CCSD(T) optimized geometries and extrapolated to the complete basis set limit; $\Delta_{f}H_{298}^{o} = -41.0 \pm 0.5$ kcal mol-1. (Result presented in text as an energy difference of 2.9 kcal mol-1 over the trans form.)12 An earlier computational study using G3 and CBS-Qb3 methods gave $\Delta_{f}H_{298}^{o} = -41.4 \pm 2$ kcal mol-1.10

HC(O)OH
Enthalpy obtained from atomization energies calculated using CCSD(T) with aug cc-pVnZ (n = D - 7) basis sets, using frozen-core CCSD(T) optimized geometries and extrapolated to the complete basis set limit.12 An earlier study using vibrational frequencies calculated at the HF/6-31G(D) level and total energies evaluated at the G2(MP2) level, also making use of isodesmic reactions, gave $\Delta_{f}H_{298}^{o} = -30$ kcal mol-1 and the quoted entropy value.30 A CCSD(T)-CBS (W1U) calculation gives $\Delta_{f}H_{298}^{o} = -129.4 \pm 12.6$ kcal mol-1.11

C(O)OH
Vibrational frequencies calculated at the HF/6-31G(D) level and total energies evaluated at the G2(MP2) level, also making use of isodesmic reactions.30 Enthalpy calculated using the atomization energy method at the CBS-Q level gave -41.62 kcal mol-1.27

HC(O)OH
Enthalpy taken from NBS Tables,29 entropy calculated based on structure optimized at MP2/6-31G(D) and frequencies calculated at HF6/31G(D) level.30 See also discussion of enthalpy in Yu et al.30 $\Delta_{f}H_{298}^{o} = -90.5$ kcal mol-1 also obtained by calculating optimized geometry at the CCSD(T)/aVTZ level with the aug-cc-pVTZ basis set; CCSD(T) energy extrapolated to the CBS limit.22 Atomization energies calculated using CCSD(T) with aug cc-pVnZ (n = D - 7) basis sets, using frozen-core CCSD(T) optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of $\Delta_{f}H_{298}^{o} = -88.9 \pm 0.4$ kcal mol-1 and $\Delta_{f}H_{298}^{o} = -90.7 \pm 0.4$ kcal mol-1.12 Microwave intensity measurements have determined that the cis rotamer of HC(O)OH to be 16.3 ± 0.4 kcal mol-1 higher in energy than the trans rotamer.14

trans-and cis-HC(O)OO
Photoelectron spectroscopy of the peroxyformate anion was used to obtain the electron affinity of the peroxyformate radical. Through a thermochemical cycle, this leads to the O-H bond dissociation energy, which combined with the calculated enthalpy of the acid, yields the enthalpy of formation. BDEs for both the cis and trans conformers of the acid could be determined, both leading to the lower-energy trans conformer of the radical.28

trans-HC(O)OOH
Enthalpy obtained from the calculated heat of an isodesmic reaction, at the G3B3MP2 level of theory.28 This value is slightly lower than $\Delta_{f}H_{298}^{o} = -285.3 \pm 2.5$ kcal mol-1 ($\Delta_{f}H_{298}^{o} = -275.7$ kcal mol-1) obtained from atomization energies calculated using CCSD(T) with aug cc-pVnZ (n = D - 7) basis sets, using frozen-core CCSD(T) optimized geometries and extrapolated to the complete basis set limit.12 The present value was chosen as it is conformer specific; the 0 K value is based on the Feller et al.12 enthalpy difference.

cis-HC(O)OOH
The enthalpy value is derived from the value for the trans conformer, which is calculated at the G3B3MP2 level of theory, to be 14.2 kcal mol-1 lower in energy than the cis conformer.28

CH$_2$OO, formaldehyde carbonyl oxide (Criegee intermediate)
Optimized geometry calculated at the CCSD(T)/aVTZ level with the aug-cc-pVTZ basis set; CCSD(T) energy extrapolated to the CBS limit.22

CH₂O₂, dioxirane
Optimized geometry calculated at the CCSD(T)/aVTZ level with the aug-cc-pVTZ basis set; CCSD(T) energy extrapolated to the CBS limit.22

CH₃O
Selection taken from IUPAC Task Group.23 The recommended enthalpy is a weighted average of the experimental determinations, with an amplified uncertainty for the older gas-phase acidity determinations. The recommendation is supported by one recent high-level theoretical study. This value is significantly higher than that recommended here previously, 17.15±3.8 kJ mol⁻¹ from the evaluation of Berkowitz et al.,2 and most other previous recommendations. The recommended entropy is also somewhat different that the previously recommended value of 232.86 J K⁻¹ mol⁻¹.13 Atomization energies calculated using CCSD(T) with cc-pVnZ (n = D, T, and Q) basis sets, using (U)MP2/aug-cc-pVTZ optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of ΔᵣH₀° = 7.4 kcal mol⁻¹ and ΔᵣH₂⁹₈ = 5.5 kcal mol⁻¹.19

CH₃O₂
Based on a re-analysis of previous equilibrium data on R + O₂ → RO₂ from the same laboratory.16 In a computational study, ΔᵣH₂⁹₈ = 8.8 kJ mol⁻¹ was determined using G3B3 and CBS-APNO methods with isodesmic reactions to minimize systematic errors, where the geometry was optimized at the B3LYP/cc-pVTZ+d level of theory. This work also provided the recommended entropy.6

CH₃OH
Recommendation taken from IUPAC Task Group.23 Enthalpy is a weighted average of the most recent experimental studies and a theoretical study, and is in good agreement with all the previous experimental results. (Note that the previous value listed in this Table, ΔᵣH₀° = −11.5±1.3 kJ mol⁻¹, was inadvertently for 0 K.) The entropy value reported by Johnson and Hudgens was accepted and is included here with their error limits.15 Results of Dóbé, et al.8 give −16.6±1.3 kJ mol⁻¹. Atomization energies calculated using CCSD(T) with cc-pVnZ (n = D, T, and Q) basis sets, using (U)MP2/aug-cc-pVTZ optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of ΔᵣH₀° = −2.3 kcal mol⁻¹ and ΔᵣH₂⁹₈ = −3.8 kcal mol⁻¹.19

CH₃OH•H₂O
Estimated from studies on the decay of HO₂ in the presence of CH₃OH, with supporting ab initio calculations (Table 3-1, Note 5).

CH₂OOH
Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.23 This radical is unstable to decomposition to CH₂O + OH.

CH₂OOH
Geometry optimization and frequency calculations were performed at the MP2/6-31G(d) and the B3LYP/6-311++G(d,p) levels of theory, with a single-point energy calculation at the CCSD(T)/6-311++G(d,p)/B3LYP/6-311++G(d,p) level. The dissociation energy into HO₂ and the alkyl radical was then evaluated and used, after thermal correction, to calculate the enthalpy of formation at 298 K.17 This was adjusted to the radical values from the present Table. Reaction enthalpies determined using the G2 method indicated ΔH₂⁹₈(CH₂OOO–H) is 1.6 kcal mol⁻¹ lower than ΔH₂⁹₈(HOO–H), or 85.9 kcal mol⁻¹ (359.4 kJ mol⁻¹), leading to the previous enthalpy value of −132.2 kJ mol⁻¹.18 An earlier recommended enthalpy value (−139.0±8.1 kJ mol⁻¹) was computed on the assumption that the dissociation energy for ROO–H is 366±3 kJ mol⁻¹ (Stocker and Pilling, unpublished work).16 Enthalpy calculated using the atomization energy method at the CBS-Q level gave −30.75 kcal mol⁻¹ (−128.7 kJ mol⁻¹).
The entropy and enthalpy difference is from the updated JANAF Table. An entropy value of 273.4 J K\(^{-1}\) mol\(^{-1}\) was calculated based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level. Calculations using the CBS-QB3 and CBS-APNO model chemistries on three isodesmic reactions led to \(\Delta H^\circ_{298} = -129.5 \pm 0.9\) kJ mol\(^{-1}\).

CH\(_3\)O\(_3\) and CH\(_3\)O\(_4\)

Bond dissociation energies were calculated for CH\(_3\)OOOOC\(_3\) at the G3B3 and CBS-APNO levels of theory, using isodesmic and bond dissociation work reactions. The molecular geometry was optimized at the B3LYP/cc-pVTZ+d level of theory.

Note 8: Compounds containing one C and H and N

CN, HCN, and C₂N₂

From the review of Gurvich et al.⁵

CH₃NH₂

Based on recommendation of McMillen et al.,⁸ adjusted for enthalpy for CH₃NH₂ used here (−5.6 kcal mol⁻¹ vs. −5.5 kcal mol⁻¹). Calculations at the G2(MP2) level lead to an enthalpy of 147 kJ mol⁻¹.¹¹

CH₃NH₂

Enthalpy from review of Pedley;⁹ entropy value from the Thermodynamics Research Center Data Series.⁴ Values of ΔH° and ΔfH°° have been derived from a threshold PEPEICO study of alkyl amines and the use of two isodesmic reaction networks, connected through the TPEICO dissociation energies, and with reaction heats calculated at the CBS-APNO and W1U levels of theory.²

6-34
Based on an analysis of the negative ion cycle.\(^7\)

CH\(_3\)CN Enthalpy at 298 K by combustion calorimetry;\(^1\) 0 K value based on measured vibrational frequencies.\(^7\) Entropy from NBS Tables.\(^10\)

CH\(_2\)N\(_2\) Enthalpy value calculated from the atomization energy at the G3 level of theory. Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.\(^6\)

CH\(_2\)N\(_2\) Enthalpy from a CCSD(T) calculation of the atomization energy.\(^3\)

Note 9: *Compounds containing one C and H, N, and O* Back to Table

CH\(_2\)NO From computed G2 heats of reaction.\(^11\)

NH\(_2\)CO This is the more stable isomer of CH\(_2\)NO (above), which is formed by the association of CH\(_2\) with NO. The enthalpy and entropy values are taken from a CCSDT(Q) calculation, with structure optimized using the cc-pVQZ basis set.\(^8\) The previous \(\Delta fH_{298}^\circ = -15.1\pm4\) was from computed G2 heats of reaction.\(^11\)

NCO Enthalpy from D(H-NCO) = 4.9±0.01 eV,\(^9\) using present value for HNCO. Entropy from Gurvich et al.\(^6\)

HNCO, isocyanic acid

The dissociative photoionization of urea was investigated by iPEPICO.\(^2\) The lowest energy channel, CO(NH\(_2\))\(_2\) + h\(\nu\) → NH\(_3\)\(^+\) + HNCO + e\(^-\), was measured accurately and the appearance energy of the second channel, CO(NH\(_2\))\(_2\) + h\(\nu\) → NH\(_2\) + H\(_2\)NCO\(^+\) + e\(^-\), was measured with somewhat lower precision. These were used together with W1 and CBS-APNO calculations.
on three isodesmic reactions for CO(NH$_2$)$_2$ and two isoelectronic reactions for HNCO to
determine the enthalpy values for both HNCO and CO(NH$_2$)$_2$. The previous value, $\Delta h_{298}^\circ = -104\pm12$ kJ mol$^{-1}$ from threshold photodissociation of HNO by measuring NH($^1\Delta$) threshold and fragment energy, adjusted for the present enthalpy of NH.12 Entropy from NBS Tables.14

HCONH$_3$, Formamide
From review of Pedley et al.10

CH$_2$NO$_2$ Recommendation from the Thermodynamics Research Center Data Series.5 A calculation of the atomization energy at the G3 level of theory leads to $\Delta h_{298}^\circ = 31.5$ kJ mol$^{-1}$. Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.7

CH$_3$NO$_2$ Enthalpy from Pedley,10 entropy from Frenkel et al.5 Enthalpy value calculated using G3, CBS-QB3, and CBS-APNO methods applied to atomization, isomerization, and work reactions is $\Delta h_{298}^\circ = -17.67\pm0.27$ kJ mol$^{-1}$, which becomes -17.73 ± 0.27 kJ mol$^{-1}$ using the reference enthalpy for cis-HONO from this Table.1 A calculation of the atomization energy at the G3 level of theory leads to $\Delta h_{298}^\circ = -17.5$ kJ mol$^{-1}$. Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.7 A value of $\Delta h_{298}^\circ = -73.2$ kJ mol$^{-1}$ was calculated at the G4 level of theory, making use of isodesmic reactions.4

CH$_3$ONO Taken from review of Stull et al.13 Enthalpy value calculated using G3, CBS-QB3, and CBS-APNO methods applied to atomization, isomerization, and work reactions is $\Delta h_{298}^\circ = -15.64\pm0.10$ kJ mol$^{-1}$, which becomes -15.81 ± 0.10 kJ mol$^{-1}$ using the reference enthalpy for cis-HONO from this Table.1 A calculation of the atomization energy at the G3 level of theory leads to $\Delta h_{298}^\circ = -15.4$ kJ mol$^{-1}$. Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.7

CH$_3$ONOO Enthalpy from Pedley,10 entropy from Stull et al.13

CH$_3$O$_2$NO$_2$ Equilibrium structures optimized at the MP2 level with the 6-311G(d,p) basis set and enthalpy values calculated by both atomization energies and through use of isodesmic reactions at the G3, G3B3, and G4 methods.3

(NH$_2$)$_2$CO, Urea
The dissociative photoionization of urea was investigated by iPEPICO.2 The lowest energy channel, CO(NH$_2$)$_2$ + hv \rightarrow NH$_3^+$ + HNCO + e$^-$, was measured accurately and the appearance energy of the second channel, CO(NH$_2$)$_2$ + hv \rightarrow NH$_2$ + HNCO$^+$ + e$^-$, was measured with somewhat lower precision. These were used together with W1 and CBS-APNO calculations on three isodesmic reactions for CO(NH$_2$)$_2$ and two isoelectronic reactions for HNCO to
determine the enthalpy values for both HNCO and CO(NH$_2$)$_2$. The previous value, $\Delta h_{298}^\circ = -245.8\pm2.0$ kJ mol$^{-1}$ from Pedley et al.10 depended on a value of the sublimation energy that appears to be too low.2

C(NO$_2$)$_4$ Enthalpy value calculated from the atomization energy at the G3 level of theory. Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.7 (see addition and corrections)

(5) Frenkel, M.; Kabo, G. J.; Marsh, K. N.; Roganov, G. N.; Wilhoit, R. C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, 1994; Vol. I.

(10) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 10: A series of nitroalkanes, their isomers, and radical products

For all these species, the enthalpy value was calculated from the atomization energy at the G3 level of theory. Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.¹

Note 11: Compounds containing two C and 0 - 4 H

C₂

The enthalpy value is the result of an optimization in the Active Thermochemical Tables (ATcT).¹² The entropy value is from JANAF.³

C₂H

Enthalpy from review of Berkowitz, Ellison, and Gutman.¹ ΔfH° = 134.1±0.7 kcal mol⁻¹. Entropy from Gurvich et al.⁶ High level ab initio calculations result in an enthalpy value of 567.4±1.5 kJ mol⁻¹.¹⁴

C₂H₂

From the review of Gurvich et al.⁶ Pedley gives the enthalpy as 228.2±0.7 kcal mol⁻¹. The JANAF Tables give ΔfH° = 227.3 kJ mol⁻¹, ΔfH°298 = 226.7 kJ mol⁻¹, and S° = 200.958 J K⁻¹ mol⁻¹.³ A network optimization of ab initio reaction enthalpies results in a value of ΔfH° = 228.67±0.35 kcal mol⁻¹.³ The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

H₂CC, vinylidene

Based on a series of negative ion photoelectron spectroscopic measurements combined with proton-transfer kinetics.⁵ CCSD(T) calculations, extrapolated to the CBS level, lead to ΔfH° = 98.6 kcal mol⁻¹ and ΔfH°298 = 98.8 kcal mol⁻¹.⁹
\[\text{C}_2\text{H}_3 \] Enthalpy derived from a third-law analysis of the reaction \(\text{Cl} + 2\text{C}_2\text{H}_4 \leftrightarrow \text{HCl} + 2\text{C}_2\text{H}_3 \).\(^7\) A second-law analysis gives 69.1±1.6 kcal mol\(^{-1}\). The recommendation of Tsang is 71.5±1 kcal mol\(^{-1}\).\(^1\) See also discussion by Lago and Baer.\(^8\) Negative ion photoelectron spectroscopy combined with proton-transfer kinetics leads to a value of \(\Delta_fH_{298}^0 = 71.6±0.8 \) kcal mol\(^{-1}\).\(^5\) A calculation at the HEAT345-Q level of theory gives recommended values of \(\Delta_fH_{298}^0 = 501.5±1.3 \) kcal mol\(^{-1}\) and \(\Delta_fH_{298}^o = 297.3±1.3 \) kcal mol\(^{-1}\).\(^1\) This enthalpy difference provides the 0 K value in the Table. The entropy value was taken from the evaluation of Tsang.\(^1\)

\[\text{C}_2\text{H}_4 \] From the review of Gurvich et al.\(^6\) The JANAF Tables give \(\Delta_fH_{298}^0 = 60.0 \) kJ mol\(^{-1}\), \(\Delta_fH_{298}^o = 52.5 \) kJ mol\(^{-1}\), and \(S^o = 219.330 \) J K\(^{-1}\) mol\(^{-1}\).\(^1\)

\[\text{C}_2\text{H}_5 \] Enthalpy from review of Berkowitz, Ellison, and Gutman.\(^1\) Entropy from Gurvich et al.\(^6\) Enthalpy of 120.7±1.0 kcal mol\(^{-1}\) has been derived from a threshold PEPICO study of alkyl amines and the use of two isodesmic reaction networks, connected through the TPEPICO dissociation energies, and with reaction heats calculated at the CBS-APNO and W1U levels of theory. \(\Delta_fH_{298}^o = 132.3±1.0 \) kcal mol\(^{-1}\).\(^2\) A re-analysis of the thermal decomposition of \(\text{C}_2\text{H}_5\text{I} \), making use of calculated molecular parameters, led to a value of \(\Delta_fH_{298}^o = 124±3 \) kJ mol\(^{-1}\).\(^1\)

\[\text{C}_2\text{H}_6 \] Enthalpy from flame calorimetry measurement.\(^1\)\(^1\) Entropy from Gurvich et al.\(^6\), who gives \(\Delta_fH_{298}^o = -84.00±0.40 \) kJ mol\(^{-1}\) and \(\Delta_fH_{0}^o = -68.38±0.40 \) kJ mol\(^{-1}\).

(2) Bodi, A.; Kercher, J. P.; Bond, C.; Meteesaten, P.; Sztaray, B.; Baer, T. Photoion photoelectron coincidence study of primary amines \(\text{RCH_2NH}_2 \) (\(R = \text{H, CH}_3, \text{C}_2\text{H}_5, \text{i-C}_3\text{H}_7 \)). Alkylamine and alkyl radical heats of formation by isodesmic reaction networks. \textit{J. Phys. Chem. A} \textbf{2006}, \textit{110}, 13425-13433, doi:10.1021/jp064739s.

(7) Kaiser, E. W.; Wallington, T. J. Kinetics of the reactions of chlorine atoms with \(\text{C}_2\text{H}_4 \) (\(k_1 \)) and \(\text{C}_2\text{H}_5 \) (\(k_2 \)): A determination of \(\Delta H_{298}^\circ \) for \(\text{C}_2\text{H}_4 \). \textit{J. Phys. Chem.} \textbf{1996}, \textit{100}, 4111-4119, doi:10.1021/jp953178u.

(8) Lago, A. F.; Baer, T. A photoelectron photoion coincidence study of the vinyl bromide and tribromomethane ion dissociation dynamics: Heats of formation of \(\text{C}_2\text{H}_3^+ \), \(\text{C}_2\text{H}_5\text{Br}^+ \), \(\text{C}_2\text{H}_5\text{Br}_2^+ \), \(\text{C}_2\text{H}_5\text{Br}_3^+ \), and \(\text{C}_2\text{H}_5\text{Br}_4^+ \). \textit{J. Phys. Chem. A} \textbf{2006}, \textit{110}, 3036-3041, doi:10.1021/jp053943x.

(10) Pedley, J. B. \textit{Thermochemical Data and Structures of Organic Compounds}; Thermodynamics Data Center: College Station, TX, 1994.

Note 12: **Compounds containing two C, one O, and 1–6 H**

CHCO Based on the recommended dissociation energy for CH₃CO of 105.3±2.1 kcal mol⁻¹. High level *ab initio* calculations result in an enthalpy of 173.8±1.5 kJ mol⁻¹.

CH₂CO From photoionization or CH₃CO and a subsequent optimization of a local thermochemical network. Calculations on several isodesmic reactions using CBS-QB3, CBS-APNO, and G3 methods led to a value of Δ_fH²⁹⁸° = −48.2±2.6 kJ mol⁻¹.

CH₃CO Recommendation taken from IUPAC Task Group. Enthalpy is a weighted average of the experimental results, with amplified uncertainties assigned to the most negative values. This recommendation is only slightly lower that the value −10.0±1.2 kJ mol⁻¹ previously recommended here.

C₂H₂OH Calculated from the heat of reactions for OH + C₂H₂ of −146±10 kJ mol⁻¹.

CH₂C(O)H, vinoxy radical

Enthalpy values calculated at the HEAT345-Q level of theory. Previous enthalpy value an average of the a value obtained from the gas-phase basicity and proton affinity determined by a kinetic method (9.9±3.9 kJ mol⁻¹) and a reexamination of the results of Holmes, et al. on the dissociation of ethyl acetate after electron ionization (15.9±5.6 kJ mol⁻¹). This value is supported by several computational studies. Previous recommendation, 10.5±9.2 kJ mol⁻¹, was from an analysis of gas-phase acidity and electron affinity studies. A G3MP2B3 calculation led to Δ_fH²⁹⁸° = 13.45 kJ mol⁻¹ and the selected entropy value.

CH₃C(O)H

Enthalpy from Pedley, entropy from Frenkel et al.

Vinyl alcohol and corresponding radicals (CH₂CHOH, CH₃COH, CHCHOH)

Molecular geometry optimized at the B3LYP/6-31G(d,p) level of theory. The enthalpy was determined using CBS-Q, CBS-APNO, and G3 methods with isodesmic reactions to minimize systematic errors. Entropies calculated by using the SMCPs program. The enthalpy values for both conformers of vinyl alcohol are within about 5 kJ mol⁻¹ of the average of the experimental values, which are based on ionization techniques.

CH₃CH₂O Recommendation taken from IUPAC Task Group. Enthalpy is based on a collision-induced dissociation measurement, which lies between the theoretical results and most of the previous recommendations, including that previously included here, Δ_fH²⁹⁸° = −15.5±3.3 kJ mol⁻¹. Ruscic et al. note that their new preferred value corresponds to an O–H bond dissociation energy for ethanol more in line with that in methanol. Atomization energies calculated using CCSD(T) with cc-pVnZ (n = D, T, and Q) basis sets, using (U)MP2/aug-cc-pVTZ optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of Δ_fH₀° = 0.8 kcal mol⁻¹ and Δ_fH²⁹⁸° = −2.7 kcal mol⁻¹.

CH₂CH₂OH Calculated from the heat of reaction for the addition of OH to CH₃H of −123±6 kJ mol⁻¹. Atomization energies calculated using CCSD(T) with cc-pVnZ (n = D, T, and Q) basis sets, using (U)MP2/aug-cc-pVTZ optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of Δ_fH₀° = −3.1 kcal mol⁻¹ and Δ_fH²⁹⁸° = −6.2 kcal mol⁻¹. The enthalpy of formation was also calculated from a set of isodesmic and isogyric
reactions at the CBS-QB3 level of theory to be \(\Delta_{f}H_{298} = -28.7 \pm 2.2 \text{ kJ mol}^{-1} \). Calculations with B3LYP/cc-pVTZ were about 6 kJ mol\(^{-1}\) more negative.\(^{2}\)

CH\(_3\)CHOH

Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.\(^{19}\) Enthalpy recommended in the review of McMillen and Golden is \(-15.2 \pm 1 \text{ kJ mol}^{-1}\).\(^{14}\) Atomization energies calculated using CCSD(T) with cc-pVnZ (n = D, T, and Q) basis sets, using (U)MP2/aug-cc-pVTZ optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of \(\Delta_{f}H_{o} = -9.8 \text{ kJ mol}^{-1} \) and \(\Delta_{f}H_{298} = -13.1 \text{ kJ mol}^{-1}\).\(^{13}\)

C\(_2\)H\(_5\)OH

Taken from review of Gurvich, et al.\(^{8}\) Atomization energies calculated using CCSD(T) with cc-pVnZ (n = D, T, and Q) basis sets, using (U)MP2/aug-cc-pVTZ optimized geometries and extrapolated to the complete basis set limit, led to enthalpies of \(\Delta_{f}H_{o} = -52.1 \text{ kJ mol}^{-1} \) and \(\Delta_{f}H_{298} = -56.4 \text{ kJ mol}^{-1}\).\(^{13}\)

CH\(_3\)O\(_2\)H

Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.\(^{19}\) Recommendation in the review of McMillen and Golden, adjusted to allow for present enthalpy of CH\(_3\)COCH\(_3\), is \(-3 \pm 1 \text{ kJ mol}^{-1}\).\(^{14}\)

CH\(_3\)OCH\(_3\)

Enthalpy from Pedley,\(^{15}\) entropy from Frenkel et al.\(^{6}\) Enthalpy calculated using the atomization energy method at the CBS-Q level gave \(-43.98 \text{ kJ mol}^{-1}\).\(^{19}\)

(15) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds;* Thermodynamics Data Center: College Station, TX, 1994.

Note 13: *Compounds containing two C, two O, and 1-6 H*

(CHO)$_2$, glyoxal

The lowest energy conformer is the *trans* isomer. From the updated JANAF Tables, based on measurements of the heat of combustion.5

cy-{(C$_3$H$_6$O)$_2$, oxirane an α-lactone of ethylene oxide)

Ab initio calculations utilizing isodesmic reactions.9

CH$_3$CHOH

Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.12 This radical is unstable towards dissociation.

C$_2$H$_5$O$_2$

Based on a re-analysis of previous equilibrium data on R + O$_2$ ↔ RO$_2$ from the same laboratory.5

C$_2$H$_3$OOH

Reaction enthalpy for the reaction CH$_3$CH$_2$OO + CH$_3$OOH → CH$_3$CH$_2$OOOH + CH$_3$OO calculated to be 0.5 kcal mol$^{-1}$ using the QCISD(T)/6-31G**// MP2/6-31G* method.6 Previous enthalpy value (−175.4±12.9 KJ mol$^{-1}$) was computed on the assumption that the dissociation energy for ROO-H is 366±3 KJ mol$^{-1}$ (Stocker and Pilling, unpublished work).5 Pedley gives a value of −198.9±58.7 KJ mol$^{-1}$.8 Enthalpy calculated using the atomization energy method at the CBS-Q level gave −38.78 kcal mol$^{-1}$.12 Calculations using the CBS-QB3 and CBS-APNO model chemistries on three isodesmic reactions led to $\Delta H^\circ_{298} = −163.7±0.9$ KJ mol$^{-1}$.11 Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.12
CH₃OCO, radical from methyl formate
An average of two isodesmic reactions calculated at the G3MP2//B3LYP/6-31G(d) level.¹⁰
Enthalpy calculated using the atomization energy method at the CBS-Q level gave $\Delta_{f} H_{298}^{o} = -37.87$ kcal mol⁻¹.¹² Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.¹²

CH₂OC(O)H
Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.¹²

CH₃OC(O)H, methyl formate
Enthalpy value taken from review of Pedley.⁸ An average of three isodesmic reactions calculated at the G3MP2//B3LYP/6-31G(d) level, supported by G3 and B3LYP calculations gives $\Delta_{f} H_{298}^{o} = -82.3 \pm 0.49$ kcal mol⁻¹.¹⁰ Enthalpy calculated using the atomization energy method at the CBS-Q level gave $\Delta_{f} H_{298}^{o} = -85.87$ kcal mol⁻¹.¹² Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.¹²

CH₃COO Vibrational frequencies calculated at the HF/6-31G(D) level and total energies evaluated at the G2(MP2) level, also making use of isodesmic reactions.¹⁴

CH₂(OH)CO and CH(OH)(C(O)H
Enthalpy derived from isodesmic reactions calculated by the B3LYP/6-31G(d,p) and G3 methods. Reported results were adjusted for enthalpy values of reference compounds in this Table.³

CH₃(OH)C(O)H, glycoaldehyde
Enthalpy derived from isodesmic reactions calculated by the B3LYP/6-31G(d,p) and G3 methods. Reported results were adjusted for enthalpy values of reference compounds in this Table.³

CH₂C(O)OH
Enthalpy based on CID studies of the acetate radical anion yielding D(H-CH₂COOH) = 95.3±2.9 kcal mol⁻¹.¹³ Entropy based on vibrational frequencies calculated at the HF/6-31G(D) level.¹⁴ Isodesmic reactions at the G2(MP2) level give –243 kJ mol⁻¹.

CH₃C(O)O
Derived from a hybrid experimental/CBS-Q approach.⁷

CH₃C(O)OH, acetic acid
Enthalpy from Pedley⁸, entropy from Chao.¹

CH₂C(OH)₂, ethene, 1-diol
Enthalpy obtained from three isodesmic reactions at the G3MP2//B3LYP/6-31G(d) level of theory.¹⁰

CH₂(OH)CH₂OH, 1,2-ethanediol
Enthalpy from Pedley,⁸ entropy from Frenkel et al.⁴

C(OH)₂C(O)H, radical from ethanal, 2-diol
Calculated from two isodesmic reactions at the G3MP2//B3LYP/6-31G(d) level of theory.¹⁰

CH(OH)₂C(O)H, ethanal, 2-diol
Calculated from two isodesmic reactions at the G3MP2//B3LYP/6-31G(d) level of theory.¹⁰

C(O)HC(O)H, ethanedial (glyoxal)
From the review of Pedley.⁸

CH₂OOCCH₃
Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the atomization energy method. Entropy based on geometric properties optimized at the MP2/6-
CH₃OOCCH₃

Enthalpy from updated JANAF Tables, based on calorimetric measurements.² Enthalpy calculated using the atomization energy method at the CBS-Q level gave $\Delta H^0_{298} = -29.17$ kcal mol⁻¹.¹² Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.¹²

Note 14: Alkylcarbonate radicals

Alkylcarbonate radicals

Formation enthalpies for these short-lived radicals were studied by the CBS-Q method, with geometry optimization at the MP2/6-31G(d) level. Enthalpies from both atomization and bond-separation reactions were calculated. The differences were 4 kJ mol⁻¹ or less, so the values were averaged for inclusion in the Table. The decomposition of the radicals was investigated by charge-reversal and neutralization-reionization mass spectrometry. For these ROC(O)O radicals, hydrogen-atom migration was important for R = CH₃ and C₃H₇, whereas decarboxylation was more important for R = H, i-C₃H₇, and t-C₃H₇.¹

Note 15: *Compounds with two C and more than 2 O*

CH$_3$C(O)O$_2$
Derived from a hybrid experimental/CBS-Q approach.3

CH$_3$(OH)C(O)OH, *glycolic acid*
From the updated JANAF Tables, estimated based on additivity methods.2

CH$_3$(OH)OCH$_2$OH, *dioxymethanol*
Taken from the review of Pedley.4

(HOCO)$_2$, *oxalic acid*
Updated JANAF Tables, based on the enthalpy of combustion of the solid and the enthalpy of vaporization.2

CH$_3$O$_4$CH$_3$, *dimethyl tetraoxide*
Molecular geometry optimized at the B3LYP/cc-pVTZ+d level of theory. The enthalpy was determined using G3B3 and CBS-APNO methods with isodesmic reactions to minimize systematic errors. Several bond dissociation energies were also reported.1

C(OH)$_2$C(O)H, *radical from ethanal, 2-diol*
Calculated from two isodesmic reactions at the G3MP2/B3LYP/6-31G(d) level of theory.5

CH(OH)$_2$C(O)H, *ethanal, 2-diol*
Calculated from two isodesmic reactions at the G3MP2/B3LYP/6-31G(d) level of theory.5

(4) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds*; Thermodynamics Data Center: College Station, TX, 1994.

Note 16: *Compounds with two C, one N, and 0-5 O*

C$_2$H$_6$NO$_2$ Calculated using G3, CBS-QB3, and CBS-APNO methods applied to atomization, isomerization, and work reactions. Value reported is Δ_H^{298} = -25.06±0.07 kcal mol$^{-1}$, which is adjusted using the reference enthalpy for cis-HONO from this Table.1 A calculation of the atomization energy at the G3 level of theory leads to Δ_H^{298} = -24.7 kcal mol$^{-1}$.

Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.4

C$_2$H$_6$ONO Calculated using G3, CBS-QB3, and CBS-APNO methods applied to atomization, isomerization, and work reactions. Value reported is Δ_H^{298} = -23.58±0.12 kcal mol$^{-1}$, which is adjusted using the reference enthalpy for cis-HONO from this Table.1 A calculation of the atomization energy at the G3 level of theory leads to Δ_H^{298} = -22.9 kcal mol$^{-1}$.

Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.4

C$_2$H$_6$O$_2$NO$_2$
Equilibrium structures optimized at the MP2 level with the 6-311G(d,p) basis set and enthalpy values calculated by both atomization energies and through use of isodesmic reactions at the G3, G3B3, and G4 methods.\(^3\)

\begin{align*}
 &\text{CH}_3\text{C(O)O}_2\text{NO}_2 \\
 &\text{Derived from a hybrid experimental/CBS-Q approach.}^5
\end{align*}

\begin{align*}
 &\text{CH}_3\text{CHN(O)OH} \\
 &\text{Enthalpy value calculated from the atomization energy at the G3 level of theory. Calculations also carried out at the G2, G2M(CC5), B3LYP, MW1B95, and MPWB1K levels.}^4
\end{align*}

\begin{align*}
 &\text{C}_2\text{H}_5\text{NH}_2, \text{ethylamine} \\
 &\text{From the review of Pedley.}\(^6\)
\end{align*}

\begin{align*}
 &\begin{aligned}
 &\text{CH}_3\text{NHCH}_3, \text{dimethylamine} \\
 &\text{From the review of Pedley.}\(^6\)

 &\text{CH}_3\text{CONH}_2, \text{acetamide} \\
 &\text{From the review of Pedley.}\(^6\)

 &\end{aligned}
\end{align*}

\begin{align*}
 &\begin{aligned}

 &\text{Bodi, A.; Kercher, J. P.; Bond, C.; Meteesatien, P.; Sztaray, B.; Baer, T. Photoion photoelectron coincidence spectroscopy of primary amines RCH}_2\text{NH}_2 \text{(R=H, CH}_3, \text{C}_2\text{H}_5, \text{C}_3\text{H}_7, \text{i-C}_3\text{H}_7); \text{Alkylamine and alkyl radical heats of formation by isodesmic reaction networks J. Phys. Chem. A 2006, 110, 13425-13433, doi:10.1021/jp064739s.}\(^2\)

 &\text{Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.}\(^6\)

 \end{aligned}
\end{align*}

\textbf{Note 17: C3 hydrocarbons}

\begin{align*}
 \text{C}_3\text{H}_4, \text{propadiene} \\
 &\text{Enthalpy from Pedley.}\(^4\)
\end{align*}

\begin{align*}
 \text{C}_3\text{H}_4, \text{propyne} \\
 &\text{Enthalpy from Pedley.}\(^4\)
\end{align*}

\textbf{cy-C}_3\text{H}_3, \text{3-cyclopropenyl radical}

The 3-cyclopropenium cation was reacted with a series of reagents to establish the ionization energy of the radical as 6.00±0.17 eV or 578.9±16.4 kJ mol\(^{-1}\).\(^9\) This, combined with the enthalpy of formation of the reaction of 1076.5±3.3 kJ mol\(^{-1}\), leads to the reported value. High level G3 and W1 calculation lead to similar values.

\begin{align*}
 \text{cy-C}_3\text{H}_4, \text{cyclopropene} \\
 &\text{Enthalpy from Pedley.}\(^4\)
\end{align*}

\textbf{C}_3\text{H}_5 \\

From a second-law analysis of C\(_3\)H\(_5\) + HBr ↔ C\(_3\)H\(_6\) + Br.\(^6\) A calculation at the HEAT345-Q level of theory gives recommended values of \(\Delta H_{f}^o = 180.3\pm1.8\ \text{kJ mol}^{-1}\) and \(\Delta H_{298}^o = 168.6\pm1.8\ \text{kJ mol}^{-1}\).\(^8\) This enthalpy difference provides the 0 K value in the Table.
C₃H₆ Enthalpy from Pedley⁴, entropy from Chao.³

n-C₃H₇ Enthalpy derived from a threshold PEPICO study of alkyl amines and the use of two isodesmic reaction networks, connected through the TPEPICO dissociation energies, and with reaction heats calculated at the CBS-APNO and W1U levels of theory.¹ Previous value of ΔfH₂⁹⁸° = 100±2 kJ mol⁻¹ estimated by Tsang.¹⁰

i-C₃H₇ From a second-law analysis of iso-C₃H₇ + HBr ↔ iso-C₃H₆ + Br.² An enthalpy of ΔfH₂⁹⁸° = 88.5±1.0 kJ mol⁻¹ and ΔfH₂⁹⁸° = 106.2±1.0 kJ mol⁻¹ has been derived from a threshold PEPICO study of alkyl amines and the use of two isodesmic reaction networks, connected through the TPEPICO dissociation energies, and with reaction heats calculated at the CBS-APNO and W1U levels of theory.¹

C₃H₈ Enthalpy by combustion calorimetry.⁵ Entropy by ideal gas properties calculations.²

(4) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 18: Compounds containing 3 C 1-8 H, and 1 O Back to Table

1 and 2-C₃H₇OH From review of Pedley et al.¹⁰

C₂H₄CO CBS-4 and G2(MP2,SVP) methods used to obtain thermodynamic properties. Value listed is recommendation based on theoretical and experimental results. Entropy at the G2(MP2(full)/MP2(full)/6-31G(d) level treating internal rotations as harmonic oscillators.¹⁴

C₂H₅C(O)H Enthalpy from Pedley,¹⁰ entropy from Frenkel et al.⁵

CH₂CHOCH₃ and C₃H₆O Methyl vinyl ether and corresponding radicals. Molecular geometry optimized at the B3LYP/6-31G(d,p) level of theory. The enthalpy was determined using CBS-Q, CBS-APNO,
and G3 methods with isodesmic reactions to minimize systematic errors. Entropies calculated by using the SMCPs program.

\[\text{CH}_3\text{C(O)CH}_2 \]

Enthalpy value an average of the a value obtained from the gas-phase basicity and proton affinity determined by a kinetic method (~34.6±8.4 kJ mol\(^{-1}\)) and a reexamination of the results of Holmes et al.\(^7\) on the dissociation of 2-propenyl acetate and acetylacetone after electron ionization (~33.1 and ~30.3 kJ mol\(^{-1}\)). This value is supported by several computational studies.\(^3,6,8\) The previous recommendation, ~28.1±3.1 kJ mol\(^{-1}\), was derived from forward and reverse rate constants for the reaction \(\text{CH}_3\text{C(O)CH}_2 + \text{HBr} \leftrightarrow \text{CH}_3\text{C(O)CH}_3 + \text{Br}^\cdot\)\(^5\) The reverse rate constant requires an extrapolation from high temperature for the reference reaction. An earlier photobromination determination of the reverse reaction results in an enthalpy value of ~24.3±5.8 kJ mol\(^{-1}\).\(^9\) Density functional and ab initio calculations at the CBS-QB3 level of theory, using a series of isodesmic reactions, led to \(\Delta_H^{298} = -24.3\pm5.8 \text{ kJ mol}^{-1}\)\(^3\). The entropy value is from G3MP2B3 calculation.\(^8\)

\[\text{CH}_3\text{C(O)CH}_3 \]

Enthalpy from review of Pedley;\(^10\) entropy value from Frenkel.\(^5\)

\[\text{CH}_3\text{CHOCH}_3 \text{ and } \text{CH}_3\text{CH}_2\text{OCH}_2 \]

Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.\(^13\)

\[\text{CH}_3\text{CH}_2\text{OCH}_3, \text{methoxyxethane (methyl ethyl ether)} \]

Enthalpy from Pedley et al.\(^10\) Enthalpy calculated using the atomization energy method at the CBS-Q level gave ~52.20 kcal mol\(^{-1}\).\(^13\) Entropy based on geometric properties optimized at the MP2/6-31G(d') level and vibrational frequencies at the HF/6-31G(d') level.\(^13\)

\[\text{CH}_2\text{CC(O)H}, \text{radical from propenal} \]

Enthalpy obtained from four isodesmic reactions at the G3MP2//B3LYP/6-31G(d) level of theory.\(^11\)

\[\text{CH}_2\text{CHCO}, \text{radical from propenal} \]

CBS-4 and G2(MP2,SVP) methods used to obtain thermodynamic properties. Value listed is recommendation based on theoretical and experimental results. Entropy at the G2(MP2(full)//MP2(full)/6-31G(d) level treating internal rotations as harmonic oscillators.\(^14\)

\[\text{CH}_3\text{CHCO}, \text{methyl ketene} \]

Reaction enthalpies for two isodesmic reactions were calculated at the CBS-QB3, CBS-APNO, and G3 levels.\(^12\) Preferred values for the reference compounds from this Table were employed.

\[\text{CH}_2\text{CHC(O)H}, \text{propanal} \]

Enthalpy obtained from two isodesmic reactions at the G3MP2//B3LYP/6-31G(d) level of theory.\(^11\)

(5) Frenkel, M.; Kabo, G. J.; Marsh, K. N.; Roganov, G. N.; Wilhoit, R. C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, 1994; Vol. I.
(10) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 19: Compounds containing 3 C 1-8, H, and 2 O

C$_3$H$_4$O$_2$ Equilibrium constants for the reaction C$_3$H$_5$ + O$_2$ \leftrightarrow C$_3$H$_5$O$_2$ were determined over the temperature range 320–420 K and fit to a van’t Hoff plot. Combining the results with previous results led to $\Delta_rH^{\circ}_{298} = -75.6 \pm 2.3$ kJ mol$^{-1}$ and $\Delta_rS = -129.9 \pm 3.1$ J K$^{-1}$mol$^{-1}$.

CH$_2$:CHOOCCH$_3$ Thermodynamic parameters were determined at the B3LYP/6-311G(d,p) level of theory, with the enthalpy the average of 4-6 isodesmic reactions. The standard deviation of the enthalpy from the average of the isodesmic reactions was ±2.8 kJ mol$^{-1}$, but the estimated error limits for the individual isodesmic reactions, which take into account the uncertainty in each reactant and an estimated uncertainty due to thermal energy of 0.46 kJ mol$^{-1}$, ranged from ±6.7 to 14 kJ mol$^{-1}$.

CH$_3$:CH(OH):CH$_2$:OH, 1,2-propanediol From review of Pedley et al.4

C$_3$H$_6$:OOH Enthalpy based on calculations made using the CBS-QB3 and CBS-APNO model chemistries on two isodesmic reactions.8

CH$_2$:OCC(O):CH$_3$ and CH$_2$:OCC(O):CH$_3$ Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d’') level and vibrational frequencies at the HF/6-31G(d’’) level.9

CH$_3$:OCH$_2$:OCH$_3$, dimethoxymethane From the review of Pedley et al.4

Back to Table
Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the
atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d’) level and vibrational frequencies at the HF/6-31G(d’) level.9

\(\text{CH}_2(\text{OH})\text{C(O)}\text{CH}_3, \text{hydroxyacetone} \)

Enthalpy derived from isodesmic reactions calculated by the B3LYP/6-31G(d,p) and G3
methods. Reported results were adjusted for enthalpy values of reference compounds in this
Table.1

\(\text{CH}_3\text{CHOOCCH}_3 \)

Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the
atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d’) level and vibrational frequencies at the HF/6-31G(d’) level.8 This radical is unstable
towards dissociation.

\(\text{(CH}_3)_2\text{CHOO} \)

Based on a re-analysis of previous equilibrium data on R + O_2 ↔ RO_2 from the same
laboratory.2

\(\text{(CH}_3)_2\text{COOH} \)

Calculated using the complete basis set method, CBS-Q. Enthalpies calculated using the
atomization energy method. Entropy based on geometric properties optimized at the MP2/6-31G(d’) level and vibrational frequencies at the HF/6-31G(d’) level.9

\(\text{(CH}_3)_2\text{CHOOH} \)

Reaction enthalpy for the reaction \((\text{CH}_3)_2\text{CHOO} + \text{CH}_3\text{OOH} \rightarrow (\text{CH}_3)_2\text{CHOOH} + \text{CH}_3\text{OO}\)
calculated to be 0.6 kcal mol\(^{-1}\) using the QCISD(T)/6-31G**// MP2/6-31G* method.3
Enthalpy calculated using the atomization energy method at the CBS-Q level gave –48.1 kcal
mol\(^{-1}\).9 Entropy based on geometric properties optimized at the MP2/6-31G(d’) level and
vibrational frequencies at the HF/6-31G(d’) level.9

\(\text{CH}_3\text{C(OH)}_2\text{C(O)OH} \)

Enthalpy obtained from three isodesmic reactions at the G3MP2//B3LYP/6-31G(d) level of
theory.7

\(\text{CH}_2(\text{OH})\text{CH(OH)CH}_2\text{OH}, 1,2,3\)-propanetriol

Taken from the review of Pedley et al.4

\(\text{CH}_2\text{CHOOCCH}_3 \)

Thermodynamic parameters were determined at the B3LYP/6-311G(d,p) level of theory, with
the enthalpy the average of 4-6 isodesmic reactions. The standard deviation of the enthalpy
from the average of the isodesmic reactions was ±2.8 kJ mol\(^{-1}\), but the estimated error limits
for the individual isodesmic reactions, which take into account the uncertainty in each reactant
and an estimated uncertainty due to thermal energy of 0.46 kJ mol\(^{-1}\), ranged from ±6.7 to 14 kJ
mol\(^{-1}\).6

(1) Espinosa-Garcia, J.; Dóbé, S. Theoretical enthalpies of formation for atmospheric

(2) Knyazev, V. D.; Slagle, I. R. Thermochemistry of the R-O_2 bond in alkyl and chloroalkyl

(3) Lay, T. H.; Bozzelli, J. W. Enthalpies of formation and group additivity of alkyl peroxides and

(4) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics
Data Center: College Station, TX, 1994.

6-49

Note 20: Compounds containing 3 C, H, N, and O

$C_3H_7NH_2$ Enthalpy derived from a threshold PEPICO study of alkyl amines and the use of two isodesmic reaction networks, connected through the TPEPICO dissociation energies, and with reaction heats calculated at the CBS-APNO and W1U levels of theory.²

(CH₃)₃N, trimethylamine
From the review of Pedley et al.⁵

(CH₃)₃NO, trimethylene-N-oxide
Enthalpy from heat of combustion of solid and estimated sublimation enthalpy.¹

$C_3H_7O_2NO_2$
Equilibrium structures optimized at the MP2 level with the 6-311G(d,p) basis set and enthalpy values calculated by both atomization energies and through use of isodesmic reactions at the G3, G3B3, and G4 methods.³

NCC(O)CN, oxopropanedinitrile
From the updated JANAF Tables, based on calorimetric measurements.⁴

Note 21: Compounds containing 4 C, H, and O

n-C_4H_{10} Enthalpy by combustion calorimetry.⁷ Entropy by ideal gas properties calculations.⁴

(CH₃)₂CCO, dimethyl ketene
Reaction enthalpies for three isodesmic reactions were calculated at the CBS-QB3, CBS-APNO, and G3 levels.⁹ The preferred value for ketene from this Table was employed.

(CH₃)₃CO, tert-butoxyl
Earlier photoacoustic calorimetry results were combined with redetermined values of the enthalpy of formation and vaporization of di-1,1-dimethylethyl peroxide (using combustion calorimetry, ebulliometry, and heat capacity measurements) to derive this improved enthalpy of formation.\(^2\)

(\text{CH}_3)_3\text{COO}
Based on a re-analysis of previous equilibrium data on R + O\(_2\) \rightleftharpoons \text{RO}_2 from the same laboratory.\(^5\)

(\text{CH}_3)_3\text{COOH}
Enthalpy based on the gas-phase acidity and electron affinity from a negative ion photoelectron spectral study, leading to a BDE(O-H) of 85±2 kcal mol\(^{-1}\) (83±2 kcal mol\(^{-1}\) at 0 K).\(^1\) Reaction enthalpy for the reaction (\text{CH}_3)_3\text{COO} + \text{CH}_3\text{OOH} \rightarrow (\text{CH}_3)_3\text{COOH} + \text{CH}_3\text{OO} was calculated to be 1.3 kcal mol\(^{-1}\) using the QCISD(T)/6-31G**// MP2/6-31G* method, leading to \(\Delta H^\circ_{298} = -56.8\) kcal mol\(^{-1}\).\(^6\)

(\text{CH}_3\text{COO})_2, diacetyl peroxide
From updated JANAF Tables, based on a calorimetric measurement on the liquid and an assumed enthalpy of vaporization.\(^3\)

\textit{trans-CH}_3\text{CHCHOOCH}_3
Thermodynamic parameters were determined at the B3LYP/6-311G(d,p) level of theory, with the enthalpy the average of 4-6 isodesmic reactions. The standard deviation of the enthalpy from the average of the isodesmic reactions was ±2.8 kJ mol\(^{-1}\), but the estimated error limits for the individual isodesmic reactions, which take into account the uncertainty in each reactant and an estimated uncertainty due to thermal energy of 0.46 kJ mol\(^{-1}\), ranged from ±4.2 to 10.3 kJ mol\(^{-1}\).\(^8\)

\textit{cis-CH}_3\text{CHCHOOCH}_3
Thermodynamic parameters were determined at the B3LYP/6-311G(d,p) level of theory, with the enthalpy the average of 4-6 isodesmic reactions. The standard deviation of the enthalpy from the average of the isodesmic reactions was ±2.0 kJ mol\(^{-1}\), but the estimated error limits for the individual isodesmic reactions, which take into account the uncertainty in each reactant and an estimated uncertainty due to thermal energy of 0.46 kJ mol\(^{-1}\), ranged from ±4.0 to 8.0 kJ mol\(^{-1}\).\(^8\)

\textit{CH}_2\text{C(\text{CH}_3)OOCH}_3
Thermodynamic parameters were determined at the B3LYP/6-311G(d,p) level of theory, with the enthalpy the average of 4-6 isodesmic reactions. The standard deviation of the enthalpy from the average of the isodesmic reactions was ±1.8 kJ mol\(^{-1}\), but the estimated error limits for the individual isodesmic reactions, which take into account the uncertainty in each reactant and an estimated uncertainty due to thermal energy of 0.46 kJ mol\(^{-1}\), ranged from ±3.8 to 7.8 kJ mol\(^{-1}\).\(^8\)

\textit{CH}_2\text{CHCH}_2\text{OOCH}_3
Thermodynamic parameters were determined at the B3LYP/6-311G(d,p) level of theory, with the enthalpy the average of 4-6 isodesmic reactions. The standard deviation of the enthalpy from the average of the isodesmic reactions was ±1.1 kJ mol\(^{-1}\), but the estimated error limits for the individual isodesmic reactions, which take into account the uncertainty in each reactant and an estimated uncertainty due to thermal energy of 0.46 kJ mol\(^{-1}\), ranged from ±3.2 to 7.4 kJ mol\(^{-1}\).\(^8\)

Note 22: Inorganic compounds containing F

F

Enthalpy value is from the optimization in the Active Thermochemical Tables (ATcT). CODATA Key Value of $\Delta H_{298}^\circ = 79.38 \pm 0.30 \text{ kJ mol}^{-1}$ was used in previous evaluation. Entropy value is from CODATA.

F_2

CODATA Key Value.

HF

CODATA Key Value. The active thermochemical tables optimization gives an enthalpy value of $-272.77 \pm 0.24 \text{ kJ mol}^{-1}$. The most recent NIST-JANAF review gives and enthalpy of $-273.30 \pm 0.70 \text{ kJ mol}^{-1}$ and an entropy of $173.77 \pm 0.05 \text{ J K}^{-1} \text{ mol}^{-1}$. A network optimization of ab initio reaction enthalpies results in a value of $\Delta H_{298}^\circ = -272.82 \pm 0.35 \text{ kJ mol}^{-1}$. The uncertainty corresponds to the 95% confidence limit. The reference atomic values were taken from the Active Thermochemical Tables, ver. 1.20.

HOF

Atomization energy was calculated using the Wn family of computational methods. Small increases in the atomization energy were found going from W2.2 to W4.4. These results led to $\Delta H_{298}^\circ = 110.58 \pm 0.46 \text{ kJ mol}^{-1}$ and $\Delta H_0^\circ = 109.96 \pm 0.46 \text{ kJ mol}^{-1}$. Atomization energy calculated at the CCSD(T)(FC) level through aug-cc-PV7Z basis sets led to $\Delta H_{298}^\circ = 110.88 \pm 0.84 \text{ kJ mol}^{-1}$ and $\Delta H_0^\circ = 110.04 \pm 0.84 \text{ kJ mol}^{-1}$. These were averaged to give the Table values. The previous table values of $\Delta H_{298}^\circ = 109 \pm 10 \text{ kJ mol}^{-1}$ and $\Delta H_0^\circ = 108 \pm 10 \text{ kJ mol}^{-1}$ were from the NIST-JANAF thermochemical tables for the oxygen fluorides and were based on mass spectrometric and thermal decomposition studies of FOF. The atomization energy calculated with CCSD(T) using aug-cc-pVnZ (n=D-6) basis sets, approaching the complete basis set limit, resulted in $\Delta H_{298}^\circ = 27.9 \pm 0.4 \text{ kcal mol}^{-1}$ and $\Delta H_0^\circ = 27.6 \pm 0.4 \text{ kcal mol}^{-1}$. The entropy value is from JANAF.

FOF

NIST-JANAF thermochemical tables for the oxygen fluorides. Enthalpy based on a series of calorimetric studies. Atomization energy calculated at the CCSD(T)(FC) level through aug-cc-pV7Z basis sets led to $\Delta H_{298}^\circ = 24.7 \pm 1.3 \text{ kJ mol}^{-1}$ and $\Delta H_0^\circ = 26.8 \pm 1.3 \text{ kJ mol}^{-1}$. The atomization energy calculated with CCSD(T) using aug-cc-pVnZ (n=D-6) basis sets, approaching the complete basis set limit, resulted in $\Delta H_{298}^\circ = 6.6 \pm 0.5 \text{ kcal mol}^{-1}$ and $\Delta H_0^\circ =$...
7.1±0.5 kcal mol⁻¹. An extrapolation of a CCSD(T) calculation with aug-cc-pVTZ and aug-cc-pVQZ basis sets lead to ΔtH₂⁹⁸ = 24.4±4 kJ mol⁻¹.¹²

OFO

Atomization energy calculated at the CCSD(T)(FC) level through aug-cc-pV7Z basis sets led to the listed enthalpy.³ The previous Table values of ΔtH₂⁹⁸ = 380±20 kJ mol⁻¹ and ΔtH₀⁰ = 381±20 kJ mol⁻¹ were from the NIST-JANAF thermochemical tables for the oxygen fluorides and was based on a calculated value of enthalpy difference between OFO and FOO at 0 K of 356 kJ mol⁻¹.² The entropy value is also from the JANAF Table and is based on the earlier computational results.

FOO

From an analysis of studies of the equilibrium F + O₂ ↔ FOO (Table 3-1, Note 10). NIST-JANAF thermochemical tables for the oxygen fluorides, based on several experimental values, primarily from kinetic studies recommends ΔtH₂⁹⁸ = 25.4±2 kJ mol⁻¹ and ΔtH₀⁰ = 27.2±2 kJ mol⁻¹.² This is also the source of the entropy value. A determination of the atomization energy gave ΔtH₂⁹⁸ = 5.8±0.3 kcal mol⁻¹,³ whereas a UCCSDT calculation led to ΔtH₂⁹⁸ = 6.5±1 kcal mol⁻¹.⁴ Atomization energy was calculated using the Wn family of computational methods. Significant increases in the atomization energy were found going from W2.2 to W4.4. These results led to ΔtH₀⁰ = 24.6±0.7 kJ mol⁻¹ and ΔtH₀⁰ = 24.6±0.7 kJ mol⁻¹.⁵ Atomization energy calculated at the CCSD(T)(FC) level through aug-cc-pV7Z basis sets led to ΔtH₂⁹⁸ = 26.8±2.9 kJ mol⁻¹ and ΔtH₀⁰ = 28.9±2.9 kJ mol⁻¹.⁹

HOOF

Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized through the CCSD(T)/aV(T+d)Z level.¹⁰

FOOF

NIST-JANAF thermochemical tables for the oxygen fluorides.³ Value adopted for enthalpy is that recommended by Lyman⁴ based on a calorimetric measurement on the decomposition into O₂ and F₂. The atomization energy calculated with CCSD(T) using aug-cc-pVnZ (n=D-6) basis sets, approaching the complete basis set limit, resulted in ΔtH₂⁹⁸ = 40.2±3.8 kJ mol⁻¹ and ΔtH₀⁰ = 43.9±3.8 kJ mol⁻¹.⁷ Atomization energy was calculated using the Wn family of computational methods. Significant increases in the atomization energy were found going from W2.2 to W4.4. These results led to ΔtH₂⁹⁸ = 32.8±0.75 kJ mol⁻¹ and ΔtH₀⁰ = 37.24±0.75 kJ mol⁻¹.¹³ Atomization energy calculated at the CCSD(T)(FC) level through aug-cc-pV7Z basis sets led to ΔtH₂⁹⁸ = 26.8±2.9 kJ mol⁻¹ and ΔtH₀⁰ = 31.0±2.9 kJ mol⁻¹.⁹ An extrapolation of a CCSD(T) calculation with aug-cc-pVTZ and aug-cc-pVQZ basis sets lead to ΔtH₂⁹⁸ = 34.8±4 kJ mol⁻¹.¹²

FOOOF, for the C₂ conformer

Based on an extrapolation of a CCSD(T) calculation with aug-cc-pVTZ and aug-cc-pVQZ basis sets. For the C₂ conformer, ΔtH₂⁹⁸ = 111.3±4 kJ mol⁻¹ and S = 204.3 J K⁻¹ mol⁻¹.¹²

FNO

The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.²⁰ The previous value, ΔtH₂⁹⁸ = −65.7 kJ mol⁻¹, was taken from review of Stull et al.¹⁰ The JANAF Tables give ΔtH₀⁰ = −63.3 kJ mol⁻¹, ΔtH₂⁹⁸ = −65.7 kJ mol⁻¹, and S₀ = 248.082 J mol⁻¹ K⁻¹.³

cis, trans-FONO

The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.²⁰ The previous value, ΔtH₂⁹⁸ = −79 kJ mol⁻¹, was taken from review of Stull et al.¹⁰

FNO₂

The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.²⁰ The previous value, ΔtH₂⁹⁸ = −79 kJ mol⁻¹, was taken from review of Stull et al.¹⁰
\textbf{FONO}_2

The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.20 The previous value, $\Delta H^\circ_{298} = 15\pm3 \text{ kJ mol}^{-1}$, was taken from review of Gurvich et al.11 The JANAF estimate from 1963 gave an enthalpy of $10\pm2 \text{ kJ mol}^{-1}$.3

\textbf{NF}_2

Enthalpy value from a reanalysis of the data used by JANAF, combined with the newer enthalpy value for NF\textsubscript{3}.21

\textbf{NF}_3

A study of the combustion of rhombic sulfur in NF\textsubscript{3} to generate SF\textsubscript{6} and N\textsubscript{2} using $\Delta H^\circ_{298}(\text{SF}_6) = -1220.8\pm0.8 \text{ kJ mol}^{-1}$ results in the enthalpy of NF\textsubscript{3}.21

Note 23: Compounds containing one C and one or more F

CF	Thermodynamic properties from Gurvich et al. review. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H_f^{\circ} = 243.3 \pm 0.8$ kJ mol$^{-1}$, $\Delta H_f^{298} = 247.0 \pm 0.8$ kJ mol$^{-1}$, and $S = 212.9 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4
CHF	Calculated for the X'A' state. Enthalpy from a CCSD(T) calculation with the aug-cc-pVQZ (n=D,T,Q,5) basis set extrapolated to the CBS limit and entropy from a MP2/aPTZ calculation. Enthalpy obtained using the computed enthalpy of a reaction of the type: $\text{CH}_3(\text{A}) + \text{CH}_2\text{F}_2 + 2\text{CH}_2\text{Y} \rightarrow \text{CFY}(\text{A}) + 3\text{CH}_4$ results in $\Delta H_f^{298} = 146$ kJ mol$^{-1}$ at the QCISD(T)/6-311+G(3df,2p)/QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level. Previous recommendation, $\Delta H_f^{298} = 143 \pm 13.0$ kJ mol$^{-1}$, based on combining experimental chloride dissociation energies from the parent anion, prior experimental measurements, and G2 calculations. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H_f^{\circ} = 148.9 \pm 1.2$ kJ mol$^{-1}$, $\Delta H_f^{298} = 149.0 \pm 1.2$ kJ mol$^{-1}$, and $S = 223.1 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4 This enthalpy difference was used to calculate the 0 K value in the Table.
CH$_2$F	Derived from the kinetics and equilibria of the iodination reaction $\text{CH}_3\text{F} + \text{I}_2 \leftrightarrow \text{CH}_2\text{FI} + \text{HI}$. A QCISD(T)/6-31+1G(3df,2p)/QCISD/6-31G(d,p) level of theory. Calculations also done at the G2 level. Previous recommendation, $\Delta H_f^{298} = -27.9 \pm 1.6$ kJ mol$^{-1}$, $\Delta H_f^{298} = -31.2 \pm 1.6$ kJ mol$^{-1}$, and $S = 232.5 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4 This enthalpy difference was used to calculate the 0 K value in the Table.
CH$_3$F	Enthalpies of reaction calculated (and averaged) at the MCG3//MCQCI3SD level of theory (up to 6-311++G(3df,2df,2p) basis set) for the homolytic fragmentation to the alkyl radical and fluoride atom, and for the atomization reaction. Enthalpy also calculated for the heterolytic fragmentation into the alkyl cation and fluoride anion for support. Previous value, $\Delta H_f^{298} = -238 \pm 8$ kJ mol$^{-1}$, estimated in review of Rodgers et al. Luo and Benson recommend -55.9 ± 1 kcal/mol. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H_f^{\circ} = -228.5 \pm 2.0$ kJ mol$^{-1}$, $\Delta H_f^{298} = -236.9 \pm 2.0$ kJ mol$^{-1}$, and $S = 222.5 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4 This enthalpy difference was used to calculate the 0 K value in the Table.
CF$_2$	Calculated for the X'A' state. Enthalpy from a CCSD(T) calculation with the aug-cc-pVQZ (n=D,T,Q,5) basis set extrapolated to the CBS limit and entropy from a MP2/aPTZ calculation. Enthalpy obtained using the computed enthalpy of a reaction of the type: $\text{CH}_3(\text{A}) + \text{CH}_2\text{F}_2 + 2\text{CH}_2\text{Y} \rightarrow \text{CFY}(\text{A}) + 3\text{CH}_4$ results in $\Delta H_f^{298} = -196$ kJ mol$^{-1}$ at the QCISD(T)/6-311++G(3df,2p)/QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level. Previous recommendation, -44.0 ± 2 kcal mol$^{-1}$, based
on combining experimental chloride dissociation energies from the parent anion, prior experimental measurements, and G2 calculations. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^0 = -193.2 \pm 1.2$ kJ mol$^{-1}$, $\Delta H^0_{298} = -193.2 \pm 1.2$ kJ mol$^{-1}$, and $S = 240.6 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4

CHF$_2$

Derived from the kinetics and equilibria of the iodination reaction CH$_3$F + I$_2$ \leftrightarrow CH$_2$FI + HI.10 A QCISD(T)/6-311+G(3df,2p) isodesmic study resulted in an enthalpy of -241.2 ± 4.1 kJ mol$^{-1}$.15 A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^0 = -239.4 \pm 2.6$ kJ mol$^{-1}$, $\Delta H^0_{298} = -243.0 \pm 2.6$ kJ mol$^{-1}$, and $S = 255.8 \pm 6.5$ J K$^{-1}$ mol$^{-1}$.4 The enthalpy difference was used to calculate the 0 K value in the Table.

CH$_2$F$_2$

From review by Rodgers et al.12 Pedley gives -452.3 ± 0.9 kJ mol$^{-1}$.9 A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^0 = -442.6 \pm 2.0$ kJ mol$^{-1}$, $\Delta H^0_{298} = -450.5 \pm 2.0$ kJ mol$^{-1}$, and $S = 246.3 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4 The enthalpy difference was used to calculate the 0 K value in the Table.

CF$_3$

Enthalpy from a simultaneous solution of a thermochemical network for the CF$_3$X species, where X = nil, H, Cl, Br, I, CF$_3$, CN.13 Entropy from recommendation of Gurvich et al.5 A QCISD(T)/6-311+G(3df,2p) isodesmic study resulted in an enthalpy of -465.9 ± 4.1 kJ mol$^{-1}$.15 A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^0 = -464.8 \pm 1.6$ kJ mol$^{-1}$, $\Delta H^0_{298} = -467.6 \pm 1.6$ kJ mol$^{-1}$, and $S = 264.1 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4

CHF$_3$

Enthalpy from a simultaneous solution of a thermochemical network for the CF$_3$ species, where X = nil, H, Cl, Br, I, CF$_3$, CN.13 Entropy from recommendation of Gurvich et al.5 An enthalpy calculation from the atomization energy was obtained starting with a ‘best estimated’ structure from extensive calculations and analysis, followed by CCST with aug-cc-pVQZ and aug-cc-pV5Z basis sets, and CCSD(T) with aug-cc-pVTZ and aug-cc-pVQZ basis sets. Values of $\Delta H^0 = -165.18$ kcal mol$^{-1}$ and $\Delta H^0_{298} = -166.86$ kcal mol$^{-1}$ were obtained.1 A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^0 = -687.7 \pm 2.0$ kJ mol$^{-1}$, $\Delta H^0_{298} = -694.9 \pm 2.0$ kJ mol$^{-1}$, and $S = 259.2 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4

CF$_4$

CODATA Key Value.3 The JANAF Tables give $\Delta H^0 = -927.2$ kcal mol$^{-1}$, $\Delta H^0_{298} = -933.2$ kcal mol$^{-1}$, and $S^0 = 261.41$ J K$^{-1}$ mol$^{-1}$.2 A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^0 = -927.8 \pm 2.0$ kJ mol$^{-1}$, $\Delta H^0_{298} = -933.8 \pm 2.0$ kJ mol$^{-1}$, and $S = 260.9 \pm 1.5$ J K$^{-1}$ mol$^{-1}$.4

(9) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.*

Note 24: *Compounds containing one C and one or more F and O*

CFH₂O and CFH₂OH
The enthalpies of formation are based on isodesmic reactions calculated at the MP2/6-31G(d,p) level of theory.¹⁶

FCO
The enthalpy values are taken from a CCSDT(Q) calculation, with structure optimized using the cc-pVQZ basis set.¹⁴ The previous Δ_h^f298° = −174.1±2 was from a CCSD(T) calculation with the aug-cc-pVnZ (n=D,T,Q,5) basis set extrapolated to the CBS limit.¹³ The entropy value is from a MP2/aVTZ calculation.¹³ The decomposition rate constant for FCO → F + CO²⁺ combined with the rate constant k = 2.4 × 10⁻²² cm³ s⁻¹¹⁸ for the reverse reaction, results in an upper limit of Δ_H^f298° ≤−153.1 kJ mol⁻¹.⁹ A CCSD(T) calculation gives Δ_H^f298° = −42.0±0.5 kcal mol⁻¹.¹⁶

FCO₂, fluoroformyloxyl radical
Calculated at the CCSD(T) level of theory. CFO value from same work is −42.0±0.5 kcal mol⁻¹, which differs from value in Table.¹

CHFO
The enthalpy values are taken from a CCSDT(Q) calculation, with structure optimized using the cc-pVQZ basis set.¹⁴ The previous Δ_H^f298° = −381.2±2 was from a CCSD(T) calculation with the aug-cc-pVnZ (n=D,T,Q,5) basis set extrapolated to the CBS limit.¹³ The entropy value is from a MP2/aVTZ calculation.¹³ The earlier enthalpy value, −91.6 kcal mol⁻¹, was from an G2(MP2) calculation,¹⁵ and the earlier entropy was from Gurvich et al.⁶

CF₂HFO and CF₂HOH
The enthalpies of formation are based on isodesmic reactions calculated at the MP2/6-31G(d,p) level of theory.¹⁶

CF₂O
The enthalpy values are taken from a CCSDT(Q) calculation, with structure optimized using the cc-pVQZ basis set.¹⁴ supported by several earlier computational studies discussed in that paper.³⁷¹³ The previous Δ_H^f298° = −623.8±5.9 was a lower limit from a photoionization study.¹ Entropy from Gurvich et al.⁶ Pedley review gives an enthalpy value of −639.8±1.4 kJ

Back to Table
CF₃O Re-analysis of data of Batt and Walsh, using new value for CF₂O.¹ The enthalpy of formation, $\Delta H_{298}^o = -154.5$ kcal mol⁻¹ based on an isodesmic reaction calculated at the MP2/6-31G(d,p) level of theory.¹⁶

CF₃O₂ Determined on the basis of extensive ab initio calculations.¹¹ Isomeric forms F₂COO and FC(=O)OF are calculated to have enthalpies of −60 and −104 kcal mol⁻¹, respectively.

CF₃O₂ Two values for the C-O bond dissociation energy in CF₃O₂ are given in Lightfoot, et al., -144±3.3 and -141±10 kcal mol⁻¹ at 0 K and adjusted to 298 K.¹² The value given is an average of the two resulting enthalpies.

CF₃OH Proton affinity obtained by using transitional energy threshold measurements on protonated trifluoromethanol. This was used in a thermochemical cycle to derive the enthalpy of formation.⁶ Previous value was based on a photoioinization study, where a lower limit of $\Delta H_{298}^o = -908.8\pm0.9$ kcal mol⁻¹ was presented.² The enthalpy of formation, $\Delta H_{298}^o = -933.4$ kcal mol⁻¹, based on an isodesmic reaction calculated at the MP2/6-31G(d,p) level of theory.¹⁶

CF₃OF Based on photoionization of CF₃OF and an analysis of the CF₃⁺ and CF₂O⁺ fragments.² A G2 calculation led to an enthalpy of -774.5 kcal mol⁻¹.⁵

CH₂FOOH, CHF₂OOH, and CF₃OOH Geometry optimization and frequency calculations were performed at the MP2/6-31G(d) and the B3LYP/6-311++G(d,p) levels of theory, with a single-point energy calculation at the CCSD(T)/6-311++G(d,p)/B3LYP/6-311++G(d,p) level. The dissociation energy into HO₂ and the alkyl radical was then evaluated and used, after thermal correction, to calculate the enthalpy of formation at 298 K.¹⁰ This was adjusted to the radical values from the present Table.

(15) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.*

Note 25: CF$_3$O$_2$NO$_2$ and CF$_3$CN

CF$_3$O$_2$NO$_2$ The unimolecular decomposition rate constant, measured between 264 and 297 K, was combined with earlier measurements of the combination rate constants to obtain the equilibrium constant for the reaction.2 Thermochemical values were derived from both second- and third-law evaluations.

CF$_3$CN Enthalpy from a simultaneous solution of a thermochemical network for the CF$_3$X species, where X = nil, H, Cl, Br, I, CF$_3$, CN.3 Entropy from recommendation of Chen, et al.4

Note 26: Compounds containing two C and one or more F

CH$_2$CHF Enthalpy from review of Pedley.13

CH$_3$CH$_2$F and CH$_3$CHF

Enthalpy from photobromination studies.11 Entropy determined at the UHF/6-31G* level of theory.12

CH$_3$CH$_2$F Conformers and rotational barriers determined at the CCSD(T)/cc-pVTZ level of theory and the resulting equilibrium structure optimized at the CCSD(T)/cc-pVQZ level. The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-pVXZ (X = T, Q, 5)) energies, corrected for correlation contributions, the core correlation, the zero-point energy, diagonal Born–Oppenheimer contributions, and the scalar relativistic effect. The heat of formation was computed from the calculated enthalpies by using the elemental reaction approach, taking the gaseous atom as the standard state for carbon.12 Previous value of $\Delta H_{298K}^{\circ} = -278.2 \pm 1.7$ kJ mol$^{-1}$ was based on enthalpies of reaction calculated at the MCG3/MCQCISD level of theory (up to 6-311++G(3d2f,2df,2p) basis set) for the homolytic fragmentation to the alkyl radical and fluoride atom, and for the atomization reaction and
CH₂CF₂ Enthalpy from review of Pedley.¹³

CH₃CHF₂, 1,1-difluoroethane
Conformers and rotational barriers determined at the CCSD(T)/cc-pVTZ level of theory and the resulting equilibrium structure optimized at the CCSD(T)/cc-pVQZ level. The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-pVXZ (X = T, Q, 5)) energies, corrected for correlation contributions, the core correlation, the zero-point energy, diagonal Born-Oppenheimer contributions, and the scalar relativistic effect. The heat of formation was computed from the calculated enthalpies by using the elemental reaction approach, taking the gaseous atom as the standard state for carbon.¹² Previous value of ΔfH₂⁰ = −497.0±8.3 kJ mol⁻¹ was from a review by Pedley.¹³

anti- and gauche-CH₂FCH₂F, 1,2-difluoroethanes
The conformationally averaged values are ΔfH₂⁰ = −446.9±3.4 kJ mol⁻¹ and S° = 296.8±2.8 J mol⁻¹. Conformers and rotational barriers determined at the CCSD(T)/cc-pVTZ level of theory and the resulting equilibrium structure optimized at the CCSD(T)/cc-pVQZ level. The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-pVXZ (X = T, Q, 5)) energies, corrected for correlation contributions, the core correlation, the zero-point energy, diagonal Born-Oppenheimer contributions, and the scalar relativistic effect. The heat of formation was computed from the calculated enthalpies by using the elemental reaction approach, taking the gaseous atom as the standard state for carbon.¹² Previous enthalpy of formation ΔfH₂⁰ = −232±25 kJ mol⁻¹ was based on an analysis of the thermal elimination of HF from CH₂FCH₂F, which led to a C-C bond dissociation energy of 88±2 kcal mol⁻¹.⁷

CH₃FCHF Thermodynamic properties determined at the UHF/6-31G* level, utilizing isodesmic/homodesmic reactions for enthalpy of formation.⁴

CHF₃CH₂ Thermodynamic properties determined at the UHF/6-31G* level, utilizing isodesmic/homodesmic reactions for enthalpy of formation.⁴

CH₃CF₂ The dissociation energy of CH₃CF₂-H of 99.5±1 kcal mol⁻¹ was derived from a study of the equilibrium CH₃CF₂H + I₂ ↔ CH₃CF₂I + HI.¹⁴ Entropy calculated from molecular properties computed at the UHF/6-31G* level of theory.¹

CH₃CHF₂ Taken from a Thermodynamics Research Center review.¹

anti- and gauche-CH₂FCH₂F₂, 1,1,2-trifluoroethanes
The conformationally averaged values are ΔfH₂⁰ = −661±3.4 kJ mol⁻¹ and S° = 316.9±2.0 J mol⁻¹. Conformers and rotational barriers determined at the CCSD(T)/cc-pVTZ level of theory and the resulting equilibrium structure optimized at the CCSD(T)/cc-pVQZ level. The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-pVXZ (X = T, Q, 5)) energies, corrected for correlation contributions, the core correlation, the zero-point energy, diagonal Born-Oppenheimer contributions, and the scalar relativistic effect. The heat of formation was computed from the calculated enthalpies by using the elemental reaction approach, taking the gaseous atom as the standard state for carbon.¹² Previous value of ΔfH₂⁰ = −665±4 kJ mol⁻¹ was based on the heat of hydrogenation of CF₃CFCl.⁹ Pedley gives an enthalpy value of −730.7±20.8 kJ mol⁻¹.¹³

CH₂CF₃ The dissociation energy of CF₃CH₂-H was derived from a study of the equilibrium CF₃CH₂ + I₂ ↔ CF₃CH₂I + HI.¹⁶ Entropy calculated from molecular properties computed at the UHF/6-31G* level of theory.²

CH₃CF₃, 1,1,1-trifluoroethane
Conformers and rotational barriers determined at the CCSD(T)/cc-pVTZ level of theory and the resulting equilibrium structure optimized at the CCSD(T)/cc-pVQZ level. The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-
Enthalpy from review of Pedley.**

anti- and gauche-CHF₂CH₂F₂, 1,1,2,2-tetrafluoroethanes

The conformationally averaged values are $\Delta H_{298}^o = -877.6\pm3.8$ kJ mol$^{-1}$ and $S^o = 323.2\pm4.7$ J mol$^{-1}$. Conformers and rotational barriers determined at the CCSD(T)/cc-pVTZ level of theory and the resulting equilibrium structure optimized at the CCSD(T)/cc-pVQZ level. The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-pVXZ ($X = T, Q, 5$)) energies, corrected for correlation contributions, the core correlation, the zero-point energy, diagonal Born-Oppenheimer contributions, and the scalar relativistic effect. The heat of formation was computed from the calculated enthalpies by using the elemental reaction approach, taking the gaseous atom as the standard state for carbon.**

Previous $\Delta H_{298}^o = -860\pm24$ kJ mol$^{-1}$ calculated based on the C-C bond strength estimate of 91.4\pm3.7 kcal mol$^{-1}$**

CH₂CF₃, 1,1,1,2-tetrafluoroethane

The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-pVXZ ($X = T, Q, 5$)) energies, corrected for correlation contributions, the core correlation, the zero-point energy, diagonal Born-Oppenheimer contributions, and the scalar relativistic effect. The heat of formation was computed from the calculated enthalpies by using the elemental reaction approach, taking the gaseous atom as the standard state for carbon.**

Previous $\Delta H_{298}^o = -733.7$ kJ mol$^{-1}$ (estimated) and $S^o = 80.7$ J mol$^{-1}$ were from the Thermodynamics Research Center review.**

CHF₃CF₃

A dissociation energy of C₃F₅-I of 52.5\pm1 kcal mol$^{-1}$ was derived from a study of the reaction of pentafluoroethyl iodide with HI.**

CHF₃CF₃, pentafluoroethane

The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-pVXZ ($X = T, Q, 5$)) energies, corrected for correlation contributions, the core correlation, the zero-point energy, diagonal Born-Oppenheimer contributions, and the scalar relativistic effect. The heat of formation was computed from the calculated enthalpies by using the elemental reaction approach, taking the gaseous atom as the standard state for carbon.**

Previous $\Delta H_{298}^o = -1105\pm5$ kJ mol$^{-1}$ and $S^o = 333.7$ J mol$^{-1}$ were from the Thermodynamics Research Center review.**

C₂F₆, hexafluoroethane

Enthalpy from a simultaneous solution of a thermochemical network for the CF₃X species, where X = H, D, Br, I, CF₃, CN.** Entropy from recommendation of Chen, et al.** A study in which conformers and rotational barriers determined at the CCSD(T)/cc-pVTZ level of theory and the resulting equilibrium structure optimized at the CCSD(T)/cc-pVQZ level. The total electronic energy was calculated at the complete basis set limit (extrapolated from aug-cc-pVXZ ($X = T, Q, 5$)) energies, corrected for correlation contributions, the core correlation, the zero-point energy, diagonal Born-Oppenheimer contributions, and the scalar relativistic effect.
led to $\Delta f H_{298}^o = -1339.8 \pm 3.2 \text{ kJ mol}^{-1}$ and $S^o = 331.0 \pm 1.5 \text{ J mol}^{-1}$. The heat of formation was computed from the calculated enthalpies by using the elemental reaction approach, taking the gaseous atom as the standard state for carbon.12

(13) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 27: **Compounds containing two C and one or more F and O**

CH$_2$FCH$_2$OH
The enthalpy of formation was calculated from a set of isodesmic and isogyric reactions at the CBS-QB3 level of theory and refers to the gauche configuration. Calculations with B3LYP/cc-pVTZ were in good agreement.

CH₂FCOOH
The enthalpy of formation was calculated from a set of isodesmic and isogyric reactions at the CBS-QB3 level of theory. Calculations with B3LYP/cc-pVTZ were in good agreement.

CF₃CO
CBS-4 and G2(MP2,SVP) methods used to obtain thermodynamic properties. In addition, enthalpy was derived from isodesmic reaction calculations. Value listed is recommendation based on theoretical and experimental results. Entropy at the G2(MP2(full)//MP2(full)/6-31G(d) level treating internal rotations as harmonic oscillators.

CF₃C(O)H
Thermodynamic properties calculated at the G2(MP2(full)//MP2(full)/6-31G(d) level of theory. Enthalpy from atomization energy and entropy calculated treating internal rotations as harmonic oscillators. Similar values obtained at the CBS-4//HF/3021G* level.

CH₃C(O)F, acetyl fluoride
Enthalpy value from review of Pedley.

CF₃C(O)F
Thermodynamic properties calculated for five isodesmic reactions at the MP2//6-31G(d) level of theory. In the same study, ΔH° = −614±7 kJ mol⁻¹ for CF₂O and ΔH° = −381±2 kJ mol⁻¹ for CHFO were calculated, both close to the recommended values.

CF₃C(O)OH, trifluoroacetic acid
Enthalpy value from review of Pedley.

CH₃C(O)F, acetyl fluoride
Enthalpy value from review of Pedley.

CF₃OCO₂
An average of a result from an isodesmic reaction and an atomization energy, both calculated at the CBS-4 level of theory.

CF₃OOCF₃
A thermal decomposition study from 575 to 900 K led to a BDE(O-O) of 47.5±0.5 kcal mol⁻¹. An MP2/6-31G(d,p) calculation utilizing isodesmic and isogyric reactions resulted in −343±3 kcal mol⁻¹. A CBS-QB3 calculation led to a BDE(O-O) of 209.4 kJ mol⁻¹, and thus an enthalpy of −1479 kJ mol⁻¹.

(4) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 28: **Compounds containing more than two C and one or more F**

iso-C₃H₃F Enthalpies of reaction calculated at the MCG3//MCQCISD level of theory (up to 6-311++G(3d2f,2df,2p) basis set) for the homolytic fragmentation to the alkyl radical and fluoride atom, and for the atomization reaction and averaged. Enthalpy also calculated for the heterolytic fragmentation into the alkyl cation and fluoride anion for support. \(\Delta_h H_{298}^\circ = -318.8 \pm 4.2 \text{ kJ mol}^{-1} \) estimated by Luo and Benson.³

tert-C₄H₅F Enthalpies of reaction calculated at the MCG3//MCQCISD level of theory (up to 6-311++G(3d2f,2df,2p) basis set) for the homolytic fragmentation to the alkyl radical and fluoride atom, and for the atomization reaction and averaged. Enthalpy also calculated for the heterolytic fragmentation into the alkyl cation and fluoride anion for support.² \(\Delta_h H_{298}^\circ = -363.6 \pm 4.2 \text{ kJ mol}^{-1} \) estimated by Luo and Benson.³

CF₃C(O)OCH₃

The free energy of formation of methyl trifluoroacetate in solution was determined by measuring the equilibrium constant for the reaction of trifluoroacetic acid with methanol. The solubility was estimated from a linear free-energy relationship and the vapor pressure estimated from the boiling point, leading to a value of the free energy of formation in the gas phase. Combining this with the estimate of the standard entropy, also listed, leads to the cited value.¹ A density-functional calculation at the MPWB1K//6-31+G(d,p) level with two isodesmic reactions, led to \(\Delta_h H_{298}^\circ = -1020 \text{ kJ mol}^{-1} \).⁴

Note 29: **Inorganic compounds containing Cl**

Cl Enthalpy value is from the optimization of Ruscic et al.²⁰ Entropy is a CODATA Key Value⁴ as was the previous enthalpy value of \(\Delta_h H_{298}^\circ = 121.301 \pm 0.008 \text{ kJ mol}^{-1} \).

Cl₂ CODATA Key Value⁴

HCl CODATA Key Value.⁴ The active thermochemical tables optimization gives an enthalpy value of \(-92.176 \pm 0.0063 \text{ kJ mol}^{-1}\).²⁰ The most recent NIST-JANAF review gives and enthalpy of \(-92.31 \pm 0.10 \text{ kJ mol}^{-1}\) and an entropy of \(186.901 \pm 0.005 \text{ J K}^{-1} \text{ mol}^{-1}\).²¹

ClO Both JANAF³ and Gurvich et al.⁹ use the dissociation energy from Coxan and Ramsay⁵ of 265.380±0.036 kJ mol⁻¹. The present recommendation is a recalculation using reference values from this Table. The entropy is a statistical mechanical calculation⁴ using data from JANAF. The previous value of 101.63±0.1 kJ mol⁻¹ was from the JANAF recommendation.³ A CCSD(T) calculation, extrapolated to the complete basis set limit, for the atomization energy leads to an enthalpy of formation of 24.8 kcal mol⁻¹ at both 0 K and at 298 K.¹⁶ Another CCSD(T) calculation of the dissociation energy, both directly and thorough a negative ion thermochemical cycle, led to enthalpy values of \(\Delta_h H_0^{\ast} = 24.1 \pm 0.3 \) and \(\Delta_h H_{298}^\circ = 24.1 \pm 0.3 \).
and 24.2±0.3 kcal mol⁻¹.¹⁸ Atomization energy was calculated using the Wn family of computational methods. A slight increase in the atomization energy was found going from W2.2 to W4.4. These results led to \(\Delta H_{298} = 101.2±0.4 \text{ kJ mol}^{-1} \) and a 0 K value only 0.04 kJ mol⁻¹ higher.¹²

ClOO

Enthalpy and entropy values are from an analysis of equilibrium constant measurements (see Table 3-1, Note 11). More recent measurements over the temperature range 212–245 K²³ support these values. Previous enthalpy value of 98±4 kJ mol⁻¹ and entropy value of 269.32±0.5 J K⁻¹ mol⁻¹ from JANAF. Enthalpy for the reaction HOOCl + FOO → HOOF + ClOO at the CCSD(T)/CBS(Q5) level of theory, adjusted for the Table value for FOO, leads to \(\Delta H_{298} = 103.9±6 \text{ kJ mol}^{-1} \) and \(\Delta H_{0}^{o} = 104.7±6 \text{ kJ mol}^{-1} \).²⁸ Atomization energy was calculated using the Wn family of computational methods. Significant increases in the atomization energy were found going from W2.2 to W4.4. These results led to \(\Delta H_{298} = 101.7±0.7 \text{ kJ mol}^{-1} \) and \(\Delta H_{0}^{o} = 103.3±0.7 \text{ kJ mol}^{-1} \).¹²

ClOOH

Isodesmic reaction calculations done at MP2, CCSD, and CCSD(T) level with ANO basis sets to determine enthalpy of formation.¹⁴

OCIO

Near-threshold fragmentation studies led to a dissociation energy to O + ClO of 247.3±0.5 kJ mol⁻¹.⁶ This leads to an enthalpy of formation at 0 K of 100.6±0.6 kJ mol⁻¹. A computational study gives, at 0 K, 102.2±6.5 kJ mol⁻¹.¹³ Previous 298 K enthalpy of formation, 94.6±1.2, derived from equilibrium constant for ClO + ClO ↔ Cl + OCIO. Entropy and enthalpy function are from JANAF.³ A CCSD(T) calculation, extrapolated to the complete basis set limit, for the atomization energy leads to an enthalpy of formation of 24.5 kcal mol⁻¹ at 0 K and 23.9 at 298 K.¹⁶ An atomization energy calculated at the W4 level of theory led to \(\Delta H_{298} = 99.0±0.7 \text{ kJ mol}^{-1} \) and \(\Delta H_{0}^{o} = 101.5±0.7 \text{ kJ mol}^{-1} \).¹²

ClO₃

A calculation of the isodesmic reaction ClO₃ + ClO → 2OCIO at the W4.2 level of theory provided the selected enthalpy values.¹² The previous values, \(\Delta H_{298} = 194±12 \text{ kJ mol}^{-1} \) and \(\Delta H_{0}^{o} = 200±12 \text{ kJ mol}^{-1} \) were the JANAF recommendations, which were based on limited kinetic and theoretical studies.³ A more recent density functional/G3 calculation led to a 298 K enthalpy of 43.1 kcal mol⁻¹ (≈ 180.3 kJ mol⁻¹).²²

ClCIO

A CCSD(T), extrapolated to the complete basis set limit, for the atomization energy leads to the recommended enthalpy of formation and a value of 32.2 kcal mol⁻¹ at 0 K. For the \(^1\Lambda^\prime\) state, \(\Delta H_{298} = 52±1 \text{ kcal mol}^{-1} \) for the \(^3\Lambda^\prime\) state.¹⁶ The previous recommendation, 90±30 kJ mol⁻¹, from the JANAF evaluation,³ was based on an interpretation of the infrared spectrum and suggested that ClCIO was less stable than ClOCI by ~9 kJ mol⁻¹. Several computational studies cited in the JANAF review indicated that the stability difference was considerably greater, typically about 60 kJ mol⁻¹. The present recommendation leads to a stability difference of 52 kJ mol⁻¹. Entropy and enthalpy difference calculated by a statistical mechanical calculation using vibrational frequencies from the WebBook and PM3 rotational moments.¹

ClOCl

Enthalpy value based on experimental reports on the equilibrium constant for the reaction H₂O + Cl₂O ↔ 2HClO and the recommended enthalpy of formation for HOCl.¹⁰ Gurvich et al. recommended an enthalpy of formation at 298 K of 79±10 kJ mol⁻¹.⁹ A CCSD(T) calculation, extrapolated to the complete basis set limit, for the atomization energy leads to an enthalpy of formation of 19.3 kcal mol⁻¹ at 0 K and 18.9 at 298 K.¹⁶

ClOOCl

Selected enthalpy value derived from a third-law calculation on the equilibrium constant for the dimerization reaction, ClO + ClO → ClOOCl, presented in Table 3-1, note 20. Entropy value calculation is also discussed in Table 3-1. Previous Table value of \(\Delta H_{298} = 127.6±2.9 \text{ kJ mol}^{-1} \), was from the equilibrium constant of Nickolaisen, et al.¹⁷ and the entropy was the JANAF recommendation.³ A study of the fragmentation threshold of ClO⁺ from the photoionization of ClOOCl yielded a 0 K enthalpy of 134.07±2.8 kJ mol⁻¹ and a 298 K value of 130.87±2.8 kJ mol⁻¹.¹⁹ A CCSD(T) calculation, extrapolated to the complete basis set limit, for the atomization energy leads to an enthalpy of formation of 32.9 kcal mol⁻¹ at 0 K and 31.6 at 298 K.¹⁶ A calculation using the isodesmic reactions ClOOCl + H₂O → H₂O₂ + Cl₂O and
CIOClO$_2$ + 2HOCI \rightarrow H$_2$O$_2$ + 2Cl$_2$O at the W4.2 level of theory leads to $\Delta_{f}H_{298}^o = 131.8 \pm 1.3$ kJ mol$^{-1}$ and $S^0 = 135.1 \pm 1.3$ kJ mol$^{-1}$.12

ClOClO$_2$

Derived from a CCSD(T) calculation, extrapolated to the complete basis set limit, for the atomization energy.16 See Table 3-1, note 21 for a more complete discussion. The previous value, 154.2 kJ mol$^{-1}$ (36.9 kcal mol$^{-1}$), was calculated at Gaussian-2 level of theory.15 Entropy from JANAF evaluation.3 The same value resulted from a statistical mechanical calculation.

ClOClO

Derived from a CCSD(T) calculation, extrapolated to the complete basis set limit, for the atomization energy16 combined with G2 composite calculations.25 See Table 3-1, note 20b for a more complete discussion. The previous value, 175.5 kJ mol$^{-1}$ (41.9 kcal mol$^{-1}$), was calculated at Gaussian-2 level of theory15 and the previous entropy (309±2 kJ mol$^{-1}$) was from the JANAF evaluation.3

Cl$_2$O$_3$

Selected enthalpy and entropy values derived from a third-law calculation on the equilibrium constant for the reaction, ClO + OCIO \leftrightarrow Cl$_2$O$_3$, presented in Table 3-1, note 15. Previous values in Table, $\Delta H = 35.8 \pm 1.5$ kcal mol$^{-1}$ and $\Delta S = 94 \pm 5$ cal K$^{-1}$ mol$^{-1}$, were taken from a single study.2 The most stable structure among the Cl$_2$O$_3$ isomers is calculated to be ClOCl(O)O.26 A density functional/G3 calculation led to a 298 K enthalpy of 31.7 kcal mol$^{-1}$.22

HOCI

Enthalpy value from an evaluation of the experimental data.10 Entropy and the enthalpy difference from JANAF evaluation.3 An enthalpy value of -18.1 ± 0.3 kcal mol$^{-1}$ has been calculated by coupled-cluster theory with correlation consistent basis sets and corrections for core-valence, relativistic, and anharmonic effects.7 A calculation of the isodesmic reaction HOF + OH \rightarrow FO + H$_2$O at the W4.2 level of theory leads to $\Delta_{f}H_{298} = -76.1 \pm 0.6$ kJ mol$^{-1}$ and $\Delta_{f}H_{298}^o = -73.4 \pm 0.6$ kJ mol$^{-1}$.12 A re-evaluation of the spectroscopic results, along with a newer value for the OH enthalpy, has led to a recommended value of $\Delta_{f}H_{298}^o = -73.99 \pm 0.12$ kJ mol$^{-1}$.11

HOCIO

A calculation of the isodesmic reaction HOCIO + ClO \rightarrow HOCI + OCIO at the W4lite level of theory provided the selected enthalpy values.12

HOCIO$_2$

The total atomization energy was calculated at the W2.2 level of theory and then corrected to provide an estimated W4lite value, leading to the selected enthalpy values.12

HOCIO$_3$

The total atomization energy was calculated at the W2.2 level of theory, leading to the selected enthalpy values.12

ClF

Taken from review of Gurvich et al.9 The JANAF Tables give $\Delta_{f}H_{298}^o = -50.2 \pm 0.4$ kJ mol$^{-1}$, $\Delta_{f}H_{298} = -50.3 \pm 0.4$ kJ mol$^{-1}$, and $S^0 = 217.938$ J mol$^{-1}$.3 A study in which the total atomization energy was calculated using a composite electronic structure approach based on CCSD(T) and extrapolated to the complete basis set limit with a two-point extrapolation scheme, Q5. Additional corrections included zero-point energy, core-valence effect, for scalar relativistic effects, and spin-orbit corrections, gave $\Delta_{f}H_{298}^o = -54.8$ kJ mol$^{-1}$.24

ClOF

The total atomization energy was calculated using a composite electronic structure approach based on CCSD(T) and extrapolated to the complete basis set limit with a two-point extrapolation scheme, Q5. Additional corrections included zero-point energy, core-valence effect, for scalar relativistic effects, and spin-orbit corrections.24

ClO$_2$F

The total atomization energy was calculated using a composite electronic structure approach based on CCSD(T) and extrapolated to the complete basis set limit with a two-point extrapolation scheme, Q5. Additional corrections included zero-point energy, core-valence effect, for scalar relativistic effects, and spin-orbit corrections.24

(22) Sicre, J. E.; Cobos, C. J. Thermochimistry of the higher chlorine oxides ClO_2 (x = 3,4) and Cl_2O_2 (x = 3 - 7). *J. Mol. Struct. (Theochem)* **2003**, *620*, 215-226.

(24) Thanthriwatte, K. S.; Vasiliiu, M.; Dixon, D. A.; Christie, K. O. Structural and energetic properties of closed shell XF_n (X = Cl, Br, and I; n = 1−7) and XO_2F_m (X = Cl, Br, and I; n = 6-7

Note 30: Inorganic compounds containing Cl, O, and N

CINO
Taken from review of Gurvich et al.4 The JANAF Tables give \(\Delta H^o_{298} = 53.6 \) kJ mol\(^{-1}\), \(\Delta H^o_{298} = 51.7 \) kJ mol\(^{-1}\), and \(S^o = 261.680 \) J mol\(^{-1}\)\(K \)\(^{-1}\).

ClNO\(_2\)
The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.8 The previous value, \(\Delta H^o_{298} = 52.7 \pm 0.5 \) kJ mol\(^{-1}\), was taken from review of Gurvich et al.4 The JANAF Tables give \(\Delta H^o_{298} = 17.5 \) kJ mol\(^{-1}\), \(\Delta H^o_{298} = 12.1 \) kJ mol\(^{-1}\), and \(S^o = 272.187 \) J mol\(^{-1}\)\(K \)\(^{-1}\).

cis-CIONO
The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.8 The previous value, \(\Delta H^o_{298} = 64.6 \) kJ mol\(^{-1}\), was predicted based on isodesmic reactions at the CCSD(T) level of theory.\(^5\)

trans-CIONO
The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.8 The previous value, \(\Delta H^o_{298} = 75.3 \) kJ mol\(^{-1}\), was predicted based on isodesmic reactions at the CCSD(T) level of theory.\(^5\)

cis, perp-ClO\(_2\)NO
Enthalpy calculated at MP2 level of theory using basis sets ranging from 6-31G(d) to 6-311G(2df,2p).7 A G3//B3LYP study gave enthalpies at 0 K and 298 K of 32.5 and 31.5 kcal mol\(^{-1}\), respectively.\(^5\)

trans, perp-ClO\(_2\)NO
Enthalpy calculated at MP2 level of theory using basis sets ranging from 6-31G(d) to 6-311G(2df,2p).7 A G3//B3LYP study gave enthalpies at 0 K and 298 K of 34.4 and 33.2 kcal mol\(^{-1}\), respectively.\(^5\)

ClNO\(_2\)
The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.8 The previous value, \(\Delta H^o_{298} = 22.9 \pm 2.0 \) kJ mol\(^{-1}\), was derived from a study of the thermal dissociation of ClONO\(_2\).1 Enthalpy values obtained from the atomization energy obtained using the G3//B3LYP level of theory are \(\Delta H^o_{298} = 7.0 \) kcal mol\(^{-1}\) and \(\Delta H^o_{298} = 5.5 \) kcal mol\(^{-1}\).\(^6\)

cis,perp-CIONO\(_3\)
The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.8 The previous value, \(\Delta H^o_{298} = 132 \) kJ mol\(^{-1}\), was obtained from the atomization energy obtained using the G3//B3LYP level of theory.\(^6\)

trans, perp-CIONO\(_3\)
The equilibrium geometry was calculated at the CCSD(T)/cc-pVQZ level of theory, while the energy was calculated by summing various contributions calculated at the CCSC(T) level with the use of various basis sets.8 The previous value, \(\Delta H^o_{298} = 132 \) kJ mol\(^{-1}\), was obtained from the atomization energy obtained using the G3//B3LYP level of theory.\(^6\)

trans, perp-OCIONO
Value obtained from the atomization energy obtained using the G3//B3LYP level of theory.6

\textbf{O}_2\text{ClONO}_2 Based on a study of the recombination of OCIO and NO\textsubscript{3}, leading to a bond strength of 18±3 kcal mol-1.1,3

\textbf{NH}_3\text{Cl}, \textbf{HCl}, \textbf{ClC}, \textbf{chloramines}

Geometries were optimized at the (AE)-CCSD(T)/AVQZ level of theory and zero-point energies computed at the B2PLYPD/AVQZ level. For the electronic energies, a calculational protocol termed TA14 was adapted from the W3, W4, and FPD protocols. Enthalpies of formation were determined from the total atomization energies.9

7. McGrath, M. P.; Rowland, F. S. Determination of the barriers to internal rotation in ONOO\textsubscript{x} (x = H, Cl) and characterization of the minimum energy conformers. \textit{J. Phys. Chem.} 1994, 98, 1061-1067, doi:10.1021/j100055a004.

\textbf{Note 31: Compounds containing one C and one or more Cl and H}

\textbf{CCl}

Geometry optimization was carried out at the CCSD(T) level of theory with the cc-pVQZ basis set. Enthalpy was calculated using the HEAT protocols, which involves summing a number of individual CCSD(T) energies with the basis set limited HF energy, along with other contributions.1

\textbf{CHCl}

Calculated for the X1A′ state. The triplet-singlet energy gap is estimated to be 2170±40 cm-1. Enthalpy determined by calculating the enthalpy of the reaction CH\textsubscript{2} + HCl \rightarrow HCCl + H\textsubscript{2}. Calculations involved the focal-point approach, based on methods up to CCSDTQ and basis sets ranging from aug-cc-pVQZ to aug-cc-pV6Z, extrapolated to the complete basis set limit.12 Enthalpy obtained using the computed enthalpy of a reaction of the type: CH\textsubscript{2}(1A\textsubscript{1}) + CH\textsubscript{3}X + CH\textsubscript{3}Y ↔ CXY(1A\textsubscript{1}) + 2CH\textsubscript{2}; results in \(\Delta H\textsubscript{f}^{298} = 320.5\) kJ mol-1 at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.9 Previous recommendation was based on combining experimental chloride dissociation energies from the parent anion, prior experimental measurements, and G2 calculations.9 Entropy values from Gurvich et al. review.2 A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta H^{0} = 320.1±2.3\) kJ mol-1, \(\Delta H^{300} = 320.3±2.3\) kJ mol-1, and \(S = 234.6±1.5\) J K-1 mol-1.1 The enthalpy difference was used to calculate the 0 K value in the Table.

\textbf{CH\textsubscript{2}Cl}

Measured rate constant for the reaction of the radical with HBr, combined with previous measurements on the reverse reaction, with thermodynamic values obtained through a second-
law analysis. A QCISD(T)/6-311+G(3df,2p) isodesmic study resulted in an enthalpy of 117.0±4.1 kJ mol\(^{-1}\). A dissociative photoionization study of CH\(_2\)ClBr results in an enthalpy of 110.7 kJ mol\(^{-1}\). A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta H_f^0 = 119.4±2.7\) kJ mol\(^{-1}\), \(\Delta H_{298}^0 = 116.0±2.7\) kJ mol\(^{-1}\), and \(S = 236.3±1.5\) J K\(^{-1}\) mol\(^{-1}\). The enthalpy difference was used to calculate the 0 K value in the Table.

CH\(_3\)Cl

Enthalpy from Manion evaluation.\(^6\) Entropy from Thermodynamics Research Center evaluation.\(^7\) A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta H_f^0 = -74.3±3.1\) kJ mol\(^{-1}\), \(\Delta H_{298}^0 = -82.6±3.1\) kJ mol\(^{-1}\), and \(S = 234.0±1.5\) J K\(^{-1}\) mol\(^{-1}\). The enthalpy difference was used to calculate the 0 K value in the Table.

CCl\(_2\)

Calculated for the X'1A' state. The triplet-singlet energy gap is estimated to be 7045±60 cm\(^{-1}\). Enthalpy determined by calculating the enthalpy of the reaction CH\(_2\) + 2HCl \(\rightarrow\) CCl\(_2\) + 2H\(_2\). Calculations involved the focal-point approach, based on methods up to CCSDTQ and basis sets ranging from aug-cc-pVQZ to aug-cc-pV1Z, extrapolated to the complete basis set limit.\(^1\) Enthalpy obtained using the computed enthalpy of a reaction of the type: CH\(_3\)(\(^1\)A\(_1\)) + CH\(_3\)X + CH\(_3\)Y \(\rightarrow\) CXY(\(^1\)A\(_1\)) + 2CH\(_3\) results in \(\Delta H_{298}^0 = 230\) kJ mol\(^{-1}\) at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.\(^9\) Previous recommendation (55.0±2.0 kcal mol\(^{-1}\)) based on combining experimental chloride dissociation energies from the parent anion, prior experimental measurements, and G2 calculations.\(^7\) Entropy values from Gurvich et al. review.\(^5\) A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta H_f^0 = 229.0±1.9\) kJ mol\(^{-1}\), \(\Delta H_{298}^0 = 230.1±1.9\) kJ mol\(^{-1}\), and \(S = 264.5±1.5\) J K\(^{-1}\) mol\(^{-1}\). The enthalpy difference was used to calculate the 0 K value in the Table.

CH\(_3\)Cl

Measured rate constant for the reaction of the radical with HBr, combined with previous measurements on the reverse reaction, with thermodynamic values obtained through a second-law analysis.\(^1\) A QCISD(T)/6-311+G(3df,2p) isodesmic study resulted in an enthalpy of 91.1±4.1 kJ mol\(^{-1}\). A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta H_f^0 = 91.2±4.8\) kJ mol\(^{-1}\), \(\Delta H_{298}^0 = 88.8±5.8\) kJ mol\(^{-1}\), and \(S = 280.7±6.5\) J K\(^{-1}\) mol\(^{-1}\). The enthalpy difference was used to calculate the 0 K value in the Table.

CH\(_2\)Cl

Enthalpy from Manion evaluation.\(^6\) Entropy from Thermodynamics Research Center evaluation.\(^7\) A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta H_f^0 = -86.5±4.2\) kJ mol\(^{-1}\), \(\Delta H_{298}^0 = -93.7±4.2\) kJ mol\(^{-1}\), and \(S = 269.7±1.5\) J K\(^{-1}\) mol\(^{-1}\). The enthalpy difference was used to calculate the 0 K value in the Table.

CCl\(_3\)

A third-law determination based on the reaction CCl\(_3\) + Br\(_2\) \(\leftrightarrow\) CCl\(_3\)Br + Br, re-evaluating the kinetics of the reverse reaction and using spectroscopic data to calculate the entropy.\(^4\) A QCISD(T)/6-311+G(3df,2p) isodesmic study resulted in an enthalpy of 72.2±4.1 kJ mol\(^{-1}\). A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta H_f^0 = 73.7±4.9\) kJ mol\(^{-1}\), \(\Delta H_{298}^0 = 73.1±4.9\) kJ mol\(^{-1}\), and \(S = 301.3±1.5\) J K\(^{-1}\) mol\(^{-1}\). The enthalpy difference was used to calculate the 0 K value in the Table.

CHCl\(_3\)

Enthalpy from Manion evaluation.\(^6\) Entropy from Thermodynamics Research Center evaluation.\(^7\) A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pVQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta H_f^0 = 94.6±5.3\) kJ mol\(^{-1}\), \(\Delta H_{298}^0 = -99.7±5.3\) kJ mol\(^{-1}\), and \(S =
294.8±1.5 J K⁻¹ mol⁻¹. The enthalpy difference was used to calculate the 0 K value in the Table.

CCl₄
Enthalpy from Manion evaluation. ⁶ Entropy from Thermodynamics Research Center evaluation. ⁶ A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to \(\Delta_{f}H^{\circ}_{0} = -98.8\pm6.4 \text{ kJ mol}^{-1} \), \(\Delta_{f}H^{\circ}_{298} = -91.0\pm6.4 \text{ kJ mol}^{-1} \), and \(S = 308.6\pm1.5 \text{ J K}^{-1} \text{ mol}^{-1} \). ¹ The enthalpy difference was used to calculate the 0 K value in the Table. Experimental data from threshold PEPICO studies of halogenated methanes were combined with *ab inito* calculations of isodesmic and exchange reactions into a thermochemical network, leading to \(\Delta_{f}H^{\circ}_{0} = -94.0\pm3.2 \text{ kJ mol}^{-1} \).³

Note 32: Compounds containing one C and one or more Cl, H, and O

CClH₂O and CClH₂OH
The enthalpies of formation based on isodesmic reactions calculated at the MP2/6-31G(d,p) level of theory.¹¹

CClO
Second- and third-law analyses of the equilibration kinetics for the reaction Cl + CO ⇄ CICO led to \(\Delta_{f}H^{\circ}_{98} = -7.7\pm0.6 \text{ kcal mol}^{-1} \), \(\Delta_{f}H^{\circ}_{298} = -6.9\pm0.7 \text{ kcal mol}^{-1} \), and \(\Delta_{f}S^{\circ}_{298} = -23.8\pm2.0 \text{ cal mol}^{-1} \text{ K}^{-1} \).⁹ See also Table 3-1, Note 12. (Previous enthalpy value had a sign error.) A shock-tube study of the thermal decomposition of COCl₂ led to a value of \(\Delta_{f}H^{\circ}_{0} = -6.3\pm1.0 \text{ kcal mol}^{-1} \).⁷ Entropy value cited derived by using standard statistical mechanic methods.⁹

6-71
CHClO The enthalpy values are taken from a CCSDT(Q) calculation, with structure optimized using the cc-pVQZ basis set. The previous $\Delta H_{298}^o = -164\pm20 \text{ kJ mol}^{-1}$ was estimated in the Gurvich et al. review. Entropy was based on spectroscopic studies.

CH$_3$OCl Molecular properties determined at the MP2/6-31G(p,d), B3LYP/6-31G(d,p), and MP2/6-31G(d) level with single-point energy calculations at B3LYP/6-311+G(3df,2p) levels. Enthalpy based on four isodesmic reactions calculated at the CBS-Q//MP2/6-31(G,d,p) level.

CH$_3$ClO Molecular properties determined at the MP2/6-31G(d,p) level of theory and electronic energies obtained through single-point calculations at the CBSQ level. Enthalpy of formation determined using five reaction schemes, three of which were isodesmic. A study in which geometry optimization and frequency calculations were performed at the MP2/6-31G(d) and the B3LYP/6-311++G(d,p) levels of theory, with a single-point energy calculation at the CCSD(T)/6-311++G(d,p) level.

CHClO$_2$ Based on a re-analysis of previous equilibrium data on R + O$_2 \leftrightarrow$ RO$_2$ from the same laboratory.

CH$_2$ClOOH Molecular geometries determined at the B3LYP/6-31G(d,p) level of theory and electronic energies obtained through single-point calculations at the CBSQ level. Enthalpy of formation determined using five reaction schemes, three of which were isodesmic.

CCl$_2$O and CCl$_2$HOH The enthalpies of formation are based on isodesmic reactions calculated at the MP2/6-31G(d,p) level of theory.

CHCl$_2$O$_2$ Based on a re-analysis of previous equilibrium data on R + O$_2 \leftrightarrow$ RO$_2$ from the same laboratory.

CH$_2$ClOCl Molecular properties determined at the B3LYP/6-31G(d,p) level, with single-point calculations at this and the B3LYP/6-311+G(3df,2p), QCISD(T)/6-31G(d,p), and CBS-Q levels. Enthalpies determined using several working reactions.

CHCl$_2$OOH Molecular geometries determined at the B3LYP/6-31G(d,p) level of theory and electronic energies obtained through single-point calculations at the CBSQ level. Enthalpy of formation determined using five reaction schemes, three of which were isodesmic.

CCl$_3$O and CCl$_3$OH Enthalpies of formation are based on isodesmic reactions calculated at the MP2/6-31G(d,p) level of theory.

CCl$_3$O$_2$ Based on a re-analysis of previous equilibrium data on R + O$_2 \leftrightarrow$ RO$_2$ from the same laboratory.

CCl$_3$OOH Molecular geometries determined at the B3LYP/6-31G(d,p) level of theory and electronic energies obtained through single-point calculations at the CBSQ level. Enthalpy of formation determined using five reaction schemes, three of which were isodesmic.

CCl$_3$OCI Molecular properties determined at the B3LYP/6-31G(d,p) level, with single-point calculations at this and the B3LYP/6-311+G(3df,2p), QCISD(T)/6-31G(d,p), and CBS-Q levels.
Enthalpies determined using several working reactions. 4 ΔfHf(298) = -146.6 kJ mol⁻¹ from a G2 calculation of the total energy of formation from the gas-phase elements. 2

(10) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 33: Compounds containing one C and one or more Cl and F Back to Table

CHFCl Enthalpy derived from an analysis of thermochemical and kinetic data on the bromination of CH2FCl. 12 A QCISD(T)/6-311+G(3df,2p) isodesmic study resulted in an enthalpy of -63.8±4.1 kJ mol⁻¹. 11 A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to ΔfHf° = -64.6±3.7 kJ mol⁻¹, ΔfHf(298) = -67.8±4.7 kJ mol⁻¹, and S = 273.5±6.5 J K⁻¹ mol⁻¹ (used in the Table). 3 The enthalpy difference was used to calculate the 0 K value in the Table.

CH2FCl Geometry optimization was carried out at the CCSD(T) level of theory with the cc-pZQZ basis set. Enthalpy was calculated using the HEAT protocols, which involves summing the CCSD(T) energy extrapolated to the complete basis set limit, along with several other contributions. 3 Previous enthalpy from Pedley review 7 and entropy from Thermodynamics Research Center review. 4

CFCl Recommendation based on combining experimental chloride dissociation energies from the parent anion, prior experimental measurements, and G2 calculations. 8 Enthalpy obtained using the computed enthalpy of a reaction of the type: CH3(1A1) + CH3X + CH3Y → CXY(A1) + 2CH4 results in ΔfHf(298) = 29.4 kJ mol⁻¹ at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-
311G(d,p) level of theory. Calculations also done at the G2 level. Enthalpy values from Gurvich et al. review. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^o_{f} = 32.2 \pm 2.3 \text{ kJ mol}^{-1}$, $\Delta H^o_{98} = 32.0 \pm 2.3 \text{ kJ mol}^{-1}$, and $S = 258.9 \pm 1.5 \text{ J K}^{-1} \text{ mol}^{-1}$. The enthalpy difference was used to calculate the 0 K value in the Table.

CF$_2$Cl Geometry optimization was carried out at the CCSD(T) level of theory with the cc-pZQZ basis set. Enthalpy was calculated using the HEAT protocols, which involves summing the CCSD(T) energy extrapolated to the complete basis set limit, along with several other contributions. A photobromination study leads to D(CClF$_2$-H) = 100.7\pm2 kcal mol$^{-1}$. A QCISD(T)/6-311+G(3df,2p) isodesmic study resulted in an enthalpy of $-274.7 \pm 4.1 \text{ kJ mol}^{-1}$.

CFCl$_2$ Geometry optimization was carried out at the CCSD(T) level of theory with the cc-pZQZ basis set. Enthalpy was calculated using the HEAT protocols, which involves summing the CCSD(T) energy extrapolated to the complete basis set limit, along with several other contributions. An enthalpy of $-89.1 \pm 10 \text{ kJ mol}^{-1}$ was derived from an analysis of thermochemical and kinetic data on the bromination of CH$_3$FCl. A QCISD(T)/6-311+G(3df,2p) isodesmic study resulted in an enthalpy of $-94.3 \pm 4.1 \text{ kJ mol}^{-1}$.

CHFCl$_2$ Geometry optimization was carried out at the CCSD(T) level of theory with the cc-pZQZ basis set. Enthalpy was calculated using the HEAT protocols, which involves summing the CCSD(T) energy extrapolated to the complete basis set limit, along with several other contributions. Previous enthalpy value, from the Thermodynamics Research Center review, was estimated.

CHF$_2$Cl Enthalpy from Pedley review and entropy from Thermodynamics Research Center review. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^o_{f} = -475.7 \pm 3.1 \text{ kJ mol}^{-1}$, $\Delta H^o_{98} = -482.2 \pm 3.1 \text{ kJ mol}^{-1}$, and $S = 280.5 \pm 1.5 \text{ J K}^{-1} \text{ mol}^{-1}$. The enthalpy difference was used to calculate the 0 K value in the Table.

CFC$_3$ Enthalpy based on equilibrium measurements for the reaction CClF$_3$ + 2CCl$_4$ \leftrightarrow 3CCl$_3$F leading to a heat of reaction of 10.59 kcal mol$^{-1}$, changed to reflect present enthalpy values. Pedley review gives an enthalpy value of $-268.3 \pm 8.4 \text{ kJ mol}^{-1}$. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^o_{f} = -286.0 \pm 5.3 \text{ kJ mol}^{-1}$, $\Delta H^o_{98} = -282.7 \pm 5.3 \text{ kJ mol}^{-1}$, and $S = 308.6 \pm 1.5 \text{ J K}^{-1} \text{ mol}^{-1}$. The enthalpy difference was used to calculate the 0 K value in the Table. Experimental data from threshold PEPICO studies of halogenated methanes were combined with ab initio calculations of isodesmic and exchange reactions into a thermochemical network, leading to $\Delta H^o_{f} = -285.2 \pm 3.2 \text{ kJ mol}^{-1}$.

CF$_2$Cl$_2$ Enthalpy based on equilibrium measurements for the reaction 2CCIF$_3$ + CCl$_4$ \leftrightarrow 3CCl$_2$F$_2$ leading to a heat of reaction of 7.59 kcal mol$^{-1}$, changed to reflect present enthalpy values. Pedley review gives an enthalpy value of $-477.4 \pm 7.2 \text{ kJ mol}^{-1}$. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculation using the HEAT protocols, led to $\Delta H^o_{f} = -487.9 \pm 4.2 \text{ kJ mol}^{-1}$, $\Delta H^o_{98} = -492.1 \pm 4.2 \text{ kJ mol}^{-1}$, and $S = 300.2 \pm 1.5 \text{ J K}^{-1} \text{ mol}^{-1}$. The enthalpy difference was used to calculate the 0 K value in the Table. Experimental data from threshold PEPICO studies of halogenated methanes were combined with ab initio calculations of isodesmic and exchange reactions into a thermochemical network, leading to $\Delta H^o_{f} = -487.8 \pm 3.4 \text{ kJ mol}^{-1}$.

CF$_3$Cl Enthalpy from a simultaneous solution of a thermochemical network for the CF$_3$X species, where $X = \text{nil, H, Cl, Br, I, CF}_3, \text{CN}$. Entropy from recommendation of the Thermodynamics Research Center. A computational study with geometry optimization carried out at the CCSD(T) level of theory with the cc-pZQZ basis set, followed by an enthalpy calculation.
using the HEAT protocols, led to $\Delta H_{f}^{\circ} = -703.4 \pm 3.1$ kJ mol$^{-1}$, $\Delta_{f}H_{298}^{\circ} = -708.6 \pm 3.1$ kJ mol$^{-1}$, and $S = 284.7 \pm 1.5$ J K$^{-1}$ mol$^{-1}$. The enthalpy difference was used to calculate the 0 K value in the Table. Experimental data from threshold PEPICO studies of halogenated methanes were combined with ab initio calculations of isodesmic and exchange reactions into a thermochemical network, leading to $\Delta H_{f}^{\circ} = -702.1 \pm 3.5$ kJ mol$^{-1}$.

(6) Miyokawa, K.; Tschuikowmethyl radicals.

(7) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds*; Thermodynamics Data Center: College Station, TX, 1994.

Note 34: Compounds containing one C and one or more Cl, F, and O

CFCIO The enthalpy values are taken from a CCSDT(Q) calculation, with structure optimized using the cc-pVQZ basis set. Previous enthalpy value of -429 ± 20 kJ mol$^{-1}$ estimated in the Gurvich et al. review. The recommended entropy is taken from the Gurvich et al. review.

CF$_3$OCI Based on photoionization study. Enthalpy presented as lower limit. A G2 calculation led to an enthalpy of -768.3 kJ mol$^{-1}$.

CCl$_3$OF Derived from a G2 calculation of the total energy of formation from the gas-phase elements.

cis- and trans-FC(O)OCI Enthalpy computed at the G3//B3LYP/6-311++G(3df,3pd) level of theory with both atomization energies and isodesmic reactions.

CHClFOOH and CCl$_2$FOOH Geometry optimization and frequency calculations were performed at the MP2/6-31G(d) and B3LYP/6-311++G(d,p) levels of theory, with a single-point energy calculation at the CCSD(T)/6-311++G(d,p)/B3LYP/6-311++G(d,p) level. The dissociation energy into HO$_2$ and the alkyl radical was then evaluated and used, after thermal correction, to calculate the enthalpy of formation at 298 K. This was adjusted to the radical values from the present Table.

Note 35: *Compounds containing two C and one or more Cl*

C₂HCl Enthalpy from Manion evaluation based on calculations involving isodesmic reactions.⁴

C₂H₂Cl Enthalpy from Manion evaluation.⁴ Pedley review gives an enthalpy value of 37.2±1.2 kJ mol⁻¹.⁷

CH₂CH₂Cl Measured rate constant for the reaction of the radical with HBr, combined with previous measurements on the reverse reaction, with thermodynamic values obtained through a second-law analysis.¹⁰

CH₂CHCl Measured rate constant for the reaction of the radical with HBr, combined with previous measurements on the reverse reaction, with thermodynamic values obtained through a second-law analysis.⁹

CH₃CH₂Cl Enthalpy from Manion evaluation.⁴ Entropy from a Thermodynamics Research Center evaluation.¹

C₂Cl₂ Enthalpy from Manion evaluation based on calculations involving isodesmic reactions.⁴

CH₂CCl₂ Enthalpy from Manion evaluation.⁴ Pedley review gives an enthalpy value of 2.8±1.3 kJ mol⁻¹.⁷

cis-CHClCHCl Enthalpy from Manion evaluation.⁴ Pedley review gives an enthalpy value of 4.6±8.4 kJ mol⁻¹.⁷

trans-CHClCHCl Enthalpy from Manion evaluation.⁴ Pedley review gives an enthalpy value of 5.0±8.4 kJ mol⁻¹.⁷

CH₃CCl₂ Measured rate constant for the reaction of the radical with HBr, combined with previous measurements on the reverse reaction, with thermodynamic values obtained through a second-law analysis.⁹

CH₃CHCl₂ Enthalpy from Manion evaluation.⁴ Entropy from a Thermodynamics Research Center evaluation.¹ Pedley review gives an enthalpy value of −127.7±1.4 kJ mol⁻¹.⁷
CHCl₂CH₂ Measured rate constant for the reaction of the radical with HBr, combined with calculated (MP2(uc)/6-31G(d,p)) values for the reverse reaction, leading to thermodynamic values obtained through a second-law analysis.⁷

CH₂ClCH₂Cl Enthalpy from Manion evaluation.⁴ Pedley review gives an enthalpy value of −126.4±2.3 kJ mol⁻¹.⁷

C₂HCl₃ Enthalpy from Manion evaluation.⁴ Previous enthalpy from the heat of combustion of trichloroethane, ΔH°₂⁹⁸ = −19.1±3.0 kJ mol⁻¹.⁶ Entropy from review of Frenkel.² Pedley review gives an enthalpy value of −9.0±8.8 kJ mol⁻¹.⁷

CH₂ClCHCl₂ Enthalpy from Manion evaluation.⁴

CH₂CCl₃ An analysis of the kinetic data from the bromine-catalyzed elimination of HCl from CH₂CCl₃ resulted in a C-H bond strength of 103.8±2 kcal mol⁻¹.⁸

CH₃CCl₃ Enthalpy from Manion evaluation.⁴ Entropy from a Thermodynamics Research Center evaluation.¹ Pedley review gives an enthalpy value of −144.4±1.7 kJ mol⁻¹.⁷

C₂Cl₄ Enthalpy from Manion evaluation.⁴ Pedley review gives an enthalpy value of −10.9±8.3 kJ mol⁻¹.⁷ Entropy from Gurvich et al.³

CHCl₂CHCl₂ Enthalpy from Manion evaluation.⁴ Pedley review gives an enthalpy value of −149.3±8.4 kJ mol⁻¹.⁷

CH₂ClCCl₃ Enthalpy from Manion evaluation.⁴

C₂Cl₃ Derived from both second- and third-law analyses of the equilibrium data for the reaction Cl + C₂Cl₄ ↔ C₂Cl₃, with the enthalpy adjusted for present reference values,⁵ ΔH° = 5.2±1.5 kcal mol⁻¹.

C₂HCl₅ Enthalpy from Manion evaluation.⁴ Pedley review gives an enthalpy value of −142.0±9.0 kJ mol⁻¹.⁷

C₂Cl₆ Enthalpy from Manion evaluation.⁴ Entropy from Gurvich et al.³ Pedley review gives an enthalpy value of −143.6±9.1 kJ mol⁻¹.⁷

(2) Frenkel, M.; Kabo, G. J.; Marsh, K. N.; Roganov, G. N.; Wilhoit, R. C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, 1994; Vol. I.
(7) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.
(10) Seetula, J. A. Kinetics and thermochemistry of the R + HBr \(\rightleftharpoons \) RH + Br (R = C\textsubscript{2}H\textsubscript{5} or \(\beta \)-C\textsubscript{2}H\textsubscript{4}Cl) equilibrium. *J. Chem. Soc. Faraday Trans.* **1998**, *94*, 891-898.

Note 36: *Compounds containing two C and one or more F and Cl* Back to Table

CH\textsubscript{3}CHFCl
Review of the literature.\(^1\)

CH\textsubscript{2}CF\textsubscript{2}Cl
Derived from an exothermicity of 3.69 kcal mol\(^{-1}\) for the isodesmic reaction CH\textsubscript{3}CF\textsubscript{2}Cl + CH\textsubscript{2}CH\textsubscript{3} \(\rightarrow \) CH\textsubscript{2}CF\textsubscript{2}Cl + CH\textsubscript{3}CH\textsubscript{3}, calculated at the HF/6-31G* level of theory.\(^3\)

CH\textsubscript{3}CF\textsubscript{3}Cl
Enthalpy from literature review.\(^1\) Entropy calculated from experimental frequencies.\(^3\) Enthalpy value calculated at the MP2/6-311G** level of theory is \(-128.41\) kcal mol\(^{-1}\).\(^1,2\)

CH\textsubscript{3}CFCl\textsubscript{2}
Enthalpy calculated at the MP2/6-311G** level of theory.\(^2\)

CF\textsubscript{2}CFCl and CF\textsubscript{3}CHFCl
Enthalpy values taken from review of Pedley.\(^4\)

CF\textsubscript{3}CH\textsubscript{2}Cl, CF\textsubscript{3}CHCl\textsubscript{2}, and CF\textsubscript{3}CCl\textsubscript{3}
Enthalpy values calculated at the MP2/6-311G** level of theory.\(^2\)

CF\textsubscript{2}ClCF\textsubscript{2}Cl, CF\textsubscript{2}ClCFCl\textsubscript{2}, and C\textsubscript{2}F\textsubscript{5}Cl
Enthalpy values taken from review of Pedley.\(^4\)

(3) Paddison, S. J.; Chen, Y. H.; Tschuikow-Roux, E. An *ab initio* study of the structures, barriers for internal rotation, vibrational frequencies, and thermodynamic functions of the hydrochlorofluorocarbon CH\textsubscript{3}CF\textsubscript{2}Cl and the corresponding radical CH\textsubscript{2}CF\textsubscript{2}Cl. *Can. J. Chem.* **1994**, *72*, 561-567.

(4) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX*, 1994.

Note 37: *Compounds containing two C and one or more Cl and O* Back to Table

ClCH\textsubscript{2}CH\textsubscript{2}OH
The enthalpy of formation of the liquid was determined by using rotating-bomb combustion calorimetry to be \(\Delta fH_{298}^{o}(l) = -315.5\pm0.7 \) kJ mol\(^{-1}\). The molar enthalpy of vaporization was then determined by use of Calvert-drop microcalorimetry as \(\Delta_{vap}H_{298}^{o} = 48.32\pm0.37 \) kJ mol\(^{-1}\).\(^1\)

CH\textsubscript{3}CHClO\textsubscript{2}
Based on a re-analysis of previous equilibrium data on R + O\(_2\) \(\leftrightarrow \) RO\(_2\) from the same laboratory.\(^4\)

CH\textsubscript{3}C(O)Cl, acetyl chloride
Enthalpy from review of Pedley.\(^6\)

CH\textsubscript{2}ClC(O)OH
Review of the literature.\(^2\) Pedley review gives an enthalpy value of \(-435.2\pm9.3\) kJ mol\(^{-1}\).\(^6\)

CH\textsubscript{2}ClCOOH

6-78
Geometries and frequencies calculated at the B3LYP/6-31G(d,p) level of theory. Enthalpy calculated from three isodesmic reactions at the CBSQ//B3LYP/6-31(Gd,p) level and corrected for mixing of rotational conformers.

CH$_3$CHClOOH
Geometric parameters calculated at the RHF/6-31G* and MP2/6-31G* levels of theory, and the entropy obtained using the rigid-rotor/harmonic-oscillator approximation. Enthalpy calculated using the isodesmic reaction CH$_3$OOH + C$_2$H$_4$Cl ↔ CH$_3$CHClOOH + CH$_4$, adjusted with reference values from the present Table.

CH$_3$CCl$_2$OOH
Geometric parameters calculated at the RHF/6-31G* and MP2/6-31G* levels of theory, and the entropy obtained using the rigid-rotor/harmonic-oscillator approximation. Enthalpy calculated using the isodesmic reaction CH$_3$OOH + 1,1-C$_2$H$_4$Cl$_2$ ↔ CH$_3$CCl$_2$OOH + CH$_4$, adjusted with reference values from the present Table.

CH$_2$ClC(O)OCl, chloroacetyl chloride
Enthalpy value taken from review of Pedley.

Cl(O)CC(O)Cl, ethanedioyl chloride (oxalyl chloride)
Enthalpy value taken from review of Pedley.

CHCl$_2$C(O)Cl, dichloroacetyl chloride
Enthalpy value taken from review of Pedley.

CCl$_3$CH$_2$OOH
Geometries and frequencies calculated at the B3LYP/6-31G(d,p) level of theory. Enthalpy calculated from three isodesmic reactions at the CBSQ//B3LYP/6-31(Gd,p) level and corrected for mixing of rotational conformers.

CCl$_3$CO
Enthalpy is an average of values obtained at the CBS-4//HF/3-21G* and G2(MP2(full)//MP2(full)/6-31G(d) levels of theory, using both atomization energies and formation from molecular species. Entropy at the G2(MP2(full)//MP2(full)/6-31G(d) level treating internal rotations as harmonic oscillators.

CCl$_3$C(O)H
Thermodynamic properties calculated at the G2(MP2(full)//MP2(full)/6-31G(d) level of theory. Enthalpy from atomization energy and entropy calculated treating internal rotations as harmonic oscillators. Similar values obtained at the CBS-4//HF/3021G* level.

CCl$_3$C(O)Cl, trichloroacetyl chloride
Enthalpy value taken from review of Pedley.

CH$_3$CCl$_2$O
Based on the equilibrium study using laser photolysis/PI mass spectrometry, adjusted by using the enthalpy for CH$_3$CCl$_2$ cited in this Table.

CHCl$_3$CH$_2$OOH
Geometries and frequencies calculated at the B3LYP/6-31G(d,p) level of theory. Enthalpy calculated from three isodesmic reactions at the CBSQ//B3LYP/6-31(Gd,p) level and corrected for mixing of rotational conformers.

(6) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 38: Compounds containing three C and, possibly, F, Cl, and O Back to Table

CH3CHClCH3
The measured onset energy for i-C3H7+ from iPEPICO spectroscopy of i- C3H7Cl was used in conjunction with a new value of the ion enthalpy of formation to obtain the 0 K enthalpy of the chloride.2

CF3CIC(O)OCH3 and CF3CIC(O)OCH3
Geometry optimization carried out using the hybrid meta-density functional, MPWB1K with the 6-31+G(d,p) basis set. Energies refined using G2(MP2). Enthalpy of formation calculated by using two group-balanced isodesmic reactions.1

(2) Stevens, W. R.; Bodi, A.; Baer, T. Dissociation dynamics of energy selected, propane, and i-C3H7+ ions by iPEPICO: Accurate heats of formation of i-C3H7+, i-C3H7Cl, i-C3H7Br, and i-C3H7I. J. Phys. Chem. A 2010, 114, 11285-11291, doi:10.1021/jp104200h.

Note 39: Inorganic compounds containing Br Back to Table

Br
CODATA Key Value.2

Br(g)
CODATA Key Value.2 A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to ΔfH298 = 33.1±4 kJ mol⁻¹ and ΔfH00 = 47.7±4 kJ mol⁻¹.5

HBr
CODATA Key Value.2 The most recent NIST-JANAF review gives and enthalpy of -36.29±0.16 kJ mol⁻¹ and an entropy of 198.699±0.005 J K⁻¹ mol⁻¹.16

BrO
Enthalpy derived from a photodissociation dynamics study using velocity map ion imaging.8 Previous enthalpy value of 30.2±0.4 kcal mol⁻¹ based on a Birge-Sponer extrapolation.18 Entropy from the JANAF table for bromine oxides.1 A CCSD(T) calculation of the dissociation energy, both directly and thorough a negative ion thermochemical cycle, led to enthalpy values of ΔfH00 = 31.4±0.4 and ΔfH298 = 29.6±0.4 kcal mol⁻¹.15 A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to ΔfH298 = 128±0 kJ mol⁻¹ and ΔfH00 = 136±6 kJ mol⁻¹.5

OBrO
Enthalpy based on the photoionization appearance energy of BrO⁺ from OBrO, recalculated using the Table enthalpy for BrO.9 A newer computational study gives an enthalpy at 0 K of
163.9±7.1 kJ mol\(^{-1}\),\(^{10}\) Entropy taken from the JANAF table for bromine oxides.\(^1\) A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to \(\Delta H^o_{298} = 169.9\pm6\) kJ mol\(^{-1}\) and \(\Delta H^o_f = 179.5\pm6\) kJ mol\(^{-1}\).\(^5\)

\textbf{BrOO}
Enthalpy for the reaction HOOBr + FOO \(\rightarrow\) HOOF + BrOO at the CCSD(T)/CBS(Q5) level of theory, adjusted for the Table value for FOO, leads to the cited enthalpy.\(^5\) An estimate based on recombination rate constants for bromine atoms and subsequent calculations of interaction potentials, leads to a bond strength of about 1 kcal mol\(^{-1}\) and \(\Delta H^o_{298} = 108\pm40\) kJ mol\(^{-1}\) and \(\Delta H^o_f = 116\pm10\) kJ mol\(^{-1}\).\(^1\) These results have been supported by other computational studies.\(^{14,17}\) CCSD(T)/AREP calculations predict, however, that BrOO lies below OBrO by about 5 kcal mol\(^{-1}\), which appears to be inconsistent with these results.\(^{14}\) Entropy value is taken from NIST-JANAF thermochemical tables for bromine oxides.\(^1\)

\textbf{BrO}_3
Estimated values taken from the NIST-JANAF thermochemical tables for bromine oxides.\(^1\)

\textbf{BrOBr}
Enthalpy derived from a photoionization study. This value was accepted by the NIST-JANAF thermochemical tables for bromine oxides, which also discussed three related studies and recommended the entropy value.\(^3\) A CCSD(T)/ANO4 result based on the isodesmic reaction \(2\text{HOBr} \rightarrow \text{H}_2\text{O} + \text{Br}_2\text{O}\), adjusted for the present enthalpy values for the references, gives 26.9±1.6 kcal mol\(^{-1}\).\(^{11}\) A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to \(\Delta H^o_{298} = 108.4\pm6\) kJ mol\(^{-1}\) and \(\Delta H^o_f = 124.7\pm6\) kJ mol\(^{-1}\).\(^5\)

\textbf{BrBrO}
The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit. Listed value is for the \(^1\text{A'}\) state. \(\Delta H^o_{298} = 236.0\pm6\) kJ mol\(^{-1}\) for the \(^3\text{A''}\) state and \(\Delta H^o_{298} = 251.5\pm6\) kJ mol\(^{-1}\) for the \(^3\text{A'}\) state.\(^5\) Entropy from the JANAF thermochemical tables for bromine oxides, which estimated the enthalpy as 168±20 kcal mol\(^{-1}\).\(^1\)

\textbf{BrOOBr}
The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^3\) Calculated enthalpy for the reaction BrO + BrO \(\rightarrow\) BrOOBr, \(\Delta E = +16.93\) kcal mol\(^{-1}\) by B3LYP/aug-cc-pVTZ method, leads to \(\Delta H^o_{298} = 42.1\) kcal mol\(^{-1}\).\(^4\) The dominant product observed in the matrix isolation/infrared spectroscopy study was BrOOBr.

\textbf{BrOBrO}
The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^3\) Calculated enthalpy for the reaction BrO + BrO \(\rightarrow\) BrOBrO, \(\Delta E = +6.08\) kcal mol\(^{-1}\) by B3LYP/aug-cc-pVTZ method, leads to \(\Delta H^o_{298} = 52.9\) kcal mol\(^{-1}\).\(^4\) The dominant product observed in the matrix isolation/infrared spectroscopy study was BrOBrO.

\textbf{OBrBrO}
Calculated enthalpy for the reaction BrO + BrO \(\rightarrow\) OBrBrO, \(\Delta E = +13.44\) kcal mol\(^{-1}\) by B3LYP/aug-cc-pVTZ method.\(^4\) The dominant product observed in the matrix isolation/infrared spectroscopy study was OBrBrO.

\textbf{BrBrO}_2
The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^3\)

\textbf{HOBr}
Enthalpy value from an evaluation of the experimental data.\(^6\) An enthalpy value of \(-15.3\pm0.6\) kcal mol\(^{-1}\) has been calculated by coupled-cluster theory with correlation consistent basis sets and corrections for core-valence, relativistic, and anharmonic effects.\(^3\) Entropy value calculated from the experimental structure and vibrational frequencies.\(^{13}\) A re-evaluation of the photoionization results, along with a newer value for the OH enthalpy, led to a value of \(\Delta H^o_f = -47.7\pm1.8\) kJ mol\(^{-1}\).\(^7\)

\textbf{BrOOH}
CCSD(T) calculation with spdfg one-particle basis set, using isodesmic reaction and present values of reference enthalpies.\(^12\)

\textbf{HOBrO} and \textbf{HBrO}
Isomerization energy calculated at CCSD(T)/ANO4 level of theory, corrected for zero-point energy and to 298 K. BrOOH energy from present table.12

(7) Joens, J. A. The dissociation energy of OH(X 2Πg) and the enthalpy of formation of OH(X 2Πg), ClOH, and BrOH from thermochemical cycles. J. Phys. Chem. A 2001, 105, 11041-11044, doi:10.1021/jp011833u.

Note 40: Inorganic compounds containing Br and F

BrF

Taken from a review of the literature.1 A calculation of the total atomization energy using a composite electronic structure approach based on CCSD(T) and extrapolated to the complete basis set limit with a two-point extrapolation scheme, Q5 led to a value of ΔfH298 = −58.9 kJ mol⁻¹. Additional corrections included zero-point energy, core-valence effect, for scalar relativistic effects, and spin-orbit corrections.2

BrOF, BrO2F
BrCl

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leading to \(\Delta_h H^\text{CBS} = 98 \pm 7 \text{ kJ mol}^{-1} \).

ClOBr

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit. A CCSD(T)/ANO4 study, based on the isodesmic reaction \(\text{HOBr} + \text{HOCI} \rightarrow \text{H}_2\text{O} + \text{ClOBr} \), adjusted for the present enthalpy values for the references, led to \(\Delta_h H^\text{CBS} = 252.7 \pm 6 \text{ kJ mol}^{-1} \) for the \(\text{^3A}\text{''} \) state.

ClBrO

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit. \(\Delta_h H^\text{CBS} = 226.4 \pm 6 \text{ kcal mol}^{-1} \) for the \(\text{^3A}' \) state.

BrClO

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit. \(\Delta_h H^\text{CBS} = 226.4 \pm 6 \text{ kcal mol}^{-1} \) for the \(\text{^3A}' \) state.

ClOOBr, BrOOBr, BrOCIO, ClBrO_2, BrClO_2:

The enthalpy values are from calculations of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.

Note 41: Inorganic compounds containing Br and Cl

Back to Table

BrNO

Taken from the NBS thermochemical tables. A CCSD(T)/ANO4 result based on the homodesmic reaction \(\text{BrNO} + \text{H}_2\text{O} \rightarrow \text{HNO} + \text{HOBr} \), adjusted for the present enthalpy values for the references, gives 22.7\pm1.9 kcal mol\(^{-1}\).1

cis-BrONO

Calculated using the isodesmic reaction \(\text{H}_2\text{O} + \text{cis-BrONO} \rightarrow \text{cis-HONO} + \text{HOBr} \) at several levels of theory, leading to a reaction enthalpy of 7.6 kcal mol\(^{-1}\).2

trans-BrONO

Based on a calculated energy difference above BrNO_3 of 10.3 kcal mol\(^{-1}\) from calculations at several levels of theory.2

BrNO_2

Based on a calculated energy difference below cis-BrNO_2 of 6.4 kcal mol\(^{-1}\) from calculations at several levels of theory.2

BrONO_2

The study of the thermal decomposition of BrONO_2 to BrO and NO_2 was used to obtain a reaction enthalpy of 28.2\pm1.5 kcal mol\(^{-1}\) (118\pm6.3 kJ mol\(^{-1}\)).3 A computational study at the CCSD(T) level with a TZ2P basis set involving several isodesmic reactions led to a value of

Note 42: Inorganic compounds containing Br, N, and O

Back to Table

The total atomization energy was calculated using a composite electronic structure approach based on CCSD(T) and extrapolated to the complete basis set limit with a two-point extrapolation scheme, Q5. Additional corrections included zero-point energy, core-valence effect, for scalar relativistic effects, and spin-orbit corrections.2

(2) Thanthiriwatte, K. S.; Vasiliu, M.; Dixon, D. A.; Christe, K. O. Structural and energetic properties of closed shell \(\text{XF}_n \) (\(X = \text{Cl}, \text{Br}, \) and \(I; n = 1–7 \)) and \(\text{XO}_2\text{F}_m \) (\(X = \text{Cl}, \text{Br}, \) and \(I; n = 1–3; m = 0–6 \)) molecules and ions leading to stability predictions for yet unknown compounds. Inorg. Chem. 2012, 51, 10966-10982, doi:10.1021/ic301438b.
\[\Delta H_{398} = 42.3 \text{ kJ mol}^{-1} \] whereas a CCSD(T)/cc-pV5Z calculation, extrapolated to the basis set limit, led to a BDE of 125.3 \text{ kJ mol}^{-1}.7

OBrONO \text{ and } O_2BrONO

Enthalpy values from isodesmic reactions calculated at the CCSD(T) level of theory.5

Note 43: Bromoamines and Mixed Chlorobromoamines

Geometries were optimized at the (AE)-CCSD(T)/AVQZ level of theory and zero-point energies computed at the B2PLYPD/AVTZ level. For the electronic energies, a calculational protocol termed TA14 was adapted from the W3, W4, and FPD protocols. Enthalpies of formation were determined from the total atomization energies.1

Note 44: Compounds containing one C and one or more Br

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBr</td>
<td>Enthalpy from a CCSD(T) calculation extrapolated to the CBS limit.2 A calculation at the W2DK level of theory gave an enthalpy of 118.51 kJ mol-1.7 Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.</td>
</tr>
</tbody>
</table>

| **CHBr** | Enthalpy from a CCSD(T) calculation extrapolated to the CBS limit.2 A calculation at the DK-CCSD(T)/Aug-VTZ level, utilizing methyl bromide in an isodesmic reaction, resulted in an enthalpy value of 90.12 kJ mol-1.7 Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations. Enthalpy obtained using the computed enthalpy of a reaction of the type: CH\textsubscript{3}(1\text{A}\text{1}) + CH\textsubscript{3}X + CH\textsubscript{3}Y \rightarrow CXY(1\text{A}\text{1}) + 2CH\textsubscript{4} results in \(\Delta H_{398} = 380 \text{ kJ mol}^{-1} \) at the QCISD(T)/6-311+G(3df,2p)/QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.10 |

| **CH\textsubscript{2}Br** | Measured rate constant for the reaction of the radical with HBr, combined with previous measurements on the reverse reaction, with thermodynamic values obtained through a second-law analysis.11 Recalculated from C-H bond strength of 427.2 kJ mol-1 and enthalphy for CH\textsubscript{3}Br and H from this Table. Statistical thermodynamic methods also utilized. *Ab initio* calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide, resulted in an enthalpy value of 166.6\pm3 \text{ kJ mol}^{-1}.6 |

6-84
CH$_3$Br Calculated from the dissociation of energy-selected CH$_3$Br$^+$ and its adiabatic ionization energy.12 Enthalpy from Gurvich et al. review is $-36.4\pm0.5 \text{kJ mol}^{-1}$. 3 Entropy taken from Ideal Gas Thermodynamic Properties, which gives an enthalpy of $-37.7\pm1.5 \text{kJ mol}^{-1}$. 4 Pedley review gives an enthalpy of $-35.4\pm1.1 \text{kJ mol}^{-1}$. 9

CBr$_2$ Enthalpy from a CCSD(T) calculation extrapolated to the CBS limit.2 Enthalpy obtained using the computed enthalpy of a reaction of the type: CH$_4$(A_1) + CH$_3$X + CH$_3$Y \rightarrow CXY(A_1) + 2CH$_4$ results in $\Delta H_{298} = 339 \text{kJ mol}^{-1}$ at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.10 A calculation at the W2DK level of theory gave an enthalpy of 82.10 kcal mol$^{-1}$. 7 Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

CHBr$_2$ Enthalpy derived from an analysis of thermochemical and kinetic data on the bromination of CH$_2$FCl.13 Ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide, resulted in an enthalpy value of 191.7±6 kJ mol$^{-1}$. 6 A calculation at the DK-CCSD(T)/Aug-VTZ level, again utilizing methyl bromide in an isodesmic reaction, resulted in an enthalpy value of 47.44 kcal mol$^{-1}$. 7 Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

CH$_2$Br$_2$ Enthalpy taken from a dissociative photoionization study of a series of dihalomethanes, normalized using the experimental enthalpy of dichloromethane.5 The reported value has been adjusted by $+0.4 \text{kJ mol}^{-1}$ to agree with the present enthalpy for CH$_2$Cl$_2$. Previous value of -11.1kJ mol^{-1} from Allen bond-energy scheme.1 Ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide, resulted in an enthalpy value of 4.3±6 kJ mol$^{-1}$. 6 Entropy from evaluation of Gurvich et al.3

CBr$_3$ Enthalpy value from ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide.6 A calculation at the DK-CCSD(T)/Aug-VTZ level, again utilizing methyl bromide in an isodesmic reaction, resulted in an enthalpy value of 55.50 kcal mol$^{-1}$. 7 This same study, using a DFT approach for geometry optimization and frequency calculations, reported an entropy value of 80.60 cal K$^{-1}$. Gurvich et al. review has 235$\pm25 \text{kJ mol}^{-1}$. 3 Entropy from Gurvich et al.3

CHBr$_3$ Enthalpy of formation derived from the heat of combustion of the liquid of 545.1$\pm3.3 \text{kJ mol}^{-1}$ measured by bomb calorimetry.8 An enthalpy value of 51.6$\pm9 \text{kJ mol}^{-1}$ was obtained from ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide.6 A calculation at the DK-CCSD(T)/Aug-VTZ level, again utilizing methyl bromide in an isodesmic reaction, resulted in an enthalpy value of 12.97 kcal mol$^{-1}$. 7 This same study, using a DFT approach for geometry optimization and frequency calculations, reported an entropy value of 78.93 cal K$^{-1}$.3 Previous value of 5.7 kcal mol$^{-1}$ from Allen bond-energy scheme.1 Entropy from evaluation of Gurvich et al.3 Pedley gives enthalpy as 23.8$\pm4.5 \text{kJ mol}^{-1}$. 9

CBr$_4$ Enthalpy from rotation-bomb calorimetry.1 Ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide, resulted in an enthalpy value of 110.6$\pm12 \text{kJ mol}^{-1}$. 6 A calculation at the DK-CCSD(T)/Aug-VTZ level, again utilizing methyl bromide in an isodesmic reaction, resulted in an enthalpy value of 28.49 kcal mol$^{-1}$. 7 This same study, using a DFT approach for geometry optimization and frequency calculations, reported an entropy value of 85.61 cal K$^{-1}$. 3 Entropy from Gurvich et al.3

(9) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds*; Thermodynamics Data Center: College Station, TX, 1994.

Note 45: Compounds containing one C and one or more F and Br

CFBr	Enthalpy obtained using the computed enthalpy of a reaction of the type: CH3(^1)A1 + CH2F2 + 2CH3Y → CFY(^1)A1 + 3CH4 at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.1
CH2FBr	Taken from review of Kudchadker and Kudchadker. Enthalpy estimated.1
CHF2Br	Enthalpy from review of Pedley.2 Entropy from review of Kudchadker and Kudchadker, who also estimate an enthalpy of −102.66 kcal mol⁻¹.1
CF3Br	Enthalpy from a simultaneous solution of a thermochemical network for the CF3X species, where X = nil, H, Cl, Br, I, CF3, CN.3 Entropy from review of Kudchadker and Kudchadker.1
CF3Br2	Taken from review of Kudchadker and Kudchadker. All parameters estimated.1
CFBr3	Taken from review of Kudchadker and Kudchadker. Enthalpy estimated.1

(2) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds*; Thermodynamics Data Center: College Station, TX, 1994.

Note 46: Compounds containing one C and one or more Cl and Br

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CClBr</td>
<td>Enthalpy obtained using the computed enthalpy of a reaction of the type: CH$_2$(^1A$_1$) + CH$_3$X + CH$_3$Y → CXY(^1A$_1$) + 2CH$_4$ at the QCISD(T)/6-311+G(3df,2p)/QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.</td>
</tr>
<tr>
<td>CHClBr</td>
<td>Measured rate constant for the reaction of the radical with HBr, combined with previous measurements on the reverse reaction, with thermodynamic values obtained through a second-law analysis.</td>
</tr>
<tr>
<td>CH$_2$ClBr</td>
<td>Enthalpy taken from a dissociative photoionization study of a series of dihalomethanes, normalized using the experimental enthalpy of dichloromethane. The reported value has been adjusted by +0.4 kJ mol$^{-1}$ to agree with the present enthalpy for CH$_2$Cl$_2$.</td>
</tr>
<tr>
<td>CCl$_2$Br</td>
<td>Measured rate constant for the reaction of the radical with HBr, combined with calculated (MP2(fc)/6-31G(d,p)) values for the reverse reaction, leading to thermodynamic values obtained through a second-law analysis.</td>
</tr>
<tr>
<td>CHCl$_2$Br</td>
<td>Taken from review of Kudchadker and Kudchadker. All parameters estimated.</td>
</tr>
<tr>
<td>CCl$_3$Br</td>
<td>Enthalpy from review of Pedley. Entropy and enthalpy difference from review of Kudchadker and Kudchadker.</td>
</tr>
<tr>
<td>CCl$_2$Br</td>
<td>Measured rate constant for the reaction of the radical with HBr, combined with calculated (MP2(fc)/6-31G(d,p)) values for the reverse reaction, leading to thermodynamic values obtained through a second-law analysis.</td>
</tr>
<tr>
<td>CCl$_2$Br$_2$ and CClBr$_3$</td>
<td>Taken from review of Kudchadker and Kudchadker. All parameters estimated.</td>
</tr>
</tbody>
</table>

Note 47: Compounds containing one C and one or more Cl and Br

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHFClBr</td>
<td>Taken from review of Kudchadker and Kudchadker. Enthalpy estimated.</td>
</tr>
<tr>
<td>CF$_2$ClBr</td>
<td>Experimental data from threshold PEPICO studies of halogenated methanes were combined with ab initio calculations of isodesmic and exchange reactions into a thermochemical network. Previous enthalpy value of $\Delta_fH_{298} = -589.5$ kJ mol$^{-1}$, and the entropy, were estimated.</td>
</tr>
<tr>
<td>CFCl$_2$Br</td>
<td>Taken from review of Kudchadker and Kudchadker. All parameters estimated.</td>
</tr>
<tr>
<td>CFCI$_2$Br</td>
<td>Taken from review of Kudchadker and Kudchadker. All parameters estimated.</td>
</tr>
</tbody>
</table>
Note 48: **Compounds containing one C, one or more O, and Br**

<table>
<thead>
<tr>
<th>Compound</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBr₂O, carbonyl bromide</td>
<td>Enthalpy from review of Pedley.¹</td>
</tr>
<tr>
<td>CBr₃O</td>
<td>Derived from a G2 calculation of the total energy of formation from the gas-phase elements.¹</td>
</tr>
<tr>
<td>CBr₃OX (X=H,F,Cl,Br)</td>
<td>Derived from a G2 calculation of the total energy of formation from the gas-phase elements.²</td>
</tr>
<tr>
<td>CCl₃OBr</td>
<td>Derived from a G2 calculation of the total energy of formation from the gas-phase elements.²</td>
</tr>
</tbody>
</table>

CH₂BrOOH, CHFBrOOH, CHClBeOOH

Geometry optimization and frequency calculations were performed at the MP2/6-31G(d) and the B3LYP/6-311++G(d,p) levels of theory, with a single-point energy calculation at the CCSD(T)/6-311++G(d,p//B3LYP/6-311++G(d,p) level. The dissociation energy into HO₂ and the alkyl radical was then evaluated and used, after thermal correction, to calculate the enthalpy of formation at 298 K.³ This was adjusted to the radical values from the present Table.

(4) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.*

Note 49: **Compounds containing two C and Br**

<table>
<thead>
<tr>
<th>Compound</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂Br</td>
<td>An ab initio calculation at the W2DK level of theory.⁹ Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.</td>
</tr>
<tr>
<td>C₂HBr, bromoacetylene</td>
<td>Enthalpy from measurements of the photodissociation of bromoacetylene, leading to dissociation energy of 91.0±1.2 kcal mol⁻¹.⁸ ΔfH² = 71.3±1.5 kcal mol⁻¹. A calculation at the W2DK level of theory gave an enthalpy of 67.50 kcal mol⁻¹.⁹ Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.</td>
</tr>
<tr>
<td>C₂CHBr</td>
<td>Enthalpy from review of Pedley.¹⁰ An enthalpy of 74.1±3.1 kJ mol⁻¹ has been derived from a dissociative photoionization study of CH₂BrCHBr₂ with a computed vinyl cation enthalpy.⁵</td>
</tr>
<tr>
<td>CH₂CH₂Br</td>
<td>An experimental study of the reaction Br + C₂H₄ ↔ C₂H₄Br led to an enthalpy of reaction of 6.8±1.6 kcal mol⁻¹.¹¹</td>
</tr>
<tr>
<td>CH₃CH₂Br</td>
<td>A photobromination study leads to D(CH₃CH₂Br-H) = 97.2±1 kcal mol⁻¹.⁶</td>
</tr>
</tbody>
</table>

⁶ Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.*

⁷ An *ab initio* calculation at the W2DK level of theory. Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

⁸ Enthalpy from measurements of the photodissociation of bromoacetylene, leading to dissociation energy of 91.0±1.2 kcal mol⁻¹. ΔfH² = 71.3±1.5 kcal mol⁻¹. A calculation at the W2DK level of theory gave an enthalpy of 67.50 kcal mol⁻¹. Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

⁹ Enthalpy from review of Pedley. An enthalpy of 74.1±3.1 kJ mol⁻¹ has been derived from a dissociative photoionization study of CH₂BrCHBr₂ with a computed vinyl cation enthalpy.

¹⁰ An experimental study of the reaction Br + C₂H₄ ↔ C₂H₄Br led to an enthalpy of reaction of 6.8±1.6 kcal mol⁻¹.

¹¹ A photobromination study leads to D(CH₃CH₂Br-H) = 97.2±1 kcal mol⁻¹.
\[\text{CH}_2\text{CH}_2\text{Br} \]

Enthalpy obtained from a TPEPICO determination of the onset energy of the ethyl cation from the photodissociation of ethyl bromide, taking \(\Delta H_f(\text{C}_2\text{H}_5^+) = 915.5 \pm 1.3 \text{ kJ mol}^{-1} \). \(^2\) Previous enthalpy value, \(-61.5 \pm 1.0 \text{ kJ mol}^{-1} \), was taken from review of the literature. \(^3\) Entropy calculated by Kudchadker and Kudchadker. \(^4\)

\[\text{C}_2\text{Br}_2 \]

An \textit{ab initio} calculation at the W2DK level of theory. \(^9\) Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

\textit{trans-CHBrCBr}, \textit{trans-dibromovinyl radical}

A calculation at the DK-CCSD(T)/Aug-VTZ level, utilizing methyl bromide in an isodesmic reaction. \(^9\) Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

\[\text{CH}_3\text{Br}_2 \]

A photobromination study leads to \(D(\text{CCIF}_2\text{H}) = 94.9 \pm 1.2 \text{ kcal mol}^{-1} \). \(^7\)

\[\text{CH}_3\text{BrCH}_2\text{H} \]

Taken from a review of the literature. \(^3\)

\[\text{CHBrCBr}_2, \text{tribromoethene} \]

A calculation at the DK-CCSD(T)/Aug-VTZ level, utilizing methyl bromide in an isodesmic reaction. \(^9\) Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

\[\text{CH}_2\text{BrCH}_2\text{Br} \]

Enthalpy from review of Pedley. \(^10\)

\[\text{C}_2\text{Br}_3 \]

A calculation at the DK-CCSD(T)/Aug-VTZ level, utilizing methyl bromide in an isodesmic reaction. \(^9\) Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

\[\text{CH}_2\text{BrCHBr}_2 \]

Enthalpy derived from a dissociative photoionization study of \(\text{CH}_2\text{BrCHBr}_2 \) and a computed vinyl cation enthalpy. \(^5\)

\[\text{CH}_3\text{CBr}_3 \]

Taken from a Thermodynamics Research Center review. Enthalpy estimated. \(^4\)

\[\text{C}_2\text{Br}_4, \text{CHBr}_3\text{CBr}_2, \text{CBr}_3\text{CHBr}, \text{C}_2\text{Br}_5, \text{C}_2\text{Br}_6 \]

A calculation at the DK-CCSD(T)/Aug-VTZ level, utilizing methyl bromide in an isodesmic reaction. \(^9\) Entropy obtained from the same study, using a DFT approach (B97-1/Aug-cc-pVTZ) for geometry optimization and frequency calculations.

(5) Lago, A. F.; Baer, T. A photoelectron photoion coincidence study of the vinyl bromide and tribromoethane ion dissociation dynamics: Heats of formation of \(\text{C}_2\text{H}_3^+, \text{C}_2\text{H}_3\text{Br}, \text{C}_2\text{H}_3\text{Br}^+, \text{C}_2\text{H}_5\text{Br}^+ \), and \(\text{C}_2\text{H}_5\text{Br}_2 \). \textit{J. Phys. Chem. A} \textbf{2006}, \textit{110}, 3036-3041, doi:10.1021/jp053943x.

(6) Miyokawa, K.; Tschuikow-Roux, E. Kinetics of \(\alpha- \) and \(\beta- \) hydrogen abstraction from \(\text{C}_2\text{H}_5\text{Cl} \) by Br atoms. Estimate of C-H bond dissociation energies and heats of formation of \(\text{CH}_2\text{CHCl} \) and \(\text{CH}_2\text{CH}_2\text{Cl} \) radicals. \textit{J. Phys. Chem.} \textbf{1990}, \textit{94}, 715-717, doi:10.1021/j100365a037.

(10) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 50: Compounds containing two C and Br and F and/or Cl

All enthalpy values taken from the review of Pedley et al.\(^1\)

(1) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 51: Compounds containing two C, O and Br

CH\textsubscript{3}C(O)Br, acetyl bromide

Enthalpy from review of Pedley.\(^2\)

CH\textsubscript{2}BrCOOH

Review of the literature by Dorofeeva et al.\(^2\)

BrCH\textsubscript{2}CH\textsubscript{2}OH

The enthalpy of formation of the liquid was determined by using rotating-bomb combustion calorimetry to be \(\Delta_f H_{298}^\circ (l) = -275.8 \pm 0.6 \text{ kJ mol}^{-1}\). The molar enthalpy of vaporization was then determined by use of Calvert-drop microcalorimetry as \(\Delta_{vap} H_{298}^\circ = 54.08 \pm 0.40 \text{ kJ mol}^{-1}\).\(^1\)

(3) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 52: Compounds containing three C and Br

CH\textsubscript{3}CHBrCH\textsubscript{3}

The measured onset energy for \(i\)-C\textsubscript{3}H\textsubscript{7}\(^+\) from iPEPICO spectroscopy of \(i\)-C\textsubscript{3}H\textsubscript{7}Br was used in conjunction with a new value of the ion enthalpy of formation to obtain the 0 K enthalpy of the bromide.\(^1\)

(1) Stevens, W. R.; Bodi, A.; Baer, T. Dissociation dynamics of energy selected, propane, and \(i\)-C\textsubscript{3}H\textsubscript{7}X\(^+\) ions by iPEPICO: Accurate heats of formation of \(i\)-C\textsubscript{3}H\textsubscript{7}\(^+\), \(i\)-C\textsubscript{3}H\textsubscript{7}Cl, \(i\)-C\textsubscript{3}H\textsubscript{7}Br, and \(i\)-C\textsubscript{3}H\textsubscript{7}I. J. Phys. Chem. A 2010, 114, 11285-11291, doi:10.1021/jp104200h.

Note 53: Compounds containing one I and 0 or 1 H

I

CODATA Key Values.\(^2\) The JANAF values are \(\Delta_f H_{298}^\circ = 106.76 \text{ kJ mol}^{-1}\), \(\Delta_f H_0^\circ = 107.16 \text{ kJ mol}^{-1}\), and \(S = 180.786 \text{ J K}^{-1} \text{ mol}^{-1}\).\(^1\)
I₂ CODATA Key Values. The JANAF values are $\Delta H_{298}^o = 62.42$ kJ mol$^{-1}$, $\Delta H_0^o = 65.50$ kJ mol$^{-1}$, and $S = 260.685$ J K$^{-1}$ mol$^{-1}$. A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{298}^o = 61.9\pm6$ kJ mol$^{-1}$ and $\Delta H_0^o = 65.3\pm6$ kJ mol$^{-1}$.

HI Taken from a NIST-JANAF review. CODATA Key Value enthalpy at 298 K is identical.2

Note 54: Compounds containing I and O

IO The photodissociation dynamics of expansion-cooled IO was investigated, using velocity map ion imaging. This led to $D_0 = 54.9 (+0.2 \text{-} 0.4)$ kcal mol$^{-1}$ and to the recommended enthalpy values.3 Previous recommendation of the enthalpy, $\Delta H_0^o = 127.2\pm2.5$ kJ mol$^{-1}$, $\Delta H_{298}^o = 125.1\pm2.5$ kJ mol$^{-1}$, was from a CCSD(T) calculation of the dissociation energy, both directly and thorough a negative ion thermochemical cycle.10 The NIST-JANAF thermochemical tables for iodine oxides recommends $\Delta H_{298}^o = 126\pm18$ kJ mol$^{-1}$ and $\Delta H_0^o = 128\pm18$ kJ mol$^{-1}$, based on molecular beam studies.2 The earlier spectroscopic studies are also discussed here. An equilibrium constant derived from the forward and reverse rate constants for IO \leftrightarrow I + OClO leads to an enthalpy at 298 K of about 28.6 kcal mol$^{-1}$ (using reference values from this table) and 27.5 kcal mol$^{-1}$ from the equilibrium Cl + IO \leftrightarrow I + OClO.4 Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for I + O \rightarrow IO, using Table reference values, leads to $\Delta H_{298}^o = 117.3$ kJ mol$^{-1}$.5 A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{298}^o = 128.0\pm6$ kJ mol$^{-1}$ and $\Delta H_0^o = 130.1\pm6$ kJ mol$^{-1}$. Entropy based on extensive calculations.6

OIO The enthalpy value was from a determination of the threshold for the appearance of IO upon pulsed photolysis of OIO, indicating a bond strength of D_0(O-IO) = 248.8\pm1 kJ mol$^{-1}$.4 The previous values of $\Delta H_{298}^o = 117.7\pm6$ kJ mol$^{-1}$ and $\Delta H_0^o = 123.4\pm6$ kJ mol$^{-1}$ were from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.5 Molecular properties calculated at the MP2/6-31G(d) and MP2/6-311+G(3df) levels of theory provided the entropy and, with this information, an enthalpy of $\Delta H_{298}^o = 75$ kJ mol$^{-1}$ was derived using approximate QCISD(T)/6-311+G(3df) energies coupled with isodesmic reactions.9 A more recent computational study gives an enthalpy at 0 K of 113.9\pm10.3 kJ mol$^{-1}$.8 Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for 2IO \rightarrow OIO + I leads to a 298 K enthalpy of 110.1 kJ mol$^{-1}$.7

IOO Enthalpy for the reaction HOOI \rightarrow HOOF + IOO at the CCSD(T)/CBS(=TQ) level of theory, adjusted for the Table value for HOO, leads the cited enthalpy.5 Entropy from molecular properties calculated at the MP2/6-31G(d) and MP2/6-311+G(3df) levels of theory and, with this information, an enthalpy of $\Delta H_{298}^o = 96$ kJ mol$^{-1}$ was derived using approximate QCISD(T)/6-311+G(3df) energies coupled with isodesmic reactions.9

IO₃ Enthalpy at 298 K of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for OIO + IO \rightarrow IO₃. Entropy and enthalpy difference from NIST-JANAF thermochemical tables for iodine oxides.2 Previous enthalpy value of 242 kJ mol$^{-1}$ was estimated.
The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^5\) Entropy from molecular properties calculated at the MP2/6-31G(d) and MP2/6-311+G(3df) levels of theory and, with this information, an enthalpy of \(\Delta H_{298}^f = 92.5\pm17\ \text{kJ mol}^{-1}\) was derived using approximate QCISD(T)/6-311+G93df energies coupled with isodesmic reactions.\(^9\)

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit. Listed value is for the \(^1A^\prime\) state. \(\Delta H_{298}^f = 234.3\pm6\ \text{kJ mol}^{-1}\) for the \(^3A_2\) state.\(^5\) Entropy from molecular properties calculated at the MP2/6-31G(d) and MP2/6-311+G(3df) levels of theory and, with this information, an enthalpy of \(\Delta H_{298}^f = 157\ \text{kJ mol}^{-1}\) was derived using approximate QCISD(T)/6-311+G93df energies coupled with isodesmic reactions.\(^9\) Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for \(\text{IO} + \text{IO} \rightarrow \text{IOIO}\) leads to a 298 K enthalpy of 179.9 kJ mol\(^{-1}\).\(^7\)

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^5\) Entropy from molecular properties calculated at the MP2/6-31G(d) and MP2/6-311+G(3df) levels of theory and, with this information, an enthalpy of \(\Delta H_{298}^f = 103\ \text{kJ mol}^{-1}\) was derived using approximate QCISD(T)/6-311+G93df energies coupled with isodesmic reactions.\(^9\) Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for \(\text{IO} + \text{IO} \rightarrow \text{IOO}\), using Table reference values, leads to a 298 K enthalpy of 157.9 kJ mol\(^{-1}\).\(^7\)

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^5\) Entropy from molecular properties calculated at the MP2/6-31G(d) and MP2/6-311+G(3df) levels of theory and, with this information, an enthalpy of \(\Delta H_{298}^f = 124\ \text{kJ mol}^{-1}\) was derived using approximate QCISD(T)/6-311+G93df energies coupled with isodesmic reactions.\(^9\) Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for \(\text{IO} + \text{IO} \rightarrow \text{IOIO}\) leads to a 298 K enthalpy of 141.3 kJ mol\(^{-1}\).\(^7\)

Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for \(\text{IO} + \text{IO} \rightarrow \text{I}_2\text{O}_3\).\(^7\)

Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for \(2\text{IOIO} \rightarrow \text{I}_2\text{O}_5\).\(^7\)

Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for \(\text{I}_2\text{O}_4 + \text{O}_3 \rightarrow \text{I}_2\text{O}_5 + \text{O}\).\(^7\)

HOI

Reaction enthalpies for a set of isogryic reactions were calculated using CR-CCSD(T) with single and double excitation and with second-order spin-free Douglas-Kroll-Hess Hamiltonian applied to account for the scalar relativistic effects. The listed values are from a recalculation using the present Table values, which are particularly different for IO and OH. The authors report: $\Delta H_{298} = -69.0 \pm 3.7$ kJ mol$^{-1}$.6 A computational study of the OH + CH$_2$BrI \rightarrow HOI + CH$_3$I reaction at the DK-CCSD(T)/ANO-RCC-L(1)//MP2/cc-pVTZ level of theory led to $\Delta_f H_{298} = -62.9$ kJ mol$^{-1}$.5 The previous values of $\Delta_f H_{298} = -69.6 \pm 5.4$ kJ mol$^{-1}$ and $\Delta_f H_{0} = -64.9\pm 5.4$ kJ mol$^{-1}$ was based on the measured activation energy of the reaction OH + CF$_3$I \rightarrow CF$_3$ + HOI and G2(MP2) calculation indicating a negligible barrier for the reverse reaction.2 Entropy based on extensive calculations.3 Enthalpy values have also been calculated using the isogryic reaction HOOH + IO \rightarrow HOO + HOI with density functional theory (GP96PW91 level), leading to -58.6 kJ mol$^{-1}$ and -63.3 kJ mol$^{-1}$ at 0 and 298 K, employing reference enthalpies from this Table.1 A calculation involving a pair of isodesmic reactions at the CCSD(T) level of theory in conjunction with the aug-cc-pVTZ-PP and aug-cc-pVQZ-PP basis sets led to $\Delta_f H_{298} = -59.2\pm 3.9$ kJ mol$^{-1}$ and $\Delta_f H_{0} = -54.5\pm 3.9$ kJ mol$^{-1}$.4

HOIO

Enthalpy difference calculated HOII \rightarrow HOIO with density functional theory (GP96PW91 level), $\Delta_f H_{0} = -11.0$ kJ mol$^{-1}$.1

HOOI

Enthalpy values calculated using the isogryic reaction HOOH + IO \rightarrow HO + HOOI with density functional theory (GP96PW91 level), employing reference enthalpies from this Table.1

Note 55: Compounds containing I and O

Back to Table

Note 56: Di-halo compounds containing I

IF
The total atomization energy was calculated using a composite electronic structure approach based on CCSD(T) and extrapolated to the complete basis set limit with a two-point extrapolation scheme, Q5. Additional corrections included zero-point energy, core-valence effect, for scalar relativistic effects, and spin-orbit corrections.

ICl
Taken from review of Gurvich et al.³ The JANAF Tables give $\Delta_f H_{298}^o = 19.141 \pm 0.105$ kJ mol⁻¹, $\Delta_f H_{298}^o = 17.506 \pm 0.105$ kJ mol⁻¹, and $S^o = 247.567$ J mol⁻¹ kJ mol⁻¹.¹ A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta_f H_{298}^o = 18.8 \pm 4$ kJ mol⁻¹ and $\Delta_f H_{298}^o = 20.5 \pm 4$ kJ mol⁻¹.²

IBr
Taken from review of Gurvich et al.³ The JANAF Tables give $\Delta_f H_{298}^o = 49.815 \pm 0.08$ kJ mol⁻¹, $\Delta_f H_{298}^o = 40.878 \pm 0.08$ kJ mol⁻¹, and $S^o = 258.95$ J mol⁻¹.¹ A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta_f H_{298}^o = 41.4 \pm 4$ kJ mol⁻¹ and $\Delta_f H_{298}^o = 50.2 \pm 4$ kJ mol⁻¹.²

(4) Thanthiriwatte, K. S.; Vasiliiu, M.; Dixon, D. A.; Christe, K. O. Structural and energetic properties of closed shell XF₄ (X = Cl, Br, and I; n = 1−7) and XO₂F₄ (X = Cl, Br, and I; n = 1−3; m = 0−6) molecules and ions leading to stability predictions for yet unknown compounds. *Inorg. Chem.* 2012, 51, 10966-10982, doi:10.1021/ic301438b.

Note 57: Compounds containing I, O, and F

IOF, IO₃F
The total atomization energy was calculated using a composite electronic structure approach based on CCSD(T) and extrapolated to the complete basis set limit with a two-point extrapolation scheme, Q5. Additional corrections included zero-point energy, core-valence effect, for scalar relativistic effects, and spin-orbit corrections.

(1) Thanthiriwatte, K. S.; Vasiliiu, M.; Dixon, D. A.; Christe, K. O. Structural and energetic properties of closed shell XF₄ (X = Cl, Br, and I; n = 1−7) and XO₂F₄ (X = Cl, Br, and I; n = 1−3; m = 0−6) molecules and ions leading to stability predictions for yet unknown compounds. *Inorg. Chem.* 2012, 51, 10966-10982, doi:10.1021/ic301438b.

Note 58: Compounds containing I, O, and Cl

ClOCl
The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.¹ Enthalpy derived using molecular properties calculated at the MP2/6-311+G(3df) level of theory, with Gaussian-2 energies coupled with isodesmic reactions, resulted in $\Delta_H^{298} = 76.1$ kJ mol⁻¹.²

ClOCl
The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit. This value is for the $^1A'$ state. $\Delta_H^{298} = 164.0 \pm 6$ kJ mol⁻¹ for the $^3A''$ state.¹ Enthalpy derived using molecular properties calculated at the MP2/6-
311+G(3df) level of theory, with Gaussian-2 energies coupled with isodesmic reactions, resulted in $\Delta H_{298}^{\circ} = 68.2$ kJ mol$^{-1}$.\(^2\)

ICIO The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^1\) Calculations using molecular properties at the MP2/6-311+G(3df) level of theory and Gaussian-2 energies, coupled with isodesmic reactions and reference enthalpies changed to correspond to values in this Table, resulted in $\Delta H_{298}^{\circ} = 68.2$ kJ mol$^{-1}$.\(^2\)

ClO$_2$ The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^1\) Calculations using molecular properties at the MP2/6-311+G(3df) level of theory and Gaussian-2 energies, coupled with isodesmic reactions and reference enthalpies changed to correspond to values in this Table, resulted in $\Delta H_{298}^{\circ} = 166$ kJ mol$^{-1}$.\(^2\)

ClOIO The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^1\) Calculations using molecular properties at the MP2/6-311+G(3df) level of theory and Gaussian-2 energies, coupled with isodesmic reactions and reference enthalpies changed to correspond to values in this Table, resulted in $\Delta H_{298}^{\circ} = 10.9$ kJ mol$^{-1}$.\(^2\)

ClOOI The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^1\) Calculations using molecular properties at the MP2/6-311+G(3df) level of theory and Gaussian-2 energies, coupled with isodesmic reactions and reference enthalpies changed to correspond to values in this Table, resulted in $\Delta H_{298}^{\circ} = 107$ kJ mol$^{-1}$.\(^2\)

IOClO The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^1\) Calculations using molecular properties at the MP2/6-311+G(3df) level of theory and Gaussian-2 energies, coupled with isodesmic reactions and reference enthalpies changed to correspond to values in this Table, resulted in $\Delta H_{298}^{\circ} = 154$ kJ mol$^{-1}$.\(^2\)

IClO$_2$ The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^1\) Calculations using molecular properties at the MP2/6-311+G(3df) level of theory and Gaussian-2 energies, coupled with isodesmic reactions and reference enthalpies changed to correspond to values in this Table, resulted in $\Delta H_{298}^{\circ} = 188$ kJ mol$^{-1}$.\(^2\)

Note 59: **Compounds containing I, O, and Br**

For all: The enthalpy values are from calculation of the atomization energies at the CCSD(T) level, extrapolated to the CBS limit.\(^1\) For BrIO, the value is for the $^1A'$ state. $\Delta H_{298}^{\circ} = 190.0\pm 6$ kJ mol$^{-1}$ for the $^3A''$ state.

Note 60: **Compounds containing I, O, and N**

Back to Table
INO Thermodynamic parameters from a third-law analysis of the equilibrium reaction I + NO (+He) \leftrightarrow INO (+He). Enthalpy of reaction obtained using CCSD(T) calculations at B3LYP geometries, with corrections for spin-orbit coupling, for I + NO \rightarrow INO, using Table reference values, leads to a 298 K enthalpy of 134.2 kJ mol$^{-1}$.1

INO$_2$ Thermodynamic parameters from a third-law analysis of the equilibrium reaction I + NO$_2$ (+He) \leftrightarrow INO$_2$ (+He).4

IOONO Derived from CCSD(T) single-point calculations at B3LYP geometries for the interconversion of the two isomers.4 The dissociation energy for IOONO was also calculated to be 131.4 kJ mol$^{-1}$, leading to an enthalpy at 298K for that isomer of 24.8 kJ mol$^{-1}$, whereas a value of 37.5 kJ mol$^{-1}$ has been selected for this Table.

IONO$_2$ The enthalpy values were derived from the average of the IO – NO$_2$ bond dissociation energies calculated by Kaltsoyannis and Plane1 and by Marshall.2 See Table 3-1, note 32 for more details. The selected entropy value is also discussed in that note.

Note 61: Compounds containing one C and I and H Back to Table

CHI Enthalpy obtained using the computed enthalpy of a reaction of the type: CH$_3$(I$_A$) + CH$_2$X + CH$_3$Y = CXY(1A$_J$) + 2CH$_4$ at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.8

CH$_3$I Enthalpy value from ab $initio$ calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide. A computational study of the OH + CH$_3$I \rightarrow H$_2$O + CH$_3$I reaction at the DK-CCSD(T)/ANO-RCC-L1(1)//MP2/ccpVTZ level of theory led to Δ_fH$_{298}^\circ$ = 215.9 kJ mol$^{-1}$ and Δ_fH$_{298}^\circ$ = 220.2 kJ mol$^{-1}$.6 These values provided the enthalpy difference utilized. A subsequent study on the reaction OH + CH$_2$IBr \rightarrow HOBr + CH$_3$I led to Δ_fH$_{298}^\circ$ = 218.4 kJ mol$^{-1}$ and Δ_fH$_{298}^\circ$ = 223.3 kJ mol$^{-1}$.13 Previous enthalpy value of 228.0±2.8 kJ mol$^{-1}$ from ab $initio$ calculations used to determine the entropies of the reactants and the transition state for Br + CH$_3$I \rightarrow HBr + CH$_3$I. Arrhenius parameters were then calculated by transition state theory. The kinetics of the reverse reactions were measured in a flow system. The enthalpy value was obtained from a second-law analysis.9

CH$_3$I Calculated from the dissociation of energy-selected CH$_3$I$^+$ and its adiabatic ionization energy.10 Enthalpy from rotating combustion calorimetry is 14.4±1.4 kJ mol$^{-1}$.2 A review of the literature gave Δ_fH$_{298}^\circ$ = 13.8±1.2 kJ mol$^{-1}$ and the enthalpy difference; the entropy is from ideal gas thermodynamic properties.3

Cl$_2$ Enthalpy obtained using the computed enthalpy of a reaction of the type: CH$_3$(I$_A$) + CH$_2$X + CH$_3$Y \rightarrow CXY(1A$_J$) + 2CH$_4$ at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.8

CH$_2$I Enthalpy value from ab $initio$ calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide.7 A computational study of the OH + CH$_3$I \rightarrow HOI + CH$_2$I reaction at the CCSD(T)/ANO-RCC-Large//MP2/ccpVTZ level of theory led to Δ_fH$_{298}^\circ$ = 309.2 kJ mol$^{-1}$ and Δ_fH$_{298}^\circ$ = 298.9 kJ mol$^{-1}$.11 These values provided the
enthalpy difference utilized. A computational study of the OH + CH₂I₂ → H₂O + CH₂I reaction at the DK-CCSD(T)/ANO-RCC-L(1)//MP2/ccpVTZ level of theory led to ΔfH₂⁰ = 298.7 kJ mol⁻¹ and ΔfH₂⁰ = 303.5 kJ mol⁻¹. Previous enthalpy value of 314.4±3.3 kJ mol⁻¹ from ab initio calculations used to determine the entropies of the reactants and the transition state for Br + CH₂I₂ → HBr + CH₂I. Arrhenius parameters were then calculated by transition state theory. The kinetics of the reverse reactions were estimated. The enthalpy value was obtained from a second-law analysis.⁹

CH₂I₂

Enthalpy taken from a dissociative photoionization study of a series of dihalomethanes, normalized using the experimental enthalpy of dichloromethane. The reported value has been adjusted by +0.4 kJ mol⁻¹ to agree with the present enthalpy for CH₂Cl₂. Previous value of 119.5±2.2 kJ mol⁻¹ from rotating combustion calorimetry. Ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl iodide, resulted in an enthalpy of 108.1±6 kJ mol⁻¹. A review of the literature gave ΔfH₂⁰ = 117.6±4.2 kJ mol⁻¹ and the enthalpy difference; the entropy is from ideal gas thermodynamic properties. In a more recent study, involving a TPEPICO determination of the heat of formation of 1,2-C₂H₄I₂, an analysis of the ab initio isodesmic reactions energies of four reactions led to a recommendation that the enthalpy values be reduced to ΔfH₂⁰ = 123.1±2.0 kJ mol⁻¹ and ΔfH₂⁰ = 113.5±2.0 kJ mol⁻¹.¹

CHI₃

Ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl iodide. Previous enthalpy value of 251.1±1.4 kJ mol⁻¹ from rotating combustion calorimetry. A review of the literature gave ΔfH₂⁰ = 210.9±4.2 kJ mol⁻¹ and the enthalpy difference; the entropy is from ideal gas thermodynamic properties.³

ClI₃

Enthalpy value from ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl iodide. A computational study of the OH + CH₃I → H₂O + ClI reaction at the CCSD(T)/ANO-RCC-Large//MP2/ccpVTZ level of theory led to ΔfH₂⁰ = 387.4 kJ mol⁻¹ and ΔfH₂⁰ = 384.4 kJ mol⁻¹. These values provided the enthalpy difference utilized. Previous enthalpy value of 424.9±2.8 kJ mol⁻¹ from ab initio calculations used to determine the entropies of the reactants and the transition state for Br + CH₂I₂ → HBr + ClI. Arrhenius parameters were then calculated by transition state theory. The kinetics of the reverse reactions were estimated. The enthalpy value was obtained from a second-law analysis.⁹ The uncertainty in the ab initio was suggested to be ±9 kJ mol⁻¹. We have expanded that considerably due to these obvious disagreements.

ClI₄

Ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl iodide. Previous enthalpy value of 474±13 kJ mol⁻¹ from rotating combustion calorimetry. A review of the literature estimated ΔfH₂⁰ = 268±4.2 kJ mol⁻¹ and the enthalpy difference; the entropy is from ideal gas thermodynamic properties. The uncertainty in the ab initio was suggested to be ±12 kJ mol⁻¹. We have expanded that considerably due to these obvious disagreements.

(9) Seetula, J. A. Kinetics of the \(\text{R} + \text{HBr} \rightarrow \text{RH} + \text{Br} \) (\(\text{R} = \text{CHI}_2 \) or \(\text{CHI}_3 \)) reaction. An ab initio study of the enthalpy of formation of the CHI\textsubscript{2}, CHI\textsubscript{3} and ClI radicals. *Phys. Chem. Chem. Phys.* 2002, 4, 455-460, doi:10.1039/b107407p.

(10) Song, Y.; Qian, X. M.; Lau, K. C.; Ng, C. Y.; Liu, J. B.; Chen, W. W. High-resolution energy-selected study of the reaction CH\textsubscript{3}H+ \rightarrow CH\textsubscript{2}H+ + X: Accurate thermochemistry for the CH\textsubscript{3}X/CH\textsubscript{2}X+ (X=Br, I) system. *J. Chem. Phys.* 2001, 115, 4095-4104, doi:10.1063/1.1391268.

Note 62: Compounds containing one C and I, H and O

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH\textsubscript{3}OOH, CH\textsubscript{2}OOH</td>
<td>Geometry optimization and frequency calculations were performed at the MP2/6-31G(d) and the B3LYP/6-311++G(d,p) levels of theory, with a single-point energy calculation at the CCSD(T)/6-311++G(d,p)/B3LYP/6-311G+G(d,p) level. The dissociation energy into HO\textsubscript{2} and the alkyl radical was then evaluated and used, after thermal correction, to calculate the enthalpy of formation at 298 K.1 This was adjusted to the radical values from the present Table.</td>
</tr>
</tbody>
</table>

Note 63: Compounds containing one C, F, and I

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFI</td>
<td>Enthalpy obtained using the computed enthalpy of a reaction of the type: CH\textsubscript{3}(1A\textsubscript{1}) + CH\textsubscript{2}F\textsubscript{2} + 2CH\textsubscript{2}Y \rightarrow CFY(1A\textsubscript{1}) + 3CH\textsubscript{4} at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.4</td>
</tr>
<tr>
<td>CF\textsubscript{3}I</td>
<td>Enthalpy from a simultaneous solution of a thermochemical network for the CF\textsubscript{3}X species, where X = nil, H, Cl, Br, I, CF\textsubscript{3}, CN.3 Entropy from recommendation of Gurvich et al.1</td>
</tr>
<tr>
<td>CF\textsubscript{3}I\textsubscript{2}</td>
<td>Taken from review of Kudchadker and Kudchadker. All parameters estimated.2</td>
</tr>
</tbody>
</table>

Note 64: Compounds containing one C, Cl, and I

CClII Enthalpy obtained using the computed enthalpy of a reaction of the type: CH3(1A1) + CH3X + CHY → CXY(1A1) + 2CH4 at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.3

CH2CClII Enthalpy taken from a dissociative photoionization study of a series of dihalomethanes, normalized using the experimental enthalpy of dichloromethane.2 The reported value has been adjusted by +0.4 kJ mol−1 to agree with the present enthalpy for CH2Cl2.

CClI Taken from review of Kudchadker and Kudchadker. All parameters estimated.1

Note 65: Compounds containing one C, Br, and I

CHBrI Enthalpy value from ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide and methyl iodide.2 Enthalpy value from ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide.2 A computational study of the OH + CH3Br → H2O + CHBrI reaction at the DK-CCSD(T)/ANO-RCC-L(1)/MP2/ccpVTZ level of theory led to ΔHf98 = 252.2 kJ mol−1 and ΔfHf0 = 262.5 kJ mol−1.4 These values provided the enthalpy difference utilized.

CH3BrI Enthalpy taken from a dissociative photoionization study of a series of dihalomethanes, normalized using the experimental enthalpy of dichloromethane.1 The reported value has been adjusted by +0.4 kJ mol−1 to agree with the present enthalpy for CH2Cl2. Ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide and methyl iodide, resulted in an enthalpy value of 56.8±6 kJ mol−1.2

CBrI and CBrI2

Enthalpy obtained using the computed enthalpy of a reaction of the type: CH3(1A1) + CH3X + CHY → CXY(1A1) + 2CH4 at the QCISD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p) level of theory. Calculations also done at the G2 level.3

CBrI2 and CBrI3

Enthalpy value from ab initio calculations at the QCISD(T)/6-311+G(3df,2p) level of theory, utilizing an isodesmic reaction with methyl bromide and methyl iodide.2

Note 66: *Compounds containing two C and I*
Back to Table

cis- and trans-CHICHIC
Enthalpy values from review of Pedley.5

CH$_3$CHI
Enthalpy obtained from a TPEPICO determination of the onset energy of the ethyl cation from the photodissociation of ethyl iodide, taking $\Delta H^0(\text{C}_2\text{H}_5^+) = 915.5\pm1.3$ kJ mol$^{-1}$.2 Previous enthalpy value of -7.5 ± 0.9 kJ mol$^{-1}$ from review of the literature.3 Pedley gives -8.1 ± 2.2 kJ mol$^{-1}$.5 Entropy calculated by Kudchadker and Kudchadker.4

CH$_3$ICHI
Based on a TPEPICO study of the sequential photodissociation of C$_2$H$_4$I$_2^+$ coupled with theoretical calculations involving four isodesmic reactions.1 Previous enthalpy value of 75\pm4 kJ mol$^{-1}$ from review of Pedley et al.5

(5) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds*; Thermodynamics Data Center: College Station, TX, 1994.

Note 67: *Compounds containing two C, F and I*
Back to Table

CF$_3$CHI and CF$_3$CFI
Enthalpy values taken from review of Pedley.1

(1) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds*; Thermodynamics Data Center: College Station, TX, 1994.

Note 68: *Compounds containing two C, O and I*
Back to Table

CH$_3$(O)I, acetyl iodide
Enthalpy value taken from review of Pedley.2

ICH$_2$OH
The enthalpy of formation of the liquid was determined by using rotating-bomb combustion calorimetry to be $\Delta H^0_{\text{298}}(l) = -207.3\pm0.7$ kJ mol$^{-1}$. The molar enthalpy of vaporization was then determined by use of Calvert-drop microcalorimetry to be $\Delta_{\text{vap}} H^0_{\text{298}} = 57.03\pm0.20$ kJ mol$^{-1}$.1

(2) Pedley, J. B. *Thermochemical Data and Structures of Organic Compounds*; Thermodynamics Data Center: College Station, TX, 1994.
Note 69: Compounds containing two C, N and I

Back to Table

CH$_2$ICN
From a PEPICO study of the neutral using the known enthalpy of CH$_3$CN.1

Note 70: Compounds containing three C and I

Back to Table

CH$_3$CHICH$_3$

The measured onset energy for i-C$_3$H$_7^+$ from iPEPICO spectroscopy of i- C$_3$H$_7$I was used in conjunction with a new value of the ion enthalpy of formation to obtain the 0 K enthalpy of the iodide.1

(1) Stevens, W. R.; Bodi, A.; Baer, T. Dissociation dynamics of energy selected, propane, and i-C$_3$H$_7X^+$ ions by iPEPICO: Accurate heats of formation of i-C$_3$H$_7^+$, i-C$_3$H$_7$Cl, i-C$_3$H$_7$Br, and i-C$_3$II. *J. Phys. Chem. A* 2010, 114, 11285-11291, doi:10.1021/jp104200h.

Note 71: Compounds containing S and H

Back to Table

S
CODATA Key Value.2 The JANAF Tables give $\Delta f H_0^\circ = 274.735 \text{ kJ mol}^{-1}$, $\Delta f H_298^\circ = 276.98 \text{ kJ mol}^{-1}$, and $S^\circ = 167.828 \text{ J mol}^{-1}$.1

S$_2$
CODATA Key Value.2 The JANAF Tables give $\Delta f H_0^\circ = 128.3 \text{ kJ mol}^{-1}$, $\Delta f H_298^\circ = 128.6 \text{ kJ mol}^{-1}$, and $S^\circ = 228.165 \text{ J mol}^{-1}$.1

HS
Updated and corrected NIST-JANAF thermochemical tables.6 Enthalpy calculated at the CCSD(T)/CBS level of theory is 34.4 kcal mol$^{-1}$.9 Thermodynamic parameters calculated at the CCSDT(Q)/cc-pV(T+d)Z level of theory give $\Delta f H_0^\circ = 142.6 \text{ kJ mol}^{-1}$, $\Delta f H_298^\circ = 143.4 \text{ kJ mol}^{-1}$, and $S^\circ = 195.4 \text{ J mol}^{-1}$.7

H$_2$S
CODATA Key Value.2 The JANAF Tables give $\Delta f H_0^\circ = -17.58 \text{ kJ mol}^{-1}$, $\Delta f H_298^\circ = -20.50 \text{ kJ mol}^{-1}$, and $S^\circ = 205.757 \text{ J mol}^{-1}$.1

HSS
A UCCSD(T)/cc-pV(n+d)Z(n=D,T,Q,5) calculation with correlation-consistent basis sets results in 3.63±1.0 kcal mol$^{-1}$.3 The atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level gives $\Delta f H_0^\circ = 24.3\pm1 \text{ kcal mol}^{-1}$ and $\Delta f H_298^\circ = -25.0\pm1 \text{ kcal mol}^{-1}$.5

HSSH
Thermodynamics Center recommendation.4 A UCCSD(T) calculation with correlation-consistent basis sets results in 3.63±1.0 kcal mol$^{-1}$.3 The atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level, gives $\Delta f H_0^\circ = 3.4\pm1 \text{ kcal mol}^{-1}$ and $\Delta f H_298^\circ = 4.8\pm1 \text{ kcal mol}^{-1}$.5 Lowest energy configuration is the syn isomer. Values for the trans isomer are $\Delta f H_0^\circ = 7.8\pm1 \text{ kcal mol}^{-1}$ and $\Delta f H_298^\circ = 9.3\pm1 \text{ kcal mol}^{-1}$ and for the cis isomer $\Delta f H_0^\circ = 10.0\pm1 \text{ kcal mol}^{-1}$ and $\Delta f H_298^\circ = 11.5\pm1 \text{ kcal mol}^{-1}$.

HSSS
Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(T+d)Z level.5 Lowest energy configuration is the syn isomer. Values for the cis isomer are $\Delta f H_0^\circ = 27.0\pm1 \text{ kcal mol}^{-1}$ and $\Delta f H_298^\circ = 28.1\pm1 \text{ kcal mol}^{-1}$ and for the trans isomer $\Delta f H_0^\circ = 27.0\pm1 \text{ kcal mol}^{-1}$ and $\Delta f H_298^\circ = 27.7\pm1 \text{ kcal mol}^{-1}$.

Note 72: *Compounds containing S and O*
Back to Table

SO
Enthalpy value based on the dissociation energy of SO.Ô

SOO
Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level, ΔₜH₀° = 49.5±1 kcal mol⁻¹.Ô

SO₂
CODATA Key Value. Ô The JANAF Tables give ΔₜH₀° = −294.3 kJ mol⁻¹, ΔₜH₂₉₈° = −296.8 kJ mol⁻¹, and S₀ = 248.212 J mol⁻¹.Ô

SO₃
Taken from a review of the literature. Ô The JANAF Tables give ΔₜH₀° = −390.0 kJ mol⁻¹, ΔₜH₂₉₈° = −395.8 kJ mol⁻¹, and S₀ = 256.769 J mol⁻¹.Ô

SSO
Updated and corrected NIST-JANAF thermochemical tables. Ô Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level gives ΔₜH₂₉₈ = −13.1±1 kcal mol⁻¹ and ΔₜH₀° = −13.1±1 kcal mol⁻¹.Ô

SOS
Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level.Ô

Note 73: *Compounds containing S, H and O*
Back to Table
HSO An enthalpy at 0 K determined to be -0.9 ± 0.7 kcal mol$^{-1}$ (-3.8 ± 2.9 kJ mol$^{-1}$) from crossed beam reactive scattering of $O + H_2S$. This was the value recommended in the previous Table. In a more recent study, the authors suggested that the lower bound to the uncertainty could be as much as -3 kcal mol$^{-1}$, but confirmed the upper bound as 0.7 kcal mol$^{-1}$. A number of computational studies have converged on the significantly lower value presently recommended, which is taken from a study where the atomization energy was calculated by CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level. This value was chosen for consistency with the other HxOySz species from the same work included in the table. In a more recent study, at the CCSDT(Q)/cc-pV(T+d)Z level, led to a value of $\Delta_hH_{298}^0 = -22.6\pm2.3$ kJ mol$^{-1}$, in close agreement, and to the entropy value cited.

HOS Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level. In a more recent study, at the CCSDT(Q)/cc-pV(T+d)Z level, led to a value of $\Delta_hH_{298}^0 = -5.3\pm2.3$ kJ mol$^{-1}$, in close agreement, and to the entropy value cited.

HSO$_2$ Enthalpy obtained with DFT calculations on dissociation, atomization, and isodesmic reactions. Value supported by a calculation of the H + SO$_2$ dissociation asymptote. The latter study shows that HOSO is the more stable configuration, with HSO(O) as a local minimum.

HOSO Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level. Lowest energy configuration is the cis isomer. Values for the trans isomer are $\Delta_hH_{298}^0 = -56.2\pm1$ kcal mol$^{-1}$ and $\Delta_hH_{298}^0 = -55.1\pm1$ kcal mol$^{-1}$. Another CCSD(T) calculation to the CBS limit, with additional corrections, including correlation through the the CBSDT(Q) level, resulted in values for these isomers (identified as the syn and anti isomers) of $\Delta_hH_{298}^0 = -58.0$ kcal mol$^{-1}$ and $\Delta_hH_{298}^0 = -55.7$ kcal mol$^{-1}$, respectively.

HSOO Enthalpy for the reaction HOOSH + FOO → HOOF + HSOO at the CCSD(T)/CBS(Q,5) level of theory is 18.00 kcal mol$^{-1}$. Adjusted for the Table reference values, this gives the cited enthalpy of formation. Lowest energy configuration is the syn isomer. Values for the cis isomer are $\Delta_hH_{298}^0 = 29.9\pm1$ kcal mol$^{-1}$ and $\Delta_hH_{298}^0 = 31.3\pm1$ kcal mol$^{-1}$ and for the trans isomer $\Delta_hH_{298}^0 = 29.8\pm1$ kcal mol$^{-1}$ and $\Delta_hH_{298}^0 = 31.2\pm1$ kcal mol$^{-1}$.

HOSH Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(n+d)Z (n = D,T,Q,5) level. $\Delta_hH_{298}^0 = -26.5\pm1$ kcal mol$^{-1}$. Lowest energy configuration is the syn isomer. Values for the trans isomer are $\Delta_hH_{298}^0 = -24.3\pm1$ kcal mol$^{-1}$ and $\Delta_hH_{298}^0 = -22.7\pm1$ kcal mol$^{-1}$ and for the cis isomer $\Delta_hH_{298}^0 = -22.6\pm1$ kcal mol$^{-1}$ and $\Delta_hH_{298}^0 = -21.0\pm1$ kcal mol$^{-1}$.

HOOS Enthalpy for the reaction HOOSH + FOO → HOOF + HOOS at the CCSD(T)/CBS(Q,5) level of theory is 5.14 kcal mol$^{-1}$. Adjusted for the Table reference values, this gives the cited enthalpy of formation, $\Delta_hH_{298}^0 = 15.3\pm1.5$ kcal mol$^{-1}$.

HOOSH Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(T+d)Z level. Lowest energy configuration is the syn isomer.

HOAHOH Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(T+d)Z level. Lowest energy configuration is the syn isomer.

HOSO$_2$ Thermodynamic parameters calculated at the CCSDT(Q)/cc-pV(T+d)Z level of theory. A third-law analysis of equilibrium data for the reaction OH + SO$_2$ ↔ HOSO$_2$ (extrapolated from data over the temperature range 523 to 603 K) led to $\Delta_hH_{298}^0 = 373\pm6$ kJ mol$^{-1}$, in good agreement with the computed value.

H$_2$SO$_4$ Taken from review of Dorofeeva et al.
HOSS Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(T+d)Z level.\(^7\) Lowest energy configuration is the \(\text{cis}\) isomer. Values for the \(\text{trans}\) isomer are \(\Delta_H^{\text{cis}} = -13.6 \pm 1\) kcal mol\(^{-1}\) and \(\Delta_H^{\text{trans}} = -12.7 \pm 1\) kcal mol\(^{-1}\).

HSSO Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(T+d)Z level.\(^7\) Lowest energy configuration is the \(\text{syn}\) isomer. Values for the \(\text{cis}\) isomer are \(\Delta_H^{\text{cis}} = -9.1 \pm 1\) kcal mol\(^{-1}\) and \(\Delta_H^{\text{trans}} = -7.8 \pm 1\) kcal mol\(^{-1}\) and for the \(\text{trans}\) isomer \(\Delta_H^{\text{cis}} = -8.7 \pm 1\) kcal mol\(^{-1}\) and \(\Delta_H^{\text{trans}} = -7.8 \pm 1\) kcal mol\(^{-1}\).

HSOS Enthalpy for the reaction HSOSH + FOO \(\rightarrow\) HOOF + HSOS at the CCSD(T)/CBS(Q,5) level of theory is 8.81 kcal mol\(^{-1}\). Adjusted for the Table reference values, this gives the cited enthalpy of formation.\(^7\) Lowest energy configuration is the \(\text{syn}\) isomer. Values for the \(\text{cis}\) isomer are \(\Delta_H^{\text{cis}} = 27.5 \pm 1\) kcal mol\(^{-1}\) and \(\Delta_H^{\text{trans}} = 28.9 \pm 1\) kcal mol\(^{-1}\) and for the \(\text{trans}\) isomer \(\Delta_H^{\text{cis}} = 28.1 \pm 1\) kcal mol\(^{-1}\) and \(\Delta_H^{\text{trans}} = 28.9 \pm 1\) kcal mol\(^{-1}\).

HOSSH Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(T+d)Z level.\(^7\) Lowest energy configuration is the \(\text{syn}\) isomer.

HSOSH Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit, with geometry optimized at the CCSD(T)/aV(T+d)Z level.\(^7\) Lowest energy configuration is the \(\text{syn}\) isomer.

Note 74: **Compounds containing S, H, N and O**

trans-HSNO
Thermodynamic parameters calculated at the CCSDT(Q)/cc-pV(T+d)Z level of theory.\(^2\) In an analysis of the fall-off curve for HS + NO \(\rightarrow\) HSNO, a bond strength of 139 kJ mol\(^{-1}\) was required to match the experimental data, leading to \(\Delta_H^{\text{cis}} = 95\) kJ mol\(^{-1}\).\(^1\) The expected conformation was not indicated.

cis-HSNO
Thermodynamic parameters calculated at the CCSDT(Q)/cc-pV(T+d)Z level of theory.\(^2\)
(1) Black, G.; Patrick, R.; Jusinski, L. E.; Slanger, T. G. Rate coefficients for the reaction HS + NO + M(M = He, Ar, and N\textsubscript{2}) over the temperature range 250-445 K. J. Chem. Phys. 1984, 80, 4065-4070.

Note 75: Compounds containing halogens, S and O or H

FSH Enthalpy from isodesmic reactions calculated at the MPW1K/6-311G(d,p) with single-point calculations at QCISD(T)/6-311G(3df,2dp).

F\textsubscript{2}SO, F\textsubscript{2}SO\textsubscript{2}, FCISO, FCISO\textsubscript{2} The enthalpies were determined from both atomization energies and through isodesmic reactions, after geometric properties were determined by using B3LYP, B1LYP, and mPW1PW91/6-311+G(3df) methods. The isodesmic results using G3, G3B3, CBS-Q, and CBS-QB3 were averaged to yield the recommended values.

(1) Tucceri, M. E.; Badenes, M. P.; Cobos, C. J. Ab initio and density functional theory study of the enthalpies of formation of F\textsubscript{2}SO\textsubscript{x} and FCISO\textsubscript{x} (x=1, 2). J. Fluorine Chem. 2002, 116, 135-141.

Note 76: NS and PS

NS Updated and corrected NIST-JANAF thermochemical tables.1 \(\Delta H^\circ = 277.3\pm2\) kJ mol-1 and \(\Delta H_{298}^\circ = 278.0\pm2\) kJ mol-1 calculated from three working reactions at the CCSD(T) level of theory, extrapolated to CBS limit, with corrections for anharmonic ZPE, scalar and vector relativistic terms, and core-valence electron correlation.

PS Updated and corrected NIST-JANAF thermochemical tables.

Note 77: Compounds containing one C and S, H

CS Taken from review of Gurvich et al.5 The JANAF tables give \(\Delta H^\circ = 277.1\) kJ mol-1, \(\Delta H_{298}^\circ = 280.3\) kJ mol-1, and \(S^\circ = 210.554\) J mol-1.2

CS\textsubscript{2} Taken from review of Gurvich et al.5 The JANAF tables give \(\Delta H^\circ = 116.1\) kJ mol-1, \(\Delta H_{298}^\circ = 116.9\) kJ mol-1, and \(S^\circ = 237.977\) J mol-1.2

HCS Enthalpy \(\Delta H^\circ = 71.7\pm2.0\) kcal mol-1 obtained from a photoionization study of CH\textsubscript{2}S and CHS, obtained by sequential abstraction from CH\textsubscript{3}SH.10 298 K value from Berkowitz et al.1

CH\textsubscript{2}S Enthalpy \(\Delta H^\circ = 28.3\pm2.0\) kcal mol-1 obtained from a photoionization study of CH\textsubscript{3}S and CHS, obtained by sequential abstraction from CH\textsubscript{3}SH.10 Integrated heat capacity from Berkowitz et al.1

CH\textsubscript{3}S Second- and third-law analysis were utilized to obtain an enthalpy of reaction of \(-0.14\pm0.28\) kcal mol-1 for the reaction Br + CH\textsubscript{3}SH \leftrightarrow HBr + CH\textsubscript{3}S.7 Enthalpy calculated at the CCSD(T)/CBS level of theory is 29.7 kcal mol-1.9 DFT calculations support an enthalpy value of 29.78±0.44 kcal mol-1.3
CH₃SH A photoionization study¹⁰ leads to a recommended value for H-CH₃SH of 93.9±2.0 kcal mol⁻¹. The enthalpy is from this and the present values for H and CH₃SH. Enthalpy values calculated at the CCSDT(Q)/cc-pV(T+d)Z level of theory give $\Delta H_0^{\circ} = 142.6$ kJ mol⁻¹ and $\Delta H_{298}^{\circ} = 143.4$ kJ mol⁻¹.⁶ The entropy value is also from this reference.

CH₃SH Enthalpy from Pedley⁹ entropy from Frenkel et al.⁴ Enthalpy calculated at the CCSD(T)/CBS level of theory is −5.31 kcal mol⁻¹.⁹

Note 78: Compounds containing one C and S, H, O

CS₂OH The temperature dependence of the equilibrium constant for the reaction OH + CS₂ ↔ CS₂OH resulted in a heat of reaction of −10.9±1.0 kcal mol⁻¹ and an entropy change of −24.0±4.4 cal K⁻¹ mol⁻¹.⁶

CH₃SO Thermodynamic parameters calculated at the CCSDT(Q)/cc-pV(T+d)Z level of theory.⁷ An enthalpy value of $\Delta H_{298}^{\circ} = −30$ kJ mol⁻¹ was derived from CBS-QB3 calculations on 10 reactions (one isodesmic).⁹

CH₃S(O)O Enthalpy derived from B3PW91 and OBS-QB3 calculations on 3 reactions (one isodesmic).¹¹

CH₃SO Derived from an reaction enthalpy of −22.88 kcal mol⁻¹ for the isodesmic reaction CH₃S + SO₃ → CH₃SO + SO₂ calculated at the CCSD(T) level extrapolated to the CBS limit.⁸

CH₃S(O)O Enthalpies of formation determined using five isodesmic reactions, with structures, vibrational frequencies, and rotational energies calculated at the B3LYP/6-311G(2p,d) level of theory, while the enthalpies were calculated at the CBS-QB3 level.⁴ Heat of atomization, dissociation, and three isodesmic reactions calculated at the G2(MP2) level of theory gave $\Delta H_{298}^{\circ} = −211$ kJ mol⁻¹, used in the previous Table.³ Enthalpy calculated at the CCSD(T)/CBS level of theory is −52.2 kcal mol⁻¹.⁸ A DFT estimate gives −56.3 kcal mol⁻¹.²

CH₃OSO Heat of atomization, dissociation, and two isodesmic reactions calculated at the G2(MP2) level of theory to yield the enthalpy of formation.³
The equilibrium constant for the reaction \(\text{CH}_3\text{S} + \text{O}_2 \leftrightarrow \text{CH}_3\text{SOO} \) was measured between 216 to 258 K and resulted in a bond strength of 11.7±0.9 kcal mol\(^{-1}\).\(^{10}\)

CH\(_3\)S(O)OH and CH\(_3\)S(O)OH

Enthalpies of formation determined using five isodesmic reactions, with structures, vibrational frequencies, and rotational energies calculated at the B3LYP/6-311G(2p,d) level of theory, while the enthalpies were calculated at the CBS-QB3 level.\(^4\)

OCS

Taken from review of Gurvich et al.\(^5\) The JANAF Tables give \(\Delta_f H^\circ = -138.5 \text{ kJ mol}^{-1} \), \(\Delta_f H_{298}^\circ = -138.4 \text{ kJ mol}^{-1} \), and \(S^\circ = 231.581 \text{ J mol}^{-1} \).\(^1\)

SCSOH and S\(_2\)COH

Thermodynamic parameters calculated at the CCSDT(Q)/cc-pV(T+d)Z level of theory.\(^7\)

Note 79: Compounds containing two C and S, H

CH\(_3\)SCH\(_3\)

An analysis of the equilibrium constant for the reaction Br + CH\(_3\)SCH\(_3\) ⇄ HBr + CH\(_3\)SCH\(_2\) resulted in a heat of reaction of 6.11±1.37 kcal mol\(^{-1}\),\(^2\) which was combined with present enthalpy values.

CH\(_3\)SCH\(_3\)

Enthalpy value from Pedley,\(^3\) entropy value from Frenkel et al.\(^1\)

CH\(_3\)SSCH\(_3\)

Enthalpy value from Pedley,\(^3\) entropy value from Frenkel et al.\(^1\)

C\(_2\)H\(_4\)SH

Enthalpy value from Pedley,\(^3\)

HSCH\(_2\)CH\(_2\)SH, 1,2-ethanedithiol

Enthalpy value from Pedley,\(^3\)

6-107
(1) Frenkel, M.; Kabo, G. J.; Marsh, K. N.; Roganov, G. N.; Wilhoit, R. C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, 1994; Vol. I.

(2) Jefferson, A.; Nicovich, J. M.; Wine, P. H. Temperature-dependent kinetics studies of the reactions Br(3P\textsubscript{3/2}) + CH\textsubscript{3}SCH\textsubscript{3} \rightarrow CH\textsubscript{3}SCH\textsubscript{2} + HBr. Heat of formation of the CH\textsubscript{3}SCH\textsubscript{2} radical. J. Phys. Chem. 1994, 98, 7128-7135, doi:10.1021/j100080a006.

(3) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 80: Compounds containing two C and S, H, O

CH\textsubscript{3}S(O)CH\textsubscript{3}, dimethyl sulfoxide

Enthalpy value from Pedley.2

CH\textsubscript{3}S(O)OCH\textsubscript{3}

Enthalpies of formation determined using five isodesmic reactions, with structures, vibrational frequencies, and rotational energies calculated at the B3LYP/6-311G(2p,d) level of theory, while the enthalpies were calculated at the CBS-QB3 level.1

CH\textsubscript{3}C(O)SH, ethanethioic acid

Enthalpy value from Pedley.2

(2) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Note 81: Compounds containing Li

Li CODATA Key Value.2 The Lamoreaux and Hildenbrand review gives $\Delta H_{298}^f = 159.4\pm0.4$ kJ mol-1 and $S^\circ = 138.69$ J mol-1 K-1.4

Li\textsubscript{2} Enthalpy and entropy values from the JANAF tables, adopting the ΔH_{298}^f value from the NBS table.1 The Lamoreaux and Hildenbrand review gives $\Delta H_{298} = 214.9\pm1.2$ kJ mol-1 and $S^\circ = 98.79$ J mol-1 K-1.4

LiH Enthalpy and entropy values from the JANAF tables. A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{298}^f = 139.3\pm4$ kJ mol-1 and $\Delta H^\circ = 139.3\pm4$ kJ mol-1 K-1.6

LiF Enthalpy and entropy values from the JANAF tables.1 A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{298}^f = -340.6\pm4$ kJ mol-1 and $\Delta H^\circ = -340.6\pm4$ kJ mol-1 K-1.6

LiCl Enthalpy and entropy values from the JANAF tables.1 A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{298}^f = -192.9\pm4$ kJ mol-1 and $\Delta H^\circ = -192.9\pm1$ kJ mol-1 K-1.6

LiBr Enthalpy and entropy values from the JANAF tables.1

LiOH From an extensive evaluation from the Thermocenter of the RAS.3 The JANAF Tables give $\Delta H_{298}^\circ = -234\pm6$ kJ mol-1, $\Delta H_{298}^f = -234\pm4$ kJ mol-1, and $S^\circ = 210.66\pm2.1$ J mol-1 K-1.1 A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{298}^f = -239.7\pm4$ kJ mol-1 and $\Delta H^\circ = -237.7\pm1$ kJ mol-1 K-1.6

LiO The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit. Cited values are for the $^2\Sigma^+$ state. Enthalpy at both 0 K and 298 K for the $^2\Sigma^+$ state is 89.5\pm4 kJ mol-1.6 The JANAF values are $\Delta H_{298}^f = 84\pm21$ kJ mol-1 and
\(\Delta_t H_0^o = 84\pm21 \text{ kJ mol}^{-1} \), and the cited entropy.\(^1\) The Pedley and Marshall review gives \(\Delta_t H_{298}^o = 75\pm8 \text{ kJ mol}^{-1} \).\(^5\) The Lamoreaux and Hildenbrand review gives \(\Delta_t H_{298}^o = 69.0\pm4.2 \text{ kJ mol}^{-1} \) and \(S^o = 211.11 \text{ J mol}^{-1} \).\(^4\)

LiO\(_2\) and LiO\(_3\)

Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit.\(^6\)

Li\(_2\)O

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit.\(^6\) The JANAF values, calculated from the enthalpy of the crystal and the enthalpy of sublimation, are \(\Delta_t H_{298}^o = -167\pm10 \text{ kJ mol}^{-1} \) and \(\Delta_t H_0^o = -166\pm10 \text{ kJ mol}^{-1} \), and the cited entropy.\(^1\) The Lamoreaux and Hildenbrand review gives \(\Delta_t H_{298}^o = -172.8\pm3.7 \text{ kJ mol}^{-1} \) and \(S^o = 229.15 \text{ J mol}^{-1} \).\(^4\)

Li\(_2\)SO\(_4\)

Enthalpy and entropy values from the JANAF tables.\(^1\)

gives $\Delta H_{98} = 100\pm17$ kJ mol$^{-1}$. The Lamoreaux and Hildenbrand review gives $\Delta H_{98} = 104.6\pm4.2$ kJ mol$^{-1}$ and $S^\circ = 228.48$ J mol$^{-1}$.

NaO$_2$ and NaO$_3$

Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit.

NaO

Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit. The Lamoreaux and Hildenbrand review gives $\Delta H_{98} = -31.8\pm3.7$ kJ mol$^{-1}$ and the cited entropy.

Na$_2$SO$_4$

Enthalpy and entropy values from the JANAF tables.

Note 83: Compounds containing K

CODATA Key Value. The Lamoreaux and Hildenbrand review gives $\Delta H_{98} = 89.2\pm0.2$ kJ mol$^{-1}$ and the cited entropy.

K

Enthalpy and entropy values from the JANAF tables. A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{98} = 132.2\pm4$ kJ mol$^{-1}$ and $\Delta H^\circ = 134.7\pm4$ kJ mol$^{-1}$.

KH

Enthalpy and entropy values from the JANAF tables. A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{98} = -326.8\pm4$ kJ mol$^{-1}$ and $\Delta H^\circ = -324.7\pm4$ kJ mol$^{-1}$.

KF

Enthalpy and entropy values from the JANAF tables. A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{98} = -215.5\pm4$ kJ mol$^{-1}$ and $\Delta H^\circ = -213.4\pm4$ kJ mol$^{-1}$.

KCl

Enthalpy and entropy values from the JANAF tables. A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{98} = -221.8\pm4$ kJ mol$^{-1}$ and $\Delta H^\circ = -218.0\pm4$ kJ mol$^{-1}$.

KBr

Enthalpy and entropy values from the JANAF tables.

KOH

From an extensive evaluation from the Thermocenter of the RAS. The JANAF Tables give $\Delta H_{98} = -233\pm12$ J mol$^{-1}$ and $\Delta H^\circ = -228\pm12$ J mol$^{-1}$; and $S^\circ = 236.379\pm1.31$ J mol$^{-1}$. A calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit, leads to $\Delta H_{98} = -221.8\pm4$ kJ mol$^{-1}$ and $\Delta H^\circ = -218.0\pm4$ kJ mol$^{-1}$.

KO

The enthalpy is from a calculation of the atomization energy at the CCSD(T) level, extrapolated to the CBS limit. Cited values are for the $^2\Sigma^+$ state. For the $^2\Sigma^+$ state $\Delta H_{98} = 59.8\pm4$ kJ mol$^{-1}$ and $\Delta H^\circ = 61.9\pm4$ kJ mol$^{-1}$. The JANAF values are $\Delta H_{98} = 71\pm40$ kJ mol$^{-1}$ and $\Delta H^\circ = 73\pm40$ kJ mol$^{-1}$, and the cited entropy. The Pedley and Marshall review gives $\Delta H_{98} = 61\pm1$ kJ mol$^{-1}$. The Lamoreaux and Hildenbrand review gives $\Delta H_{98} = 59.9\pm4.2$ kJ mol$^{-1}$ and $S^\circ = 237.88$ J mol$^{-1}$.

KO$_2$ and KO$_3$

Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit.

6-110
K₂O Atomization energy calculated by the CCSD(T) extrapolated to the CBS limit.⁵ The Lamoreaux and Hildenbrand review gives $\Delta H_{298} = -58.61\pm2.2$ kJ mol⁻¹ and the cited entropy.⁴

K₂SO₄ Enthalpy and entropy values from the JANAF tables.¹

Note 84: **Compounds containing Hg and H or O**

Hg⁶ CODATA key values,² with the 0 K value calculated in JANAF.¹ The NBS Tables give $\Delta H^0(298 \text{ K}) = 61.32$ kJ mol⁻¹ and $S^0 = 179.03$ J mol⁻¹ K⁻¹.¹¹ The review of Hepler and Olofsson accept the NBS value, but also discuss some more recent vapor pressure measurements.⁶

HgH Chosen values from the JANAF Table.¹ based on results reported by Herzberg.⁷ Also selected by Hepler and Olofsson.⁶ The NBS Tables give $\Delta H^0(298 \text{ K}) = 239.32$ kJ mol⁻¹ and $S^0 = 219.49$ J mol⁻¹ K⁻¹.¹¹ A calculation using NESC/CCSD(T) in combination with triple-zeta basis sets, gave BDE $= 38.5$ kJ mol⁻¹, which leads to $\Delta H^0(0 \text{ K}) = 238.76$ kJ mol⁻¹.³

HgH₂ The cited enthalpy values are an average of those calculated for the atomization energy and for the bond-dissociation reaction, HgH₂ \rightarrow HgH + H, both done at the NESC/B3LYP level of theory.³

HgO The selected enthalpy of formation is derived from computational determinations of the bond dissociation energy. Dissociation from both the $^1\Sigma^+$ (to HgS and O¹D) and $^3\Pi$ (to HgS and O³P) states of HgO have been reported, with some disagreement about which is the ground state. From a relativistically-corrected MP4/CCSD(T) calculation, $D_0 = 9.2$ kJ mol⁻¹ from a triplet ground state by Filatov and Cremer.⁴ A subsequent study from the same group, adding the normalized elimination of the small component technique to improve the treatment of scalar relativistic effects, found the $^3\Pi$ state 5.4 kJ mol⁻¹ lower than the $^1\Sigma^+$ state, and also calculated BDEs of 16.1 kJ mol⁻¹ along the triplet surface and 202.9 kJ mol⁻¹ along the singlet surface, both adjusted to 298 K.³ At 0 K, the calculated triplet BDE was 14.6 kJ mol⁻¹. In contrast, a MRCI + Q/CBS level calculation by Peterson et al.⁹ found a singlet ground state and computed a BDE of 203.3 kJ mol⁻¹ at 0 K. This result is in agreement with earlier calculations from the same laboratory which resulted in a BDE to ground-state atoms of 17 and 19.1 kJ mol⁻¹.⁹,¹⁰

There has been an experimental determination of the dissociation energy of HgO by using high-temperature mass spectrometry.⁵ In strong disagreement with the computational studies, a value of 222±33 kJ mol⁻¹ was determined. Filatov and Cremer⁴ have made a compelling case that the species detected in the mass spectrometer being a dimer, either or both HgO₂Hg and OHg₂O. There is clearly a great need for additional experimental work on HgO, but at this point, we accept the theoretical argument.

6-111

Note 85: Mono- and Di-halides of Hg

HgF, HgCl, HgBr, Hgl, HgF3, HgCl3, HgBr3, HgI2
At this time, we accept the JANAF values. More recent experimental and computational results scatter around these values, with no clear pattern. These are discussed below.

HgF
The JANAF enthalpy value has a stated uncertainty of ±50 kJ mol⁻¹. We have reduced this to ±20 kJ mol⁻¹ in light of the additional results discussed below. The JANAF enthalpy value leads to a BDE of 134±20 kJ mol⁻¹ at 0 K. A MP4/CCSD(T) calculation, including a normalized elimination of the small component (NESC) technique to improve the treatment of scalar relativistic effects, resulted in a BDE of 129 kJ mol⁻¹, while another CCSD(T) study led to values of 137 and 115 kJ mol⁻¹ with the CRENBL and AVTZ-PP relativistic effective core potentials, respectively.⁶

HgCl
The JANAF enthalpy value leads to a BDE of 102±10 kJ mol⁻¹ at 0 K. A reanalysis of the spectral data suggested a value of ~106 kJ mol⁻¹.⁹ A more recent spectral study led to an upper limit on the BDE of 98 kJ mol⁻¹, although an analysis of these data by using empirical potential energy functions led to BDE = 107 kJ mol⁻¹.² Computational results tend to be lower: A CCSD(T)/CBS with relativistic pseudopotentials, corrected for spin-orbit coupling, gave a BDE of 96 kJ mol⁻¹,³ whereas a MP4/CCSD(T) calculation, including a normalized elimination of the small component (NESC) technique to improve the treatment of scalar relativistic effects, resulted in a BDE of 89.5 kJ mol⁻¹.⁴ Another CCSD(T) study led to values of 94 and 78 kJ mol⁻¹ with the CRENBL and AVTZ-PP relativistic effective core potentials, respectively.⁶

HgBr
The JANAF enthalpy value has a stated uncertainty of ±38 kJ mol⁻¹. We have reduced this to ±10 kJ mol⁻¹ in light of the additional results discussed below. The JANAF enthalpy value leads to a BDE of 67±10 kJ mol⁻¹ at 0 K. A reanalysis of the spectral data suggested a value
of ~72 kJ mol\(^{-1}\). A more recent spectral study led to a BDE of 66.1 kJ mol\(^{-1}\), although an analysis of these data by using empirical potential energy functions led to BDE = 61.75 kJ mol\(^{-1}\). A CCSD(T)/CBS with relativistic pseudopotentials, corrected for spin-orbit coupling, gave a BDE of 68 kJ mol\(^{-1}\), whereas a MP4/CCSD(T) calculation, including a normalized elimination of the small component (NESC) technique to improve the treatment of scalar relativistic effects, resulted in a BDE of 60 kJ mol\(^{-1}\). Another CCSD(T) study led to values of 21 and 59 kJ mol\(^{-1}\) with the CRENBL and AVTZ-PP relativistic effective core potentials, respectively. A slightly different BDE of 66.3 kJ mol\(^{-1}\) was used in the analysis of the equilibrium constant data in Table 3-1, Note 33.

HgI

The JANAF enthalpy value leads to a BDE of 32.9±5 kJ mol\(^{-1}\) at 0 K. A reanalysis of the spectral data suggested a value of 37.3 kJ mol\(^{-1}\). A more recent spectral study led to a BDE of 33.5 kJ mol\(^{-1}\), although an analysis of these data by using empirical potential energy functions led to BDE = 37.3 kJ mol\(^{-1}\). A CCSD(T)/CBS calculation with relativistic pseudopotentials, corrected for spin-orbit coupling, gave a BDE of 36 kJ mol\(^{-1}\) whereas a MP4/CCSD(T) calculation, including the normalized elimination of the small component (NESC) technique to improve the treatment of scalar relativistic effects, resulted in a BDE of 46 kJ mol\(^{-1}\). Another CCSD(T) study led to values of 15 and 38.5 kJ mol\(^{-1}\) with the CRENBL and AVTZ-PP relativistic effective core potentials, respectively.

HgF

In this case, the values listed in the JANAF Table are estimated. Enthalpy values have been calculated for the atomization energy and for the bond-dissociation reaction, HgF\(_2\) \(\rightarrow\) HgF + F at the NESC/B3LYP level of theory, leading to average values of \(\Delta H^0(298 K) = -288 \text{ kJ mol}^{-1}\) and \(\Delta H^0(0 K) = -296 \text{ kJ mol}^{-1}\). A CCSD(T) study led to \(\Delta H^0(0 K) = -302\) and \(-285 \text{ kJ mol}^{-1}\) with the CRENBL and AVTZ-PP relativistic effective core potentials, respectively.

HgCl

The values listed in the JANAF Table are based on a third-law analysis. A CCSD(T) calculation utilizing small-core relativistic effective core potentials for the reaction Hg + Cl\(_2\) \(\rightarrow\) HgCl led to \(\Delta H^0(0 K) = -139 \text{ kJ mol}^{-1}\). Another CCSD(T) study led to \(\Delta H^0(0 K) = -134\) and \(-122 \text{ kJ mol}^{-1}\) with the CRENBL and AVTZ-PP relativistic effective core potentials, respectively. A third CCSD(T) study, with the ECP60MDF relativistic core potential and B3LYP/aVTZ structures gave \(-135 \text{ kJ mol}^{-1}\).

HgBr

The values listed in the JANAF Table are based on a third-law analysis. A CCSD(T) calculation utilizing small-core relativistic effective core potentials for the reaction Hg + Br\(_2\) \(\rightarrow\) HgBr\(_2\) led to \(\Delta H^0(0 K) = -67 \text{ kJ mol}^{-1}\). Another CCSD(T) study led to \(\Delta H^0(0 K) = -42\) and \(-34 \text{ kJ mol}^{-1}\) with the CRENBL and AVTZ-PP relativistic effective core potentials, respectively. A third CCSD(T) study, with the ECP60MDF relativistic core potential and B3LYP/aVTZ structures gave \(\Delta H^0(0 K) = -81 \text{ kJ mol}^{-1}\).

HgI\(_2\)

The values listed in the JANAF Table are based on a third-law analysis. A calculated enthalpy for the reaction HgI\(_2\) \(\rightarrow\) Hg + I\(_2\) at the CCSD(T)/CBS limit with corrections for core-valence correlation, spin-orbit coupling, Lamb shift, and scalar relativity leads to the value \(\Delta H^0(0 K) = -16 \text{ kJ mol}^{-1}\). Another CCSD(T) study led to \(\Delta H^0(0 K) = 9.6\) and 20 kJ mol\(^{-1}\) with the CRENBL and AVTZ-PP relativistic effective core potentials, respectively.

Note 86: *Mixed di-halides of Hg*

ClHgBr, ClHgI, BrHgI

The mixed di-halides of mercury. 0 K enthalpy values from calculated reaction enthalpies at the CCSD(T)/CBS limit with corrections for core-valence correlation, spin-orbit coupling, Lamb shift, and scalar relativity.\(^1\) The enthalpy value for HgI\(_2\) in this study is about 6.5 kJ mol\(^{-1}\) lower than that selected above. Entropy values from NBS 270-4.\(^2\)

Note 87: *Compounds containing Hg, a halogen, and O*

IHgO

0 K enthalpy value from calculated reaction enthalpies at the CCSD(T)/CBS limit with corrections for core-valence correlation, spin-orbit coupling, Lamb shift, and scalar relativity.\(^1\)

Note 88: *Addition compounds formed in the reactions of HgCl and HgBr with free radicals.*

Bond energies obtained at the CCSD(T) level of theory with the ECP60MDF relativistic core potential and B3LYP/aVTZ structures. Results at the B3LYP and CCSD levels also reported.\(^1\) The same set of calculation led to \(\Delta H^0(0\,\text{K}) = -135\) and \(-81\,\text{kJ mol}^{-1}\) for HgCl\(_2\) and HgBr\(_2\), respectively.

Note 89: *Organo-mercury compounds*

HgCH\(_3\)

From a calculation carried out at the RCCSD(T)//QCISD/A level of theory.\(^1\) The NBS Table recommends a value of 168 kJ mol\(^{-1}\).\(^3\)

Hg(CH\(_3\))\(_2\)

Enthalpy of formation taken from a review of experimental studies.\(^2\) The NBS Table recommends a value of 94.8 kJ mol\(^{-1}\).\(^3\) This was also the source of the entropy value.

Hg(C\(_2\)H\(_5\))\(_2\)

Enthalpy of formation taken from a review of experimental studies.\(^2\) The NBS Table recommends a value of 75.3 kJ mol\(^{-1}\).\(^3\)

Note 90: Halo-organo-mercury compounds

ClHgCH$_3$ Enthalpy of formation taken from a review of experimental studies.1 The NBS Table recommends a value of -52.3 kJ mol$^{-1}$.2

BrHgCH$_3$ Enthalpy of formation taken from a review of experimental studies.1 The NBS Table also recommends a value of -18.4 kJ mol$^{-1}$.2

IHgCH$_3$ Enthalpy of formation taken from a review of experimental studies.1 The NBS Table recommends a value of 21.8 kJ mol$^{-1}$.2

ClHgC$_2$H$_5$ Enthalpy of formation taken from a review of experimental studies.1 The NBS Table recommends a value of -62.8 kJ mol$^{-1}$.2

BrHgC$_2$H$_5$ Enthalpy of formation taken from a review of experimental studies.1 The NBS Table recommends a value of -30.1 kJ mol$^{-1}$.2

IHgC$_2$H$_5$ Enthalpy of formation taken from a review of experimental studies.1 The NBS Table recommends a value of 13.8 kJ mol$^{-1}$.2

6.3 Bibliography – Thermodynamic Parameters

Black, G.; Patrick, R.; Jusinski, L. E.; Slanger, T. G. Rate coefficients for the reaction HS + NO + M(M = He, Ar, and N₂) over the temperature range 250-445 K. J. Chem. Phys. 1984, 80, 4065-4070.

6-121

Lago, A. F.; Baer, T. A photoelectron photoion coincidence study of the vinyl bromide and tribromoethane ion dissociation dynamics: Heats of formation of C$_2$H$_4$+, C$_2$H$_3$Br, C$_2$H$_3$Br+, C$_2$H$_4$I$_2$+, and C$_2$H$_3$Br$_2$+. J. Phys. Chem. A 2006, 110, 3036-3041, doi:10.1021/jp053943x.

Marshall, P. Computational studies of the thermochemistry of the atmospheric iodine reservoirs HOI and IONO₂. Advances in Quantum Chemistry 2008, 159-175.

Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Seetula, J. A. Kinetics and thermochemistry of the $\text{C}_2\text{H}_5 + \text{HBr} \rightarrow \text{C}_2\text{H}_4 + \text{Br}$ equilibrium. *Phys. Chem. Chem. Phys.* **1999**, *1*, 4727-4731.

Seetula, J. A. Kinetics of the $\text{R} + \text{HBr} \rightarrow \text{RH} + \text{Br} \left(\text{R} = \text{CH}_2\text{I} \text{ or CH}_3 \right)$ reaction. An *ab initio* study of the enthalpy of formation of the CH_2I, CH_3 and Cl_3 radicals. *Phys. Chem. Chem. Phys.* **2002**, *4*, 455-460, doi:10.1039/b107407p.

Seetula, J. A. Kinetics of the $\text{R} + \text{HBr} \rightarrow \text{RH} + \text{Br} \left(\text{R} = \text{CH}_2\text{Br}, \text{CHBrCl} \text{ or CCl}_3 \right)$ equilibrium. Thermochemistry of the CH_2Br and CHBrCl radicals. *Phys. Chem. Chem. Phys.* **2003**, *5*, 849-855, doi:10.1039/b210787m.

Seetula, J. A.; Slagel, I. R. Kinetics and thermochemistry of the $\text{R} + \text{HBr} \rightarrow \text{RH} + \text{Br} \left(\text{R} = \text{n-C}_3\text{H}_7, \text{iso-C}_3\text{H}_7, \text{sec-C}_3\text{H}_7, \text{or tert-C}_3\text{H}_7 \right)$ equilibrium. *J. Chem. Soc. Faraday Trans.* **1997**, *93*, 1709-1719.

Sicre, J. E.; Cobos, C. J. Thermochemistry of the higher chlorine oxides ClO$_x$ (x = 3,4) and Cl$_2$O$_x$ (x = 3 - 7). *J. Mol. Struct. (Theochem)* **2003**, *620*, 215-226.

Stevens, W. R.; Bodi, A.; Baer, T. Dissociation dynamics of energy selected, propane, and $\text{i-C}_3\text{H}_5^+$ ions by iPEPICO: Accurate heats of formation of $\text{i-C}_3\text{H}_5^+$, $\text{i-C}_3\text{H}_5\text{Cl}$, $\text{i-C}_3\text{H}_5\text{Br}$, and $\text{i-C}_3\text{H}_5\text{I}$. *J. Phys. Chem. A* **2010**, *114*, 11285-11291, doi:10.1021/jp104200h.

Thanhirwatte, K. S.; Vasiliiu, M.; Dixon, D. A.; Christe, K. 0. Structural and energetic properties of closed shell XF₃ (X = Cl, Br, and I; n = 1−7) and XO₆F₆ (X = Cl, Br, and I; n = 1−3; m = 0−6) molecules and ions leading to stability predictions for yet unknown compounds. Inorg. Chem. 2012, 51, 10966-10982, doi:10.1021/ic301438b.

6-129

SECTION 7. BIBLIOGRAPHY – MASTER

A

Allanic, A.; Oppliger, R.; Rossi, M. J. Real-time kinetics of the uptake of HOBr and BrONO_2 on ice and in the presence of HCl in the temperature range 190-200 K. J. Geophys. Res. 1997, 102, 23529-23541.

Allanic, A.; Oppliger, R.; van den Bergh, H.; Rossi, M. J. The heterogeneous kinetics of the reactions ClONO_2 + HX/ice (X = Cl, Br, I); BrONO_2 + HI/ice and the reactivity of the interhalogens BrCl, ICl and IBr with HX/ice (X = Cl, Br, I) in the temperature range 180 to 205 K. Z. Phys. Chem. 2000, 214, 1479-1500.

Armerding, W.; Comes, F. J.; Schulke, B. O¹(D) quantum yields of ozone photolysis in the UV from 300 nm to its threshold at 355 nm. *J. Phys. Chem.* 1995, 99, 3137-3143.

Arnold, I.; Comes, F. J. Photolysis of ozone in the ultraviolet region. Reactions of O¹(D), O³(Δg) and O₂⁺. *Chem. Phys.* 1980, 47, 125-130.

Arnold, I.; Comes, F. J. Temperature dependence of the reactions O³(P) + O₃ → 2O₂ and O³(P) + O₂ + M → O₃ + M. *Chem. Phys.* 1979, 42, 231-239.

B

Back to Index

Ball, S. M.; Hancock, G.; Martin, S. E.; Pinot de Moira, J. C. A direct measurement of the O(1D) quantum yields from the photodissociation of ozone between 300 and 328 nm. Chem. Phys. Lett. 1997, 264, 531-538.

Barone, S. B.; Turnipseed, A. A.; Gierczak, T.; Ravishankara, A. R. Quantum yields of H(3S) and CH3S(2E) from the photolysis of simple organosulfur compounds at 193, 222, and 248 nm. J. Phys. Chem. 1994, 98, 11969-11977.

Becker, K. H.; Groth, W.; Schurath, U. The quenching of metastable O2(^1Δg) and O2(^3Σg^-) molecules. *Chem. Phys. Lett.* 1971, 8, 259-262.

Black, G.; Patrick, R.; Jusinski, L. E.; Slanger, T. G. Rate coefficients for NO reactions with O₂, O₃, and NO₂. Chem. Phys. Lett. 1984, 102, 64-68.

Black, G.; Sharpless, R. L.; Slanger, T. G. Rate coefficients for SO reactions with O₂, O₃ and NO₂ at 298 K. Chem. Phys. Lett. 1983, 102, 64-68.

Bodi, A.; Kercher, J. P.; Bond, C.; Meteesatien, P.; Sztaray, B.; Baer, T. Photoion photoelectron coincidence spectroscopy of primary amines RCH\textsubscript{2}NH\textsubscript{2} (R=H, CH\textsubscript{3}, C\textsubscript{2}H\textsubscript{5}, i-C\textsubscript{3}H\textsubscript{7}): Alkylamine and alkyl radical heats of formation by isodesmic reaction networks *J. Phys. Chem.* A 2006, 110, 13425-13433, doi:10.1021/jp064739s.

Borders, R. A.; Birks, J. W. High-precision measurements of activation energies over small temperature intervals: Curvature in the Arrhenius plot for the reaction NO + O\textsubscript{3} → NO\textsubscript{2} + O\textsubscript{2}. *J. Phys. Chem.* 1982, 86, 3295-3302.

Borissenko, D.; Kukui, A.; Laverdet, G.; Le Bras, G. Experimental study of SO\textsubscript{2} formation in the reactions of CH\textsubscript{3}SO radical with NO\textsubscript{2} and O\textsubscript{3} in relation with the atmospheric oxidation mechanism of dimethyl sulfide. *J. Phys. Chem.* A 2003, 107, 1155-1161, doi:10.1021/jp021701g.

Borrell, P.; Cobos, C. J.; Luther, K. Falloff curve and specific rate constants for the reaction NO2 + NO2 ⇄ N2O4. *J. Phys. Chem.* 1988, 92, 4377-4384.

Borrell, P.; Richards, D. S. Quenching of singlet molecular oxygen O2(a1Δg) and O2(b1Σg+) by H2, D2, HCl, and HBr. *J. Chem. Soc. Faraday Trans.* 2 1989, 85, 1401-1411.

Brekenridge, W. H.; Miller, T. A. Kinetic study by EPR of the production and decay of SO(1Δ) in the reaction of O2(1Δg) with SO(1Σg). *J. Chem. Phys.* 1972, 56, 465-474.

Burton, G. R.; Chan, W. F.; Cooper, G.; Brion, C. E. Valence- and inner-shell (Cl 2p, 2s; C 1s) photoabsorption and photoionization of carbon tetrachloride. Absolute oscillator strengths (5-400 eV) and dipole-induced breakdown pathways. Chem. Phys. 1994, 181, 147-172.

C Back to Index

Cantrell, C. A.; Shetter, R. E.; McDaniel, A. H.; Calvert, J. G. The rate coefficient for the reaction NO2 + NO3 → NO + NO2 + O2 from 273 to 313 K. *J. Geophys. Res.* 1990, 95, 20531-20537.

Caralp, F.; Lesclaux, R. Rate constant for the reaction of the CFCl3 radical with oxygen in the pressure range 0.2-12 Torr at 298 K. *Chem. Phys. Lett.* 1983, 102, 54-58.

Chai, L.; Allanic, A.; Rossi, M. J. Heterogeneous chemistry of HOBr on different types of ice and on ice doped with HCl, HBr, and HNO3 at 175 K < T < 125 K. J. Phys. Chem. A 2000, 104, 7268-7277, doi:10.1021/jp001018z.

7-27

Chesnokov, E. N. Application of IR-chemiluminescence method for determination of rate constants of bimolecular reactions which are not leading to the formation of excited products. *Khim. Fiz.* 1991, 10, 204-212.

Cheung, A. S. C.; Yoshino, K.; Parkinson, W. H.; Freeman, D. E. Herzberg continuum cross section of oxygen in the wavelength region 193.5 – 204.0 nm and band oscillator strengths of the (0,0) and (1,0) Schumann-Runge bands *Can. J. Phys.* 1984, 62, 1752-1762.

Choo, K. Y.; Leu, M. T. Determination of O2(1Σg) and O2(1Δg) yields in Cl + O2 and Cl + O3 reactions. J. Phys. Chem. 1985, 89, 4832-4837, doi:10.1021/j100268a035.

7-31

Clark, R. H.; Husain, D. Quantum yield measurements of Cl(3P(1/2)) and Cl(3P(3/2)) in the photolysis of C₂Br₂ determined by atomic resonance absorption spectroscopy in the vacuum UV. *J. Photochem.* 1984, 24, 103-115.

7-32
Clyne, M. A. A.; Holt, P. M. Reaction kinetics involving ground \(\chi^2 \Pi \) and excited \(A^2 \Sigma^+ \) hydroxyl radicals Part 2.-Rate constants for reactions of OH \(\chi^2 \Pi \) with halogenomethanes and halogenoethanes. J. Chem. Soc. Faraday Trans. 2 1979, 75, 582-591.

Clyne, M. A. A.; Walker, R. F. Absolute rate constants for elementary reactions in the chlorination of CH\(_4\), CD\(_4\), CH\(_3\)Cl, CH\(_2\)Cl\(_2\), CHCl\(_3\), CCl\(_4\), and Br\(_2\). J. Chem. Soc. Faraday Trans. 1 1973, 69, 1547-1567.

Codnia, J.; Azcarate, M. L. Rate measurement of the reaction of CF\(_3\)Cl radicals with O\(_3\). Photochem. Photobiol. 2006, 82, 755-762.

7-34

D

Davidson, J. A.; Howard, C. J.; Schiff, H. I.; Felshenfeld, F. C. Measurements of the branching ratios for the reaction of O(1D) with N2O. *J. Chem. Phys.* 1979, 70, 1697-1704.

DeMore, W. B. Rate constant and possible pressure dependence of the reaction OH + HO

DeMore, W. B. Experimental and estimated rate constants for the reactions of hydroxyl radicals with several

DeMore, W. B. Equilibrium constant for the reaction ClO + O

DeMore, W. B. Arrhenius co

Delmdahl, R. F.; Ullrich, S.; Gericke, K.

Delmdahl, R. F.; Parker, D. H.; Eppink, A. T. J. B. Short wavelentgh photolysis of jet
cooled OClO(Ã

De Sousa, A. R.;

De Smedt, F.; Bui, X. V.; Nguyen, T. L.; Peeters, J.; Vereecken, L. Theoretical and experimental study of the
de Reilhac, L.; Damany, N. Spectres d'absorption de H

de Petris, G.; Rosi, M.; Troiani, A. Direct experimental observation of CS

de Reilhac, L.; Damany, N. Spectres d’absorption de H2O, NH3 et CH4 dans l’ultraviolet extrême (100-500 Å).

de Reilhac, L.; Damany, N. Spectres d’absorption de H2O, NH3 et CH4 dans l’ultraviolet extrême (100-500 Å).

de Reilhac, L.; Damany, N. Spectres d’absorption de H2O, NH3 et CH4 dans l’ultraviolet extrême (100-500 Å).

De Smedt, F.; Bui, X. V.; Nguyen, T. L.; Peeters, J.; Vereecken, L. Theoretical and experimental study of the
product branching in the reaction of acetic acid with OH radicals. J. Phys. Chem. A 2005, 109, 2401-2409,
doi:10.1021/jp044679v.

De Sousa, A. R.; Touzeau, M.; Petitdidier, M. Quenching reactions of metastable N

Deiber, G.; George, C.; Le Calve, S.; Schweitzer, F.; Mirabel, P. Uptake study of ClONO2 and BrONO2 by halide

Delmdahl, R. F.; Ulrich, S.; Gericke, K.-H. Photofragmentation of OCIO(Ã

Delval, C.; Rossi, M. J. The kinetics of condensation and evaporation of H2O from pure ice in the range 173-223 K:

1969, 1, 209-220.

DeMore, W. B. Equilibrium constant for the reaction ClO + O2 ↔ ClO•O2. Geophys. Res. Lett. 1990, 17, 2353-
2355.

DeMore, W. B. Experimental and estimated rate constants for the reactions of hydroxyl radicals with several

7-39

Disselkamp, R. S.; Carpenter, M. A.; Cowin, J. P. A chamber investigation of nitric acid-soot aerosol chemistry at 298 K. *J. Atmos. Chem.* **2000**, *37*, 113-123.

Dreyer, J. W.; Perner, D.; Roy, C. R. Rate constants for the quenching of N₂(³Σg⁺, ν₈ = 0-8) by CO, CO₂, NH₃, NO, and O₃. J. Chem. Phys. 1974, 61, 3164-3169.

Fang, T. D.; Taylor, P. H.; Dellinger, B. Absolute rate measurements of the reaction of OH radicals with HCFC-21 (CHFCl₂) and HCFC-22 (CHF₂Cl) over an extended temperature range. *J. Phys. Chem.* 1996, 100, 4048-4054.

Finlayson-Pitts, B. J.; Ezell, M. J.; Pitts, J. N., Jr. Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N$_2$O$_5$ and ClONO$_2$. *Nature* 1989, 337, 241-244.

Fletcher, I. S.; Husain, D. The collisional quenching of O(2¹D₅) by COCl₂, COFCl and COF₂ using atomic absorption spectroscopy in the vacuum ultraviolet. J. Photochem. 1978, 8, 355-361.

G

Back to Index

Gilpin, R.; Schiff, H. I.; Welge, K. H. Photodissociation of O3 in the Hartley band. Reactions of O(1D) and O2(1Σg+u) with O3 and O2. J. Chem. Phys. 1971, 55, 1087-1093.

Grosch, H.; Fateev, A.; Clausen, S. UV absorption cross-sections of selected sulfur-containing compounds at temperatures up to 500 °C. *J. Quant. Spec. Rad. Transfer* 2015, 154, 28-34, doi:10.1016/j.jqsrt.2014.11.020.

H

Back to Index

Hancock, G.; Hofzumahaus, A. Experimental Study of the Altitude Dependence of the Tropospheric Ozone Photolysis Frequency, J(O(1D)) Between 0 and 12 km Height (ATOP), EU R and D Programme Environment and Climate ENV4-CT95-0158, 1997.

Hahn, J.; Luther, K.; Troe, J. Experimental and theoretical study of the temperature and pressure dependences of the recombination reactions O + NO₂(+M) → NO₃(+M) and NO₂ + NO₂(+M) → N₂O₅(+M). *Phys. Chem. Chem. Phys.* 2000, 2, 5098-5104, doi:10.1039/b005756h.

Hanson, D. R.; Ravishankara, A. R. Response to "Comment on porosities of ice films used to simulate stratospheric cloud surfaces". *J. Phys. Chem.* 1993, 97, 2802-2803.

Hanson, D. R.; Ravishankara, A. R. The reaction probabilities of ClONO2 and N2O5 on 40 to 75% sulfuric acid solutions. *J. Geophys. Res.* 1991, 96, 17307-17314.

Harris, G. W.; Kleindienst, T. E.; Pitts, J. N., Jr. Rate constants for the reaction of OH radicals with CH3CN, C2H5CN and CH3=CH-CN in the temperature range 298-424 K. *Chem. Phys. Lett.* 1981, 80, 479-483.

Harwood, M. H.; Jones, R. L. Temperature dependent ultraviolet-visible absorption cross sections of NO₂ and N₂O₅:

Hochanadel, C. J.; Ghormley, J. A.; Ogren, P. J. Absorption spectrum and reaction kinetics of the HO
Hochanadel, C. J.; Ghormley, J. A.; Boyle, J. W.; Ogren, P. J. Absorption spectrum and rates of formation and decay
Ho, G. H. Absolute photabsorption cross section of CCl
Hjorth, J.; Ottobrini, G.; Restelli, G. Reaction of the NO
Hjorth, J.; Nothholt, J.; Restelli, G. A spectroscoy study of the equilibrium NO
Hjorth, J.; Cappellani, F.; Nielsen, C. J.; Restelli, G. Determination of the NO
Hitsuda, K.; Takahashi, K.; Matsumi, Y.; Wallington, T. J.
Hitchcock, A. P.; Williams, G. R. J.; Brion, C. E.; Langhoff, P. W. Experimental and theoretical studies of the
Hirokawa, J.; Onaka, K.; Kajii, Y.; Akimoto, H. Heterogeneous processes involving sodium halide particles and
Hippler, H.; Rahn, R.; Troe, J. Shock wave study of the reaction HO

Howard, C. J.; Evenson, K. M. Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K. *J. Chem. Phys.* 1976, 64, 4303-4306.

Huie, R. E.; Herron, J. T. The rate constant for the reaction O$_3$ + NO$_2$ → O$_2$ + NO$_3$ over the temperature range 259-362 °K. *Chem. Phys. Lett.* 1974, 27, 411-414.

Husain, D.; Marshall, P. Kinetic study of the absolute rate constant for the reaction between Na + N$_2$O in the temperature range 349-917 K by time-resolved atomic resonance absorption spectroscopy. *Combust. and Flame* 1985, 60, 81-87.

Iannuzzi, M. P.; Kaufman, F. Rate constants for the reaction of N$_2$(A$^3\Sigma^+_u$, v = 0, 1, and 2) with O$_2$. *J. Phys. Chem.* 1981, 85, 2163

I Back to Index

J

Jenkins, M. E.; Sulprizio, P. M.; Ciccioli, P.; Coakley, J. A. The role of the OH radical in the oxidation of CH4 in the Earth’s and Venus’s atmospheres. J. Geophys. Res. 1995, 100, 19021-19028.

Jeong, K. M.; Kaufman, F. Rates of the reactions of 1, 1, 1-trichloroethane (methyl chloroform) and 1, 1, 2-trichloroethane with OH. *Geophys. Res. Lett.* 1979, 6, 757-759.

Jiang, Z.; Taylor, P. H.; Dellinger, B. Laser photolysis/laser-induced fluorescence studies of the reaction of OH with 1,1,1,2- and 1,1,2,2-tetrachloroethane over an extended temperature range. *J. Phys. Chem.* 1993, 97, 5050-5053.

K

Back to Index

7-75

Keyser, L. F. Absolute rate constant of the reaction $OH + H_2O_2 → HO_2 + H_2O$ from 245 to 423 K. *J. Phys. Chem.* **1980**, *84*, 1659-1663.

Koch, T. G.; vandenBergh, H.; Rossi, M. J. A molecular diffusion tube study of N\textsubscript{2}O\textsubscript{5} and HONO\textsubscript{2} interacting with NaCl and KBr at ambient temperature. *Phys. Chem. Chem. Phys.* **1999**, *1*, 2687-2694.

Koffend, J. B.; Leone, S. R. Tunable laser photodissociation: Quantum yield of 14(\Sigmag+) from CH\textsubscript{2}I\textsubscript{2}. *Chem. Phys. Lett.* **1981**, *81*, 136-141.

Kohse-Höinghaus, K.; Stuhl, F. H\textsubscript{2}-laser photochemical study of the temperature dependent quenching of O\textsubscript{2}(b 1\Sigmag+). *J. Chem. Phys.* **1980**, *72*, 3720-3726.

7-81

Kurasawa, H.; Lesclaux, R. 14th Informal Photochemistry Conference, 1980, Newport Beach, CA.

Kuroy, M. J. Kinetics of the reactions OH(ν=0) + NH$_3$ → H$_2$O + NH$_2$ and OH(ν=0) + O$_3$ → HO$_2$ + O$_2$ at 298°K. *Chem. Phys. Lett.* 1973, 23, 467-471.

Kuroy, M. J.; Lauffer, A. H. Evidence for atom exchange in OH reactions with carbonyl compounds: 18OH + CO$_2$ → 18OCCO + OH; 18OH + CO → 18OC + OH. *J. Chem. Phys.* 1979, 70, 2032-2033.

Kuroy, M. J.; Ouellette, P. A. Pressure dependence of the rate constant for the reaction HO$_2$ + NO$_2$ + M → HO$_2$NO$_2$ + M (M = N$_2$, O$_2$) at 298 K. *J. Phys. Chem.* 1986, 90, 441-444, doi:10.1021/j100275a018.

L

Lai, L.-H.; Hsu, Y.-C.; Lee, Y.-P. The enthalpy change and the detailed rate coefficients of the equilibrium reaction OH + C₂H₂ = (M) HOC₂H over the temperature range 627-713 K. J. Chem. Phys. 1992, 97, 3092-3099.

Leu, M. T. Rate constant for the reaction HO₂ + NO → OH + NO₂. *J. Chem. Phys.* 1979, 70, 1662-1666.

Leu, M. T.; Lin, C. L. Rate constants for the reactions of OH with Cl₂, Cl₃, and Cl₂O at 298K. *Geophys. Res. Lett.* 1979, 6, 425-428.

Leu, M. T.; Timonen, R. S.; Keyser, L. F.; Yung, Y. L. Heterogeneous reactions of HNO₃(g) + NaCl(s) HCl(g) + NaNO₃(s) and N₂O₃(g) + NaCl(s) ClNO₂(g) + NaNO₃(s). *J. Phys. Chem.* 1995, 99, 13203-13212, doi:10.1021/j100035a026.

Leu, M. T.; Yung, Y. L. Determination of O₃(a^1Δg) and O₂(b^1Σg+) yields in the reaction O + ClO → Cl + O₂: Implications for photochemistry in the atmosphere of Venus. *Geophys. Res. Lett.* 1987, 14, 949-952.

Lovejoy, E. R.; Ravishankara, A. R.; Howard, C. J. Yield of

Lovejoy, E. R.; Kroeger, K. S.; Ravishankara, A. R. The kinetics of the CS

Lovejoy, E. R.; Huey, L. G.; Hanson, D. R. Atmospheric fate of CF

Lovejoy, E. R.; Hanson, D. R.; Huey, L. G. Kinetics and products of the gas

Lovejoy, E. R. Kinetics and thermodynamics of the gas phase reaction SO

Louis, F.; Talhaoui, A.; Sawerysyn, J.

Louis, F.; Černušák, I.; Canneaux, S.; Mečiarová, K. Atmospheric reactivity of CH

Louge, M. Y.; Hanson, R. K.

Lorenz, K.; Rhäsa, D.; Zellner, R.; Fritz, B. Laser photolysis

M

Marshall, P. Computational studies of the thermochemistry of the atmospheric iodine reservoirs HOI and IONO₂. Advances in Quantum Chemistry 2008, 159-175.

7-95

7-97

McNeill, V. F.; Patterson, J.; Wolfe, G. M.; Thornton, J. A. The effect of varying levels of surfactant on the reactive uptake of N₂O₅ to aqueous aerosol. Atmos. Chem. Phys. 2006, 6, 1635-1644.

Meller, R., personal communication to NASA Data Panel.

Meyrath, H.; Pauly, J.; Schneider, W.; Warneck, P. Quantum yields for the photodissociation of acetone in air and an estimate for the life time of acetone in the lower troposphere. J. Atmos. Chem. 1986, 4, 277-291.

Michael, J. V.; Nava, D. F.; Borkowski, R. P.; Payne, W. A.; Stief, L. J. Pressure dependence of the absolute rate constant for the reaction OH + C$_2$H$_2$ from 228 to 413 K. J. Chem. Phys. 1980, 73, 6108-6116.

Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J. Rate constants for the reaction of atomic chlorine with methanol and dimethyl ether from 200 to 500 K. J. Chem. Phys. 1979, 70, 3652-3656.

Müller, M. A.; Yetter, R. A.; Dryer, F. L. Kinetic modeling of the CO/ \(\text{H}_2\text{O}/\text{O}_2/\text{NO}/\text{SO}_2 \) system: Implications for high-pressure fall-off in the \(\text{SO}_2 + \text{O} + \text{(M)} \rightarrow \text{SO}_2(\text{M}) \) reaction. *Int. J. Chem. Kinet.* 2000, 32, 317-339.

N

Nadtochenko, V. A.; Sarkisov, O. M.; Vedeneev, V. I. *Doklady Akademii Nauk SSSR* 1979, 244, 152.

Ogawa, S.; Ogawa, M. Absorption cross sections of O$_2$ (a'Delta) and O$_2$(X3Sigma)g in the region from 1087 to 1700 Å. Can. J. Phys. 1975, 53, 1845-1852.

Overend, R. P.; Paraskevopoulos, G.; Black, C. Rates of OH radical reactions. II. The combination reaction OH + NO + M. *J. Chem. Phys.* 1976, 64, 4149-4154.

Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Data Center: College Station, TX, 1994.

Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. Rate constants for the reaction of OH radicals with CHFCl₂ and CH₃Cl over the temperature range 298-423 °K, and with CH₂Cl₂ at 298 °K. J. Chem. Phys. 1976, 64, 1618-1620.

7-116

Perry, R. A.; Melius, C. F. In Twentieth Symposium (International) on Combustion; The Combustion Institute, 1984; pp 639-646.

Q

Back to Index

R

Back to Index

Rivas, D. *In Diplomaarbeit* Univ. of Gottingen FRG, **1983**.

Russell, B. R.; Edwards, L. O.; Raymonda, J. W. Vacuum ultra...

Sehested, J.; Christensen, L. K.; Nielsen, O. J.; Bilde, M.; Wallington, T. J.; Schneider, W. F.; Orlando, J. J.; Tyndall, G. S. Atmospheric chemistry of acetone: Kinetic study of the CH₃C(O)O₂ + NO and CH₃C(O)O₂ + NO₂ reactions and decomposition of CH₃C(O)CH₃NO₂. *Int. J. Chem. Kinet.* 1998, 30, 475-489.

Seisel, S.; Fluckiger, B.; Caloz, F.; Rossi, M. J. Heterogeneous reactivity of the nitrate radical: Reactions on halogen salt at ambient temperature and on ice in the presence of HX (X = Cl, Br, I) at 190 K. *Phys. Chem. Chem. Phys.* 1999, 1, 2257-2262.

Shapley, W. A.; Bacskay, G. B. Ab initio quantum chemical studies of the formaldiminoxyt (CH\textsubscript{3}NO) radical: 1. Isomerization reactions. J. Phys. Chem. 1999, 103, 4505-4513.

Shardanand Absorption cross sections of O\textsubscript{2} and O\textsubscript{3} between 2000 and 2800 Å. Phys. Rev. 1969, 186, 5-9.

Sharpe, S.; Hartnett, B.; Sethi, H. S.; Sethi, D. S. Absorption cross-sections of CF\textsubscript{2} in the A'B\textsubscript{1}→X' A\textsubscript{1} transition at 0.5 nm intervals and absolute rate constant for 2CF\textsubscript{2} → CF\textsubscript{2} at 298 ± 3 K. J. Photochem. 1987, 38, 1-13.

Siege, J. E.; Cobos, C. J. Thermochemistry of the higher chlorine oxides ClO₃ (x = 3,4) and Cl₂O₄ (x = 3 - 7). *J. Mol. Struct. (Theochem)* **2003**, *620*, 215-226.

Slanger, T. G.; Black, G. Interactions of O(3P) (b(2)Σ(9)+) with O(1D) and O(3P). J. Chem. Phys. 1979, 70, 3434-3438.

Smith, I. W. M.; Williams, M. D. Effects of isotopic substitution and vibrational excitation on reaction rates Kinetics of OH(v = 0,1) and OD(v = 0,1) with HCl and DCl. *J. Chem. Soc. Faraday Trans. 2* 1986, 82, 1043-1055.

Smith, I. W. M.; Wrigley, D. J. Time resolved vibrational chemiluminescence: Rate constants for the reactions F + HBr, HI → HF + Br, I and for the relaxation of HF(v=4) and HF(v=6) by HBr, HI, CO2, N2O, CO, N2 and O2. *Chem. Phys.* 1981, 63, 321-336.

Smith, R. H. Rate constant and activation energy for the gaseous reaction between hydroxyl and formaldehyde. *Int. J. Chem. Kinet.* 1978, 10, 519-528.

Stevens, W. R.; Bodi, A.; Baer, T. Dissociation dynamics of energy selected, propane, and i-C₃H₇X⁺ ions by iPEPICO: Accurate heats of formation of i-C₃H₇⁺, i-C₃H₇Cl, i-C₃H₇Br, and i-C₃H₇I. J. Phys. Chem. A 2010, 114, 11285-11291, doi:10.1021/jp104200h.

Stickel, R. E.; Zhao, Z.; Wine, P. H. Branching ratios for hydrogen transfer in the reactions of OD radicals with \(\text{CH}_3\text{SH} \) and \(\text{CH}_3\text{SC}_2\text{H}_5 \). *Chem. Phys. Lett.* **1993**, *212*, 312-318.

Stief, L. J.; Payne, W. A.; Klemm, R. B. A flash photolysis-resonance ﬂuorescence study of the formation of \(O(1D) \) in the photolysis of water and the reaction of \(O(1D) \) with \(H_2 \), \(Ar \), and \(He \). *J. Chem. Phys.* **1975**, *62*, 4000-4008.

Streit, G. E.; Howard, C. J.; Schmeltekopf, A. L.; Davidson, J. A.; Schiff, H. I. Temperature dependence of \(O(1D) \) rate constants for reactions with \(O_2 \), \(N_2 \), \(CO_2 \), \(O_3 \), and \(\text{H}_2\text{O} \). *J. Chem. Phys.* **1976**, *65*, 4761-4764, doi:10.1063/1.432930.

Strekowski, R. S.; Nicovich, J. M.; Wine, P. H. Kinetic and mechanistic study of the reaction of \(O(1D) \) with \(\text{CF}_3\text{HBr} \). *Int. J. Chem. Kinet.* **2001**, *33*, 262-270.

Stuhl, F. Absolute rate constant for the reaction \(\text{OH} + \text{NH}_3 \rightarrow \text{NH}_2 + \text{H}_2\text{O} \). *J. Chem. Phys.* **1973**, *59*, 635-637.

Stuhl, F.; Niki, H. Determination of rate constants for reactions of \(O \) atoms with \(\text{C}_2\text{H}_2 \), \(\text{C}_2\text{D}_2 \), \(\text{C}_2\text{H}_4 \), and \(\text{C}_2\text{H}_6 \) using a pulse vacuum-UV photolysis-chemiluminescent method. *J. Chem. Phys.* **1971**, *55*, 3954-3957.

Stuhl, F.; Welge, K. H. Deactivation of \(O(1S) \) and \(O_2(1Σ_g^+) \). *Can. J. Chem.* **1969**, *47*, 1870-1871.

7-140
Taketani, F.; Kanaya, Y.; Akimoto, H. Heterogeneous loss of HO.

Taherian, M. R.; Slaenger, T. G. Products and yields from O³(2P) and O³(1D) reactions with C³(2P) and C³(3P) ketones. J. Phys. Chem. A 2003, 107, 4440, doi:10.1021/jp034689r.

Tanaka, M.; Sneep, M.; Ubachs, W.; Tennyson, J. Cavity ring-down spectroscopy of \(\text{H}_2\text{H}_2\text{O} \) in the range 16570-17120 cm\(^{-1}\). *J. Mol. Spectrosc.* 2004, 226, 1-6, doi:10.1016/j.jms.2004.03.004.

Tang, Y.; Tyndall, G. S.; Orlando, J. J. Spectroscopic and kinetic properties of \(\text{HO}_2 \) radicals and the enhancement of the \(\text{HO}_2 \) self reaction by \(\text{CH}_3\text{OH} \) and \(\text{H}_2\text{O} \). *J. Phys. Chem. A* 2010, 114, 369-378, doi:10.1021/jp905279b.

Taylor, P. H.; D'Angelo, J. A.; Martin, M. C.; Kasner, J. H.; Dellinger, B. Laser photolysis/laser-induced fluorescence studies of reaction rates of \(\text{OH} \) with \(\text{CH}_3\text{Cl}, \text{CH}_2\text{Cl}_2, \) and \(\text{CHCl}_3 \) over an extended temperature range. *Int. J. Chem. Kinet.* 1989, 21, 829-846.

Thanthiriwatte, K. S.; Vasilii, M.; Dixon, D. A.; Christe, K. O. Structural and energetic properties of closed shell XF6 (X = Cl, Br, and I; n = 1–7) and XO6F6 (X = Cl, Br, and I; n = 1–3; m = 0–6) molecules and ions leading to stability predictions for yet unknown compounds. Inorg. Chem. 2012, 51, 10966-10982, doi:10.1021/ic301438b.

Thomas, J. W.; Kaufman, F. Rate constants of the reactions of metastable N2(A 3Σu+) in ν = 0, 1, 2, and 3 with ground state O2 and O. J. Chem. Phys. 1985, 83, 2900-2903.

Heterogeneous reaction of ClONO₂(g) + NaCl(s) → Cl₂(g) + NaN₃(s). *J. Phys. Chem.* 1994, 98, 9509-9517, doi:10.1021/j100089a025.

Rate constants for the reactions of OH radicals with CH₃OCF₂CFHCl, CHF₂OCF₂CHFCl, CHF₂OCH(CF₃), and CH₃CH₂OCF₂CHF₂. *J. Geophys. Res.* 1999, 104, 18681-18688.

Rate constants for the reactions of OH radicals with CH₃OCF₂CFH₂, CHF₂OCH₂CF₂CHF₂, CHF₂OCH₂CF₂CF₃, and CF₃CH₂OCF₂CHF₂ over the temperature range 250-430 K. *J. Phys. Chem. A* 2000, 104, 1165-1170, doi:10.1021/jp991421+.

Vranckx, S.; Peeters, J.; Carl, S. A. Absolute rate constant and O(1D) yield for the O(1D) + N2O reaction in the temperature range 227 K to 719 K. Atmos. Chem. Phys. 2008, 8, 6261-6272.

W

Wahner, A.; Mental, T. F.; Sohn, M.; Stier, J. Heterogeneous reaction of N2O5 on sodium nitrate aerosol. J. Geophys. Res. 1998, 103, 31103-31112.

Wallington, T. J.; Andino, J. M.; Ball, J. C.; Japar, S. M. Fourier transform infrared studies of the reaction of Cl atoms with PAN, PPN, CH3O.OH, HCOOH, CH3COCH3 and CH3COCH2H at 295 ± 2 K. J. Atmos. Chem. 1990, 10, 301-313.

Wallington, T. J.; Ellermann, T.; Nielsen, O. J. Atmospheric chemistry of dimethyl sulfide: UV spectra and self-reaction kinetics of CH₃SCH₂ and CH₃SCH₂O₂ radicals and kinetics of the reactions CH₃SCH₂ + O₂ → CH₃SCH₂ + NO and CH₃SCH₂O₂ + NO → CH₃SCH₂O + NO₂. *J. Phys. Chem.* 1993, 97, 8442-8449.

Wallington, T. J.; Hurley, M. D. A kinetic study of the reaction of chlorine atoms with CF₂CHCl₂, CF₃CH₂F, CFCI₂CH₂F, CF₂CICF₃, CH₂D, CH₂D₂, CH₂D₃, CD₂, and CD₃Cl at 295 ± 2 K. *Chem. Phys. Lett.* 1992, 189, 437-442.

Wayne, R. P.; Pitts, J. N., Jr. Rate constant for the reaction O$_3$(1Δ_g) + O$_3$ → 2O$_2$ + O. J. Chem. Phys. 1969, 50, 3644-3645.

Westenberg, A. A.; de Haas, N. A flash photolysis-resonance fluorescence study of the $\text{O} + \text{C}_2\text{H}_2$ and $\text{O} + \text{C}_2\text{H}_3\text{Cl}$ reactions. *J. Chem. Phys.* 1977, 66, 4900-4905.

Westenberg, A. A.; de Haas, N. Atom molecule using EST detection. V. Results for $\text{O} + \text{OCS}$, $\text{O} + \text{CS}_2$, $\text{O} + \text{NO}$, and $\text{H} + \text{C}_2\text{H}_4$. *J. Chem. Phys.* 1969, 50, 707-709.

Westenberg, A. A.; de Haas, N. Atom-molecule kinetics using ESR detection. IV. Results for $\text{Cl} + \text{H}_2 \rightleftharpoons \text{HCl} + \text{H}$ in both directions. *J. Chem. Phys.* 1968, 48, 4405-4415.

Westenberg, A. A.; de Haas, N. Rate measurement on $\text{OH} + \text{NO} + \text{M}$ and $\text{OH} + \text{NO}_2 + \text{M}$. *J. Chem. Phys.* 1972, 57, 5375-5378.

Westenberg, A. A.; de Haas, N. Rate of the reaction $\text{OH} + \text{H}_2\text{S} \rightleftharpoons \text{SH} + \text{H}_2\text{O}$ over an extended temperature range. *J. Chem. Phys.* 1973, 59, 6685-6686.

Westenberg, A. A.; Roscoe, J. M.; de Haas, N. Rate measurements on $\text{N} + \text{O}_2(\Delta g) \rightarrow \text{NO} + \text{O}$ and $\text{H} + \text{O}_2(\Delta g) \rightarrow \text{OH} + \text{O}$. *Chem. Phys. Lett.* 1970, 7, 597-599.

Whytock, D. A.; Michael, J. V.; Payne, W. A. Absolute rate constants for $\text{O} + \text{NO} + \text{N}_2 \rightarrow \text{NO}_2 + \text{N}_2$ from 217-500 K. *Chem. Lett.* 1976, 42, 466-471.

Wilcomb, B. E.; Bernstein, R. B. Dissociation energies of ground-state HgX molecules ($X = \text{I}$, Br, Cl) from analysis of vibrational level spacings. *J. Molec. Spectrosc.* 1976, 62, 442-448.

Wildt, J.; Bednarek, G.; Fink, E. H.; Wayne, R. P. Laser excitation of $\text{O}_2(b^1\Sigma_g^+, \nu' = 0,1,2)$- Rates and channels of energy transfer and quenching. *Chem. Phys.* 1988, 122, 463-470.

Wildt, J.; Fink, E. H.; Biggs, P.; Wayne, R. P.; Vilesov, A. F. Collision-induced emission of $\text{O}_2(a^1\Delta_g \rightarrow \text{X}^1\Sigma_g^+)$ in the gas phase. *Chem. Phys.* 1992, 159, 127-140.

Wollenhaupt, M.; Crowley, J. N. Kinetic studies of the reactions CH$_3$ + NO$_2$ → products, CH$_3$O + NO$_2$ → products, and OH + CH$_3$C(O)CH$_3$ → CH$_3$C(O)OH + CH$_3$, over a range of temperature and pressure. *J. Phys. Chem.* A 2000, 104, 6429-6438, doi:10.1021/jp0005726.

Xiang, T.; Torres, M. L.; Guilloiry, W. A. State-selected reaction and relaxation of NH₃[X²B₁(0,v₂,0)] radicals and NO₂. J. Chem. Phys. 1985, 83, 1623-1629.

X

Z

Zettsch, C. “Rate constants for the reactions of OH with acetone and methylthylketone in the gas phase”; 7th International Symposium on Gas Kinetics, 1982, Goettingen, Germany.

Zhang, H.; Roehl, C. M.; Sander, S. P.; Wennberg, P. O. Intensity of the second and third OH overtones of H$_2$O$_2$, HNO$_3$, and H$_2$O$_2$NO$_2$. *J. Geophys. Res.* 2000, 105, 14593-14598.

7-168

Zhitneva, G. P.; Pshezhetskii, S. Y. Rate constant for the reaction of fluorine atoms with CH4 from 298 to 1511 K. In *Kinetika i Kataliz,* 1978, 19, 228-231.

Zhu, R.; Lin, M. C. Ab initio studies of ClO...

[Back to Index]